1 #include "amd64_edac.h" 2 #include <asm/amd_nb.h> 3 4 static struct edac_pci_ctl_info *amd64_ctl_pci; 5 6 static int report_gart_errors; 7 module_param(report_gart_errors, int, 0644); 8 9 /* 10 * Set by command line parameter. If BIOS has enabled the ECC, this override is 11 * cleared to prevent re-enabling the hardware by this driver. 12 */ 13 static int ecc_enable_override; 14 module_param(ecc_enable_override, int, 0644); 15 16 static struct msr __percpu *msrs; 17 18 /* 19 * count successfully initialized driver instances for setup_pci_device() 20 */ 21 static atomic_t drv_instances = ATOMIC_INIT(0); 22 23 /* Per-node driver instances */ 24 static struct mem_ctl_info **mcis; 25 static struct ecc_settings **ecc_stngs; 26 27 /* 28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing 29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching- 30 * or higher value'. 31 * 32 *FIXME: Produce a better mapping/linearisation. 33 */ 34 static const struct scrubrate { 35 u32 scrubval; /* bit pattern for scrub rate */ 36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */ 37 } scrubrates[] = { 38 { 0x01, 1600000000UL}, 39 { 0x02, 800000000UL}, 40 { 0x03, 400000000UL}, 41 { 0x04, 200000000UL}, 42 { 0x05, 100000000UL}, 43 { 0x06, 50000000UL}, 44 { 0x07, 25000000UL}, 45 { 0x08, 12284069UL}, 46 { 0x09, 6274509UL}, 47 { 0x0A, 3121951UL}, 48 { 0x0B, 1560975UL}, 49 { 0x0C, 781440UL}, 50 { 0x0D, 390720UL}, 51 { 0x0E, 195300UL}, 52 { 0x0F, 97650UL}, 53 { 0x10, 48854UL}, 54 { 0x11, 24427UL}, 55 { 0x12, 12213UL}, 56 { 0x13, 6101UL}, 57 { 0x14, 3051UL}, 58 { 0x15, 1523UL}, 59 { 0x16, 761UL}, 60 { 0x00, 0UL}, /* scrubbing off */ 61 }; 62 63 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset, 64 u32 *val, const char *func) 65 { 66 int err = 0; 67 68 err = pci_read_config_dword(pdev, offset, val); 69 if (err) 70 amd64_warn("%s: error reading F%dx%03x.\n", 71 func, PCI_FUNC(pdev->devfn), offset); 72 73 return err; 74 } 75 76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset, 77 u32 val, const char *func) 78 { 79 int err = 0; 80 81 err = pci_write_config_dword(pdev, offset, val); 82 if (err) 83 amd64_warn("%s: error writing to F%dx%03x.\n", 84 func, PCI_FUNC(pdev->devfn), offset); 85 86 return err; 87 } 88 89 /* 90 * 91 * Depending on the family, F2 DCT reads need special handling: 92 * 93 * K8: has a single DCT only 94 * 95 * F10h: each DCT has its own set of regs 96 * DCT0 -> F2x040.. 97 * DCT1 -> F2x140.. 98 * 99 * F15h: we select which DCT we access using F1x10C[DctCfgSel] 100 * 101 * F16h: has only 1 DCT 102 */ 103 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, 104 const char *func) 105 { 106 if (addr >= 0x100) 107 return -EINVAL; 108 109 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); 110 } 111 112 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, 113 const char *func) 114 { 115 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); 116 } 117 118 /* 119 * Select DCT to which PCI cfg accesses are routed 120 */ 121 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct) 122 { 123 u32 reg = 0; 124 125 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®); 126 reg &= (pvt->model >= 0x30) ? ~3 : ~1; 127 reg |= dct; 128 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg); 129 } 130 131 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, 132 const char *func) 133 { 134 u8 dct = 0; 135 136 /* For F15 M30h, the second dct is DCT 3, refer to BKDG Section 2.10 */ 137 if (addr >= 0x140 && addr <= 0x1a0) { 138 dct = (pvt->model >= 0x30) ? 3 : 1; 139 addr -= 0x100; 140 } 141 142 f15h_select_dct(pvt, dct); 143 144 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); 145 } 146 147 /* 148 * Memory scrubber control interface. For K8, memory scrubbing is handled by 149 * hardware and can involve L2 cache, dcache as well as the main memory. With 150 * F10, this is extended to L3 cache scrubbing on CPU models sporting that 151 * functionality. 152 * 153 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks 154 * (dram) over to cache lines. This is nasty, so we will use bandwidth in 155 * bytes/sec for the setting. 156 * 157 * Currently, we only do dram scrubbing. If the scrubbing is done in software on 158 * other archs, we might not have access to the caches directly. 159 */ 160 161 /* 162 * scan the scrub rate mapping table for a close or matching bandwidth value to 163 * issue. If requested is too big, then use last maximum value found. 164 */ 165 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate) 166 { 167 u32 scrubval; 168 int i; 169 170 /* 171 * map the configured rate (new_bw) to a value specific to the AMD64 172 * memory controller and apply to register. Search for the first 173 * bandwidth entry that is greater or equal than the setting requested 174 * and program that. If at last entry, turn off DRAM scrubbing. 175 * 176 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely 177 * by falling back to the last element in scrubrates[]. 178 */ 179 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) { 180 /* 181 * skip scrub rates which aren't recommended 182 * (see F10 BKDG, F3x58) 183 */ 184 if (scrubrates[i].scrubval < min_rate) 185 continue; 186 187 if (scrubrates[i].bandwidth <= new_bw) 188 break; 189 } 190 191 scrubval = scrubrates[i].scrubval; 192 193 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F); 194 195 if (scrubval) 196 return scrubrates[i].bandwidth; 197 198 return 0; 199 } 200 201 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw) 202 { 203 struct amd64_pvt *pvt = mci->pvt_info; 204 u32 min_scrubrate = 0x5; 205 206 if (pvt->fam == 0xf) 207 min_scrubrate = 0x0; 208 209 /* Erratum #505 */ 210 if (pvt->fam == 0x15 && pvt->model < 0x10) 211 f15h_select_dct(pvt, 0); 212 213 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate); 214 } 215 216 static int amd64_get_scrub_rate(struct mem_ctl_info *mci) 217 { 218 struct amd64_pvt *pvt = mci->pvt_info; 219 u32 scrubval = 0; 220 int i, retval = -EINVAL; 221 222 /* Erratum #505 */ 223 if (pvt->fam == 0x15 && pvt->model < 0x10) 224 f15h_select_dct(pvt, 0); 225 226 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval); 227 228 scrubval = scrubval & 0x001F; 229 230 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { 231 if (scrubrates[i].scrubval == scrubval) { 232 retval = scrubrates[i].bandwidth; 233 break; 234 } 235 } 236 return retval; 237 } 238 239 /* 240 * returns true if the SysAddr given by sys_addr matches the 241 * DRAM base/limit associated with node_id 242 */ 243 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, 244 u8 nid) 245 { 246 u64 addr; 247 248 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be 249 * all ones if the most significant implemented address bit is 1. 250 * Here we discard bits 63-40. See section 3.4.2 of AMD publication 251 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 252 * Application Programming. 253 */ 254 addr = sys_addr & 0x000000ffffffffffull; 255 256 return ((addr >= get_dram_base(pvt, nid)) && 257 (addr <= get_dram_limit(pvt, nid))); 258 } 259 260 /* 261 * Attempt to map a SysAddr to a node. On success, return a pointer to the 262 * mem_ctl_info structure for the node that the SysAddr maps to. 263 * 264 * On failure, return NULL. 265 */ 266 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, 267 u64 sys_addr) 268 { 269 struct amd64_pvt *pvt; 270 u8 node_id; 271 u32 intlv_en, bits; 272 273 /* 274 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section 275 * 3.4.4.2) registers to map the SysAddr to a node ID. 276 */ 277 pvt = mci->pvt_info; 278 279 /* 280 * The value of this field should be the same for all DRAM Base 281 * registers. Therefore we arbitrarily choose to read it from the 282 * register for node 0. 283 */ 284 intlv_en = dram_intlv_en(pvt, 0); 285 286 if (intlv_en == 0) { 287 for (node_id = 0; node_id < DRAM_RANGES; node_id++) { 288 if (amd64_base_limit_match(pvt, sys_addr, node_id)) 289 goto found; 290 } 291 goto err_no_match; 292 } 293 294 if (unlikely((intlv_en != 0x01) && 295 (intlv_en != 0x03) && 296 (intlv_en != 0x07))) { 297 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en); 298 return NULL; 299 } 300 301 bits = (((u32) sys_addr) >> 12) & intlv_en; 302 303 for (node_id = 0; ; ) { 304 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits) 305 break; /* intlv_sel field matches */ 306 307 if (++node_id >= DRAM_RANGES) 308 goto err_no_match; 309 } 310 311 /* sanity test for sys_addr */ 312 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) { 313 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address" 314 "range for node %d with node interleaving enabled.\n", 315 __func__, sys_addr, node_id); 316 return NULL; 317 } 318 319 found: 320 return edac_mc_find((int)node_id); 321 322 err_no_match: 323 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n", 324 (unsigned long)sys_addr); 325 326 return NULL; 327 } 328 329 /* 330 * compute the CS base address of the @csrow on the DRAM controller @dct. 331 * For details see F2x[5C:40] in the processor's BKDG 332 */ 333 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct, 334 u64 *base, u64 *mask) 335 { 336 u64 csbase, csmask, base_bits, mask_bits; 337 u8 addr_shift; 338 339 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) { 340 csbase = pvt->csels[dct].csbases[csrow]; 341 csmask = pvt->csels[dct].csmasks[csrow]; 342 base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9); 343 mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9); 344 addr_shift = 4; 345 346 /* 347 * F16h and F15h, models 30h and later need two addr_shift values: 348 * 8 for high and 6 for low (cf. F16h BKDG). 349 */ 350 } else if (pvt->fam == 0x16 || 351 (pvt->fam == 0x15 && pvt->model >= 0x30)) { 352 csbase = pvt->csels[dct].csbases[csrow]; 353 csmask = pvt->csels[dct].csmasks[csrow >> 1]; 354 355 *base = (csbase & GENMASK_ULL(15, 5)) << 6; 356 *base |= (csbase & GENMASK_ULL(30, 19)) << 8; 357 358 *mask = ~0ULL; 359 /* poke holes for the csmask */ 360 *mask &= ~((GENMASK_ULL(15, 5) << 6) | 361 (GENMASK_ULL(30, 19) << 8)); 362 363 *mask |= (csmask & GENMASK_ULL(15, 5)) << 6; 364 *mask |= (csmask & GENMASK_ULL(30, 19)) << 8; 365 366 return; 367 } else { 368 csbase = pvt->csels[dct].csbases[csrow]; 369 csmask = pvt->csels[dct].csmasks[csrow >> 1]; 370 addr_shift = 8; 371 372 if (pvt->fam == 0x15) 373 base_bits = mask_bits = 374 GENMASK_ULL(30,19) | GENMASK_ULL(13,5); 375 else 376 base_bits = mask_bits = 377 GENMASK_ULL(28,19) | GENMASK_ULL(13,5); 378 } 379 380 *base = (csbase & base_bits) << addr_shift; 381 382 *mask = ~0ULL; 383 /* poke holes for the csmask */ 384 *mask &= ~(mask_bits << addr_shift); 385 /* OR them in */ 386 *mask |= (csmask & mask_bits) << addr_shift; 387 } 388 389 #define for_each_chip_select(i, dct, pvt) \ 390 for (i = 0; i < pvt->csels[dct].b_cnt; i++) 391 392 #define chip_select_base(i, dct, pvt) \ 393 pvt->csels[dct].csbases[i] 394 395 #define for_each_chip_select_mask(i, dct, pvt) \ 396 for (i = 0; i < pvt->csels[dct].m_cnt; i++) 397 398 /* 399 * @input_addr is an InputAddr associated with the node given by mci. Return the 400 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). 401 */ 402 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) 403 { 404 struct amd64_pvt *pvt; 405 int csrow; 406 u64 base, mask; 407 408 pvt = mci->pvt_info; 409 410 for_each_chip_select(csrow, 0, pvt) { 411 if (!csrow_enabled(csrow, 0, pvt)) 412 continue; 413 414 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask); 415 416 mask = ~mask; 417 418 if ((input_addr & mask) == (base & mask)) { 419 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n", 420 (unsigned long)input_addr, csrow, 421 pvt->mc_node_id); 422 423 return csrow; 424 } 425 } 426 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n", 427 (unsigned long)input_addr, pvt->mc_node_id); 428 429 return -1; 430 } 431 432 /* 433 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) 434 * for the node represented by mci. Info is passed back in *hole_base, 435 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if 436 * info is invalid. Info may be invalid for either of the following reasons: 437 * 438 * - The revision of the node is not E or greater. In this case, the DRAM Hole 439 * Address Register does not exist. 440 * 441 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, 442 * indicating that its contents are not valid. 443 * 444 * The values passed back in *hole_base, *hole_offset, and *hole_size are 445 * complete 32-bit values despite the fact that the bitfields in the DHAR 446 * only represent bits 31-24 of the base and offset values. 447 */ 448 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, 449 u64 *hole_offset, u64 *hole_size) 450 { 451 struct amd64_pvt *pvt = mci->pvt_info; 452 453 /* only revE and later have the DRAM Hole Address Register */ 454 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) { 455 edac_dbg(1, " revision %d for node %d does not support DHAR\n", 456 pvt->ext_model, pvt->mc_node_id); 457 return 1; 458 } 459 460 /* valid for Fam10h and above */ 461 if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) { 462 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n"); 463 return 1; 464 } 465 466 if (!dhar_valid(pvt)) { 467 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n", 468 pvt->mc_node_id); 469 return 1; 470 } 471 472 /* This node has Memory Hoisting */ 473 474 /* +------------------+--------------------+--------------------+----- 475 * | memory | DRAM hole | relocated | 476 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from | 477 * | | | DRAM hole | 478 * | | | [0x100000000, | 479 * | | | (0x100000000+ | 480 * | | | (0xffffffff-x))] | 481 * +------------------+--------------------+--------------------+----- 482 * 483 * Above is a diagram of physical memory showing the DRAM hole and the 484 * relocated addresses from the DRAM hole. As shown, the DRAM hole 485 * starts at address x (the base address) and extends through address 486 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the 487 * addresses in the hole so that they start at 0x100000000. 488 */ 489 490 *hole_base = dhar_base(pvt); 491 *hole_size = (1ULL << 32) - *hole_base; 492 493 *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt) 494 : k8_dhar_offset(pvt); 495 496 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", 497 pvt->mc_node_id, (unsigned long)*hole_base, 498 (unsigned long)*hole_offset, (unsigned long)*hole_size); 499 500 return 0; 501 } 502 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info); 503 504 /* 505 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is 506 * assumed that sys_addr maps to the node given by mci. 507 * 508 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section 509 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a 510 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, 511 * then it is also involved in translating a SysAddr to a DramAddr. Sections 512 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. 513 * These parts of the documentation are unclear. I interpret them as follows: 514 * 515 * When node n receives a SysAddr, it processes the SysAddr as follows: 516 * 517 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM 518 * Limit registers for node n. If the SysAddr is not within the range 519 * specified by the base and limit values, then node n ignores the Sysaddr 520 * (since it does not map to node n). Otherwise continue to step 2 below. 521 * 522 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is 523 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within 524 * the range of relocated addresses (starting at 0x100000000) from the DRAM 525 * hole. If not, skip to step 3 below. Else get the value of the 526 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the 527 * offset defined by this value from the SysAddr. 528 * 529 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM 530 * Base register for node n. To obtain the DramAddr, subtract the base 531 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70). 532 */ 533 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) 534 { 535 struct amd64_pvt *pvt = mci->pvt_info; 536 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; 537 int ret; 538 539 dram_base = get_dram_base(pvt, pvt->mc_node_id); 540 541 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, 542 &hole_size); 543 if (!ret) { 544 if ((sys_addr >= (1ULL << 32)) && 545 (sys_addr < ((1ULL << 32) + hole_size))) { 546 /* use DHAR to translate SysAddr to DramAddr */ 547 dram_addr = sys_addr - hole_offset; 548 549 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n", 550 (unsigned long)sys_addr, 551 (unsigned long)dram_addr); 552 553 return dram_addr; 554 } 555 } 556 557 /* 558 * Translate the SysAddr to a DramAddr as shown near the start of 559 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8 560 * only deals with 40-bit values. Therefore we discard bits 63-40 of 561 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we 562 * discard are all 1s. Otherwise the bits we discard are all 0s. See 563 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture 564 * Programmer's Manual Volume 1 Application Programming. 565 */ 566 dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base; 567 568 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n", 569 (unsigned long)sys_addr, (unsigned long)dram_addr); 570 return dram_addr; 571 } 572 573 /* 574 * @intlv_en is the value of the IntlvEn field from a DRAM Base register 575 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used 576 * for node interleaving. 577 */ 578 static int num_node_interleave_bits(unsigned intlv_en) 579 { 580 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; 581 int n; 582 583 BUG_ON(intlv_en > 7); 584 n = intlv_shift_table[intlv_en]; 585 return n; 586 } 587 588 /* Translate the DramAddr given by @dram_addr to an InputAddr. */ 589 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) 590 { 591 struct amd64_pvt *pvt; 592 int intlv_shift; 593 u64 input_addr; 594 595 pvt = mci->pvt_info; 596 597 /* 598 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) 599 * concerning translating a DramAddr to an InputAddr. 600 */ 601 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); 602 input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) + 603 (dram_addr & 0xfff); 604 605 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", 606 intlv_shift, (unsigned long)dram_addr, 607 (unsigned long)input_addr); 608 609 return input_addr; 610 } 611 612 /* 613 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is 614 * assumed that @sys_addr maps to the node given by mci. 615 */ 616 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) 617 { 618 u64 input_addr; 619 620 input_addr = 621 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); 622 623 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n", 624 (unsigned long)sys_addr, (unsigned long)input_addr); 625 626 return input_addr; 627 } 628 629 /* Map the Error address to a PAGE and PAGE OFFSET. */ 630 static inline void error_address_to_page_and_offset(u64 error_address, 631 struct err_info *err) 632 { 633 err->page = (u32) (error_address >> PAGE_SHIFT); 634 err->offset = ((u32) error_address) & ~PAGE_MASK; 635 } 636 637 /* 638 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address 639 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers 640 * of a node that detected an ECC memory error. mci represents the node that 641 * the error address maps to (possibly different from the node that detected 642 * the error). Return the number of the csrow that sys_addr maps to, or -1 on 643 * error. 644 */ 645 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) 646 { 647 int csrow; 648 649 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); 650 651 if (csrow == -1) 652 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for " 653 "address 0x%lx\n", (unsigned long)sys_addr); 654 return csrow; 655 } 656 657 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); 658 659 /* 660 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs 661 * are ECC capable. 662 */ 663 static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt) 664 { 665 u8 bit; 666 unsigned long edac_cap = EDAC_FLAG_NONE; 667 668 bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F) 669 ? 19 670 : 17; 671 672 if (pvt->dclr0 & BIT(bit)) 673 edac_cap = EDAC_FLAG_SECDED; 674 675 return edac_cap; 676 } 677 678 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8); 679 680 static void amd64_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan) 681 { 682 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr); 683 684 edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n", 685 (dclr & BIT(16)) ? "un" : "", 686 (dclr & BIT(19)) ? "yes" : "no"); 687 688 edac_dbg(1, " PAR/ERR parity: %s\n", 689 (dclr & BIT(8)) ? "enabled" : "disabled"); 690 691 if (pvt->fam == 0x10) 692 edac_dbg(1, " DCT 128bit mode width: %s\n", 693 (dclr & BIT(11)) ? "128b" : "64b"); 694 695 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n", 696 (dclr & BIT(12)) ? "yes" : "no", 697 (dclr & BIT(13)) ? "yes" : "no", 698 (dclr & BIT(14)) ? "yes" : "no", 699 (dclr & BIT(15)) ? "yes" : "no"); 700 } 701 702 /* Display and decode various NB registers for debug purposes. */ 703 static void dump_misc_regs(struct amd64_pvt *pvt) 704 { 705 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap); 706 707 edac_dbg(1, " NB two channel DRAM capable: %s\n", 708 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no"); 709 710 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n", 711 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no", 712 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no"); 713 714 amd64_dump_dramcfg_low(pvt, pvt->dclr0, 0); 715 716 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare); 717 718 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n", 719 pvt->dhar, dhar_base(pvt), 720 (pvt->fam == 0xf) ? k8_dhar_offset(pvt) 721 : f10_dhar_offset(pvt)); 722 723 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no"); 724 725 amd64_debug_display_dimm_sizes(pvt, 0); 726 727 /* everything below this point is Fam10h and above */ 728 if (pvt->fam == 0xf) 729 return; 730 731 amd64_debug_display_dimm_sizes(pvt, 1); 732 733 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4")); 734 735 /* Only if NOT ganged does dclr1 have valid info */ 736 if (!dct_ganging_enabled(pvt)) 737 amd64_dump_dramcfg_low(pvt, pvt->dclr1, 1); 738 } 739 740 /* 741 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60] 742 */ 743 static void prep_chip_selects(struct amd64_pvt *pvt) 744 { 745 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) { 746 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; 747 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8; 748 } else if (pvt->fam == 0x15 && pvt->model >= 0x30) { 749 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4; 750 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2; 751 } else { 752 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; 753 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4; 754 } 755 } 756 757 /* 758 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers 759 */ 760 static void read_dct_base_mask(struct amd64_pvt *pvt) 761 { 762 int cs; 763 764 prep_chip_selects(pvt); 765 766 for_each_chip_select(cs, 0, pvt) { 767 int reg0 = DCSB0 + (cs * 4); 768 int reg1 = DCSB1 + (cs * 4); 769 u32 *base0 = &pvt->csels[0].csbases[cs]; 770 u32 *base1 = &pvt->csels[1].csbases[cs]; 771 772 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0)) 773 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n", 774 cs, *base0, reg0); 775 776 if (pvt->fam == 0xf || dct_ganging_enabled(pvt)) 777 continue; 778 779 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1)) 780 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n", 781 cs, *base1, reg1); 782 } 783 784 for_each_chip_select_mask(cs, 0, pvt) { 785 int reg0 = DCSM0 + (cs * 4); 786 int reg1 = DCSM1 + (cs * 4); 787 u32 *mask0 = &pvt->csels[0].csmasks[cs]; 788 u32 *mask1 = &pvt->csels[1].csmasks[cs]; 789 790 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0)) 791 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n", 792 cs, *mask0, reg0); 793 794 if (pvt->fam == 0xf || dct_ganging_enabled(pvt)) 795 continue; 796 797 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1)) 798 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n", 799 cs, *mask1, reg1); 800 } 801 } 802 803 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs) 804 { 805 enum mem_type type; 806 807 /* F15h supports only DDR3 */ 808 if (pvt->fam >= 0x15) 809 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; 810 else if (pvt->fam == 0x10 || pvt->ext_model >= K8_REV_F) { 811 if (pvt->dchr0 & DDR3_MODE) 812 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; 813 else 814 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; 815 } else { 816 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; 817 } 818 819 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]); 820 821 return type; 822 } 823 824 /* Get the number of DCT channels the memory controller is using. */ 825 static int k8_early_channel_count(struct amd64_pvt *pvt) 826 { 827 int flag; 828 829 if (pvt->ext_model >= K8_REV_F) 830 /* RevF (NPT) and later */ 831 flag = pvt->dclr0 & WIDTH_128; 832 else 833 /* RevE and earlier */ 834 flag = pvt->dclr0 & REVE_WIDTH_128; 835 836 /* not used */ 837 pvt->dclr1 = 0; 838 839 return (flag) ? 2 : 1; 840 } 841 842 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */ 843 static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m) 844 { 845 u64 addr; 846 u8 start_bit = 1; 847 u8 end_bit = 47; 848 849 if (pvt->fam == 0xf) { 850 start_bit = 3; 851 end_bit = 39; 852 } 853 854 addr = m->addr & GENMASK_ULL(end_bit, start_bit); 855 856 /* 857 * Erratum 637 workaround 858 */ 859 if (pvt->fam == 0x15) { 860 struct amd64_pvt *pvt; 861 u64 cc6_base, tmp_addr; 862 u32 tmp; 863 u16 mce_nid; 864 u8 intlv_en; 865 866 if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7) 867 return addr; 868 869 mce_nid = amd_get_nb_id(m->extcpu); 870 pvt = mcis[mce_nid]->pvt_info; 871 872 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp); 873 intlv_en = tmp >> 21 & 0x7; 874 875 /* add [47:27] + 3 trailing bits */ 876 cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3; 877 878 /* reverse and add DramIntlvEn */ 879 cc6_base |= intlv_en ^ 0x7; 880 881 /* pin at [47:24] */ 882 cc6_base <<= 24; 883 884 if (!intlv_en) 885 return cc6_base | (addr & GENMASK_ULL(23, 0)); 886 887 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp); 888 889 /* faster log2 */ 890 tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1); 891 892 /* OR DramIntlvSel into bits [14:12] */ 893 tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9; 894 895 /* add remaining [11:0] bits from original MC4_ADDR */ 896 tmp_addr |= addr & GENMASK_ULL(11, 0); 897 898 return cc6_base | tmp_addr; 899 } 900 901 return addr; 902 } 903 904 static struct pci_dev *pci_get_related_function(unsigned int vendor, 905 unsigned int device, 906 struct pci_dev *related) 907 { 908 struct pci_dev *dev = NULL; 909 910 while ((dev = pci_get_device(vendor, device, dev))) { 911 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) && 912 (dev->bus->number == related->bus->number) && 913 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) 914 break; 915 } 916 917 return dev; 918 } 919 920 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range) 921 { 922 struct amd_northbridge *nb; 923 struct pci_dev *f1 = NULL; 924 unsigned int pci_func; 925 int off = range << 3; 926 u32 llim; 927 928 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo); 929 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo); 930 931 if (pvt->fam == 0xf) 932 return; 933 934 if (!dram_rw(pvt, range)) 935 return; 936 937 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi); 938 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi); 939 940 /* F15h: factor in CC6 save area by reading dst node's limit reg */ 941 if (pvt->fam != 0x15) 942 return; 943 944 nb = node_to_amd_nb(dram_dst_node(pvt, range)); 945 if (WARN_ON(!nb)) 946 return; 947 948 pci_func = (pvt->model == 0x30) ? PCI_DEVICE_ID_AMD_15H_M30H_NB_F1 949 : PCI_DEVICE_ID_AMD_15H_NB_F1; 950 951 f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc); 952 if (WARN_ON(!f1)) 953 return; 954 955 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim); 956 957 pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0); 958 959 /* {[39:27],111b} */ 960 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16; 961 962 pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0); 963 964 /* [47:40] */ 965 pvt->ranges[range].lim.hi |= llim >> 13; 966 967 pci_dev_put(f1); 968 } 969 970 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, 971 struct err_info *err) 972 { 973 struct amd64_pvt *pvt = mci->pvt_info; 974 975 error_address_to_page_and_offset(sys_addr, err); 976 977 /* 978 * Find out which node the error address belongs to. This may be 979 * different from the node that detected the error. 980 */ 981 err->src_mci = find_mc_by_sys_addr(mci, sys_addr); 982 if (!err->src_mci) { 983 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n", 984 (unsigned long)sys_addr); 985 err->err_code = ERR_NODE; 986 return; 987 } 988 989 /* Now map the sys_addr to a CSROW */ 990 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr); 991 if (err->csrow < 0) { 992 err->err_code = ERR_CSROW; 993 return; 994 } 995 996 /* CHIPKILL enabled */ 997 if (pvt->nbcfg & NBCFG_CHIPKILL) { 998 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); 999 if (err->channel < 0) { 1000 /* 1001 * Syndrome didn't map, so we don't know which of the 1002 * 2 DIMMs is in error. So we need to ID 'both' of them 1003 * as suspect. 1004 */ 1005 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - " 1006 "possible error reporting race\n", 1007 err->syndrome); 1008 err->err_code = ERR_CHANNEL; 1009 return; 1010 } 1011 } else { 1012 /* 1013 * non-chipkill ecc mode 1014 * 1015 * The k8 documentation is unclear about how to determine the 1016 * channel number when using non-chipkill memory. This method 1017 * was obtained from email communication with someone at AMD. 1018 * (Wish the email was placed in this comment - norsk) 1019 */ 1020 err->channel = ((sys_addr & BIT(3)) != 0); 1021 } 1022 } 1023 1024 static int ddr2_cs_size(unsigned i, bool dct_width) 1025 { 1026 unsigned shift = 0; 1027 1028 if (i <= 2) 1029 shift = i; 1030 else if (!(i & 0x1)) 1031 shift = i >> 1; 1032 else 1033 shift = (i + 1) >> 1; 1034 1035 return 128 << (shift + !!dct_width); 1036 } 1037 1038 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1039 unsigned cs_mode) 1040 { 1041 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; 1042 1043 if (pvt->ext_model >= K8_REV_F) { 1044 WARN_ON(cs_mode > 11); 1045 return ddr2_cs_size(cs_mode, dclr & WIDTH_128); 1046 } 1047 else if (pvt->ext_model >= K8_REV_D) { 1048 unsigned diff; 1049 WARN_ON(cs_mode > 10); 1050 1051 /* 1052 * the below calculation, besides trying to win an obfuscated C 1053 * contest, maps cs_mode values to DIMM chip select sizes. The 1054 * mappings are: 1055 * 1056 * cs_mode CS size (mb) 1057 * ======= ============ 1058 * 0 32 1059 * 1 64 1060 * 2 128 1061 * 3 128 1062 * 4 256 1063 * 5 512 1064 * 6 256 1065 * 7 512 1066 * 8 1024 1067 * 9 1024 1068 * 10 2048 1069 * 1070 * Basically, it calculates a value with which to shift the 1071 * smallest CS size of 32MB. 1072 * 1073 * ddr[23]_cs_size have a similar purpose. 1074 */ 1075 diff = cs_mode/3 + (unsigned)(cs_mode > 5); 1076 1077 return 32 << (cs_mode - diff); 1078 } 1079 else { 1080 WARN_ON(cs_mode > 6); 1081 return 32 << cs_mode; 1082 } 1083 } 1084 1085 /* 1086 * Get the number of DCT channels in use. 1087 * 1088 * Return: 1089 * number of Memory Channels in operation 1090 * Pass back: 1091 * contents of the DCL0_LOW register 1092 */ 1093 static int f1x_early_channel_count(struct amd64_pvt *pvt) 1094 { 1095 int i, j, channels = 0; 1096 1097 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */ 1098 if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128)) 1099 return 2; 1100 1101 /* 1102 * Need to check if in unganged mode: In such, there are 2 channels, 1103 * but they are not in 128 bit mode and thus the above 'dclr0' status 1104 * bit will be OFF. 1105 * 1106 * Need to check DCT0[0] and DCT1[0] to see if only one of them has 1107 * their CSEnable bit on. If so, then SINGLE DIMM case. 1108 */ 1109 edac_dbg(0, "Data width is not 128 bits - need more decoding\n"); 1110 1111 /* 1112 * Check DRAM Bank Address Mapping values for each DIMM to see if there 1113 * is more than just one DIMM present in unganged mode. Need to check 1114 * both controllers since DIMMs can be placed in either one. 1115 */ 1116 for (i = 0; i < 2; i++) { 1117 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0); 1118 1119 for (j = 0; j < 4; j++) { 1120 if (DBAM_DIMM(j, dbam) > 0) { 1121 channels++; 1122 break; 1123 } 1124 } 1125 } 1126 1127 if (channels > 2) 1128 channels = 2; 1129 1130 amd64_info("MCT channel count: %d\n", channels); 1131 1132 return channels; 1133 } 1134 1135 static int ddr3_cs_size(unsigned i, bool dct_width) 1136 { 1137 unsigned shift = 0; 1138 int cs_size = 0; 1139 1140 if (i == 0 || i == 3 || i == 4) 1141 cs_size = -1; 1142 else if (i <= 2) 1143 shift = i; 1144 else if (i == 12) 1145 shift = 7; 1146 else if (!(i & 0x1)) 1147 shift = i >> 1; 1148 else 1149 shift = (i + 1) >> 1; 1150 1151 if (cs_size != -1) 1152 cs_size = (128 * (1 << !!dct_width)) << shift; 1153 1154 return cs_size; 1155 } 1156 1157 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1158 unsigned cs_mode) 1159 { 1160 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; 1161 1162 WARN_ON(cs_mode > 11); 1163 1164 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE) 1165 return ddr3_cs_size(cs_mode, dclr & WIDTH_128); 1166 else 1167 return ddr2_cs_size(cs_mode, dclr & WIDTH_128); 1168 } 1169 1170 /* 1171 * F15h supports only 64bit DCT interfaces 1172 */ 1173 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1174 unsigned cs_mode) 1175 { 1176 WARN_ON(cs_mode > 12); 1177 1178 return ddr3_cs_size(cs_mode, false); 1179 } 1180 1181 /* 1182 * F16h and F15h model 30h have only limited cs_modes. 1183 */ 1184 static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1185 unsigned cs_mode) 1186 { 1187 WARN_ON(cs_mode > 12); 1188 1189 if (cs_mode == 6 || cs_mode == 8 || 1190 cs_mode == 9 || cs_mode == 12) 1191 return -1; 1192 else 1193 return ddr3_cs_size(cs_mode, false); 1194 } 1195 1196 static void read_dram_ctl_register(struct amd64_pvt *pvt) 1197 { 1198 1199 if (pvt->fam == 0xf) 1200 return; 1201 1202 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) { 1203 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n", 1204 pvt->dct_sel_lo, dct_sel_baseaddr(pvt)); 1205 1206 edac_dbg(0, " DCTs operate in %s mode\n", 1207 (dct_ganging_enabled(pvt) ? "ganged" : "unganged")); 1208 1209 if (!dct_ganging_enabled(pvt)) 1210 edac_dbg(0, " Address range split per DCT: %s\n", 1211 (dct_high_range_enabled(pvt) ? "yes" : "no")); 1212 1213 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n", 1214 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"), 1215 (dct_memory_cleared(pvt) ? "yes" : "no")); 1216 1217 edac_dbg(0, " channel interleave: %s, " 1218 "interleave bits selector: 0x%x\n", 1219 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"), 1220 dct_sel_interleave_addr(pvt)); 1221 } 1222 1223 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi); 1224 } 1225 1226 /* 1227 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG, 1228 * 2.10.12 Memory Interleaving Modes). 1229 */ 1230 static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, 1231 u8 intlv_en, int num_dcts_intlv, 1232 u32 dct_sel) 1233 { 1234 u8 channel = 0; 1235 u8 select; 1236 1237 if (!(intlv_en)) 1238 return (u8)(dct_sel); 1239 1240 if (num_dcts_intlv == 2) { 1241 select = (sys_addr >> 8) & 0x3; 1242 channel = select ? 0x3 : 0; 1243 } else if (num_dcts_intlv == 4) 1244 channel = (sys_addr >> 8) & 0x7; 1245 1246 return channel; 1247 } 1248 1249 /* 1250 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory 1251 * Interleaving Modes. 1252 */ 1253 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, 1254 bool hi_range_sel, u8 intlv_en) 1255 { 1256 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1; 1257 1258 if (dct_ganging_enabled(pvt)) 1259 return 0; 1260 1261 if (hi_range_sel) 1262 return dct_sel_high; 1263 1264 /* 1265 * see F2x110[DctSelIntLvAddr] - channel interleave mode 1266 */ 1267 if (dct_interleave_enabled(pvt)) { 1268 u8 intlv_addr = dct_sel_interleave_addr(pvt); 1269 1270 /* return DCT select function: 0=DCT0, 1=DCT1 */ 1271 if (!intlv_addr) 1272 return sys_addr >> 6 & 1; 1273 1274 if (intlv_addr & 0x2) { 1275 u8 shift = intlv_addr & 0x1 ? 9 : 6; 1276 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2; 1277 1278 return ((sys_addr >> shift) & 1) ^ temp; 1279 } 1280 1281 return (sys_addr >> (12 + hweight8(intlv_en))) & 1; 1282 } 1283 1284 if (dct_high_range_enabled(pvt)) 1285 return ~dct_sel_high & 1; 1286 1287 return 0; 1288 } 1289 1290 /* Convert the sys_addr to the normalized DCT address */ 1291 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range, 1292 u64 sys_addr, bool hi_rng, 1293 u32 dct_sel_base_addr) 1294 { 1295 u64 chan_off; 1296 u64 dram_base = get_dram_base(pvt, range); 1297 u64 hole_off = f10_dhar_offset(pvt); 1298 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16; 1299 1300 if (hi_rng) { 1301 /* 1302 * if 1303 * base address of high range is below 4Gb 1304 * (bits [47:27] at [31:11]) 1305 * DRAM address space on this DCT is hoisted above 4Gb && 1306 * sys_addr > 4Gb 1307 * 1308 * remove hole offset from sys_addr 1309 * else 1310 * remove high range offset from sys_addr 1311 */ 1312 if ((!(dct_sel_base_addr >> 16) || 1313 dct_sel_base_addr < dhar_base(pvt)) && 1314 dhar_valid(pvt) && 1315 (sys_addr >= BIT_64(32))) 1316 chan_off = hole_off; 1317 else 1318 chan_off = dct_sel_base_off; 1319 } else { 1320 /* 1321 * if 1322 * we have a valid hole && 1323 * sys_addr > 4Gb 1324 * 1325 * remove hole 1326 * else 1327 * remove dram base to normalize to DCT address 1328 */ 1329 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32))) 1330 chan_off = hole_off; 1331 else 1332 chan_off = dram_base; 1333 } 1334 1335 return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23)); 1336 } 1337 1338 /* 1339 * checks if the csrow passed in is marked as SPARED, if so returns the new 1340 * spare row 1341 */ 1342 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow) 1343 { 1344 int tmp_cs; 1345 1346 if (online_spare_swap_done(pvt, dct) && 1347 csrow == online_spare_bad_dramcs(pvt, dct)) { 1348 1349 for_each_chip_select(tmp_cs, dct, pvt) { 1350 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) { 1351 csrow = tmp_cs; 1352 break; 1353 } 1354 } 1355 } 1356 return csrow; 1357 } 1358 1359 /* 1360 * Iterate over the DRAM DCT "base" and "mask" registers looking for a 1361 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' 1362 * 1363 * Return: 1364 * -EINVAL: NOT FOUND 1365 * 0..csrow = Chip-Select Row 1366 */ 1367 static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct) 1368 { 1369 struct mem_ctl_info *mci; 1370 struct amd64_pvt *pvt; 1371 u64 cs_base, cs_mask; 1372 int cs_found = -EINVAL; 1373 int csrow; 1374 1375 mci = mcis[nid]; 1376 if (!mci) 1377 return cs_found; 1378 1379 pvt = mci->pvt_info; 1380 1381 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct); 1382 1383 for_each_chip_select(csrow, dct, pvt) { 1384 if (!csrow_enabled(csrow, dct, pvt)) 1385 continue; 1386 1387 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask); 1388 1389 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n", 1390 csrow, cs_base, cs_mask); 1391 1392 cs_mask = ~cs_mask; 1393 1394 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n", 1395 (in_addr & cs_mask), (cs_base & cs_mask)); 1396 1397 if ((in_addr & cs_mask) == (cs_base & cs_mask)) { 1398 if (pvt->fam == 0x15 && pvt->model >= 0x30) { 1399 cs_found = csrow; 1400 break; 1401 } 1402 cs_found = f10_process_possible_spare(pvt, dct, csrow); 1403 1404 edac_dbg(1, " MATCH csrow=%d\n", cs_found); 1405 break; 1406 } 1407 } 1408 return cs_found; 1409 } 1410 1411 /* 1412 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is 1413 * swapped with a region located at the bottom of memory so that the GPU can use 1414 * the interleaved region and thus two channels. 1415 */ 1416 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr) 1417 { 1418 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr; 1419 1420 if (pvt->fam == 0x10) { 1421 /* only revC3 and revE have that feature */ 1422 if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3)) 1423 return sys_addr; 1424 } 1425 1426 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg); 1427 1428 if (!(swap_reg & 0x1)) 1429 return sys_addr; 1430 1431 swap_base = (swap_reg >> 3) & 0x7f; 1432 swap_limit = (swap_reg >> 11) & 0x7f; 1433 rgn_size = (swap_reg >> 20) & 0x7f; 1434 tmp_addr = sys_addr >> 27; 1435 1436 if (!(sys_addr >> 34) && 1437 (((tmp_addr >= swap_base) && 1438 (tmp_addr <= swap_limit)) || 1439 (tmp_addr < rgn_size))) 1440 return sys_addr ^ (u64)swap_base << 27; 1441 1442 return sys_addr; 1443 } 1444 1445 /* For a given @dram_range, check if @sys_addr falls within it. */ 1446 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range, 1447 u64 sys_addr, int *chan_sel) 1448 { 1449 int cs_found = -EINVAL; 1450 u64 chan_addr; 1451 u32 dct_sel_base; 1452 u8 channel; 1453 bool high_range = false; 1454 1455 u8 node_id = dram_dst_node(pvt, range); 1456 u8 intlv_en = dram_intlv_en(pvt, range); 1457 u32 intlv_sel = dram_intlv_sel(pvt, range); 1458 1459 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", 1460 range, sys_addr, get_dram_limit(pvt, range)); 1461 1462 if (dhar_valid(pvt) && 1463 dhar_base(pvt) <= sys_addr && 1464 sys_addr < BIT_64(32)) { 1465 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", 1466 sys_addr); 1467 return -EINVAL; 1468 } 1469 1470 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en))) 1471 return -EINVAL; 1472 1473 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr); 1474 1475 dct_sel_base = dct_sel_baseaddr(pvt); 1476 1477 /* 1478 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to 1479 * select between DCT0 and DCT1. 1480 */ 1481 if (dct_high_range_enabled(pvt) && 1482 !dct_ganging_enabled(pvt) && 1483 ((sys_addr >> 27) >= (dct_sel_base >> 11))) 1484 high_range = true; 1485 1486 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en); 1487 1488 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr, 1489 high_range, dct_sel_base); 1490 1491 /* Remove node interleaving, see F1x120 */ 1492 if (intlv_en) 1493 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) | 1494 (chan_addr & 0xfff); 1495 1496 /* remove channel interleave */ 1497 if (dct_interleave_enabled(pvt) && 1498 !dct_high_range_enabled(pvt) && 1499 !dct_ganging_enabled(pvt)) { 1500 1501 if (dct_sel_interleave_addr(pvt) != 1) { 1502 if (dct_sel_interleave_addr(pvt) == 0x3) 1503 /* hash 9 */ 1504 chan_addr = ((chan_addr >> 10) << 9) | 1505 (chan_addr & 0x1ff); 1506 else 1507 /* A[6] or hash 6 */ 1508 chan_addr = ((chan_addr >> 7) << 6) | 1509 (chan_addr & 0x3f); 1510 } else 1511 /* A[12] */ 1512 chan_addr = ((chan_addr >> 13) << 12) | 1513 (chan_addr & 0xfff); 1514 } 1515 1516 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr); 1517 1518 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel); 1519 1520 if (cs_found >= 0) 1521 *chan_sel = channel; 1522 1523 return cs_found; 1524 } 1525 1526 static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range, 1527 u64 sys_addr, int *chan_sel) 1528 { 1529 int cs_found = -EINVAL; 1530 int num_dcts_intlv = 0; 1531 u64 chan_addr, chan_offset; 1532 u64 dct_base, dct_limit; 1533 u32 dct_cont_base_reg, dct_cont_limit_reg, tmp; 1534 u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en; 1535 1536 u64 dhar_offset = f10_dhar_offset(pvt); 1537 u8 intlv_addr = dct_sel_interleave_addr(pvt); 1538 u8 node_id = dram_dst_node(pvt, range); 1539 u8 intlv_en = dram_intlv_en(pvt, range); 1540 1541 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg); 1542 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg); 1543 1544 dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0)); 1545 dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7); 1546 1547 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", 1548 range, sys_addr, get_dram_limit(pvt, range)); 1549 1550 if (!(get_dram_base(pvt, range) <= sys_addr) && 1551 !(get_dram_limit(pvt, range) >= sys_addr)) 1552 return -EINVAL; 1553 1554 if (dhar_valid(pvt) && 1555 dhar_base(pvt) <= sys_addr && 1556 sys_addr < BIT_64(32)) { 1557 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", 1558 sys_addr); 1559 return -EINVAL; 1560 } 1561 1562 /* Verify sys_addr is within DCT Range. */ 1563 dct_base = (u64) dct_sel_baseaddr(pvt); 1564 dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF; 1565 1566 if (!(dct_cont_base_reg & BIT(0)) && 1567 !(dct_base <= (sys_addr >> 27) && 1568 dct_limit >= (sys_addr >> 27))) 1569 return -EINVAL; 1570 1571 /* Verify number of dct's that participate in channel interleaving. */ 1572 num_dcts_intlv = (int) hweight8(intlv_en); 1573 1574 if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4)) 1575 return -EINVAL; 1576 1577 channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en, 1578 num_dcts_intlv, dct_sel); 1579 1580 /* Verify we stay within the MAX number of channels allowed */ 1581 if (channel > 4 || channel < 0) 1582 return -EINVAL; 1583 1584 leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0)); 1585 1586 /* Get normalized DCT addr */ 1587 if (leg_mmio_hole && (sys_addr >= BIT_64(32))) 1588 chan_offset = dhar_offset; 1589 else 1590 chan_offset = dct_base << 27; 1591 1592 chan_addr = sys_addr - chan_offset; 1593 1594 /* remove channel interleave */ 1595 if (num_dcts_intlv == 2) { 1596 if (intlv_addr == 0x4) 1597 chan_addr = ((chan_addr >> 9) << 8) | 1598 (chan_addr & 0xff); 1599 else if (intlv_addr == 0x5) 1600 chan_addr = ((chan_addr >> 10) << 9) | 1601 (chan_addr & 0x1ff); 1602 else 1603 return -EINVAL; 1604 1605 } else if (num_dcts_intlv == 4) { 1606 if (intlv_addr == 0x4) 1607 chan_addr = ((chan_addr >> 10) << 8) | 1608 (chan_addr & 0xff); 1609 else if (intlv_addr == 0x5) 1610 chan_addr = ((chan_addr >> 11) << 9) | 1611 (chan_addr & 0x1ff); 1612 else 1613 return -EINVAL; 1614 } 1615 1616 if (dct_offset_en) { 1617 amd64_read_pci_cfg(pvt->F1, 1618 DRAM_CONT_HIGH_OFF + (int) channel * 4, 1619 &tmp); 1620 chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27; 1621 } 1622 1623 f15h_select_dct(pvt, channel); 1624 1625 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr); 1626 1627 /* 1628 * Find Chip select: 1629 * if channel = 3, then alias it to 1. This is because, in F15 M30h, 1630 * there is support for 4 DCT's, but only 2 are currently functional. 1631 * They are DCT0 and DCT3. But we have read all registers of DCT3 into 1632 * pvt->csels[1]. So we need to use '1' here to get correct info. 1633 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications. 1634 */ 1635 alias_channel = (channel == 3) ? 1 : channel; 1636 1637 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel); 1638 1639 if (cs_found >= 0) 1640 *chan_sel = alias_channel; 1641 1642 return cs_found; 1643 } 1644 1645 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, 1646 u64 sys_addr, 1647 int *chan_sel) 1648 { 1649 int cs_found = -EINVAL; 1650 unsigned range; 1651 1652 for (range = 0; range < DRAM_RANGES; range++) { 1653 if (!dram_rw(pvt, range)) 1654 continue; 1655 1656 if (pvt->fam == 0x15 && pvt->model >= 0x30) 1657 cs_found = f15_m30h_match_to_this_node(pvt, range, 1658 sys_addr, 1659 chan_sel); 1660 1661 else if ((get_dram_base(pvt, range) <= sys_addr) && 1662 (get_dram_limit(pvt, range) >= sys_addr)) { 1663 cs_found = f1x_match_to_this_node(pvt, range, 1664 sys_addr, chan_sel); 1665 if (cs_found >= 0) 1666 break; 1667 } 1668 } 1669 return cs_found; 1670 } 1671 1672 /* 1673 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps 1674 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW). 1675 * 1676 * The @sys_addr is usually an error address received from the hardware 1677 * (MCX_ADDR). 1678 */ 1679 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, 1680 struct err_info *err) 1681 { 1682 struct amd64_pvt *pvt = mci->pvt_info; 1683 1684 error_address_to_page_and_offset(sys_addr, err); 1685 1686 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel); 1687 if (err->csrow < 0) { 1688 err->err_code = ERR_CSROW; 1689 return; 1690 } 1691 1692 /* 1693 * We need the syndromes for channel detection only when we're 1694 * ganged. Otherwise @chan should already contain the channel at 1695 * this point. 1696 */ 1697 if (dct_ganging_enabled(pvt)) 1698 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); 1699 } 1700 1701 /* 1702 * debug routine to display the memory sizes of all logical DIMMs and its 1703 * CSROWs 1704 */ 1705 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl) 1706 { 1707 int dimm, size0, size1; 1708 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases; 1709 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0; 1710 1711 if (pvt->fam == 0xf) { 1712 /* K8 families < revF not supported yet */ 1713 if (pvt->ext_model < K8_REV_F) 1714 return; 1715 else 1716 WARN_ON(ctrl != 0); 1717 } 1718 1719 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0; 1720 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases 1721 : pvt->csels[0].csbases; 1722 1723 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", 1724 ctrl, dbam); 1725 1726 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl); 1727 1728 /* Dump memory sizes for DIMM and its CSROWs */ 1729 for (dimm = 0; dimm < 4; dimm++) { 1730 1731 size0 = 0; 1732 if (dcsb[dimm*2] & DCSB_CS_ENABLE) 1733 size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 1734 DBAM_DIMM(dimm, dbam)); 1735 1736 size1 = 0; 1737 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE) 1738 size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 1739 DBAM_DIMM(dimm, dbam)); 1740 1741 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", 1742 dimm * 2, size0, 1743 dimm * 2 + 1, size1); 1744 } 1745 } 1746 1747 static struct amd64_family_type amd64_family_types[] = { 1748 [K8_CPUS] = { 1749 .ctl_name = "K8", 1750 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP, 1751 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC, 1752 .ops = { 1753 .early_channel_count = k8_early_channel_count, 1754 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow, 1755 .dbam_to_cs = k8_dbam_to_chip_select, 1756 .read_dct_pci_cfg = k8_read_dct_pci_cfg, 1757 } 1758 }, 1759 [F10_CPUS] = { 1760 .ctl_name = "F10h", 1761 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP, 1762 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC, 1763 .ops = { 1764 .early_channel_count = f1x_early_channel_count, 1765 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1766 .dbam_to_cs = f10_dbam_to_chip_select, 1767 .read_dct_pci_cfg = f10_read_dct_pci_cfg, 1768 } 1769 }, 1770 [F15_CPUS] = { 1771 .ctl_name = "F15h", 1772 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1, 1773 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3, 1774 .ops = { 1775 .early_channel_count = f1x_early_channel_count, 1776 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1777 .dbam_to_cs = f15_dbam_to_chip_select, 1778 .read_dct_pci_cfg = f15_read_dct_pci_cfg, 1779 } 1780 }, 1781 [F15_M30H_CPUS] = { 1782 .ctl_name = "F15h_M30h", 1783 .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1, 1784 .f3_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F3, 1785 .ops = { 1786 .early_channel_count = f1x_early_channel_count, 1787 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1788 .dbam_to_cs = f16_dbam_to_chip_select, 1789 .read_dct_pci_cfg = f15_read_dct_pci_cfg, 1790 } 1791 }, 1792 [F16_CPUS] = { 1793 .ctl_name = "F16h", 1794 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1, 1795 .f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3, 1796 .ops = { 1797 .early_channel_count = f1x_early_channel_count, 1798 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1799 .dbam_to_cs = f16_dbam_to_chip_select, 1800 .read_dct_pci_cfg = f10_read_dct_pci_cfg, 1801 } 1802 }, 1803 }; 1804 1805 /* 1806 * These are tables of eigenvectors (one per line) which can be used for the 1807 * construction of the syndrome tables. The modified syndrome search algorithm 1808 * uses those to find the symbol in error and thus the DIMM. 1809 * 1810 * Algorithm courtesy of Ross LaFetra from AMD. 1811 */ 1812 static const u16 x4_vectors[] = { 1813 0x2f57, 0x1afe, 0x66cc, 0xdd88, 1814 0x11eb, 0x3396, 0x7f4c, 0xeac8, 1815 0x0001, 0x0002, 0x0004, 0x0008, 1816 0x1013, 0x3032, 0x4044, 0x8088, 1817 0x106b, 0x30d6, 0x70fc, 0xe0a8, 1818 0x4857, 0xc4fe, 0x13cc, 0x3288, 1819 0x1ac5, 0x2f4a, 0x5394, 0xa1e8, 1820 0x1f39, 0x251e, 0xbd6c, 0x6bd8, 1821 0x15c1, 0x2a42, 0x89ac, 0x4758, 1822 0x2b03, 0x1602, 0x4f0c, 0xca08, 1823 0x1f07, 0x3a0e, 0x6b04, 0xbd08, 1824 0x8ba7, 0x465e, 0x244c, 0x1cc8, 1825 0x2b87, 0x164e, 0x642c, 0xdc18, 1826 0x40b9, 0x80de, 0x1094, 0x20e8, 1827 0x27db, 0x1eb6, 0x9dac, 0x7b58, 1828 0x11c1, 0x2242, 0x84ac, 0x4c58, 1829 0x1be5, 0x2d7a, 0x5e34, 0xa718, 1830 0x4b39, 0x8d1e, 0x14b4, 0x28d8, 1831 0x4c97, 0xc87e, 0x11fc, 0x33a8, 1832 0x8e97, 0x497e, 0x2ffc, 0x1aa8, 1833 0x16b3, 0x3d62, 0x4f34, 0x8518, 1834 0x1e2f, 0x391a, 0x5cac, 0xf858, 1835 0x1d9f, 0x3b7a, 0x572c, 0xfe18, 1836 0x15f5, 0x2a5a, 0x5264, 0xa3b8, 1837 0x1dbb, 0x3b66, 0x715c, 0xe3f8, 1838 0x4397, 0xc27e, 0x17fc, 0x3ea8, 1839 0x1617, 0x3d3e, 0x6464, 0xb8b8, 1840 0x23ff, 0x12aa, 0xab6c, 0x56d8, 1841 0x2dfb, 0x1ba6, 0x913c, 0x7328, 1842 0x185d, 0x2ca6, 0x7914, 0x9e28, 1843 0x171b, 0x3e36, 0x7d7c, 0xebe8, 1844 0x4199, 0x82ee, 0x19f4, 0x2e58, 1845 0x4807, 0xc40e, 0x130c, 0x3208, 1846 0x1905, 0x2e0a, 0x5804, 0xac08, 1847 0x213f, 0x132a, 0xadfc, 0x5ba8, 1848 0x19a9, 0x2efe, 0xb5cc, 0x6f88, 1849 }; 1850 1851 static const u16 x8_vectors[] = { 1852 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480, 1853 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80, 1854 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80, 1855 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80, 1856 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780, 1857 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080, 1858 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080, 1859 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080, 1860 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80, 1861 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580, 1862 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880, 1863 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280, 1864 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180, 1865 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580, 1866 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280, 1867 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180, 1868 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080, 1869 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 1870 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000, 1871 }; 1872 1873 static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs, 1874 unsigned v_dim) 1875 { 1876 unsigned int i, err_sym; 1877 1878 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) { 1879 u16 s = syndrome; 1880 unsigned v_idx = err_sym * v_dim; 1881 unsigned v_end = (err_sym + 1) * v_dim; 1882 1883 /* walk over all 16 bits of the syndrome */ 1884 for (i = 1; i < (1U << 16); i <<= 1) { 1885 1886 /* if bit is set in that eigenvector... */ 1887 if (v_idx < v_end && vectors[v_idx] & i) { 1888 u16 ev_comp = vectors[v_idx++]; 1889 1890 /* ... and bit set in the modified syndrome, */ 1891 if (s & i) { 1892 /* remove it. */ 1893 s ^= ev_comp; 1894 1895 if (!s) 1896 return err_sym; 1897 } 1898 1899 } else if (s & i) 1900 /* can't get to zero, move to next symbol */ 1901 break; 1902 } 1903 } 1904 1905 edac_dbg(0, "syndrome(%x) not found\n", syndrome); 1906 return -1; 1907 } 1908 1909 static int map_err_sym_to_channel(int err_sym, int sym_size) 1910 { 1911 if (sym_size == 4) 1912 switch (err_sym) { 1913 case 0x20: 1914 case 0x21: 1915 return 0; 1916 break; 1917 case 0x22: 1918 case 0x23: 1919 return 1; 1920 break; 1921 default: 1922 return err_sym >> 4; 1923 break; 1924 } 1925 /* x8 symbols */ 1926 else 1927 switch (err_sym) { 1928 /* imaginary bits not in a DIMM */ 1929 case 0x10: 1930 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n", 1931 err_sym); 1932 return -1; 1933 break; 1934 1935 case 0x11: 1936 return 0; 1937 break; 1938 case 0x12: 1939 return 1; 1940 break; 1941 default: 1942 return err_sym >> 3; 1943 break; 1944 } 1945 return -1; 1946 } 1947 1948 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome) 1949 { 1950 struct amd64_pvt *pvt = mci->pvt_info; 1951 int err_sym = -1; 1952 1953 if (pvt->ecc_sym_sz == 8) 1954 err_sym = decode_syndrome(syndrome, x8_vectors, 1955 ARRAY_SIZE(x8_vectors), 1956 pvt->ecc_sym_sz); 1957 else if (pvt->ecc_sym_sz == 4) 1958 err_sym = decode_syndrome(syndrome, x4_vectors, 1959 ARRAY_SIZE(x4_vectors), 1960 pvt->ecc_sym_sz); 1961 else { 1962 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz); 1963 return err_sym; 1964 } 1965 1966 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz); 1967 } 1968 1969 static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err, 1970 u8 ecc_type) 1971 { 1972 enum hw_event_mc_err_type err_type; 1973 const char *string; 1974 1975 if (ecc_type == 2) 1976 err_type = HW_EVENT_ERR_CORRECTED; 1977 else if (ecc_type == 1) 1978 err_type = HW_EVENT_ERR_UNCORRECTED; 1979 else { 1980 WARN(1, "Something is rotten in the state of Denmark.\n"); 1981 return; 1982 } 1983 1984 switch (err->err_code) { 1985 case DECODE_OK: 1986 string = ""; 1987 break; 1988 case ERR_NODE: 1989 string = "Failed to map error addr to a node"; 1990 break; 1991 case ERR_CSROW: 1992 string = "Failed to map error addr to a csrow"; 1993 break; 1994 case ERR_CHANNEL: 1995 string = "unknown syndrome - possible error reporting race"; 1996 break; 1997 default: 1998 string = "WTF error"; 1999 break; 2000 } 2001 2002 edac_mc_handle_error(err_type, mci, 1, 2003 err->page, err->offset, err->syndrome, 2004 err->csrow, err->channel, -1, 2005 string, ""); 2006 } 2007 2008 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci, 2009 struct mce *m) 2010 { 2011 struct amd64_pvt *pvt = mci->pvt_info; 2012 u8 ecc_type = (m->status >> 45) & 0x3; 2013 u8 xec = XEC(m->status, 0x1f); 2014 u16 ec = EC(m->status); 2015 u64 sys_addr; 2016 struct err_info err; 2017 2018 /* Bail out early if this was an 'observed' error */ 2019 if (PP(ec) == NBSL_PP_OBS) 2020 return; 2021 2022 /* Do only ECC errors */ 2023 if (xec && xec != F10_NBSL_EXT_ERR_ECC) 2024 return; 2025 2026 memset(&err, 0, sizeof(err)); 2027 2028 sys_addr = get_error_address(pvt, m); 2029 2030 if (ecc_type == 2) 2031 err.syndrome = extract_syndrome(m->status); 2032 2033 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err); 2034 2035 __log_bus_error(mci, &err, ecc_type); 2036 } 2037 2038 void amd64_decode_bus_error(int node_id, struct mce *m) 2039 { 2040 __amd64_decode_bus_error(mcis[node_id], m); 2041 } 2042 2043 /* 2044 * Use pvt->F2 which contains the F2 CPU PCI device to get the related 2045 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error. 2046 */ 2047 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id) 2048 { 2049 /* Reserve the ADDRESS MAP Device */ 2050 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2); 2051 if (!pvt->F1) { 2052 amd64_err("error address map device not found: " 2053 "vendor %x device 0x%x (broken BIOS?)\n", 2054 PCI_VENDOR_ID_AMD, f1_id); 2055 return -ENODEV; 2056 } 2057 2058 /* Reserve the MISC Device */ 2059 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2); 2060 if (!pvt->F3) { 2061 pci_dev_put(pvt->F1); 2062 pvt->F1 = NULL; 2063 2064 amd64_err("error F3 device not found: " 2065 "vendor %x device 0x%x (broken BIOS?)\n", 2066 PCI_VENDOR_ID_AMD, f3_id); 2067 2068 return -ENODEV; 2069 } 2070 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1)); 2071 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2)); 2072 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3)); 2073 2074 return 0; 2075 } 2076 2077 static void free_mc_sibling_devs(struct amd64_pvt *pvt) 2078 { 2079 pci_dev_put(pvt->F1); 2080 pci_dev_put(pvt->F3); 2081 } 2082 2083 /* 2084 * Retrieve the hardware registers of the memory controller (this includes the 2085 * 'Address Map' and 'Misc' device regs) 2086 */ 2087 static void read_mc_regs(struct amd64_pvt *pvt) 2088 { 2089 unsigned range; 2090 u64 msr_val; 2091 u32 tmp; 2092 2093 /* 2094 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since 2095 * those are Read-As-Zero 2096 */ 2097 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem); 2098 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem); 2099 2100 /* check first whether TOP_MEM2 is enabled */ 2101 rdmsrl(MSR_K8_SYSCFG, msr_val); 2102 if (msr_val & (1U << 21)) { 2103 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2); 2104 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2); 2105 } else 2106 edac_dbg(0, " TOP_MEM2 disabled\n"); 2107 2108 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap); 2109 2110 read_dram_ctl_register(pvt); 2111 2112 for (range = 0; range < DRAM_RANGES; range++) { 2113 u8 rw; 2114 2115 /* read settings for this DRAM range */ 2116 read_dram_base_limit_regs(pvt, range); 2117 2118 rw = dram_rw(pvt, range); 2119 if (!rw) 2120 continue; 2121 2122 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n", 2123 range, 2124 get_dram_base(pvt, range), 2125 get_dram_limit(pvt, range)); 2126 2127 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n", 2128 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled", 2129 (rw & 0x1) ? "R" : "-", 2130 (rw & 0x2) ? "W" : "-", 2131 dram_intlv_sel(pvt, range), 2132 dram_dst_node(pvt, range)); 2133 } 2134 2135 read_dct_base_mask(pvt); 2136 2137 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar); 2138 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0); 2139 2140 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare); 2141 2142 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0); 2143 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0); 2144 2145 if (!dct_ganging_enabled(pvt)) { 2146 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1); 2147 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1); 2148 } 2149 2150 pvt->ecc_sym_sz = 4; 2151 2152 if (pvt->fam >= 0x10) { 2153 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp); 2154 if (pvt->fam != 0x16) 2155 /* F16h has only DCT0 */ 2156 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1); 2157 2158 /* F10h, revD and later can do x8 ECC too */ 2159 if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25)) 2160 pvt->ecc_sym_sz = 8; 2161 } 2162 dump_misc_regs(pvt); 2163 } 2164 2165 /* 2166 * NOTE: CPU Revision Dependent code 2167 * 2168 * Input: 2169 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1) 2170 * k8 private pointer to --> 2171 * DRAM Bank Address mapping register 2172 * node_id 2173 * DCL register where dual_channel_active is 2174 * 2175 * The DBAM register consists of 4 sets of 4 bits each definitions: 2176 * 2177 * Bits: CSROWs 2178 * 0-3 CSROWs 0 and 1 2179 * 4-7 CSROWs 2 and 3 2180 * 8-11 CSROWs 4 and 5 2181 * 12-15 CSROWs 6 and 7 2182 * 2183 * Values range from: 0 to 15 2184 * The meaning of the values depends on CPU revision and dual-channel state, 2185 * see relevant BKDG more info. 2186 * 2187 * The memory controller provides for total of only 8 CSROWs in its current 2188 * architecture. Each "pair" of CSROWs normally represents just one DIMM in 2189 * single channel or two (2) DIMMs in dual channel mode. 2190 * 2191 * The following code logic collapses the various tables for CSROW based on CPU 2192 * revision. 2193 * 2194 * Returns: 2195 * The number of PAGE_SIZE pages on the specified CSROW number it 2196 * encompasses 2197 * 2198 */ 2199 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr) 2200 { 2201 u32 cs_mode, nr_pages; 2202 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0; 2203 2204 2205 /* 2206 * The math on this doesn't look right on the surface because x/2*4 can 2207 * be simplified to x*2 but this expression makes use of the fact that 2208 * it is integral math where 1/2=0. This intermediate value becomes the 2209 * number of bits to shift the DBAM register to extract the proper CSROW 2210 * field. 2211 */ 2212 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam); 2213 2214 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT); 2215 2216 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n", 2217 csrow_nr, dct, cs_mode); 2218 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages); 2219 2220 return nr_pages; 2221 } 2222 2223 /* 2224 * Initialize the array of csrow attribute instances, based on the values 2225 * from pci config hardware registers. 2226 */ 2227 static int init_csrows(struct mem_ctl_info *mci) 2228 { 2229 struct amd64_pvt *pvt = mci->pvt_info; 2230 struct csrow_info *csrow; 2231 struct dimm_info *dimm; 2232 enum edac_type edac_mode; 2233 enum mem_type mtype; 2234 int i, j, empty = 1; 2235 int nr_pages = 0; 2236 u32 val; 2237 2238 amd64_read_pci_cfg(pvt->F3, NBCFG, &val); 2239 2240 pvt->nbcfg = val; 2241 2242 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n", 2243 pvt->mc_node_id, val, 2244 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE)); 2245 2246 /* 2247 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed. 2248 */ 2249 for_each_chip_select(i, 0, pvt) { 2250 bool row_dct0 = !!csrow_enabled(i, 0, pvt); 2251 bool row_dct1 = false; 2252 2253 if (pvt->fam != 0xf) 2254 row_dct1 = !!csrow_enabled(i, 1, pvt); 2255 2256 if (!row_dct0 && !row_dct1) 2257 continue; 2258 2259 csrow = mci->csrows[i]; 2260 empty = 0; 2261 2262 edac_dbg(1, "MC node: %d, csrow: %d\n", 2263 pvt->mc_node_id, i); 2264 2265 if (row_dct0) { 2266 nr_pages = amd64_csrow_nr_pages(pvt, 0, i); 2267 csrow->channels[0]->dimm->nr_pages = nr_pages; 2268 } 2269 2270 /* K8 has only one DCT */ 2271 if (pvt->fam != 0xf && row_dct1) { 2272 int row_dct1_pages = amd64_csrow_nr_pages(pvt, 1, i); 2273 2274 csrow->channels[1]->dimm->nr_pages = row_dct1_pages; 2275 nr_pages += row_dct1_pages; 2276 } 2277 2278 mtype = amd64_determine_memory_type(pvt, i); 2279 2280 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages); 2281 2282 /* 2283 * determine whether CHIPKILL or JUST ECC or NO ECC is operating 2284 */ 2285 if (pvt->nbcfg & NBCFG_ECC_ENABLE) 2286 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ? 2287 EDAC_S4ECD4ED : EDAC_SECDED; 2288 else 2289 edac_mode = EDAC_NONE; 2290 2291 for (j = 0; j < pvt->channel_count; j++) { 2292 dimm = csrow->channels[j]->dimm; 2293 dimm->mtype = mtype; 2294 dimm->edac_mode = edac_mode; 2295 } 2296 } 2297 2298 return empty; 2299 } 2300 2301 /* get all cores on this DCT */ 2302 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid) 2303 { 2304 int cpu; 2305 2306 for_each_online_cpu(cpu) 2307 if (amd_get_nb_id(cpu) == nid) 2308 cpumask_set_cpu(cpu, mask); 2309 } 2310 2311 /* check MCG_CTL on all the cpus on this node */ 2312 static bool amd64_nb_mce_bank_enabled_on_node(u16 nid) 2313 { 2314 cpumask_var_t mask; 2315 int cpu, nbe; 2316 bool ret = false; 2317 2318 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { 2319 amd64_warn("%s: Error allocating mask\n", __func__); 2320 return false; 2321 } 2322 2323 get_cpus_on_this_dct_cpumask(mask, nid); 2324 2325 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs); 2326 2327 for_each_cpu(cpu, mask) { 2328 struct msr *reg = per_cpu_ptr(msrs, cpu); 2329 nbe = reg->l & MSR_MCGCTL_NBE; 2330 2331 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n", 2332 cpu, reg->q, 2333 (nbe ? "enabled" : "disabled")); 2334 2335 if (!nbe) 2336 goto out; 2337 } 2338 ret = true; 2339 2340 out: 2341 free_cpumask_var(mask); 2342 return ret; 2343 } 2344 2345 static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on) 2346 { 2347 cpumask_var_t cmask; 2348 int cpu; 2349 2350 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) { 2351 amd64_warn("%s: error allocating mask\n", __func__); 2352 return false; 2353 } 2354 2355 get_cpus_on_this_dct_cpumask(cmask, nid); 2356 2357 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 2358 2359 for_each_cpu(cpu, cmask) { 2360 2361 struct msr *reg = per_cpu_ptr(msrs, cpu); 2362 2363 if (on) { 2364 if (reg->l & MSR_MCGCTL_NBE) 2365 s->flags.nb_mce_enable = 1; 2366 2367 reg->l |= MSR_MCGCTL_NBE; 2368 } else { 2369 /* 2370 * Turn off NB MCE reporting only when it was off before 2371 */ 2372 if (!s->flags.nb_mce_enable) 2373 reg->l &= ~MSR_MCGCTL_NBE; 2374 } 2375 } 2376 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 2377 2378 free_cpumask_var(cmask); 2379 2380 return 0; 2381 } 2382 2383 static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid, 2384 struct pci_dev *F3) 2385 { 2386 bool ret = true; 2387 u32 value, mask = 0x3; /* UECC/CECC enable */ 2388 2389 if (toggle_ecc_err_reporting(s, nid, ON)) { 2390 amd64_warn("Error enabling ECC reporting over MCGCTL!\n"); 2391 return false; 2392 } 2393 2394 amd64_read_pci_cfg(F3, NBCTL, &value); 2395 2396 s->old_nbctl = value & mask; 2397 s->nbctl_valid = true; 2398 2399 value |= mask; 2400 amd64_write_pci_cfg(F3, NBCTL, value); 2401 2402 amd64_read_pci_cfg(F3, NBCFG, &value); 2403 2404 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", 2405 nid, value, !!(value & NBCFG_ECC_ENABLE)); 2406 2407 if (!(value & NBCFG_ECC_ENABLE)) { 2408 amd64_warn("DRAM ECC disabled on this node, enabling...\n"); 2409 2410 s->flags.nb_ecc_prev = 0; 2411 2412 /* Attempt to turn on DRAM ECC Enable */ 2413 value |= NBCFG_ECC_ENABLE; 2414 amd64_write_pci_cfg(F3, NBCFG, value); 2415 2416 amd64_read_pci_cfg(F3, NBCFG, &value); 2417 2418 if (!(value & NBCFG_ECC_ENABLE)) { 2419 amd64_warn("Hardware rejected DRAM ECC enable," 2420 "check memory DIMM configuration.\n"); 2421 ret = false; 2422 } else { 2423 amd64_info("Hardware accepted DRAM ECC Enable\n"); 2424 } 2425 } else { 2426 s->flags.nb_ecc_prev = 1; 2427 } 2428 2429 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", 2430 nid, value, !!(value & NBCFG_ECC_ENABLE)); 2431 2432 return ret; 2433 } 2434 2435 static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid, 2436 struct pci_dev *F3) 2437 { 2438 u32 value, mask = 0x3; /* UECC/CECC enable */ 2439 2440 2441 if (!s->nbctl_valid) 2442 return; 2443 2444 amd64_read_pci_cfg(F3, NBCTL, &value); 2445 value &= ~mask; 2446 value |= s->old_nbctl; 2447 2448 amd64_write_pci_cfg(F3, NBCTL, value); 2449 2450 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */ 2451 if (!s->flags.nb_ecc_prev) { 2452 amd64_read_pci_cfg(F3, NBCFG, &value); 2453 value &= ~NBCFG_ECC_ENABLE; 2454 amd64_write_pci_cfg(F3, NBCFG, value); 2455 } 2456 2457 /* restore the NB Enable MCGCTL bit */ 2458 if (toggle_ecc_err_reporting(s, nid, OFF)) 2459 amd64_warn("Error restoring NB MCGCTL settings!\n"); 2460 } 2461 2462 /* 2463 * EDAC requires that the BIOS have ECC enabled before 2464 * taking over the processing of ECC errors. A command line 2465 * option allows to force-enable hardware ECC later in 2466 * enable_ecc_error_reporting(). 2467 */ 2468 static const char *ecc_msg = 2469 "ECC disabled in the BIOS or no ECC capability, module will not load.\n" 2470 " Either enable ECC checking or force module loading by setting " 2471 "'ecc_enable_override'.\n" 2472 " (Note that use of the override may cause unknown side effects.)\n"; 2473 2474 static bool ecc_enabled(struct pci_dev *F3, u16 nid) 2475 { 2476 u32 value; 2477 u8 ecc_en = 0; 2478 bool nb_mce_en = false; 2479 2480 amd64_read_pci_cfg(F3, NBCFG, &value); 2481 2482 ecc_en = !!(value & NBCFG_ECC_ENABLE); 2483 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled")); 2484 2485 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid); 2486 if (!nb_mce_en) 2487 amd64_notice("NB MCE bank disabled, set MSR " 2488 "0x%08x[4] on node %d to enable.\n", 2489 MSR_IA32_MCG_CTL, nid); 2490 2491 if (!ecc_en || !nb_mce_en) { 2492 amd64_notice("%s", ecc_msg); 2493 return false; 2494 } 2495 return true; 2496 } 2497 2498 static int set_mc_sysfs_attrs(struct mem_ctl_info *mci) 2499 { 2500 struct amd64_pvt *pvt = mci->pvt_info; 2501 int rc; 2502 2503 rc = amd64_create_sysfs_dbg_files(mci); 2504 if (rc < 0) 2505 return rc; 2506 2507 if (pvt->fam >= 0x10) { 2508 rc = amd64_create_sysfs_inject_files(mci); 2509 if (rc < 0) 2510 return rc; 2511 } 2512 2513 return 0; 2514 } 2515 2516 static void del_mc_sysfs_attrs(struct mem_ctl_info *mci) 2517 { 2518 struct amd64_pvt *pvt = mci->pvt_info; 2519 2520 amd64_remove_sysfs_dbg_files(mci); 2521 2522 if (pvt->fam >= 0x10) 2523 amd64_remove_sysfs_inject_files(mci); 2524 } 2525 2526 static void setup_mci_misc_attrs(struct mem_ctl_info *mci, 2527 struct amd64_family_type *fam) 2528 { 2529 struct amd64_pvt *pvt = mci->pvt_info; 2530 2531 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2; 2532 mci->edac_ctl_cap = EDAC_FLAG_NONE; 2533 2534 if (pvt->nbcap & NBCAP_SECDED) 2535 mci->edac_ctl_cap |= EDAC_FLAG_SECDED; 2536 2537 if (pvt->nbcap & NBCAP_CHIPKILL) 2538 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; 2539 2540 mci->edac_cap = amd64_determine_edac_cap(pvt); 2541 mci->mod_name = EDAC_MOD_STR; 2542 mci->mod_ver = EDAC_AMD64_VERSION; 2543 mci->ctl_name = fam->ctl_name; 2544 mci->dev_name = pci_name(pvt->F2); 2545 mci->ctl_page_to_phys = NULL; 2546 2547 /* memory scrubber interface */ 2548 mci->set_sdram_scrub_rate = amd64_set_scrub_rate; 2549 mci->get_sdram_scrub_rate = amd64_get_scrub_rate; 2550 } 2551 2552 /* 2553 * returns a pointer to the family descriptor on success, NULL otherwise. 2554 */ 2555 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt) 2556 { 2557 struct amd64_family_type *fam_type = NULL; 2558 2559 pvt->ext_model = boot_cpu_data.x86_model >> 4; 2560 pvt->stepping = boot_cpu_data.x86_mask; 2561 pvt->model = boot_cpu_data.x86_model; 2562 pvt->fam = boot_cpu_data.x86; 2563 2564 switch (pvt->fam) { 2565 case 0xf: 2566 fam_type = &amd64_family_types[K8_CPUS]; 2567 pvt->ops = &amd64_family_types[K8_CPUS].ops; 2568 break; 2569 2570 case 0x10: 2571 fam_type = &amd64_family_types[F10_CPUS]; 2572 pvt->ops = &amd64_family_types[F10_CPUS].ops; 2573 break; 2574 2575 case 0x15: 2576 if (pvt->model == 0x30) { 2577 fam_type = &amd64_family_types[F15_M30H_CPUS]; 2578 pvt->ops = &amd64_family_types[F15_M30H_CPUS].ops; 2579 break; 2580 } 2581 2582 fam_type = &amd64_family_types[F15_CPUS]; 2583 pvt->ops = &amd64_family_types[F15_CPUS].ops; 2584 break; 2585 2586 case 0x16: 2587 fam_type = &amd64_family_types[F16_CPUS]; 2588 pvt->ops = &amd64_family_types[F16_CPUS].ops; 2589 break; 2590 2591 default: 2592 amd64_err("Unsupported family!\n"); 2593 return NULL; 2594 } 2595 2596 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name, 2597 (pvt->fam == 0xf ? 2598 (pvt->ext_model >= K8_REV_F ? "revF or later " 2599 : "revE or earlier ") 2600 : ""), pvt->mc_node_id); 2601 return fam_type; 2602 } 2603 2604 static int amd64_init_one_instance(struct pci_dev *F2) 2605 { 2606 struct amd64_pvt *pvt = NULL; 2607 struct amd64_family_type *fam_type = NULL; 2608 struct mem_ctl_info *mci = NULL; 2609 struct edac_mc_layer layers[2]; 2610 int err = 0, ret; 2611 u16 nid = amd_get_node_id(F2); 2612 2613 ret = -ENOMEM; 2614 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL); 2615 if (!pvt) 2616 goto err_ret; 2617 2618 pvt->mc_node_id = nid; 2619 pvt->F2 = F2; 2620 2621 ret = -EINVAL; 2622 fam_type = amd64_per_family_init(pvt); 2623 if (!fam_type) 2624 goto err_free; 2625 2626 ret = -ENODEV; 2627 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id); 2628 if (err) 2629 goto err_free; 2630 2631 read_mc_regs(pvt); 2632 2633 /* 2634 * We need to determine how many memory channels there are. Then use 2635 * that information for calculating the size of the dynamic instance 2636 * tables in the 'mci' structure. 2637 */ 2638 ret = -EINVAL; 2639 pvt->channel_count = pvt->ops->early_channel_count(pvt); 2640 if (pvt->channel_count < 0) 2641 goto err_siblings; 2642 2643 ret = -ENOMEM; 2644 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; 2645 layers[0].size = pvt->csels[0].b_cnt; 2646 layers[0].is_virt_csrow = true; 2647 layers[1].type = EDAC_MC_LAYER_CHANNEL; 2648 2649 /* 2650 * Always allocate two channels since we can have setups with DIMMs on 2651 * only one channel. Also, this simplifies handling later for the price 2652 * of a couple of KBs tops. 2653 */ 2654 layers[1].size = 2; 2655 layers[1].is_virt_csrow = false; 2656 2657 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0); 2658 if (!mci) 2659 goto err_siblings; 2660 2661 mci->pvt_info = pvt; 2662 mci->pdev = &pvt->F2->dev; 2663 2664 setup_mci_misc_attrs(mci, fam_type); 2665 2666 if (init_csrows(mci)) 2667 mci->edac_cap = EDAC_FLAG_NONE; 2668 2669 ret = -ENODEV; 2670 if (edac_mc_add_mc(mci)) { 2671 edac_dbg(1, "failed edac_mc_add_mc()\n"); 2672 goto err_add_mc; 2673 } 2674 if (set_mc_sysfs_attrs(mci)) { 2675 edac_dbg(1, "failed edac_mc_add_mc()\n"); 2676 goto err_add_sysfs; 2677 } 2678 2679 /* register stuff with EDAC MCE */ 2680 if (report_gart_errors) 2681 amd_report_gart_errors(true); 2682 2683 amd_register_ecc_decoder(amd64_decode_bus_error); 2684 2685 mcis[nid] = mci; 2686 2687 atomic_inc(&drv_instances); 2688 2689 return 0; 2690 2691 err_add_sysfs: 2692 edac_mc_del_mc(mci->pdev); 2693 err_add_mc: 2694 edac_mc_free(mci); 2695 2696 err_siblings: 2697 free_mc_sibling_devs(pvt); 2698 2699 err_free: 2700 kfree(pvt); 2701 2702 err_ret: 2703 return ret; 2704 } 2705 2706 static int amd64_probe_one_instance(struct pci_dev *pdev, 2707 const struct pci_device_id *mc_type) 2708 { 2709 u16 nid = amd_get_node_id(pdev); 2710 struct pci_dev *F3 = node_to_amd_nb(nid)->misc; 2711 struct ecc_settings *s; 2712 int ret = 0; 2713 2714 ret = pci_enable_device(pdev); 2715 if (ret < 0) { 2716 edac_dbg(0, "ret=%d\n", ret); 2717 return -EIO; 2718 } 2719 2720 ret = -ENOMEM; 2721 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL); 2722 if (!s) 2723 goto err_out; 2724 2725 ecc_stngs[nid] = s; 2726 2727 if (!ecc_enabled(F3, nid)) { 2728 ret = -ENODEV; 2729 2730 if (!ecc_enable_override) 2731 goto err_enable; 2732 2733 amd64_warn("Forcing ECC on!\n"); 2734 2735 if (!enable_ecc_error_reporting(s, nid, F3)) 2736 goto err_enable; 2737 } 2738 2739 ret = amd64_init_one_instance(pdev); 2740 if (ret < 0) { 2741 amd64_err("Error probing instance: %d\n", nid); 2742 restore_ecc_error_reporting(s, nid, F3); 2743 } 2744 2745 return ret; 2746 2747 err_enable: 2748 kfree(s); 2749 ecc_stngs[nid] = NULL; 2750 2751 err_out: 2752 return ret; 2753 } 2754 2755 static void amd64_remove_one_instance(struct pci_dev *pdev) 2756 { 2757 struct mem_ctl_info *mci; 2758 struct amd64_pvt *pvt; 2759 u16 nid = amd_get_node_id(pdev); 2760 struct pci_dev *F3 = node_to_amd_nb(nid)->misc; 2761 struct ecc_settings *s = ecc_stngs[nid]; 2762 2763 mci = find_mci_by_dev(&pdev->dev); 2764 WARN_ON(!mci); 2765 2766 del_mc_sysfs_attrs(mci); 2767 /* Remove from EDAC CORE tracking list */ 2768 mci = edac_mc_del_mc(&pdev->dev); 2769 if (!mci) 2770 return; 2771 2772 pvt = mci->pvt_info; 2773 2774 restore_ecc_error_reporting(s, nid, F3); 2775 2776 free_mc_sibling_devs(pvt); 2777 2778 /* unregister from EDAC MCE */ 2779 amd_report_gart_errors(false); 2780 amd_unregister_ecc_decoder(amd64_decode_bus_error); 2781 2782 kfree(ecc_stngs[nid]); 2783 ecc_stngs[nid] = NULL; 2784 2785 /* Free the EDAC CORE resources */ 2786 mci->pvt_info = NULL; 2787 mcis[nid] = NULL; 2788 2789 kfree(pvt); 2790 edac_mc_free(mci); 2791 } 2792 2793 /* 2794 * This table is part of the interface for loading drivers for PCI devices. The 2795 * PCI core identifies what devices are on a system during boot, and then 2796 * inquiry this table to see if this driver is for a given device found. 2797 */ 2798 static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = { 2799 { 2800 .vendor = PCI_VENDOR_ID_AMD, 2801 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL, 2802 .subvendor = PCI_ANY_ID, 2803 .subdevice = PCI_ANY_ID, 2804 .class = 0, 2805 .class_mask = 0, 2806 }, 2807 { 2808 .vendor = PCI_VENDOR_ID_AMD, 2809 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM, 2810 .subvendor = PCI_ANY_ID, 2811 .subdevice = PCI_ANY_ID, 2812 .class = 0, 2813 .class_mask = 0, 2814 }, 2815 { 2816 .vendor = PCI_VENDOR_ID_AMD, 2817 .device = PCI_DEVICE_ID_AMD_15H_NB_F2, 2818 .subvendor = PCI_ANY_ID, 2819 .subdevice = PCI_ANY_ID, 2820 .class = 0, 2821 .class_mask = 0, 2822 }, 2823 { 2824 .vendor = PCI_VENDOR_ID_AMD, 2825 .device = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2, 2826 .subvendor = PCI_ANY_ID, 2827 .subdevice = PCI_ANY_ID, 2828 .class = 0, 2829 .class_mask = 0, 2830 }, 2831 { 2832 .vendor = PCI_VENDOR_ID_AMD, 2833 .device = PCI_DEVICE_ID_AMD_16H_NB_F2, 2834 .subvendor = PCI_ANY_ID, 2835 .subdevice = PCI_ANY_ID, 2836 .class = 0, 2837 .class_mask = 0, 2838 }, 2839 2840 {0, } 2841 }; 2842 MODULE_DEVICE_TABLE(pci, amd64_pci_table); 2843 2844 static struct pci_driver amd64_pci_driver = { 2845 .name = EDAC_MOD_STR, 2846 .probe = amd64_probe_one_instance, 2847 .remove = amd64_remove_one_instance, 2848 .id_table = amd64_pci_table, 2849 }; 2850 2851 static void setup_pci_device(void) 2852 { 2853 struct mem_ctl_info *mci; 2854 struct amd64_pvt *pvt; 2855 2856 if (amd64_ctl_pci) 2857 return; 2858 2859 mci = mcis[0]; 2860 if (mci) { 2861 2862 pvt = mci->pvt_info; 2863 amd64_ctl_pci = 2864 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR); 2865 2866 if (!amd64_ctl_pci) { 2867 pr_warning("%s(): Unable to create PCI control\n", 2868 __func__); 2869 2870 pr_warning("%s(): PCI error report via EDAC not set\n", 2871 __func__); 2872 } 2873 } 2874 } 2875 2876 static int __init amd64_edac_init(void) 2877 { 2878 int err = -ENODEV; 2879 2880 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION); 2881 2882 opstate_init(); 2883 2884 if (amd_cache_northbridges() < 0) 2885 goto err_ret; 2886 2887 err = -ENOMEM; 2888 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL); 2889 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL); 2890 if (!(mcis && ecc_stngs)) 2891 goto err_free; 2892 2893 msrs = msrs_alloc(); 2894 if (!msrs) 2895 goto err_free; 2896 2897 err = pci_register_driver(&amd64_pci_driver); 2898 if (err) 2899 goto err_pci; 2900 2901 err = -ENODEV; 2902 if (!atomic_read(&drv_instances)) 2903 goto err_no_instances; 2904 2905 setup_pci_device(); 2906 return 0; 2907 2908 err_no_instances: 2909 pci_unregister_driver(&amd64_pci_driver); 2910 2911 err_pci: 2912 msrs_free(msrs); 2913 msrs = NULL; 2914 2915 err_free: 2916 kfree(mcis); 2917 mcis = NULL; 2918 2919 kfree(ecc_stngs); 2920 ecc_stngs = NULL; 2921 2922 err_ret: 2923 return err; 2924 } 2925 2926 static void __exit amd64_edac_exit(void) 2927 { 2928 if (amd64_ctl_pci) 2929 edac_pci_release_generic_ctl(amd64_ctl_pci); 2930 2931 pci_unregister_driver(&amd64_pci_driver); 2932 2933 kfree(ecc_stngs); 2934 ecc_stngs = NULL; 2935 2936 kfree(mcis); 2937 mcis = NULL; 2938 2939 msrs_free(msrs); 2940 msrs = NULL; 2941 } 2942 2943 module_init(amd64_edac_init); 2944 module_exit(amd64_edac_exit); 2945 2946 MODULE_LICENSE("GPL"); 2947 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, " 2948 "Dave Peterson, Thayne Harbaugh"); 2949 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - " 2950 EDAC_AMD64_VERSION); 2951 2952 module_param(edac_op_state, int, 0444); 2953 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 2954