1 #include "amd64_edac.h" 2 #include <asm/amd_nb.h> 3 4 static struct edac_pci_ctl_info *amd64_ctl_pci; 5 6 static int report_gart_errors; 7 module_param(report_gart_errors, int, 0644); 8 9 /* 10 * Set by command line parameter. If BIOS has enabled the ECC, this override is 11 * cleared to prevent re-enabling the hardware by this driver. 12 */ 13 static int ecc_enable_override; 14 module_param(ecc_enable_override, int, 0644); 15 16 static struct msr __percpu *msrs; 17 18 /* 19 * count successfully initialized driver instances for setup_pci_device() 20 */ 21 static atomic_t drv_instances = ATOMIC_INIT(0); 22 23 /* Per-node driver instances */ 24 static struct mem_ctl_info **mcis; 25 static struct ecc_settings **ecc_stngs; 26 27 /* 28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing 29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching- 30 * or higher value'. 31 * 32 *FIXME: Produce a better mapping/linearisation. 33 */ 34 static const struct scrubrate { 35 u32 scrubval; /* bit pattern for scrub rate */ 36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */ 37 } scrubrates[] = { 38 { 0x01, 1600000000UL}, 39 { 0x02, 800000000UL}, 40 { 0x03, 400000000UL}, 41 { 0x04, 200000000UL}, 42 { 0x05, 100000000UL}, 43 { 0x06, 50000000UL}, 44 { 0x07, 25000000UL}, 45 { 0x08, 12284069UL}, 46 { 0x09, 6274509UL}, 47 { 0x0A, 3121951UL}, 48 { 0x0B, 1560975UL}, 49 { 0x0C, 781440UL}, 50 { 0x0D, 390720UL}, 51 { 0x0E, 195300UL}, 52 { 0x0F, 97650UL}, 53 { 0x10, 48854UL}, 54 { 0x11, 24427UL}, 55 { 0x12, 12213UL}, 56 { 0x13, 6101UL}, 57 { 0x14, 3051UL}, 58 { 0x15, 1523UL}, 59 { 0x16, 761UL}, 60 { 0x00, 0UL}, /* scrubbing off */ 61 }; 62 63 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset, 64 u32 *val, const char *func) 65 { 66 int err = 0; 67 68 err = pci_read_config_dword(pdev, offset, val); 69 if (err) 70 amd64_warn("%s: error reading F%dx%03x.\n", 71 func, PCI_FUNC(pdev->devfn), offset); 72 73 return err; 74 } 75 76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset, 77 u32 val, const char *func) 78 { 79 int err = 0; 80 81 err = pci_write_config_dword(pdev, offset, val); 82 if (err) 83 amd64_warn("%s: error writing to F%dx%03x.\n", 84 func, PCI_FUNC(pdev->devfn), offset); 85 86 return err; 87 } 88 89 /* 90 * 91 * Depending on the family, F2 DCT reads need special handling: 92 * 93 * K8: has a single DCT only 94 * 95 * F10h: each DCT has its own set of regs 96 * DCT0 -> F2x040.. 97 * DCT1 -> F2x140.. 98 * 99 * F15h: we select which DCT we access using F1x10C[DctCfgSel] 100 * 101 */ 102 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, 103 const char *func) 104 { 105 if (addr >= 0x100) 106 return -EINVAL; 107 108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); 109 } 110 111 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, 112 const char *func) 113 { 114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); 115 } 116 117 /* 118 * Select DCT to which PCI cfg accesses are routed 119 */ 120 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct) 121 { 122 u32 reg = 0; 123 124 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®); 125 reg &= 0xfffffffe; 126 reg |= dct; 127 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg); 128 } 129 130 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, 131 const char *func) 132 { 133 u8 dct = 0; 134 135 if (addr >= 0x140 && addr <= 0x1a0) { 136 dct = 1; 137 addr -= 0x100; 138 } 139 140 f15h_select_dct(pvt, dct); 141 142 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); 143 } 144 145 /* 146 * Memory scrubber control interface. For K8, memory scrubbing is handled by 147 * hardware and can involve L2 cache, dcache as well as the main memory. With 148 * F10, this is extended to L3 cache scrubbing on CPU models sporting that 149 * functionality. 150 * 151 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks 152 * (dram) over to cache lines. This is nasty, so we will use bandwidth in 153 * bytes/sec for the setting. 154 * 155 * Currently, we only do dram scrubbing. If the scrubbing is done in software on 156 * other archs, we might not have access to the caches directly. 157 */ 158 159 /* 160 * scan the scrub rate mapping table for a close or matching bandwidth value to 161 * issue. If requested is too big, then use last maximum value found. 162 */ 163 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate) 164 { 165 u32 scrubval; 166 int i; 167 168 /* 169 * map the configured rate (new_bw) to a value specific to the AMD64 170 * memory controller and apply to register. Search for the first 171 * bandwidth entry that is greater or equal than the setting requested 172 * and program that. If at last entry, turn off DRAM scrubbing. 173 * 174 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely 175 * by falling back to the last element in scrubrates[]. 176 */ 177 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) { 178 /* 179 * skip scrub rates which aren't recommended 180 * (see F10 BKDG, F3x58) 181 */ 182 if (scrubrates[i].scrubval < min_rate) 183 continue; 184 185 if (scrubrates[i].bandwidth <= new_bw) 186 break; 187 } 188 189 scrubval = scrubrates[i].scrubval; 190 191 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F); 192 193 if (scrubval) 194 return scrubrates[i].bandwidth; 195 196 return 0; 197 } 198 199 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw) 200 { 201 struct amd64_pvt *pvt = mci->pvt_info; 202 u32 min_scrubrate = 0x5; 203 204 if (boot_cpu_data.x86 == 0xf) 205 min_scrubrate = 0x0; 206 207 /* F15h Erratum #505 */ 208 if (boot_cpu_data.x86 == 0x15) 209 f15h_select_dct(pvt, 0); 210 211 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate); 212 } 213 214 static int amd64_get_scrub_rate(struct mem_ctl_info *mci) 215 { 216 struct amd64_pvt *pvt = mci->pvt_info; 217 u32 scrubval = 0; 218 int i, retval = -EINVAL; 219 220 /* F15h Erratum #505 */ 221 if (boot_cpu_data.x86 == 0x15) 222 f15h_select_dct(pvt, 0); 223 224 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval); 225 226 scrubval = scrubval & 0x001F; 227 228 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { 229 if (scrubrates[i].scrubval == scrubval) { 230 retval = scrubrates[i].bandwidth; 231 break; 232 } 233 } 234 return retval; 235 } 236 237 /* 238 * returns true if the SysAddr given by sys_addr matches the 239 * DRAM base/limit associated with node_id 240 */ 241 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, 242 u8 nid) 243 { 244 u64 addr; 245 246 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be 247 * all ones if the most significant implemented address bit is 1. 248 * Here we discard bits 63-40. See section 3.4.2 of AMD publication 249 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 250 * Application Programming. 251 */ 252 addr = sys_addr & 0x000000ffffffffffull; 253 254 return ((addr >= get_dram_base(pvt, nid)) && 255 (addr <= get_dram_limit(pvt, nid))); 256 } 257 258 /* 259 * Attempt to map a SysAddr to a node. On success, return a pointer to the 260 * mem_ctl_info structure for the node that the SysAddr maps to. 261 * 262 * On failure, return NULL. 263 */ 264 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, 265 u64 sys_addr) 266 { 267 struct amd64_pvt *pvt; 268 u8 node_id; 269 u32 intlv_en, bits; 270 271 /* 272 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section 273 * 3.4.4.2) registers to map the SysAddr to a node ID. 274 */ 275 pvt = mci->pvt_info; 276 277 /* 278 * The value of this field should be the same for all DRAM Base 279 * registers. Therefore we arbitrarily choose to read it from the 280 * register for node 0. 281 */ 282 intlv_en = dram_intlv_en(pvt, 0); 283 284 if (intlv_en == 0) { 285 for (node_id = 0; node_id < DRAM_RANGES; node_id++) { 286 if (amd64_base_limit_match(pvt, sys_addr, node_id)) 287 goto found; 288 } 289 goto err_no_match; 290 } 291 292 if (unlikely((intlv_en != 0x01) && 293 (intlv_en != 0x03) && 294 (intlv_en != 0x07))) { 295 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en); 296 return NULL; 297 } 298 299 bits = (((u32) sys_addr) >> 12) & intlv_en; 300 301 for (node_id = 0; ; ) { 302 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits) 303 break; /* intlv_sel field matches */ 304 305 if (++node_id >= DRAM_RANGES) 306 goto err_no_match; 307 } 308 309 /* sanity test for sys_addr */ 310 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) { 311 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address" 312 "range for node %d with node interleaving enabled.\n", 313 __func__, sys_addr, node_id); 314 return NULL; 315 } 316 317 found: 318 return edac_mc_find((int)node_id); 319 320 err_no_match: 321 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n", 322 (unsigned long)sys_addr); 323 324 return NULL; 325 } 326 327 /* 328 * compute the CS base address of the @csrow on the DRAM controller @dct. 329 * For details see F2x[5C:40] in the processor's BKDG 330 */ 331 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct, 332 u64 *base, u64 *mask) 333 { 334 u64 csbase, csmask, base_bits, mask_bits; 335 u8 addr_shift; 336 337 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) { 338 csbase = pvt->csels[dct].csbases[csrow]; 339 csmask = pvt->csels[dct].csmasks[csrow]; 340 base_bits = GENMASK(21, 31) | GENMASK(9, 15); 341 mask_bits = GENMASK(21, 29) | GENMASK(9, 15); 342 addr_shift = 4; 343 } else { 344 csbase = pvt->csels[dct].csbases[csrow]; 345 csmask = pvt->csels[dct].csmasks[csrow >> 1]; 346 addr_shift = 8; 347 348 if (boot_cpu_data.x86 == 0x15) 349 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13); 350 else 351 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13); 352 } 353 354 *base = (csbase & base_bits) << addr_shift; 355 356 *mask = ~0ULL; 357 /* poke holes for the csmask */ 358 *mask &= ~(mask_bits << addr_shift); 359 /* OR them in */ 360 *mask |= (csmask & mask_bits) << addr_shift; 361 } 362 363 #define for_each_chip_select(i, dct, pvt) \ 364 for (i = 0; i < pvt->csels[dct].b_cnt; i++) 365 366 #define chip_select_base(i, dct, pvt) \ 367 pvt->csels[dct].csbases[i] 368 369 #define for_each_chip_select_mask(i, dct, pvt) \ 370 for (i = 0; i < pvt->csels[dct].m_cnt; i++) 371 372 /* 373 * @input_addr is an InputAddr associated with the node given by mci. Return the 374 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). 375 */ 376 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) 377 { 378 struct amd64_pvt *pvt; 379 int csrow; 380 u64 base, mask; 381 382 pvt = mci->pvt_info; 383 384 for_each_chip_select(csrow, 0, pvt) { 385 if (!csrow_enabled(csrow, 0, pvt)) 386 continue; 387 388 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask); 389 390 mask = ~mask; 391 392 if ((input_addr & mask) == (base & mask)) { 393 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n", 394 (unsigned long)input_addr, csrow, 395 pvt->mc_node_id); 396 397 return csrow; 398 } 399 } 400 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n", 401 (unsigned long)input_addr, pvt->mc_node_id); 402 403 return -1; 404 } 405 406 /* 407 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) 408 * for the node represented by mci. Info is passed back in *hole_base, 409 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if 410 * info is invalid. Info may be invalid for either of the following reasons: 411 * 412 * - The revision of the node is not E or greater. In this case, the DRAM Hole 413 * Address Register does not exist. 414 * 415 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, 416 * indicating that its contents are not valid. 417 * 418 * The values passed back in *hole_base, *hole_offset, and *hole_size are 419 * complete 32-bit values despite the fact that the bitfields in the DHAR 420 * only represent bits 31-24 of the base and offset values. 421 */ 422 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, 423 u64 *hole_offset, u64 *hole_size) 424 { 425 struct amd64_pvt *pvt = mci->pvt_info; 426 427 /* only revE and later have the DRAM Hole Address Register */ 428 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) { 429 edac_dbg(1, " revision %d for node %d does not support DHAR\n", 430 pvt->ext_model, pvt->mc_node_id); 431 return 1; 432 } 433 434 /* valid for Fam10h and above */ 435 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) { 436 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n"); 437 return 1; 438 } 439 440 if (!dhar_valid(pvt)) { 441 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n", 442 pvt->mc_node_id); 443 return 1; 444 } 445 446 /* This node has Memory Hoisting */ 447 448 /* +------------------+--------------------+--------------------+----- 449 * | memory | DRAM hole | relocated | 450 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from | 451 * | | | DRAM hole | 452 * | | | [0x100000000, | 453 * | | | (0x100000000+ | 454 * | | | (0xffffffff-x))] | 455 * +------------------+--------------------+--------------------+----- 456 * 457 * Above is a diagram of physical memory showing the DRAM hole and the 458 * relocated addresses from the DRAM hole. As shown, the DRAM hole 459 * starts at address x (the base address) and extends through address 460 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the 461 * addresses in the hole so that they start at 0x100000000. 462 */ 463 464 *hole_base = dhar_base(pvt); 465 *hole_size = (1ULL << 32) - *hole_base; 466 467 if (boot_cpu_data.x86 > 0xf) 468 *hole_offset = f10_dhar_offset(pvt); 469 else 470 *hole_offset = k8_dhar_offset(pvt); 471 472 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", 473 pvt->mc_node_id, (unsigned long)*hole_base, 474 (unsigned long)*hole_offset, (unsigned long)*hole_size); 475 476 return 0; 477 } 478 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info); 479 480 /* 481 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is 482 * assumed that sys_addr maps to the node given by mci. 483 * 484 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section 485 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a 486 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, 487 * then it is also involved in translating a SysAddr to a DramAddr. Sections 488 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. 489 * These parts of the documentation are unclear. I interpret them as follows: 490 * 491 * When node n receives a SysAddr, it processes the SysAddr as follows: 492 * 493 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM 494 * Limit registers for node n. If the SysAddr is not within the range 495 * specified by the base and limit values, then node n ignores the Sysaddr 496 * (since it does not map to node n). Otherwise continue to step 2 below. 497 * 498 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is 499 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within 500 * the range of relocated addresses (starting at 0x100000000) from the DRAM 501 * hole. If not, skip to step 3 below. Else get the value of the 502 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the 503 * offset defined by this value from the SysAddr. 504 * 505 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM 506 * Base register for node n. To obtain the DramAddr, subtract the base 507 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70). 508 */ 509 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) 510 { 511 struct amd64_pvt *pvt = mci->pvt_info; 512 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; 513 int ret; 514 515 dram_base = get_dram_base(pvt, pvt->mc_node_id); 516 517 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, 518 &hole_size); 519 if (!ret) { 520 if ((sys_addr >= (1ULL << 32)) && 521 (sys_addr < ((1ULL << 32) + hole_size))) { 522 /* use DHAR to translate SysAddr to DramAddr */ 523 dram_addr = sys_addr - hole_offset; 524 525 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n", 526 (unsigned long)sys_addr, 527 (unsigned long)dram_addr); 528 529 return dram_addr; 530 } 531 } 532 533 /* 534 * Translate the SysAddr to a DramAddr as shown near the start of 535 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8 536 * only deals with 40-bit values. Therefore we discard bits 63-40 of 537 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we 538 * discard are all 1s. Otherwise the bits we discard are all 0s. See 539 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture 540 * Programmer's Manual Volume 1 Application Programming. 541 */ 542 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base; 543 544 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n", 545 (unsigned long)sys_addr, (unsigned long)dram_addr); 546 return dram_addr; 547 } 548 549 /* 550 * @intlv_en is the value of the IntlvEn field from a DRAM Base register 551 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used 552 * for node interleaving. 553 */ 554 static int num_node_interleave_bits(unsigned intlv_en) 555 { 556 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; 557 int n; 558 559 BUG_ON(intlv_en > 7); 560 n = intlv_shift_table[intlv_en]; 561 return n; 562 } 563 564 /* Translate the DramAddr given by @dram_addr to an InputAddr. */ 565 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) 566 { 567 struct amd64_pvt *pvt; 568 int intlv_shift; 569 u64 input_addr; 570 571 pvt = mci->pvt_info; 572 573 /* 574 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) 575 * concerning translating a DramAddr to an InputAddr. 576 */ 577 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); 578 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) + 579 (dram_addr & 0xfff); 580 581 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", 582 intlv_shift, (unsigned long)dram_addr, 583 (unsigned long)input_addr); 584 585 return input_addr; 586 } 587 588 /* 589 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is 590 * assumed that @sys_addr maps to the node given by mci. 591 */ 592 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) 593 { 594 u64 input_addr; 595 596 input_addr = 597 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); 598 599 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n", 600 (unsigned long)sys_addr, (unsigned long)input_addr); 601 602 return input_addr; 603 } 604 605 /* Map the Error address to a PAGE and PAGE OFFSET. */ 606 static inline void error_address_to_page_and_offset(u64 error_address, 607 struct err_info *err) 608 { 609 err->page = (u32) (error_address >> PAGE_SHIFT); 610 err->offset = ((u32) error_address) & ~PAGE_MASK; 611 } 612 613 /* 614 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address 615 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers 616 * of a node that detected an ECC memory error. mci represents the node that 617 * the error address maps to (possibly different from the node that detected 618 * the error). Return the number of the csrow that sys_addr maps to, or -1 on 619 * error. 620 */ 621 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) 622 { 623 int csrow; 624 625 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); 626 627 if (csrow == -1) 628 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for " 629 "address 0x%lx\n", (unsigned long)sys_addr); 630 return csrow; 631 } 632 633 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); 634 635 /* 636 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs 637 * are ECC capable. 638 */ 639 static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt) 640 { 641 u8 bit; 642 unsigned long edac_cap = EDAC_FLAG_NONE; 643 644 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F) 645 ? 19 646 : 17; 647 648 if (pvt->dclr0 & BIT(bit)) 649 edac_cap = EDAC_FLAG_SECDED; 650 651 return edac_cap; 652 } 653 654 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8); 655 656 static void amd64_dump_dramcfg_low(u32 dclr, int chan) 657 { 658 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr); 659 660 edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n", 661 (dclr & BIT(16)) ? "un" : "", 662 (dclr & BIT(19)) ? "yes" : "no"); 663 664 edac_dbg(1, " PAR/ERR parity: %s\n", 665 (dclr & BIT(8)) ? "enabled" : "disabled"); 666 667 if (boot_cpu_data.x86 == 0x10) 668 edac_dbg(1, " DCT 128bit mode width: %s\n", 669 (dclr & BIT(11)) ? "128b" : "64b"); 670 671 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n", 672 (dclr & BIT(12)) ? "yes" : "no", 673 (dclr & BIT(13)) ? "yes" : "no", 674 (dclr & BIT(14)) ? "yes" : "no", 675 (dclr & BIT(15)) ? "yes" : "no"); 676 } 677 678 /* Display and decode various NB registers for debug purposes. */ 679 static void dump_misc_regs(struct amd64_pvt *pvt) 680 { 681 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap); 682 683 edac_dbg(1, " NB two channel DRAM capable: %s\n", 684 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no"); 685 686 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n", 687 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no", 688 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no"); 689 690 amd64_dump_dramcfg_low(pvt->dclr0, 0); 691 692 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare); 693 694 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n", 695 pvt->dhar, dhar_base(pvt), 696 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt) 697 : f10_dhar_offset(pvt)); 698 699 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no"); 700 701 amd64_debug_display_dimm_sizes(pvt, 0); 702 703 /* everything below this point is Fam10h and above */ 704 if (boot_cpu_data.x86 == 0xf) 705 return; 706 707 amd64_debug_display_dimm_sizes(pvt, 1); 708 709 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4")); 710 711 /* Only if NOT ganged does dclr1 have valid info */ 712 if (!dct_ganging_enabled(pvt)) 713 amd64_dump_dramcfg_low(pvt->dclr1, 1); 714 } 715 716 /* 717 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60] 718 */ 719 static void prep_chip_selects(struct amd64_pvt *pvt) 720 { 721 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) { 722 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; 723 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8; 724 } else { 725 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; 726 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4; 727 } 728 } 729 730 /* 731 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers 732 */ 733 static void read_dct_base_mask(struct amd64_pvt *pvt) 734 { 735 int cs; 736 737 prep_chip_selects(pvt); 738 739 for_each_chip_select(cs, 0, pvt) { 740 int reg0 = DCSB0 + (cs * 4); 741 int reg1 = DCSB1 + (cs * 4); 742 u32 *base0 = &pvt->csels[0].csbases[cs]; 743 u32 *base1 = &pvt->csels[1].csbases[cs]; 744 745 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0)) 746 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n", 747 cs, *base0, reg0); 748 749 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt)) 750 continue; 751 752 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1)) 753 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n", 754 cs, *base1, reg1); 755 } 756 757 for_each_chip_select_mask(cs, 0, pvt) { 758 int reg0 = DCSM0 + (cs * 4); 759 int reg1 = DCSM1 + (cs * 4); 760 u32 *mask0 = &pvt->csels[0].csmasks[cs]; 761 u32 *mask1 = &pvt->csels[1].csmasks[cs]; 762 763 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0)) 764 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n", 765 cs, *mask0, reg0); 766 767 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt)) 768 continue; 769 770 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1)) 771 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n", 772 cs, *mask1, reg1); 773 } 774 } 775 776 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs) 777 { 778 enum mem_type type; 779 780 /* F15h supports only DDR3 */ 781 if (boot_cpu_data.x86 >= 0x15) 782 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; 783 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) { 784 if (pvt->dchr0 & DDR3_MODE) 785 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; 786 else 787 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; 788 } else { 789 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; 790 } 791 792 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]); 793 794 return type; 795 } 796 797 /* Get the number of DCT channels the memory controller is using. */ 798 static int k8_early_channel_count(struct amd64_pvt *pvt) 799 { 800 int flag; 801 802 if (pvt->ext_model >= K8_REV_F) 803 /* RevF (NPT) and later */ 804 flag = pvt->dclr0 & WIDTH_128; 805 else 806 /* RevE and earlier */ 807 flag = pvt->dclr0 & REVE_WIDTH_128; 808 809 /* not used */ 810 pvt->dclr1 = 0; 811 812 return (flag) ? 2 : 1; 813 } 814 815 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */ 816 static u64 get_error_address(struct mce *m) 817 { 818 struct cpuinfo_x86 *c = &boot_cpu_data; 819 u64 addr; 820 u8 start_bit = 1; 821 u8 end_bit = 47; 822 823 if (c->x86 == 0xf) { 824 start_bit = 3; 825 end_bit = 39; 826 } 827 828 addr = m->addr & GENMASK(start_bit, end_bit); 829 830 /* 831 * Erratum 637 workaround 832 */ 833 if (c->x86 == 0x15) { 834 struct amd64_pvt *pvt; 835 u64 cc6_base, tmp_addr; 836 u32 tmp; 837 u16 mce_nid; 838 u8 intlv_en; 839 840 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7) 841 return addr; 842 843 mce_nid = amd_get_nb_id(m->extcpu); 844 pvt = mcis[mce_nid]->pvt_info; 845 846 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp); 847 intlv_en = tmp >> 21 & 0x7; 848 849 /* add [47:27] + 3 trailing bits */ 850 cc6_base = (tmp & GENMASK(0, 20)) << 3; 851 852 /* reverse and add DramIntlvEn */ 853 cc6_base |= intlv_en ^ 0x7; 854 855 /* pin at [47:24] */ 856 cc6_base <<= 24; 857 858 if (!intlv_en) 859 return cc6_base | (addr & GENMASK(0, 23)); 860 861 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp); 862 863 /* faster log2 */ 864 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1); 865 866 /* OR DramIntlvSel into bits [14:12] */ 867 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9; 868 869 /* add remaining [11:0] bits from original MC4_ADDR */ 870 tmp_addr |= addr & GENMASK(0, 11); 871 872 return cc6_base | tmp_addr; 873 } 874 875 return addr; 876 } 877 878 static struct pci_dev *pci_get_related_function(unsigned int vendor, 879 unsigned int device, 880 struct pci_dev *related) 881 { 882 struct pci_dev *dev = NULL; 883 884 while ((dev = pci_get_device(vendor, device, dev))) { 885 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) && 886 (dev->bus->number == related->bus->number) && 887 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) 888 break; 889 } 890 891 return dev; 892 } 893 894 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range) 895 { 896 struct amd_northbridge *nb; 897 struct pci_dev *misc, *f1 = NULL; 898 struct cpuinfo_x86 *c = &boot_cpu_data; 899 int off = range << 3; 900 u32 llim; 901 902 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo); 903 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo); 904 905 if (c->x86 == 0xf) 906 return; 907 908 if (!dram_rw(pvt, range)) 909 return; 910 911 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi); 912 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi); 913 914 /* F15h: factor in CC6 save area by reading dst node's limit reg */ 915 if (c->x86 != 0x15) 916 return; 917 918 nb = node_to_amd_nb(dram_dst_node(pvt, range)); 919 if (WARN_ON(!nb)) 920 return; 921 922 misc = nb->misc; 923 f1 = pci_get_related_function(misc->vendor, PCI_DEVICE_ID_AMD_15H_NB_F1, misc); 924 if (WARN_ON(!f1)) 925 return; 926 927 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim); 928 929 pvt->ranges[range].lim.lo &= GENMASK(0, 15); 930 931 /* {[39:27],111b} */ 932 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16; 933 934 pvt->ranges[range].lim.hi &= GENMASK(0, 7); 935 936 /* [47:40] */ 937 pvt->ranges[range].lim.hi |= llim >> 13; 938 939 pci_dev_put(f1); 940 } 941 942 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, 943 struct err_info *err) 944 { 945 struct amd64_pvt *pvt = mci->pvt_info; 946 947 error_address_to_page_and_offset(sys_addr, err); 948 949 /* 950 * Find out which node the error address belongs to. This may be 951 * different from the node that detected the error. 952 */ 953 err->src_mci = find_mc_by_sys_addr(mci, sys_addr); 954 if (!err->src_mci) { 955 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n", 956 (unsigned long)sys_addr); 957 err->err_code = ERR_NODE; 958 return; 959 } 960 961 /* Now map the sys_addr to a CSROW */ 962 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr); 963 if (err->csrow < 0) { 964 err->err_code = ERR_CSROW; 965 return; 966 } 967 968 /* CHIPKILL enabled */ 969 if (pvt->nbcfg & NBCFG_CHIPKILL) { 970 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); 971 if (err->channel < 0) { 972 /* 973 * Syndrome didn't map, so we don't know which of the 974 * 2 DIMMs is in error. So we need to ID 'both' of them 975 * as suspect. 976 */ 977 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - " 978 "possible error reporting race\n", 979 err->syndrome); 980 err->err_code = ERR_CHANNEL; 981 return; 982 } 983 } else { 984 /* 985 * non-chipkill ecc mode 986 * 987 * The k8 documentation is unclear about how to determine the 988 * channel number when using non-chipkill memory. This method 989 * was obtained from email communication with someone at AMD. 990 * (Wish the email was placed in this comment - norsk) 991 */ 992 err->channel = ((sys_addr & BIT(3)) != 0); 993 } 994 } 995 996 static int ddr2_cs_size(unsigned i, bool dct_width) 997 { 998 unsigned shift = 0; 999 1000 if (i <= 2) 1001 shift = i; 1002 else if (!(i & 0x1)) 1003 shift = i >> 1; 1004 else 1005 shift = (i + 1) >> 1; 1006 1007 return 128 << (shift + !!dct_width); 1008 } 1009 1010 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1011 unsigned cs_mode) 1012 { 1013 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; 1014 1015 if (pvt->ext_model >= K8_REV_F) { 1016 WARN_ON(cs_mode > 11); 1017 return ddr2_cs_size(cs_mode, dclr & WIDTH_128); 1018 } 1019 else if (pvt->ext_model >= K8_REV_D) { 1020 unsigned diff; 1021 WARN_ON(cs_mode > 10); 1022 1023 /* 1024 * the below calculation, besides trying to win an obfuscated C 1025 * contest, maps cs_mode values to DIMM chip select sizes. The 1026 * mappings are: 1027 * 1028 * cs_mode CS size (mb) 1029 * ======= ============ 1030 * 0 32 1031 * 1 64 1032 * 2 128 1033 * 3 128 1034 * 4 256 1035 * 5 512 1036 * 6 256 1037 * 7 512 1038 * 8 1024 1039 * 9 1024 1040 * 10 2048 1041 * 1042 * Basically, it calculates a value with which to shift the 1043 * smallest CS size of 32MB. 1044 * 1045 * ddr[23]_cs_size have a similar purpose. 1046 */ 1047 diff = cs_mode/3 + (unsigned)(cs_mode > 5); 1048 1049 return 32 << (cs_mode - diff); 1050 } 1051 else { 1052 WARN_ON(cs_mode > 6); 1053 return 32 << cs_mode; 1054 } 1055 } 1056 1057 /* 1058 * Get the number of DCT channels in use. 1059 * 1060 * Return: 1061 * number of Memory Channels in operation 1062 * Pass back: 1063 * contents of the DCL0_LOW register 1064 */ 1065 static int f1x_early_channel_count(struct amd64_pvt *pvt) 1066 { 1067 int i, j, channels = 0; 1068 1069 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */ 1070 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128)) 1071 return 2; 1072 1073 /* 1074 * Need to check if in unganged mode: In such, there are 2 channels, 1075 * but they are not in 128 bit mode and thus the above 'dclr0' status 1076 * bit will be OFF. 1077 * 1078 * Need to check DCT0[0] and DCT1[0] to see if only one of them has 1079 * their CSEnable bit on. If so, then SINGLE DIMM case. 1080 */ 1081 edac_dbg(0, "Data width is not 128 bits - need more decoding\n"); 1082 1083 /* 1084 * Check DRAM Bank Address Mapping values for each DIMM to see if there 1085 * is more than just one DIMM present in unganged mode. Need to check 1086 * both controllers since DIMMs can be placed in either one. 1087 */ 1088 for (i = 0; i < 2; i++) { 1089 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0); 1090 1091 for (j = 0; j < 4; j++) { 1092 if (DBAM_DIMM(j, dbam) > 0) { 1093 channels++; 1094 break; 1095 } 1096 } 1097 } 1098 1099 if (channels > 2) 1100 channels = 2; 1101 1102 amd64_info("MCT channel count: %d\n", channels); 1103 1104 return channels; 1105 } 1106 1107 static int ddr3_cs_size(unsigned i, bool dct_width) 1108 { 1109 unsigned shift = 0; 1110 int cs_size = 0; 1111 1112 if (i == 0 || i == 3 || i == 4) 1113 cs_size = -1; 1114 else if (i <= 2) 1115 shift = i; 1116 else if (i == 12) 1117 shift = 7; 1118 else if (!(i & 0x1)) 1119 shift = i >> 1; 1120 else 1121 shift = (i + 1) >> 1; 1122 1123 if (cs_size != -1) 1124 cs_size = (128 * (1 << !!dct_width)) << shift; 1125 1126 return cs_size; 1127 } 1128 1129 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1130 unsigned cs_mode) 1131 { 1132 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; 1133 1134 WARN_ON(cs_mode > 11); 1135 1136 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE) 1137 return ddr3_cs_size(cs_mode, dclr & WIDTH_128); 1138 else 1139 return ddr2_cs_size(cs_mode, dclr & WIDTH_128); 1140 } 1141 1142 /* 1143 * F15h supports only 64bit DCT interfaces 1144 */ 1145 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1146 unsigned cs_mode) 1147 { 1148 WARN_ON(cs_mode > 12); 1149 1150 return ddr3_cs_size(cs_mode, false); 1151 } 1152 1153 static void read_dram_ctl_register(struct amd64_pvt *pvt) 1154 { 1155 1156 if (boot_cpu_data.x86 == 0xf) 1157 return; 1158 1159 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) { 1160 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n", 1161 pvt->dct_sel_lo, dct_sel_baseaddr(pvt)); 1162 1163 edac_dbg(0, " DCTs operate in %s mode\n", 1164 (dct_ganging_enabled(pvt) ? "ganged" : "unganged")); 1165 1166 if (!dct_ganging_enabled(pvt)) 1167 edac_dbg(0, " Address range split per DCT: %s\n", 1168 (dct_high_range_enabled(pvt) ? "yes" : "no")); 1169 1170 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n", 1171 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"), 1172 (dct_memory_cleared(pvt) ? "yes" : "no")); 1173 1174 edac_dbg(0, " channel interleave: %s, " 1175 "interleave bits selector: 0x%x\n", 1176 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"), 1177 dct_sel_interleave_addr(pvt)); 1178 } 1179 1180 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi); 1181 } 1182 1183 /* 1184 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory 1185 * Interleaving Modes. 1186 */ 1187 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, 1188 bool hi_range_sel, u8 intlv_en) 1189 { 1190 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1; 1191 1192 if (dct_ganging_enabled(pvt)) 1193 return 0; 1194 1195 if (hi_range_sel) 1196 return dct_sel_high; 1197 1198 /* 1199 * see F2x110[DctSelIntLvAddr] - channel interleave mode 1200 */ 1201 if (dct_interleave_enabled(pvt)) { 1202 u8 intlv_addr = dct_sel_interleave_addr(pvt); 1203 1204 /* return DCT select function: 0=DCT0, 1=DCT1 */ 1205 if (!intlv_addr) 1206 return sys_addr >> 6 & 1; 1207 1208 if (intlv_addr & 0x2) { 1209 u8 shift = intlv_addr & 0x1 ? 9 : 6; 1210 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2; 1211 1212 return ((sys_addr >> shift) & 1) ^ temp; 1213 } 1214 1215 return (sys_addr >> (12 + hweight8(intlv_en))) & 1; 1216 } 1217 1218 if (dct_high_range_enabled(pvt)) 1219 return ~dct_sel_high & 1; 1220 1221 return 0; 1222 } 1223 1224 /* Convert the sys_addr to the normalized DCT address */ 1225 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range, 1226 u64 sys_addr, bool hi_rng, 1227 u32 dct_sel_base_addr) 1228 { 1229 u64 chan_off; 1230 u64 dram_base = get_dram_base(pvt, range); 1231 u64 hole_off = f10_dhar_offset(pvt); 1232 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16; 1233 1234 if (hi_rng) { 1235 /* 1236 * if 1237 * base address of high range is below 4Gb 1238 * (bits [47:27] at [31:11]) 1239 * DRAM address space on this DCT is hoisted above 4Gb && 1240 * sys_addr > 4Gb 1241 * 1242 * remove hole offset from sys_addr 1243 * else 1244 * remove high range offset from sys_addr 1245 */ 1246 if ((!(dct_sel_base_addr >> 16) || 1247 dct_sel_base_addr < dhar_base(pvt)) && 1248 dhar_valid(pvt) && 1249 (sys_addr >= BIT_64(32))) 1250 chan_off = hole_off; 1251 else 1252 chan_off = dct_sel_base_off; 1253 } else { 1254 /* 1255 * if 1256 * we have a valid hole && 1257 * sys_addr > 4Gb 1258 * 1259 * remove hole 1260 * else 1261 * remove dram base to normalize to DCT address 1262 */ 1263 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32))) 1264 chan_off = hole_off; 1265 else 1266 chan_off = dram_base; 1267 } 1268 1269 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47)); 1270 } 1271 1272 /* 1273 * checks if the csrow passed in is marked as SPARED, if so returns the new 1274 * spare row 1275 */ 1276 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow) 1277 { 1278 int tmp_cs; 1279 1280 if (online_spare_swap_done(pvt, dct) && 1281 csrow == online_spare_bad_dramcs(pvt, dct)) { 1282 1283 for_each_chip_select(tmp_cs, dct, pvt) { 1284 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) { 1285 csrow = tmp_cs; 1286 break; 1287 } 1288 } 1289 } 1290 return csrow; 1291 } 1292 1293 /* 1294 * Iterate over the DRAM DCT "base" and "mask" registers looking for a 1295 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' 1296 * 1297 * Return: 1298 * -EINVAL: NOT FOUND 1299 * 0..csrow = Chip-Select Row 1300 */ 1301 static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct) 1302 { 1303 struct mem_ctl_info *mci; 1304 struct amd64_pvt *pvt; 1305 u64 cs_base, cs_mask; 1306 int cs_found = -EINVAL; 1307 int csrow; 1308 1309 mci = mcis[nid]; 1310 if (!mci) 1311 return cs_found; 1312 1313 pvt = mci->pvt_info; 1314 1315 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct); 1316 1317 for_each_chip_select(csrow, dct, pvt) { 1318 if (!csrow_enabled(csrow, dct, pvt)) 1319 continue; 1320 1321 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask); 1322 1323 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n", 1324 csrow, cs_base, cs_mask); 1325 1326 cs_mask = ~cs_mask; 1327 1328 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n", 1329 (in_addr & cs_mask), (cs_base & cs_mask)); 1330 1331 if ((in_addr & cs_mask) == (cs_base & cs_mask)) { 1332 cs_found = f10_process_possible_spare(pvt, dct, csrow); 1333 1334 edac_dbg(1, " MATCH csrow=%d\n", cs_found); 1335 break; 1336 } 1337 } 1338 return cs_found; 1339 } 1340 1341 /* 1342 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is 1343 * swapped with a region located at the bottom of memory so that the GPU can use 1344 * the interleaved region and thus two channels. 1345 */ 1346 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr) 1347 { 1348 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr; 1349 1350 if (boot_cpu_data.x86 == 0x10) { 1351 /* only revC3 and revE have that feature */ 1352 if (boot_cpu_data.x86_model < 4 || 1353 (boot_cpu_data.x86_model < 0xa && 1354 boot_cpu_data.x86_mask < 3)) 1355 return sys_addr; 1356 } 1357 1358 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg); 1359 1360 if (!(swap_reg & 0x1)) 1361 return sys_addr; 1362 1363 swap_base = (swap_reg >> 3) & 0x7f; 1364 swap_limit = (swap_reg >> 11) & 0x7f; 1365 rgn_size = (swap_reg >> 20) & 0x7f; 1366 tmp_addr = sys_addr >> 27; 1367 1368 if (!(sys_addr >> 34) && 1369 (((tmp_addr >= swap_base) && 1370 (tmp_addr <= swap_limit)) || 1371 (tmp_addr < rgn_size))) 1372 return sys_addr ^ (u64)swap_base << 27; 1373 1374 return sys_addr; 1375 } 1376 1377 /* For a given @dram_range, check if @sys_addr falls within it. */ 1378 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range, 1379 u64 sys_addr, int *chan_sel) 1380 { 1381 int cs_found = -EINVAL; 1382 u64 chan_addr; 1383 u32 dct_sel_base; 1384 u8 channel; 1385 bool high_range = false; 1386 1387 u8 node_id = dram_dst_node(pvt, range); 1388 u8 intlv_en = dram_intlv_en(pvt, range); 1389 u32 intlv_sel = dram_intlv_sel(pvt, range); 1390 1391 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", 1392 range, sys_addr, get_dram_limit(pvt, range)); 1393 1394 if (dhar_valid(pvt) && 1395 dhar_base(pvt) <= sys_addr && 1396 sys_addr < BIT_64(32)) { 1397 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", 1398 sys_addr); 1399 return -EINVAL; 1400 } 1401 1402 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en))) 1403 return -EINVAL; 1404 1405 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr); 1406 1407 dct_sel_base = dct_sel_baseaddr(pvt); 1408 1409 /* 1410 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to 1411 * select between DCT0 and DCT1. 1412 */ 1413 if (dct_high_range_enabled(pvt) && 1414 !dct_ganging_enabled(pvt) && 1415 ((sys_addr >> 27) >= (dct_sel_base >> 11))) 1416 high_range = true; 1417 1418 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en); 1419 1420 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr, 1421 high_range, dct_sel_base); 1422 1423 /* Remove node interleaving, see F1x120 */ 1424 if (intlv_en) 1425 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) | 1426 (chan_addr & 0xfff); 1427 1428 /* remove channel interleave */ 1429 if (dct_interleave_enabled(pvt) && 1430 !dct_high_range_enabled(pvt) && 1431 !dct_ganging_enabled(pvt)) { 1432 1433 if (dct_sel_interleave_addr(pvt) != 1) { 1434 if (dct_sel_interleave_addr(pvt) == 0x3) 1435 /* hash 9 */ 1436 chan_addr = ((chan_addr >> 10) << 9) | 1437 (chan_addr & 0x1ff); 1438 else 1439 /* A[6] or hash 6 */ 1440 chan_addr = ((chan_addr >> 7) << 6) | 1441 (chan_addr & 0x3f); 1442 } else 1443 /* A[12] */ 1444 chan_addr = ((chan_addr >> 13) << 12) | 1445 (chan_addr & 0xfff); 1446 } 1447 1448 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr); 1449 1450 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel); 1451 1452 if (cs_found >= 0) 1453 *chan_sel = channel; 1454 1455 return cs_found; 1456 } 1457 1458 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr, 1459 int *chan_sel) 1460 { 1461 int cs_found = -EINVAL; 1462 unsigned range; 1463 1464 for (range = 0; range < DRAM_RANGES; range++) { 1465 1466 if (!dram_rw(pvt, range)) 1467 continue; 1468 1469 if ((get_dram_base(pvt, range) <= sys_addr) && 1470 (get_dram_limit(pvt, range) >= sys_addr)) { 1471 1472 cs_found = f1x_match_to_this_node(pvt, range, 1473 sys_addr, chan_sel); 1474 if (cs_found >= 0) 1475 break; 1476 } 1477 } 1478 return cs_found; 1479 } 1480 1481 /* 1482 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps 1483 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW). 1484 * 1485 * The @sys_addr is usually an error address received from the hardware 1486 * (MCX_ADDR). 1487 */ 1488 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, 1489 struct err_info *err) 1490 { 1491 struct amd64_pvt *pvt = mci->pvt_info; 1492 1493 error_address_to_page_and_offset(sys_addr, err); 1494 1495 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel); 1496 if (err->csrow < 0) { 1497 err->err_code = ERR_CSROW; 1498 return; 1499 } 1500 1501 /* 1502 * We need the syndromes for channel detection only when we're 1503 * ganged. Otherwise @chan should already contain the channel at 1504 * this point. 1505 */ 1506 if (dct_ganging_enabled(pvt)) 1507 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); 1508 } 1509 1510 /* 1511 * debug routine to display the memory sizes of all logical DIMMs and its 1512 * CSROWs 1513 */ 1514 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl) 1515 { 1516 int dimm, size0, size1; 1517 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases; 1518 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0; 1519 1520 if (boot_cpu_data.x86 == 0xf) { 1521 /* K8 families < revF not supported yet */ 1522 if (pvt->ext_model < K8_REV_F) 1523 return; 1524 else 1525 WARN_ON(ctrl != 0); 1526 } 1527 1528 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0; 1529 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases 1530 : pvt->csels[0].csbases; 1531 1532 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", 1533 ctrl, dbam); 1534 1535 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl); 1536 1537 /* Dump memory sizes for DIMM and its CSROWs */ 1538 for (dimm = 0; dimm < 4; dimm++) { 1539 1540 size0 = 0; 1541 if (dcsb[dimm*2] & DCSB_CS_ENABLE) 1542 size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 1543 DBAM_DIMM(dimm, dbam)); 1544 1545 size1 = 0; 1546 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE) 1547 size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 1548 DBAM_DIMM(dimm, dbam)); 1549 1550 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", 1551 dimm * 2, size0, 1552 dimm * 2 + 1, size1); 1553 } 1554 } 1555 1556 static struct amd64_family_type amd64_family_types[] = { 1557 [K8_CPUS] = { 1558 .ctl_name = "K8", 1559 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP, 1560 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC, 1561 .ops = { 1562 .early_channel_count = k8_early_channel_count, 1563 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow, 1564 .dbam_to_cs = k8_dbam_to_chip_select, 1565 .read_dct_pci_cfg = k8_read_dct_pci_cfg, 1566 } 1567 }, 1568 [F10_CPUS] = { 1569 .ctl_name = "F10h", 1570 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP, 1571 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC, 1572 .ops = { 1573 .early_channel_count = f1x_early_channel_count, 1574 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1575 .dbam_to_cs = f10_dbam_to_chip_select, 1576 .read_dct_pci_cfg = f10_read_dct_pci_cfg, 1577 } 1578 }, 1579 [F15_CPUS] = { 1580 .ctl_name = "F15h", 1581 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1, 1582 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3, 1583 .ops = { 1584 .early_channel_count = f1x_early_channel_count, 1585 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1586 .dbam_to_cs = f15_dbam_to_chip_select, 1587 .read_dct_pci_cfg = f15_read_dct_pci_cfg, 1588 } 1589 }, 1590 }; 1591 1592 /* 1593 * These are tables of eigenvectors (one per line) which can be used for the 1594 * construction of the syndrome tables. The modified syndrome search algorithm 1595 * uses those to find the symbol in error and thus the DIMM. 1596 * 1597 * Algorithm courtesy of Ross LaFetra from AMD. 1598 */ 1599 static const u16 x4_vectors[] = { 1600 0x2f57, 0x1afe, 0x66cc, 0xdd88, 1601 0x11eb, 0x3396, 0x7f4c, 0xeac8, 1602 0x0001, 0x0002, 0x0004, 0x0008, 1603 0x1013, 0x3032, 0x4044, 0x8088, 1604 0x106b, 0x30d6, 0x70fc, 0xe0a8, 1605 0x4857, 0xc4fe, 0x13cc, 0x3288, 1606 0x1ac5, 0x2f4a, 0x5394, 0xa1e8, 1607 0x1f39, 0x251e, 0xbd6c, 0x6bd8, 1608 0x15c1, 0x2a42, 0x89ac, 0x4758, 1609 0x2b03, 0x1602, 0x4f0c, 0xca08, 1610 0x1f07, 0x3a0e, 0x6b04, 0xbd08, 1611 0x8ba7, 0x465e, 0x244c, 0x1cc8, 1612 0x2b87, 0x164e, 0x642c, 0xdc18, 1613 0x40b9, 0x80de, 0x1094, 0x20e8, 1614 0x27db, 0x1eb6, 0x9dac, 0x7b58, 1615 0x11c1, 0x2242, 0x84ac, 0x4c58, 1616 0x1be5, 0x2d7a, 0x5e34, 0xa718, 1617 0x4b39, 0x8d1e, 0x14b4, 0x28d8, 1618 0x4c97, 0xc87e, 0x11fc, 0x33a8, 1619 0x8e97, 0x497e, 0x2ffc, 0x1aa8, 1620 0x16b3, 0x3d62, 0x4f34, 0x8518, 1621 0x1e2f, 0x391a, 0x5cac, 0xf858, 1622 0x1d9f, 0x3b7a, 0x572c, 0xfe18, 1623 0x15f5, 0x2a5a, 0x5264, 0xa3b8, 1624 0x1dbb, 0x3b66, 0x715c, 0xe3f8, 1625 0x4397, 0xc27e, 0x17fc, 0x3ea8, 1626 0x1617, 0x3d3e, 0x6464, 0xb8b8, 1627 0x23ff, 0x12aa, 0xab6c, 0x56d8, 1628 0x2dfb, 0x1ba6, 0x913c, 0x7328, 1629 0x185d, 0x2ca6, 0x7914, 0x9e28, 1630 0x171b, 0x3e36, 0x7d7c, 0xebe8, 1631 0x4199, 0x82ee, 0x19f4, 0x2e58, 1632 0x4807, 0xc40e, 0x130c, 0x3208, 1633 0x1905, 0x2e0a, 0x5804, 0xac08, 1634 0x213f, 0x132a, 0xadfc, 0x5ba8, 1635 0x19a9, 0x2efe, 0xb5cc, 0x6f88, 1636 }; 1637 1638 static const u16 x8_vectors[] = { 1639 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480, 1640 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80, 1641 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80, 1642 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80, 1643 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780, 1644 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080, 1645 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080, 1646 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080, 1647 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80, 1648 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580, 1649 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880, 1650 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280, 1651 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180, 1652 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580, 1653 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280, 1654 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180, 1655 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080, 1656 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 1657 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000, 1658 }; 1659 1660 static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs, 1661 unsigned v_dim) 1662 { 1663 unsigned int i, err_sym; 1664 1665 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) { 1666 u16 s = syndrome; 1667 unsigned v_idx = err_sym * v_dim; 1668 unsigned v_end = (err_sym + 1) * v_dim; 1669 1670 /* walk over all 16 bits of the syndrome */ 1671 for (i = 1; i < (1U << 16); i <<= 1) { 1672 1673 /* if bit is set in that eigenvector... */ 1674 if (v_idx < v_end && vectors[v_idx] & i) { 1675 u16 ev_comp = vectors[v_idx++]; 1676 1677 /* ... and bit set in the modified syndrome, */ 1678 if (s & i) { 1679 /* remove it. */ 1680 s ^= ev_comp; 1681 1682 if (!s) 1683 return err_sym; 1684 } 1685 1686 } else if (s & i) 1687 /* can't get to zero, move to next symbol */ 1688 break; 1689 } 1690 } 1691 1692 edac_dbg(0, "syndrome(%x) not found\n", syndrome); 1693 return -1; 1694 } 1695 1696 static int map_err_sym_to_channel(int err_sym, int sym_size) 1697 { 1698 if (sym_size == 4) 1699 switch (err_sym) { 1700 case 0x20: 1701 case 0x21: 1702 return 0; 1703 break; 1704 case 0x22: 1705 case 0x23: 1706 return 1; 1707 break; 1708 default: 1709 return err_sym >> 4; 1710 break; 1711 } 1712 /* x8 symbols */ 1713 else 1714 switch (err_sym) { 1715 /* imaginary bits not in a DIMM */ 1716 case 0x10: 1717 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n", 1718 err_sym); 1719 return -1; 1720 break; 1721 1722 case 0x11: 1723 return 0; 1724 break; 1725 case 0x12: 1726 return 1; 1727 break; 1728 default: 1729 return err_sym >> 3; 1730 break; 1731 } 1732 return -1; 1733 } 1734 1735 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome) 1736 { 1737 struct amd64_pvt *pvt = mci->pvt_info; 1738 int err_sym = -1; 1739 1740 if (pvt->ecc_sym_sz == 8) 1741 err_sym = decode_syndrome(syndrome, x8_vectors, 1742 ARRAY_SIZE(x8_vectors), 1743 pvt->ecc_sym_sz); 1744 else if (pvt->ecc_sym_sz == 4) 1745 err_sym = decode_syndrome(syndrome, x4_vectors, 1746 ARRAY_SIZE(x4_vectors), 1747 pvt->ecc_sym_sz); 1748 else { 1749 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz); 1750 return err_sym; 1751 } 1752 1753 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz); 1754 } 1755 1756 static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err, 1757 u8 ecc_type) 1758 { 1759 enum hw_event_mc_err_type err_type; 1760 const char *string; 1761 1762 if (ecc_type == 2) 1763 err_type = HW_EVENT_ERR_CORRECTED; 1764 else if (ecc_type == 1) 1765 err_type = HW_EVENT_ERR_UNCORRECTED; 1766 else { 1767 WARN(1, "Something is rotten in the state of Denmark.\n"); 1768 return; 1769 } 1770 1771 switch (err->err_code) { 1772 case DECODE_OK: 1773 string = ""; 1774 break; 1775 case ERR_NODE: 1776 string = "Failed to map error addr to a node"; 1777 break; 1778 case ERR_CSROW: 1779 string = "Failed to map error addr to a csrow"; 1780 break; 1781 case ERR_CHANNEL: 1782 string = "unknown syndrome - possible error reporting race"; 1783 break; 1784 default: 1785 string = "WTF error"; 1786 break; 1787 } 1788 1789 edac_mc_handle_error(err_type, mci, 1, 1790 err->page, err->offset, err->syndrome, 1791 err->csrow, err->channel, -1, 1792 string, ""); 1793 } 1794 1795 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci, 1796 struct mce *m) 1797 { 1798 struct amd64_pvt *pvt = mci->pvt_info; 1799 u8 ecc_type = (m->status >> 45) & 0x3; 1800 u8 xec = XEC(m->status, 0x1f); 1801 u16 ec = EC(m->status); 1802 u64 sys_addr; 1803 struct err_info err; 1804 1805 /* Bail out early if this was an 'observed' error */ 1806 if (PP(ec) == NBSL_PP_OBS) 1807 return; 1808 1809 /* Do only ECC errors */ 1810 if (xec && xec != F10_NBSL_EXT_ERR_ECC) 1811 return; 1812 1813 memset(&err, 0, sizeof(err)); 1814 1815 sys_addr = get_error_address(m); 1816 1817 if (ecc_type == 2) 1818 err.syndrome = extract_syndrome(m->status); 1819 1820 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err); 1821 1822 __log_bus_error(mci, &err, ecc_type); 1823 } 1824 1825 void amd64_decode_bus_error(int node_id, struct mce *m) 1826 { 1827 __amd64_decode_bus_error(mcis[node_id], m); 1828 } 1829 1830 /* 1831 * Use pvt->F2 which contains the F2 CPU PCI device to get the related 1832 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error. 1833 */ 1834 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id) 1835 { 1836 /* Reserve the ADDRESS MAP Device */ 1837 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2); 1838 if (!pvt->F1) { 1839 amd64_err("error address map device not found: " 1840 "vendor %x device 0x%x (broken BIOS?)\n", 1841 PCI_VENDOR_ID_AMD, f1_id); 1842 return -ENODEV; 1843 } 1844 1845 /* Reserve the MISC Device */ 1846 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2); 1847 if (!pvt->F3) { 1848 pci_dev_put(pvt->F1); 1849 pvt->F1 = NULL; 1850 1851 amd64_err("error F3 device not found: " 1852 "vendor %x device 0x%x (broken BIOS?)\n", 1853 PCI_VENDOR_ID_AMD, f3_id); 1854 1855 return -ENODEV; 1856 } 1857 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1)); 1858 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2)); 1859 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3)); 1860 1861 return 0; 1862 } 1863 1864 static void free_mc_sibling_devs(struct amd64_pvt *pvt) 1865 { 1866 pci_dev_put(pvt->F1); 1867 pci_dev_put(pvt->F3); 1868 } 1869 1870 /* 1871 * Retrieve the hardware registers of the memory controller (this includes the 1872 * 'Address Map' and 'Misc' device regs) 1873 */ 1874 static void read_mc_regs(struct amd64_pvt *pvt) 1875 { 1876 struct cpuinfo_x86 *c = &boot_cpu_data; 1877 u64 msr_val; 1878 u32 tmp; 1879 unsigned range; 1880 1881 /* 1882 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since 1883 * those are Read-As-Zero 1884 */ 1885 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem); 1886 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem); 1887 1888 /* check first whether TOP_MEM2 is enabled */ 1889 rdmsrl(MSR_K8_SYSCFG, msr_val); 1890 if (msr_val & (1U << 21)) { 1891 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2); 1892 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2); 1893 } else 1894 edac_dbg(0, " TOP_MEM2 disabled\n"); 1895 1896 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap); 1897 1898 read_dram_ctl_register(pvt); 1899 1900 for (range = 0; range < DRAM_RANGES; range++) { 1901 u8 rw; 1902 1903 /* read settings for this DRAM range */ 1904 read_dram_base_limit_regs(pvt, range); 1905 1906 rw = dram_rw(pvt, range); 1907 if (!rw) 1908 continue; 1909 1910 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n", 1911 range, 1912 get_dram_base(pvt, range), 1913 get_dram_limit(pvt, range)); 1914 1915 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n", 1916 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled", 1917 (rw & 0x1) ? "R" : "-", 1918 (rw & 0x2) ? "W" : "-", 1919 dram_intlv_sel(pvt, range), 1920 dram_dst_node(pvt, range)); 1921 } 1922 1923 read_dct_base_mask(pvt); 1924 1925 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar); 1926 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0); 1927 1928 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare); 1929 1930 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0); 1931 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0); 1932 1933 if (!dct_ganging_enabled(pvt)) { 1934 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1); 1935 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1); 1936 } 1937 1938 pvt->ecc_sym_sz = 4; 1939 1940 if (c->x86 >= 0x10) { 1941 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp); 1942 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1); 1943 1944 /* F10h, revD and later can do x8 ECC too */ 1945 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25)) 1946 pvt->ecc_sym_sz = 8; 1947 } 1948 dump_misc_regs(pvt); 1949 } 1950 1951 /* 1952 * NOTE: CPU Revision Dependent code 1953 * 1954 * Input: 1955 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1) 1956 * k8 private pointer to --> 1957 * DRAM Bank Address mapping register 1958 * node_id 1959 * DCL register where dual_channel_active is 1960 * 1961 * The DBAM register consists of 4 sets of 4 bits each definitions: 1962 * 1963 * Bits: CSROWs 1964 * 0-3 CSROWs 0 and 1 1965 * 4-7 CSROWs 2 and 3 1966 * 8-11 CSROWs 4 and 5 1967 * 12-15 CSROWs 6 and 7 1968 * 1969 * Values range from: 0 to 15 1970 * The meaning of the values depends on CPU revision and dual-channel state, 1971 * see relevant BKDG more info. 1972 * 1973 * The memory controller provides for total of only 8 CSROWs in its current 1974 * architecture. Each "pair" of CSROWs normally represents just one DIMM in 1975 * single channel or two (2) DIMMs in dual channel mode. 1976 * 1977 * The following code logic collapses the various tables for CSROW based on CPU 1978 * revision. 1979 * 1980 * Returns: 1981 * The number of PAGE_SIZE pages on the specified CSROW number it 1982 * encompasses 1983 * 1984 */ 1985 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr) 1986 { 1987 u32 cs_mode, nr_pages; 1988 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0; 1989 1990 1991 /* 1992 * The math on this doesn't look right on the surface because x/2*4 can 1993 * be simplified to x*2 but this expression makes use of the fact that 1994 * it is integral math where 1/2=0. This intermediate value becomes the 1995 * number of bits to shift the DBAM register to extract the proper CSROW 1996 * field. 1997 */ 1998 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam); 1999 2000 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT); 2001 2002 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n", 2003 csrow_nr, dct, cs_mode); 2004 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages); 2005 2006 return nr_pages; 2007 } 2008 2009 /* 2010 * Initialize the array of csrow attribute instances, based on the values 2011 * from pci config hardware registers. 2012 */ 2013 static int init_csrows(struct mem_ctl_info *mci) 2014 { 2015 struct amd64_pvt *pvt = mci->pvt_info; 2016 struct csrow_info *csrow; 2017 struct dimm_info *dimm; 2018 enum edac_type edac_mode; 2019 enum mem_type mtype; 2020 int i, j, empty = 1; 2021 int nr_pages = 0; 2022 u32 val; 2023 2024 amd64_read_pci_cfg(pvt->F3, NBCFG, &val); 2025 2026 pvt->nbcfg = val; 2027 2028 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n", 2029 pvt->mc_node_id, val, 2030 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE)); 2031 2032 /* 2033 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed. 2034 */ 2035 for_each_chip_select(i, 0, pvt) { 2036 bool row_dct0 = !!csrow_enabled(i, 0, pvt); 2037 bool row_dct1 = false; 2038 2039 if (boot_cpu_data.x86 != 0xf) 2040 row_dct1 = !!csrow_enabled(i, 1, pvt); 2041 2042 if (!row_dct0 && !row_dct1) 2043 continue; 2044 2045 csrow = mci->csrows[i]; 2046 empty = 0; 2047 2048 edac_dbg(1, "MC node: %d, csrow: %d\n", 2049 pvt->mc_node_id, i); 2050 2051 if (row_dct0) 2052 nr_pages = amd64_csrow_nr_pages(pvt, 0, i); 2053 2054 /* K8 has only one DCT */ 2055 if (boot_cpu_data.x86 != 0xf && row_dct1) 2056 nr_pages += amd64_csrow_nr_pages(pvt, 1, i); 2057 2058 mtype = amd64_determine_memory_type(pvt, i); 2059 2060 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages); 2061 2062 /* 2063 * determine whether CHIPKILL or JUST ECC or NO ECC is operating 2064 */ 2065 if (pvt->nbcfg & NBCFG_ECC_ENABLE) 2066 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ? 2067 EDAC_S4ECD4ED : EDAC_SECDED; 2068 else 2069 edac_mode = EDAC_NONE; 2070 2071 for (j = 0; j < pvt->channel_count; j++) { 2072 dimm = csrow->channels[j]->dimm; 2073 dimm->mtype = mtype; 2074 dimm->edac_mode = edac_mode; 2075 dimm->nr_pages = nr_pages; 2076 } 2077 csrow->nr_pages = nr_pages; 2078 } 2079 2080 return empty; 2081 } 2082 2083 /* get all cores on this DCT */ 2084 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid) 2085 { 2086 int cpu; 2087 2088 for_each_online_cpu(cpu) 2089 if (amd_get_nb_id(cpu) == nid) 2090 cpumask_set_cpu(cpu, mask); 2091 } 2092 2093 /* check MCG_CTL on all the cpus on this node */ 2094 static bool amd64_nb_mce_bank_enabled_on_node(u16 nid) 2095 { 2096 cpumask_var_t mask; 2097 int cpu, nbe; 2098 bool ret = false; 2099 2100 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { 2101 amd64_warn("%s: Error allocating mask\n", __func__); 2102 return false; 2103 } 2104 2105 get_cpus_on_this_dct_cpumask(mask, nid); 2106 2107 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs); 2108 2109 for_each_cpu(cpu, mask) { 2110 struct msr *reg = per_cpu_ptr(msrs, cpu); 2111 nbe = reg->l & MSR_MCGCTL_NBE; 2112 2113 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n", 2114 cpu, reg->q, 2115 (nbe ? "enabled" : "disabled")); 2116 2117 if (!nbe) 2118 goto out; 2119 } 2120 ret = true; 2121 2122 out: 2123 free_cpumask_var(mask); 2124 return ret; 2125 } 2126 2127 static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on) 2128 { 2129 cpumask_var_t cmask; 2130 int cpu; 2131 2132 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) { 2133 amd64_warn("%s: error allocating mask\n", __func__); 2134 return false; 2135 } 2136 2137 get_cpus_on_this_dct_cpumask(cmask, nid); 2138 2139 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 2140 2141 for_each_cpu(cpu, cmask) { 2142 2143 struct msr *reg = per_cpu_ptr(msrs, cpu); 2144 2145 if (on) { 2146 if (reg->l & MSR_MCGCTL_NBE) 2147 s->flags.nb_mce_enable = 1; 2148 2149 reg->l |= MSR_MCGCTL_NBE; 2150 } else { 2151 /* 2152 * Turn off NB MCE reporting only when it was off before 2153 */ 2154 if (!s->flags.nb_mce_enable) 2155 reg->l &= ~MSR_MCGCTL_NBE; 2156 } 2157 } 2158 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 2159 2160 free_cpumask_var(cmask); 2161 2162 return 0; 2163 } 2164 2165 static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid, 2166 struct pci_dev *F3) 2167 { 2168 bool ret = true; 2169 u32 value, mask = 0x3; /* UECC/CECC enable */ 2170 2171 if (toggle_ecc_err_reporting(s, nid, ON)) { 2172 amd64_warn("Error enabling ECC reporting over MCGCTL!\n"); 2173 return false; 2174 } 2175 2176 amd64_read_pci_cfg(F3, NBCTL, &value); 2177 2178 s->old_nbctl = value & mask; 2179 s->nbctl_valid = true; 2180 2181 value |= mask; 2182 amd64_write_pci_cfg(F3, NBCTL, value); 2183 2184 amd64_read_pci_cfg(F3, NBCFG, &value); 2185 2186 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", 2187 nid, value, !!(value & NBCFG_ECC_ENABLE)); 2188 2189 if (!(value & NBCFG_ECC_ENABLE)) { 2190 amd64_warn("DRAM ECC disabled on this node, enabling...\n"); 2191 2192 s->flags.nb_ecc_prev = 0; 2193 2194 /* Attempt to turn on DRAM ECC Enable */ 2195 value |= NBCFG_ECC_ENABLE; 2196 amd64_write_pci_cfg(F3, NBCFG, value); 2197 2198 amd64_read_pci_cfg(F3, NBCFG, &value); 2199 2200 if (!(value & NBCFG_ECC_ENABLE)) { 2201 amd64_warn("Hardware rejected DRAM ECC enable," 2202 "check memory DIMM configuration.\n"); 2203 ret = false; 2204 } else { 2205 amd64_info("Hardware accepted DRAM ECC Enable\n"); 2206 } 2207 } else { 2208 s->flags.nb_ecc_prev = 1; 2209 } 2210 2211 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", 2212 nid, value, !!(value & NBCFG_ECC_ENABLE)); 2213 2214 return ret; 2215 } 2216 2217 static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid, 2218 struct pci_dev *F3) 2219 { 2220 u32 value, mask = 0x3; /* UECC/CECC enable */ 2221 2222 2223 if (!s->nbctl_valid) 2224 return; 2225 2226 amd64_read_pci_cfg(F3, NBCTL, &value); 2227 value &= ~mask; 2228 value |= s->old_nbctl; 2229 2230 amd64_write_pci_cfg(F3, NBCTL, value); 2231 2232 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */ 2233 if (!s->flags.nb_ecc_prev) { 2234 amd64_read_pci_cfg(F3, NBCFG, &value); 2235 value &= ~NBCFG_ECC_ENABLE; 2236 amd64_write_pci_cfg(F3, NBCFG, value); 2237 } 2238 2239 /* restore the NB Enable MCGCTL bit */ 2240 if (toggle_ecc_err_reporting(s, nid, OFF)) 2241 amd64_warn("Error restoring NB MCGCTL settings!\n"); 2242 } 2243 2244 /* 2245 * EDAC requires that the BIOS have ECC enabled before 2246 * taking over the processing of ECC errors. A command line 2247 * option allows to force-enable hardware ECC later in 2248 * enable_ecc_error_reporting(). 2249 */ 2250 static const char *ecc_msg = 2251 "ECC disabled in the BIOS or no ECC capability, module will not load.\n" 2252 " Either enable ECC checking or force module loading by setting " 2253 "'ecc_enable_override'.\n" 2254 " (Note that use of the override may cause unknown side effects.)\n"; 2255 2256 static bool ecc_enabled(struct pci_dev *F3, u16 nid) 2257 { 2258 u32 value; 2259 u8 ecc_en = 0; 2260 bool nb_mce_en = false; 2261 2262 amd64_read_pci_cfg(F3, NBCFG, &value); 2263 2264 ecc_en = !!(value & NBCFG_ECC_ENABLE); 2265 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled")); 2266 2267 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid); 2268 if (!nb_mce_en) 2269 amd64_notice("NB MCE bank disabled, set MSR " 2270 "0x%08x[4] on node %d to enable.\n", 2271 MSR_IA32_MCG_CTL, nid); 2272 2273 if (!ecc_en || !nb_mce_en) { 2274 amd64_notice("%s", ecc_msg); 2275 return false; 2276 } 2277 return true; 2278 } 2279 2280 static int set_mc_sysfs_attrs(struct mem_ctl_info *mci) 2281 { 2282 int rc; 2283 2284 rc = amd64_create_sysfs_dbg_files(mci); 2285 if (rc < 0) 2286 return rc; 2287 2288 if (boot_cpu_data.x86 >= 0x10) { 2289 rc = amd64_create_sysfs_inject_files(mci); 2290 if (rc < 0) 2291 return rc; 2292 } 2293 2294 return 0; 2295 } 2296 2297 static void del_mc_sysfs_attrs(struct mem_ctl_info *mci) 2298 { 2299 amd64_remove_sysfs_dbg_files(mci); 2300 2301 if (boot_cpu_data.x86 >= 0x10) 2302 amd64_remove_sysfs_inject_files(mci); 2303 } 2304 2305 static void setup_mci_misc_attrs(struct mem_ctl_info *mci, 2306 struct amd64_family_type *fam) 2307 { 2308 struct amd64_pvt *pvt = mci->pvt_info; 2309 2310 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2; 2311 mci->edac_ctl_cap = EDAC_FLAG_NONE; 2312 2313 if (pvt->nbcap & NBCAP_SECDED) 2314 mci->edac_ctl_cap |= EDAC_FLAG_SECDED; 2315 2316 if (pvt->nbcap & NBCAP_CHIPKILL) 2317 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; 2318 2319 mci->edac_cap = amd64_determine_edac_cap(pvt); 2320 mci->mod_name = EDAC_MOD_STR; 2321 mci->mod_ver = EDAC_AMD64_VERSION; 2322 mci->ctl_name = fam->ctl_name; 2323 mci->dev_name = pci_name(pvt->F2); 2324 mci->ctl_page_to_phys = NULL; 2325 2326 /* memory scrubber interface */ 2327 mci->set_sdram_scrub_rate = amd64_set_scrub_rate; 2328 mci->get_sdram_scrub_rate = amd64_get_scrub_rate; 2329 } 2330 2331 /* 2332 * returns a pointer to the family descriptor on success, NULL otherwise. 2333 */ 2334 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt) 2335 { 2336 u8 fam = boot_cpu_data.x86; 2337 struct amd64_family_type *fam_type = NULL; 2338 2339 switch (fam) { 2340 case 0xf: 2341 fam_type = &amd64_family_types[K8_CPUS]; 2342 pvt->ops = &amd64_family_types[K8_CPUS].ops; 2343 break; 2344 2345 case 0x10: 2346 fam_type = &amd64_family_types[F10_CPUS]; 2347 pvt->ops = &amd64_family_types[F10_CPUS].ops; 2348 break; 2349 2350 case 0x15: 2351 fam_type = &amd64_family_types[F15_CPUS]; 2352 pvt->ops = &amd64_family_types[F15_CPUS].ops; 2353 break; 2354 2355 default: 2356 amd64_err("Unsupported family!\n"); 2357 return NULL; 2358 } 2359 2360 pvt->ext_model = boot_cpu_data.x86_model >> 4; 2361 2362 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name, 2363 (fam == 0xf ? 2364 (pvt->ext_model >= K8_REV_F ? "revF or later " 2365 : "revE or earlier ") 2366 : ""), pvt->mc_node_id); 2367 return fam_type; 2368 } 2369 2370 static int amd64_init_one_instance(struct pci_dev *F2) 2371 { 2372 struct amd64_pvt *pvt = NULL; 2373 struct amd64_family_type *fam_type = NULL; 2374 struct mem_ctl_info *mci = NULL; 2375 struct edac_mc_layer layers[2]; 2376 int err = 0, ret; 2377 u16 nid = amd_get_node_id(F2); 2378 2379 ret = -ENOMEM; 2380 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL); 2381 if (!pvt) 2382 goto err_ret; 2383 2384 pvt->mc_node_id = nid; 2385 pvt->F2 = F2; 2386 2387 ret = -EINVAL; 2388 fam_type = amd64_per_family_init(pvt); 2389 if (!fam_type) 2390 goto err_free; 2391 2392 ret = -ENODEV; 2393 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id); 2394 if (err) 2395 goto err_free; 2396 2397 read_mc_regs(pvt); 2398 2399 /* 2400 * We need to determine how many memory channels there are. Then use 2401 * that information for calculating the size of the dynamic instance 2402 * tables in the 'mci' structure. 2403 */ 2404 ret = -EINVAL; 2405 pvt->channel_count = pvt->ops->early_channel_count(pvt); 2406 if (pvt->channel_count < 0) 2407 goto err_siblings; 2408 2409 ret = -ENOMEM; 2410 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; 2411 layers[0].size = pvt->csels[0].b_cnt; 2412 layers[0].is_virt_csrow = true; 2413 layers[1].type = EDAC_MC_LAYER_CHANNEL; 2414 layers[1].size = pvt->channel_count; 2415 layers[1].is_virt_csrow = false; 2416 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0); 2417 if (!mci) 2418 goto err_siblings; 2419 2420 mci->pvt_info = pvt; 2421 mci->pdev = &pvt->F2->dev; 2422 mci->csbased = 1; 2423 2424 setup_mci_misc_attrs(mci, fam_type); 2425 2426 if (init_csrows(mci)) 2427 mci->edac_cap = EDAC_FLAG_NONE; 2428 2429 ret = -ENODEV; 2430 if (edac_mc_add_mc(mci)) { 2431 edac_dbg(1, "failed edac_mc_add_mc()\n"); 2432 goto err_add_mc; 2433 } 2434 if (set_mc_sysfs_attrs(mci)) { 2435 edac_dbg(1, "failed edac_mc_add_mc()\n"); 2436 goto err_add_sysfs; 2437 } 2438 2439 /* register stuff with EDAC MCE */ 2440 if (report_gart_errors) 2441 amd_report_gart_errors(true); 2442 2443 amd_register_ecc_decoder(amd64_decode_bus_error); 2444 2445 mcis[nid] = mci; 2446 2447 atomic_inc(&drv_instances); 2448 2449 return 0; 2450 2451 err_add_sysfs: 2452 edac_mc_del_mc(mci->pdev); 2453 err_add_mc: 2454 edac_mc_free(mci); 2455 2456 err_siblings: 2457 free_mc_sibling_devs(pvt); 2458 2459 err_free: 2460 kfree(pvt); 2461 2462 err_ret: 2463 return ret; 2464 } 2465 2466 static int amd64_probe_one_instance(struct pci_dev *pdev, 2467 const struct pci_device_id *mc_type) 2468 { 2469 u16 nid = amd_get_node_id(pdev); 2470 struct pci_dev *F3 = node_to_amd_nb(nid)->misc; 2471 struct ecc_settings *s; 2472 int ret = 0; 2473 2474 ret = pci_enable_device(pdev); 2475 if (ret < 0) { 2476 edac_dbg(0, "ret=%d\n", ret); 2477 return -EIO; 2478 } 2479 2480 ret = -ENOMEM; 2481 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL); 2482 if (!s) 2483 goto err_out; 2484 2485 ecc_stngs[nid] = s; 2486 2487 if (!ecc_enabled(F3, nid)) { 2488 ret = -ENODEV; 2489 2490 if (!ecc_enable_override) 2491 goto err_enable; 2492 2493 amd64_warn("Forcing ECC on!\n"); 2494 2495 if (!enable_ecc_error_reporting(s, nid, F3)) 2496 goto err_enable; 2497 } 2498 2499 ret = amd64_init_one_instance(pdev); 2500 if (ret < 0) { 2501 amd64_err("Error probing instance: %d\n", nid); 2502 restore_ecc_error_reporting(s, nid, F3); 2503 } 2504 2505 return ret; 2506 2507 err_enable: 2508 kfree(s); 2509 ecc_stngs[nid] = NULL; 2510 2511 err_out: 2512 return ret; 2513 } 2514 2515 static void amd64_remove_one_instance(struct pci_dev *pdev) 2516 { 2517 struct mem_ctl_info *mci; 2518 struct amd64_pvt *pvt; 2519 u16 nid = amd_get_node_id(pdev); 2520 struct pci_dev *F3 = node_to_amd_nb(nid)->misc; 2521 struct ecc_settings *s = ecc_stngs[nid]; 2522 2523 mci = find_mci_by_dev(&pdev->dev); 2524 del_mc_sysfs_attrs(mci); 2525 /* Remove from EDAC CORE tracking list */ 2526 mci = edac_mc_del_mc(&pdev->dev); 2527 if (!mci) 2528 return; 2529 2530 pvt = mci->pvt_info; 2531 2532 restore_ecc_error_reporting(s, nid, F3); 2533 2534 free_mc_sibling_devs(pvt); 2535 2536 /* unregister from EDAC MCE */ 2537 amd_report_gart_errors(false); 2538 amd_unregister_ecc_decoder(amd64_decode_bus_error); 2539 2540 kfree(ecc_stngs[nid]); 2541 ecc_stngs[nid] = NULL; 2542 2543 /* Free the EDAC CORE resources */ 2544 mci->pvt_info = NULL; 2545 mcis[nid] = NULL; 2546 2547 kfree(pvt); 2548 edac_mc_free(mci); 2549 } 2550 2551 /* 2552 * This table is part of the interface for loading drivers for PCI devices. The 2553 * PCI core identifies what devices are on a system during boot, and then 2554 * inquiry this table to see if this driver is for a given device found. 2555 */ 2556 static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = { 2557 { 2558 .vendor = PCI_VENDOR_ID_AMD, 2559 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL, 2560 .subvendor = PCI_ANY_ID, 2561 .subdevice = PCI_ANY_ID, 2562 .class = 0, 2563 .class_mask = 0, 2564 }, 2565 { 2566 .vendor = PCI_VENDOR_ID_AMD, 2567 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM, 2568 .subvendor = PCI_ANY_ID, 2569 .subdevice = PCI_ANY_ID, 2570 .class = 0, 2571 .class_mask = 0, 2572 }, 2573 { 2574 .vendor = PCI_VENDOR_ID_AMD, 2575 .device = PCI_DEVICE_ID_AMD_15H_NB_F2, 2576 .subvendor = PCI_ANY_ID, 2577 .subdevice = PCI_ANY_ID, 2578 .class = 0, 2579 .class_mask = 0, 2580 }, 2581 2582 {0, } 2583 }; 2584 MODULE_DEVICE_TABLE(pci, amd64_pci_table); 2585 2586 static struct pci_driver amd64_pci_driver = { 2587 .name = EDAC_MOD_STR, 2588 .probe = amd64_probe_one_instance, 2589 .remove = amd64_remove_one_instance, 2590 .id_table = amd64_pci_table, 2591 }; 2592 2593 static void setup_pci_device(void) 2594 { 2595 struct mem_ctl_info *mci; 2596 struct amd64_pvt *pvt; 2597 2598 if (amd64_ctl_pci) 2599 return; 2600 2601 mci = mcis[0]; 2602 if (mci) { 2603 2604 pvt = mci->pvt_info; 2605 amd64_ctl_pci = 2606 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR); 2607 2608 if (!amd64_ctl_pci) { 2609 pr_warning("%s(): Unable to create PCI control\n", 2610 __func__); 2611 2612 pr_warning("%s(): PCI error report via EDAC not set\n", 2613 __func__); 2614 } 2615 } 2616 } 2617 2618 static int __init amd64_edac_init(void) 2619 { 2620 int err = -ENODEV; 2621 2622 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION); 2623 2624 opstate_init(); 2625 2626 if (amd_cache_northbridges() < 0) 2627 goto err_ret; 2628 2629 err = -ENOMEM; 2630 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL); 2631 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL); 2632 if (!(mcis && ecc_stngs)) 2633 goto err_free; 2634 2635 msrs = msrs_alloc(); 2636 if (!msrs) 2637 goto err_free; 2638 2639 err = pci_register_driver(&amd64_pci_driver); 2640 if (err) 2641 goto err_pci; 2642 2643 err = -ENODEV; 2644 if (!atomic_read(&drv_instances)) 2645 goto err_no_instances; 2646 2647 setup_pci_device(); 2648 return 0; 2649 2650 err_no_instances: 2651 pci_unregister_driver(&amd64_pci_driver); 2652 2653 err_pci: 2654 msrs_free(msrs); 2655 msrs = NULL; 2656 2657 err_free: 2658 kfree(mcis); 2659 mcis = NULL; 2660 2661 kfree(ecc_stngs); 2662 ecc_stngs = NULL; 2663 2664 err_ret: 2665 return err; 2666 } 2667 2668 static void __exit amd64_edac_exit(void) 2669 { 2670 if (amd64_ctl_pci) 2671 edac_pci_release_generic_ctl(amd64_ctl_pci); 2672 2673 pci_unregister_driver(&amd64_pci_driver); 2674 2675 kfree(ecc_stngs); 2676 ecc_stngs = NULL; 2677 2678 kfree(mcis); 2679 mcis = NULL; 2680 2681 msrs_free(msrs); 2682 msrs = NULL; 2683 } 2684 2685 module_init(amd64_edac_init); 2686 module_exit(amd64_edac_exit); 2687 2688 MODULE_LICENSE("GPL"); 2689 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, " 2690 "Dave Peterson, Thayne Harbaugh"); 2691 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - " 2692 EDAC_AMD64_VERSION); 2693 2694 module_param(edac_op_state, int, 0444); 2695 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 2696