xref: /openbmc/linux/drivers/edac/amd64_edac.c (revision 78c99ba1)
1 #include "amd64_edac.h"
2 #include <asm/k8.h>
3 
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5 
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8 
9 /*
10  * Set by command line parameter. If BIOS has enabled the ECC, this override is
11  * cleared to prevent re-enabling the hardware by this driver.
12  */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15 
16 /* Lookup table for all possible MC control instances */
17 struct amd64_pvt;
18 static struct mem_ctl_info *mci_lookup[MAX_NUMNODES];
19 static struct amd64_pvt *pvt_lookup[MAX_NUMNODES];
20 
21 /*
22  * Memory scrubber control interface. For K8, memory scrubbing is handled by
23  * hardware and can involve L2 cache, dcache as well as the main memory. With
24  * F10, this is extended to L3 cache scrubbing on CPU models sporting that
25  * functionality.
26  *
27  * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
28  * (dram) over to cache lines. This is nasty, so we will use bandwidth in
29  * bytes/sec for the setting.
30  *
31  * Currently, we only do dram scrubbing. If the scrubbing is done in software on
32  * other archs, we might not have access to the caches directly.
33  */
34 
35 /*
36  * scan the scrub rate mapping table for a close or matching bandwidth value to
37  * issue. If requested is too big, then use last maximum value found.
38  */
39 static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
40 				       u32 min_scrubrate)
41 {
42 	u32 scrubval;
43 	int i;
44 
45 	/*
46 	 * map the configured rate (new_bw) to a value specific to the AMD64
47 	 * memory controller and apply to register. Search for the first
48 	 * bandwidth entry that is greater or equal than the setting requested
49 	 * and program that. If at last entry, turn off DRAM scrubbing.
50 	 */
51 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
52 		/*
53 		 * skip scrub rates which aren't recommended
54 		 * (see F10 BKDG, F3x58)
55 		 */
56 		if (scrubrates[i].scrubval < min_scrubrate)
57 			continue;
58 
59 		if (scrubrates[i].bandwidth <= new_bw)
60 			break;
61 
62 		/*
63 		 * if no suitable bandwidth found, turn off DRAM scrubbing
64 		 * entirely by falling back to the last element in the
65 		 * scrubrates array.
66 		 */
67 	}
68 
69 	scrubval = scrubrates[i].scrubval;
70 	if (scrubval)
71 		edac_printk(KERN_DEBUG, EDAC_MC,
72 			    "Setting scrub rate bandwidth: %u\n",
73 			    scrubrates[i].bandwidth);
74 	else
75 		edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
76 
77 	pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
78 
79 	return 0;
80 }
81 
82 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
83 {
84 	struct amd64_pvt *pvt = mci->pvt_info;
85 	u32 min_scrubrate = 0x0;
86 
87 	switch (boot_cpu_data.x86) {
88 	case 0xf:
89 		min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
90 		break;
91 	case 0x10:
92 		min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
93 		break;
94 	case 0x11:
95 		min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
96 		break;
97 
98 	default:
99 		amd64_printk(KERN_ERR, "Unsupported family!\n");
100 		break;
101 	}
102 	return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
103 			min_scrubrate);
104 }
105 
106 static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
107 {
108 	struct amd64_pvt *pvt = mci->pvt_info;
109 	u32 scrubval = 0;
110 	int status = -1, i, ret = 0;
111 
112 	ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
113 	if (ret)
114 		debugf0("Reading K8_SCRCTRL failed\n");
115 
116 	scrubval = scrubval & 0x001F;
117 
118 	edac_printk(KERN_DEBUG, EDAC_MC,
119 		    "pci-read, sdram scrub control value: %d \n", scrubval);
120 
121 	for (i = 0; ARRAY_SIZE(scrubrates); i++) {
122 		if (scrubrates[i].scrubval == scrubval) {
123 			*bw = scrubrates[i].bandwidth;
124 			status = 0;
125 			break;
126 		}
127 	}
128 
129 	return status;
130 }
131 
132 /* Map from a CSROW entry to the mask entry that operates on it */
133 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
134 {
135 	return csrow >> (pvt->num_dcsm >> 3);
136 }
137 
138 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
139 static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
140 {
141 	if (dct == 0)
142 		return pvt->dcsb0[csrow];
143 	else
144 		return pvt->dcsb1[csrow];
145 }
146 
147 /*
148  * Return the 'mask' address the i'th CS entry. This function is needed because
149  * there number of DCSM registers on Rev E and prior vs Rev F and later is
150  * different.
151  */
152 static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
153 {
154 	if (dct == 0)
155 		return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
156 	else
157 		return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
158 }
159 
160 
161 /*
162  * In *base and *limit, pass back the full 40-bit base and limit physical
163  * addresses for the node given by node_id.  This information is obtained from
164  * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
165  * base and limit addresses are of type SysAddr, as defined at the start of
166  * section 3.4.4 (p. 70).  They are the lowest and highest physical addresses
167  * in the address range they represent.
168  */
169 static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
170 			       u64 *base, u64 *limit)
171 {
172 	*base = pvt->dram_base[node_id];
173 	*limit = pvt->dram_limit[node_id];
174 }
175 
176 /*
177  * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
178  * with node_id
179  */
180 static int amd64_base_limit_match(struct amd64_pvt *pvt,
181 					u64 sys_addr, int node_id)
182 {
183 	u64 base, limit, addr;
184 
185 	amd64_get_base_and_limit(pvt, node_id, &base, &limit);
186 
187 	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
188 	 * all ones if the most significant implemented address bit is 1.
189 	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
190 	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
191 	 * Application Programming.
192 	 */
193 	addr = sys_addr & 0x000000ffffffffffull;
194 
195 	return (addr >= base) && (addr <= limit);
196 }
197 
198 /*
199  * Attempt to map a SysAddr to a node. On success, return a pointer to the
200  * mem_ctl_info structure for the node that the SysAddr maps to.
201  *
202  * On failure, return NULL.
203  */
204 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
205 						u64 sys_addr)
206 {
207 	struct amd64_pvt *pvt;
208 	int node_id;
209 	u32 intlv_en, bits;
210 
211 	/*
212 	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
213 	 * 3.4.4.2) registers to map the SysAddr to a node ID.
214 	 */
215 	pvt = mci->pvt_info;
216 
217 	/*
218 	 * The value of this field should be the same for all DRAM Base
219 	 * registers.  Therefore we arbitrarily choose to read it from the
220 	 * register for node 0.
221 	 */
222 	intlv_en = pvt->dram_IntlvEn[0];
223 
224 	if (intlv_en == 0) {
225 		for (node_id = 0; ; ) {
226 			if (amd64_base_limit_match(pvt, sys_addr, node_id))
227 				break;
228 
229 			if (++node_id >= DRAM_REG_COUNT)
230 				goto err_no_match;
231 		}
232 		goto found;
233 	}
234 
235 	if (unlikely((intlv_en != (0x01 << 8)) &&
236 		     (intlv_en != (0x03 << 8)) &&
237 		     (intlv_en != (0x07 << 8)))) {
238 		amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
239 			     "IntlvEn field of DRAM Base Register for node 0: "
240 			     "This probably indicates a BIOS bug.\n", intlv_en);
241 		return NULL;
242 	}
243 
244 	bits = (((u32) sys_addr) >> 12) & intlv_en;
245 
246 	for (node_id = 0; ; ) {
247 		if ((pvt->dram_limit[node_id] & intlv_en) == bits)
248 			break;	/* intlv_sel field matches */
249 
250 		if (++node_id >= DRAM_REG_COUNT)
251 			goto err_no_match;
252 	}
253 
254 	/* sanity test for sys_addr */
255 	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
256 		amd64_printk(KERN_WARNING,
257 			  "%s(): sys_addr 0x%lx falls outside base/limit "
258 			  "address range for node %d with node interleaving "
259 			  "enabled.\n", __func__, (unsigned long)sys_addr,
260 			  node_id);
261 		return NULL;
262 	}
263 
264 found:
265 	return edac_mc_find(node_id);
266 
267 err_no_match:
268 	debugf2("sys_addr 0x%lx doesn't match any node\n",
269 		(unsigned long)sys_addr);
270 
271 	return NULL;
272 }
273 
274 /*
275  * Extract the DRAM CS base address from selected csrow register.
276  */
277 static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
278 {
279 	return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
280 				pvt->dcs_shift;
281 }
282 
283 /*
284  * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
285  */
286 static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
287 {
288 	u64 dcsm_bits, other_bits;
289 	u64 mask;
290 
291 	/* Extract bits from DRAM CS Mask. */
292 	dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
293 
294 	other_bits = pvt->dcsm_mask;
295 	other_bits = ~(other_bits << pvt->dcs_shift);
296 
297 	/*
298 	 * The extracted bits from DCSM belong in the spaces represented by
299 	 * the cleared bits in other_bits.
300 	 */
301 	mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
302 
303 	return mask;
304 }
305 
306 /*
307  * @input_addr is an InputAddr associated with the node given by mci. Return the
308  * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
309  */
310 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
311 {
312 	struct amd64_pvt *pvt;
313 	int csrow;
314 	u64 base, mask;
315 
316 	pvt = mci->pvt_info;
317 
318 	/*
319 	 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
320 	 * base/mask register pair, test the condition shown near the start of
321 	 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
322 	 */
323 	for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
324 
325 		/* This DRAM chip select is disabled on this node */
326 		if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
327 			continue;
328 
329 		base = base_from_dct_base(pvt, csrow);
330 		mask = ~mask_from_dct_mask(pvt, csrow);
331 
332 		if ((input_addr & mask) == (base & mask)) {
333 			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
334 				(unsigned long)input_addr, csrow,
335 				pvt->mc_node_id);
336 
337 			return csrow;
338 		}
339 	}
340 
341 	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
342 		(unsigned long)input_addr, pvt->mc_node_id);
343 
344 	return -1;
345 }
346 
347 /*
348  * Return the base value defined by the DRAM Base register for the node
349  * represented by mci.  This function returns the full 40-bit value despite the
350  * fact that the register only stores bits 39-24 of the value. See section
351  * 3.4.4.1 (BKDG #26094, K8, revA-E)
352  */
353 static inline u64 get_dram_base(struct mem_ctl_info *mci)
354 {
355 	struct amd64_pvt *pvt = mci->pvt_info;
356 
357 	return pvt->dram_base[pvt->mc_node_id];
358 }
359 
360 /*
361  * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
362  * for the node represented by mci. Info is passed back in *hole_base,
363  * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
364  * info is invalid. Info may be invalid for either of the following reasons:
365  *
366  * - The revision of the node is not E or greater.  In this case, the DRAM Hole
367  *   Address Register does not exist.
368  *
369  * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
370  *   indicating that its contents are not valid.
371  *
372  * The values passed back in *hole_base, *hole_offset, and *hole_size are
373  * complete 32-bit values despite the fact that the bitfields in the DHAR
374  * only represent bits 31-24 of the base and offset values.
375  */
376 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
377 			     u64 *hole_offset, u64 *hole_size)
378 {
379 	struct amd64_pvt *pvt = mci->pvt_info;
380 	u64 base;
381 
382 	/* only revE and later have the DRAM Hole Address Register */
383 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
384 		debugf1("  revision %d for node %d does not support DHAR\n",
385 			pvt->ext_model, pvt->mc_node_id);
386 		return 1;
387 	}
388 
389 	/* only valid for Fam10h */
390 	if (boot_cpu_data.x86 == 0x10 &&
391 	    (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
392 		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
393 		return 1;
394 	}
395 
396 	if ((pvt->dhar & DHAR_VALID) == 0) {
397 		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
398 			pvt->mc_node_id);
399 		return 1;
400 	}
401 
402 	/* This node has Memory Hoisting */
403 
404 	/* +------------------+--------------------+--------------------+-----
405 	 * | memory           | DRAM hole          | relocated          |
406 	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
407 	 * |                  |                    | DRAM hole          |
408 	 * |                  |                    | [0x100000000,      |
409 	 * |                  |                    |  (0x100000000+     |
410 	 * |                  |                    |   (0xffffffff-x))] |
411 	 * +------------------+--------------------+--------------------+-----
412 	 *
413 	 * Above is a diagram of physical memory showing the DRAM hole and the
414 	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
415 	 * starts at address x (the base address) and extends through address
416 	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
417 	 * addresses in the hole so that they start at 0x100000000.
418 	 */
419 
420 	base = dhar_base(pvt->dhar);
421 
422 	*hole_base = base;
423 	*hole_size = (0x1ull << 32) - base;
424 
425 	if (boot_cpu_data.x86 > 0xf)
426 		*hole_offset = f10_dhar_offset(pvt->dhar);
427 	else
428 		*hole_offset = k8_dhar_offset(pvt->dhar);
429 
430 	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
431 		pvt->mc_node_id, (unsigned long)*hole_base,
432 		(unsigned long)*hole_offset, (unsigned long)*hole_size);
433 
434 	return 0;
435 }
436 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
437 
438 /*
439  * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
440  * assumed that sys_addr maps to the node given by mci.
441  *
442  * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
443  * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
444  * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
445  * then it is also involved in translating a SysAddr to a DramAddr. Sections
446  * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
447  * These parts of the documentation are unclear. I interpret them as follows:
448  *
449  * When node n receives a SysAddr, it processes the SysAddr as follows:
450  *
451  * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
452  *    Limit registers for node n. If the SysAddr is not within the range
453  *    specified by the base and limit values, then node n ignores the Sysaddr
454  *    (since it does not map to node n). Otherwise continue to step 2 below.
455  *
456  * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
457  *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
458  *    the range of relocated addresses (starting at 0x100000000) from the DRAM
459  *    hole. If not, skip to step 3 below. Else get the value of the
460  *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
461  *    offset defined by this value from the SysAddr.
462  *
463  * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
464  *    Base register for node n. To obtain the DramAddr, subtract the base
465  *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
466  */
467 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
468 {
469 	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
470 	int ret = 0;
471 
472 	dram_base = get_dram_base(mci);
473 
474 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
475 				      &hole_size);
476 	if (!ret) {
477 		if ((sys_addr >= (1ull << 32)) &&
478 		    (sys_addr < ((1ull << 32) + hole_size))) {
479 			/* use DHAR to translate SysAddr to DramAddr */
480 			dram_addr = sys_addr - hole_offset;
481 
482 			debugf2("using DHAR to translate SysAddr 0x%lx to "
483 				"DramAddr 0x%lx\n",
484 				(unsigned long)sys_addr,
485 				(unsigned long)dram_addr);
486 
487 			return dram_addr;
488 		}
489 	}
490 
491 	/*
492 	 * Translate the SysAddr to a DramAddr as shown near the start of
493 	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
494 	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
495 	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
496 	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
497 	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
498 	 * Programmer's Manual Volume 1 Application Programming.
499 	 */
500 	dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
501 
502 	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
503 		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
504 		(unsigned long)dram_addr);
505 	return dram_addr;
506 }
507 
508 /*
509  * @intlv_en is the value of the IntlvEn field from a DRAM Base register
510  * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
511  * for node interleaving.
512  */
513 static int num_node_interleave_bits(unsigned intlv_en)
514 {
515 	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
516 	int n;
517 
518 	BUG_ON(intlv_en > 7);
519 	n = intlv_shift_table[intlv_en];
520 	return n;
521 }
522 
523 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
524 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
525 {
526 	struct amd64_pvt *pvt;
527 	int intlv_shift;
528 	u64 input_addr;
529 
530 	pvt = mci->pvt_info;
531 
532 	/*
533 	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
534 	 * concerning translating a DramAddr to an InputAddr.
535 	 */
536 	intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
537 	input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
538 	    (dram_addr & 0xfff);
539 
540 	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
541 		intlv_shift, (unsigned long)dram_addr,
542 		(unsigned long)input_addr);
543 
544 	return input_addr;
545 }
546 
547 /*
548  * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
549  * assumed that @sys_addr maps to the node given by mci.
550  */
551 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
552 {
553 	u64 input_addr;
554 
555 	input_addr =
556 	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
557 
558 	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
559 		(unsigned long)sys_addr, (unsigned long)input_addr);
560 
561 	return input_addr;
562 }
563 
564 
565 /*
566  * @input_addr is an InputAddr associated with the node represented by mci.
567  * Translate @input_addr to a DramAddr and return the result.
568  */
569 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
570 {
571 	struct amd64_pvt *pvt;
572 	int node_id, intlv_shift;
573 	u64 bits, dram_addr;
574 	u32 intlv_sel;
575 
576 	/*
577 	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
578 	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
579 	 * this procedure. When translating from a DramAddr to an InputAddr, the
580 	 * bits used for node interleaving are discarded.  Here we recover these
581 	 * bits from the IntlvSel field of the DRAM Limit register (section
582 	 * 3.4.4.2) for the node that input_addr is associated with.
583 	 */
584 	pvt = mci->pvt_info;
585 	node_id = pvt->mc_node_id;
586 	BUG_ON((node_id < 0) || (node_id > 7));
587 
588 	intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
589 
590 	if (intlv_shift == 0) {
591 		debugf1("    InputAddr 0x%lx translates to DramAddr of "
592 			"same value\n",	(unsigned long)input_addr);
593 
594 		return input_addr;
595 	}
596 
597 	bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
598 	    (input_addr & 0xfff);
599 
600 	intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
601 	dram_addr = bits + (intlv_sel << 12);
602 
603 	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
604 		"(%d node interleave bits)\n", (unsigned long)input_addr,
605 		(unsigned long)dram_addr, intlv_shift);
606 
607 	return dram_addr;
608 }
609 
610 /*
611  * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
612  * @dram_addr to a SysAddr.
613  */
614 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
615 {
616 	struct amd64_pvt *pvt = mci->pvt_info;
617 	u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
618 	int ret = 0;
619 
620 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
621 				      &hole_size);
622 	if (!ret) {
623 		if ((dram_addr >= hole_base) &&
624 		    (dram_addr < (hole_base + hole_size))) {
625 			sys_addr = dram_addr + hole_offset;
626 
627 			debugf1("using DHAR to translate DramAddr 0x%lx to "
628 				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
629 				(unsigned long)sys_addr);
630 
631 			return sys_addr;
632 		}
633 	}
634 
635 	amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
636 	sys_addr = dram_addr + base;
637 
638 	/*
639 	 * The sys_addr we have computed up to this point is a 40-bit value
640 	 * because the k8 deals with 40-bit values.  However, the value we are
641 	 * supposed to return is a full 64-bit physical address.  The AMD
642 	 * x86-64 architecture specifies that the most significant implemented
643 	 * address bit through bit 63 of a physical address must be either all
644 	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
645 	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
646 	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
647 	 * Programming.
648 	 */
649 	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
650 
651 	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
652 		pvt->mc_node_id, (unsigned long)dram_addr,
653 		(unsigned long)sys_addr);
654 
655 	return sys_addr;
656 }
657 
658 /*
659  * @input_addr is an InputAddr associated with the node given by mci. Translate
660  * @input_addr to a SysAddr.
661  */
662 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
663 					 u64 input_addr)
664 {
665 	return dram_addr_to_sys_addr(mci,
666 				     input_addr_to_dram_addr(mci, input_addr));
667 }
668 
669 /*
670  * Find the minimum and maximum InputAddr values that map to the given @csrow.
671  * Pass back these values in *input_addr_min and *input_addr_max.
672  */
673 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
674 			      u64 *input_addr_min, u64 *input_addr_max)
675 {
676 	struct amd64_pvt *pvt;
677 	u64 base, mask;
678 
679 	pvt = mci->pvt_info;
680 	BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT));
681 
682 	base = base_from_dct_base(pvt, csrow);
683 	mask = mask_from_dct_mask(pvt, csrow);
684 
685 	*input_addr_min = base & ~mask;
686 	*input_addr_max = base | mask | pvt->dcs_mask_notused;
687 }
688 
689 /*
690  * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
691  * Address High (section 3.6.4.6) register values and return the result. Address
692  * is located in the info structure (nbeah and nbeal), the encoding is device
693  * specific.
694  */
695 static u64 extract_error_address(struct mem_ctl_info *mci,
696 				 struct amd64_error_info_regs *info)
697 {
698 	struct amd64_pvt *pvt = mci->pvt_info;
699 
700 	return pvt->ops->get_error_address(mci, info);
701 }
702 
703 
704 /* Map the Error address to a PAGE and PAGE OFFSET. */
705 static inline void error_address_to_page_and_offset(u64 error_address,
706 						    u32 *page, u32 *offset)
707 {
708 	*page = (u32) (error_address >> PAGE_SHIFT);
709 	*offset = ((u32) error_address) & ~PAGE_MASK;
710 }
711 
712 /*
713  * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
714  * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
715  * of a node that detected an ECC memory error.  mci represents the node that
716  * the error address maps to (possibly different from the node that detected
717  * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
718  * error.
719  */
720 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
721 {
722 	int csrow;
723 
724 	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
725 
726 	if (csrow == -1)
727 		amd64_mc_printk(mci, KERN_ERR,
728 			     "Failed to translate InputAddr to csrow for "
729 			     "address 0x%lx\n", (unsigned long)sys_addr);
730 	return csrow;
731 }
732 
733 static int get_channel_from_ecc_syndrome(unsigned short syndrome);
734 
735 static void amd64_cpu_display_info(struct amd64_pvt *pvt)
736 {
737 	if (boot_cpu_data.x86 == 0x11)
738 		edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
739 	else if (boot_cpu_data.x86 == 0x10)
740 		edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
741 	else if (boot_cpu_data.x86 == 0xf)
742 		edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
743 			(pvt->ext_model >= OPTERON_CPU_REV_F) ?
744 			"Rev F or later" : "Rev E or earlier");
745 	else
746 		/* we'll hardly ever ever get here */
747 		edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
748 }
749 
750 /*
751  * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
752  * are ECC capable.
753  */
754 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
755 {
756 	int bit;
757 	enum dev_type edac_cap = EDAC_NONE;
758 
759 	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
760 		? 19
761 		: 17;
762 
763 	if (pvt->dclr0 >> BIT(bit))
764 		edac_cap = EDAC_FLAG_SECDED;
765 
766 	return edac_cap;
767 }
768 
769 
770 static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
771 					 int ganged);
772 
773 /* Display and decode various NB registers for debug purposes. */
774 static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
775 {
776 	int ganged;
777 
778 	debugf1("  nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
779 		pvt->nbcap,
780 		(pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
781 		(pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
782 		(pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
783 	debugf1("    ECC Capable=%s   ChipKill Capable=%s\n",
784 		(pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
785 		(pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
786 	debugf1("  DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
787 		pvt->dclr0,
788 		(pvt->dclr0 & BIT(19)) ?  "Enabled" : "Disabled",
789 		(pvt->dclr0 & BIT(8)) ?  "Enabled" : "Disabled",
790 		(pvt->dclr0 & BIT(11)) ?  "128b" : "64b");
791 	debugf1("    DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s  DIMM Type=%s\n",
792 		(pvt->dclr0 & BIT(12)) ?  "Y" : "N",
793 		(pvt->dclr0 & BIT(13)) ?  "Y" : "N",
794 		(pvt->dclr0 & BIT(14)) ?  "Y" : "N",
795 		(pvt->dclr0 & BIT(15)) ?  "Y" : "N",
796 		(pvt->dclr0 & BIT(16)) ?  "UN-Buffered" : "Buffered");
797 
798 
799 	debugf1("  online-spare: 0x%8.08x\n", pvt->online_spare);
800 
801 	if (boot_cpu_data.x86 == 0xf) {
802 		debugf1("  dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
803 			pvt->dhar, dhar_base(pvt->dhar),
804 			k8_dhar_offset(pvt->dhar));
805 		debugf1("      DramHoleValid=%s\n",
806 			(pvt->dhar & DHAR_VALID) ?  "True" : "False");
807 
808 		debugf1("  dbam-dkt: 0x%8.08x\n", pvt->dbam0);
809 
810 		/* everything below this point is Fam10h and above */
811 		return;
812 
813 	} else {
814 		debugf1("  dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
815 			pvt->dhar, dhar_base(pvt->dhar),
816 			f10_dhar_offset(pvt->dhar));
817 		debugf1("    DramMemHoistValid=%s DramHoleValid=%s\n",
818 			(pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
819 			"True" : "False",
820 			(pvt->dhar & DHAR_VALID) ?
821 			"True" : "False");
822 	}
823 
824 	/* Only if NOT ganged does dcl1 have valid info */
825 	if (!dct_ganging_enabled(pvt)) {
826 		debugf1("  DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
827 			"Width=%s\n", pvt->dclr1,
828 			(pvt->dclr1 & BIT(19)) ?  "Enabled" : "Disabled",
829 			(pvt->dclr1 & BIT(8)) ?  "Enabled" : "Disabled",
830 			(pvt->dclr1 & BIT(11)) ?  "128b" : "64b");
831 		debugf1("    DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s  "
832 			"DIMM Type=%s\n",
833 			(pvt->dclr1 & BIT(12)) ?  "Y" : "N",
834 			(pvt->dclr1 & BIT(13)) ?  "Y" : "N",
835 			(pvt->dclr1 & BIT(14)) ?  "Y" : "N",
836 			(pvt->dclr1 & BIT(15)) ?  "Y" : "N",
837 			(pvt->dclr1 & BIT(16)) ?  "UN-Buffered" : "Buffered");
838 	}
839 
840 	/*
841 	 * Determine if ganged and then dump memory sizes for first controller,
842 	 * and if NOT ganged dump info for 2nd controller.
843 	 */
844 	ganged = dct_ganging_enabled(pvt);
845 
846 	f10_debug_display_dimm_sizes(0, pvt, ganged);
847 
848 	if (!ganged)
849 		f10_debug_display_dimm_sizes(1, pvt, ganged);
850 }
851 
852 /* Read in both of DBAM registers */
853 static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
854 {
855 	int err = 0;
856 	unsigned int reg;
857 
858 	reg = DBAM0;
859 	err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
860 	if (err)
861 		goto err_reg;
862 
863 	if (boot_cpu_data.x86 >= 0x10) {
864 		reg = DBAM1;
865 		err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
866 
867 		if (err)
868 			goto err_reg;
869 	}
870 
871 err_reg:
872 	debugf0("Error reading F2x%03x.\n", reg);
873 }
874 
875 /*
876  * NOTE: CPU Revision Dependent code: Rev E and Rev F
877  *
878  * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
879  * set the shift factor for the DCSB and DCSM values.
880  *
881  * ->dcs_mask_notused, RevE:
882  *
883  * To find the max InputAddr for the csrow, start with the base address and set
884  * all bits that are "don't care" bits in the test at the start of section
885  * 3.5.4 (p. 84).
886  *
887  * The "don't care" bits are all set bits in the mask and all bits in the gaps
888  * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
889  * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
890  * gaps.
891  *
892  * ->dcs_mask_notused, RevF and later:
893  *
894  * To find the max InputAddr for the csrow, start with the base address and set
895  * all bits that are "don't care" bits in the test at the start of NPT section
896  * 4.5.4 (p. 87).
897  *
898  * The "don't care" bits are all set bits in the mask and all bits in the gaps
899  * between bit ranges [36:27] and [21:13].
900  *
901  * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
902  * which are all bits in the above-mentioned gaps.
903  */
904 static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
905 {
906 	if (pvt->ext_model >= OPTERON_CPU_REV_F) {
907 		pvt->dcsb_base		= REV_F_F1Xh_DCSB_BASE_BITS;
908 		pvt->dcsm_mask		= REV_F_F1Xh_DCSM_MASK_BITS;
909 		pvt->dcs_mask_notused	= REV_F_F1Xh_DCS_NOTUSED_BITS;
910 		pvt->dcs_shift		= REV_F_F1Xh_DCS_SHIFT;
911 
912 		switch (boot_cpu_data.x86) {
913 		case 0xf:
914 			pvt->num_dcsm = REV_F_DCSM_COUNT;
915 			break;
916 
917 		case 0x10:
918 			pvt->num_dcsm = F10_DCSM_COUNT;
919 			break;
920 
921 		case 0x11:
922 			pvt->num_dcsm = F11_DCSM_COUNT;
923 			break;
924 
925 		default:
926 			amd64_printk(KERN_ERR, "Unsupported family!\n");
927 			break;
928 		}
929 	} else {
930 		pvt->dcsb_base		= REV_E_DCSB_BASE_BITS;
931 		pvt->dcsm_mask		= REV_E_DCSM_MASK_BITS;
932 		pvt->dcs_mask_notused	= REV_E_DCS_NOTUSED_BITS;
933 		pvt->dcs_shift		= REV_E_DCS_SHIFT;
934 		pvt->num_dcsm		= REV_E_DCSM_COUNT;
935 	}
936 }
937 
938 /*
939  * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
940  */
941 static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
942 {
943 	int cs, reg, err = 0;
944 
945 	amd64_set_dct_base_and_mask(pvt);
946 
947 	for (cs = 0; cs < CHIPSELECT_COUNT; cs++) {
948 		reg = K8_DCSB0 + (cs * 4);
949 		err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
950 						&pvt->dcsb0[cs]);
951 		if (unlikely(err))
952 			debugf0("Reading K8_DCSB0[%d] failed\n", cs);
953 		else
954 			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
955 				cs, pvt->dcsb0[cs], reg);
956 
957 		/* If DCT are NOT ganged, then read in DCT1's base */
958 		if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
959 			reg = F10_DCSB1 + (cs * 4);
960 			err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
961 							&pvt->dcsb1[cs]);
962 			if (unlikely(err))
963 				debugf0("Reading F10_DCSB1[%d] failed\n", cs);
964 			else
965 				debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
966 					cs, pvt->dcsb1[cs], reg);
967 		} else {
968 			pvt->dcsb1[cs] = 0;
969 		}
970 	}
971 
972 	for (cs = 0; cs < pvt->num_dcsm; cs++) {
973 		reg = K8_DCSB0 + (cs * 4);
974 		err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
975 					&pvt->dcsm0[cs]);
976 		if (unlikely(err))
977 			debugf0("Reading K8_DCSM0 failed\n");
978 		else
979 			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
980 				cs, pvt->dcsm0[cs], reg);
981 
982 		/* If DCT are NOT ganged, then read in DCT1's mask */
983 		if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
984 			reg = F10_DCSM1 + (cs * 4);
985 			err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
986 					&pvt->dcsm1[cs]);
987 			if (unlikely(err))
988 				debugf0("Reading F10_DCSM1[%d] failed\n", cs);
989 			else
990 				debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
991 					cs, pvt->dcsm1[cs], reg);
992 		} else
993 			pvt->dcsm1[cs] = 0;
994 	}
995 }
996 
997 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
998 {
999 	enum mem_type type;
1000 
1001 	if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
1002 		/* Rev F and later */
1003 		type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1004 	} else {
1005 		/* Rev E and earlier */
1006 		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1007 	}
1008 
1009 	debugf1("  Memory type is: %s\n",
1010 		(type == MEM_DDR2) ? "MEM_DDR2" :
1011 		(type == MEM_RDDR2) ? "MEM_RDDR2" :
1012 		(type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
1013 
1014 	return type;
1015 }
1016 
1017 /*
1018  * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1019  * and the later RevF memory controllers (DDR vs DDR2)
1020  *
1021  * Return:
1022  *      number of memory channels in operation
1023  * Pass back:
1024  *      contents of the DCL0_LOW register
1025  */
1026 static int k8_early_channel_count(struct amd64_pvt *pvt)
1027 {
1028 	int flag, err = 0;
1029 
1030 	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1031 	if (err)
1032 		return err;
1033 
1034 	if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
1035 		/* RevF (NPT) and later */
1036 		flag = pvt->dclr0 & F10_WIDTH_128;
1037 	} else {
1038 		/* RevE and earlier */
1039 		flag = pvt->dclr0 & REVE_WIDTH_128;
1040 	}
1041 
1042 	/* not used */
1043 	pvt->dclr1 = 0;
1044 
1045 	return (flag) ? 2 : 1;
1046 }
1047 
1048 /* extract the ERROR ADDRESS for the K8 CPUs */
1049 static u64 k8_get_error_address(struct mem_ctl_info *mci,
1050 				struct amd64_error_info_regs *info)
1051 {
1052 	return (((u64) (info->nbeah & 0xff)) << 32) +
1053 			(info->nbeal & ~0x03);
1054 }
1055 
1056 /*
1057  * Read the Base and Limit registers for K8 based Memory controllers; extract
1058  * fields from the 'raw' reg into separate data fields
1059  *
1060  * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1061  */
1062 static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1063 {
1064 	u32 low;
1065 	u32 off = dram << 3;	/* 8 bytes between DRAM entries */
1066 	int err;
1067 
1068 	err = pci_read_config_dword(pvt->addr_f1_ctl,
1069 				    K8_DRAM_BASE_LOW + off, &low);
1070 	if (err)
1071 		debugf0("Reading K8_DRAM_BASE_LOW failed\n");
1072 
1073 	/* Extract parts into separate data entries */
1074 	pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
1075 	pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1076 	pvt->dram_rw_en[dram] = (low & 0x3);
1077 
1078 	err = pci_read_config_dword(pvt->addr_f1_ctl,
1079 				    K8_DRAM_LIMIT_LOW + off, &low);
1080 	if (err)
1081 		debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
1082 
1083 	/*
1084 	 * Extract parts into separate data entries. Limit is the HIGHEST memory
1085 	 * location of the region, so lower 24 bits need to be all ones
1086 	 */
1087 	pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
1088 	pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1089 	pvt->dram_DstNode[dram] = (low & 0x7);
1090 }
1091 
1092 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1093 					struct amd64_error_info_regs *info,
1094 					u64 SystemAddress)
1095 {
1096 	struct mem_ctl_info *src_mci;
1097 	unsigned short syndrome;
1098 	int channel, csrow;
1099 	u32 page, offset;
1100 
1101 	/* Extract the syndrome parts and form a 16-bit syndrome */
1102 	syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8;
1103 	syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh);
1104 
1105 	/* CHIPKILL enabled */
1106 	if (info->nbcfg & K8_NBCFG_CHIPKILL) {
1107 		channel = get_channel_from_ecc_syndrome(syndrome);
1108 		if (channel < 0) {
1109 			/*
1110 			 * Syndrome didn't map, so we don't know which of the
1111 			 * 2 DIMMs is in error. So we need to ID 'both' of them
1112 			 * as suspect.
1113 			 */
1114 			amd64_mc_printk(mci, KERN_WARNING,
1115 				       "unknown syndrome 0x%x - possible error "
1116 				       "reporting race\n", syndrome);
1117 			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1118 			return;
1119 		}
1120 	} else {
1121 		/*
1122 		 * non-chipkill ecc mode
1123 		 *
1124 		 * The k8 documentation is unclear about how to determine the
1125 		 * channel number when using non-chipkill memory.  This method
1126 		 * was obtained from email communication with someone at AMD.
1127 		 * (Wish the email was placed in this comment - norsk)
1128 		 */
1129 		channel = ((SystemAddress & BIT(3)) != 0);
1130 	}
1131 
1132 	/*
1133 	 * Find out which node the error address belongs to. This may be
1134 	 * different from the node that detected the error.
1135 	 */
1136 	src_mci = find_mc_by_sys_addr(mci, SystemAddress);
1137 	if (src_mci) {
1138 		amd64_mc_printk(mci, KERN_ERR,
1139 			     "failed to map error address 0x%lx to a node\n",
1140 			     (unsigned long)SystemAddress);
1141 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1142 		return;
1143 	}
1144 
1145 	/* Now map the SystemAddress to a CSROW */
1146 	csrow = sys_addr_to_csrow(src_mci, SystemAddress);
1147 	if (csrow < 0) {
1148 		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1149 	} else {
1150 		error_address_to_page_and_offset(SystemAddress, &page, &offset);
1151 
1152 		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1153 				  channel, EDAC_MOD_STR);
1154 	}
1155 }
1156 
1157 /*
1158  * determrine the number of PAGES in for this DIMM's size based on its DRAM
1159  * Address Mapping.
1160  *
1161  * First step is to calc the number of bits to shift a value of 1 left to
1162  * indicate show many pages. Start with the DBAM value as the starting bits,
1163  * then proceed to adjust those shift bits, based on CPU rev and the table.
1164  * See BKDG on the DBAM
1165  */
1166 static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
1167 {
1168 	int nr_pages;
1169 
1170 	if (pvt->ext_model >= OPTERON_CPU_REV_F) {
1171 		nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
1172 	} else {
1173 		/*
1174 		 * RevE and less section; this line is tricky. It collapses the
1175 		 * table used by RevD and later to one that matches revisions CG
1176 		 * and earlier.
1177 		 */
1178 		dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
1179 				(dram_map > 8 ? 4 : (dram_map > 5 ?
1180 				3 : (dram_map > 2 ? 1 : 0))) : 0;
1181 
1182 		/* 25 shift is 32MiB minimum DIMM size in RevE and prior */
1183 		nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
1184 	}
1185 
1186 	return nr_pages;
1187 }
1188 
1189 /*
1190  * Get the number of DCT channels in use.
1191  *
1192  * Return:
1193  *	number of Memory Channels in operation
1194  * Pass back:
1195  *	contents of the DCL0_LOW register
1196  */
1197 static int f10_early_channel_count(struct amd64_pvt *pvt)
1198 {
1199 	int err = 0, channels = 0;
1200 	u32 dbam;
1201 
1202 	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1203 	if (err)
1204 		goto err_reg;
1205 
1206 	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
1207 	if (err)
1208 		goto err_reg;
1209 
1210 	/* If we are in 128 bit mode, then we are using 2 channels */
1211 	if (pvt->dclr0 & F10_WIDTH_128) {
1212 		debugf0("Data WIDTH is 128 bits - 2 channels\n");
1213 		channels = 2;
1214 		return channels;
1215 	}
1216 
1217 	/*
1218 	 * Need to check if in UN-ganged mode: In such, there are 2 channels,
1219 	 * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
1220 	 * will be OFF.
1221 	 *
1222 	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1223 	 * their CSEnable bit on. If so, then SINGLE DIMM case.
1224 	 */
1225 	debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
1226 
1227 	/*
1228 	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1229 	 * is more than just one DIMM present in unganged mode. Need to check
1230 	 * both controllers since DIMMs can be placed in either one.
1231 	 */
1232 	channels = 0;
1233 	err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM0, &dbam);
1234 	if (err)
1235 		goto err_reg;
1236 
1237 	if (DBAM_DIMM(0, dbam) > 0)
1238 		channels++;
1239 	if (DBAM_DIMM(1, dbam) > 0)
1240 		channels++;
1241 	if (DBAM_DIMM(2, dbam) > 0)
1242 		channels++;
1243 	if (DBAM_DIMM(3, dbam) > 0)
1244 		channels++;
1245 
1246 	/* If more than 2 DIMMs are present, then we have 2 channels */
1247 	if (channels > 2)
1248 		channels = 2;
1249 	else if (channels == 0) {
1250 		/* No DIMMs on DCT0, so look at DCT1 */
1251 		err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM1, &dbam);
1252 		if (err)
1253 			goto err_reg;
1254 
1255 		if (DBAM_DIMM(0, dbam) > 0)
1256 			channels++;
1257 		if (DBAM_DIMM(1, dbam) > 0)
1258 			channels++;
1259 		if (DBAM_DIMM(2, dbam) > 0)
1260 			channels++;
1261 		if (DBAM_DIMM(3, dbam) > 0)
1262 			channels++;
1263 
1264 		if (channels > 2)
1265 			channels = 2;
1266 	}
1267 
1268 	/* If we found ALL 0 values, then assume just ONE DIMM-ONE Channel */
1269 	if (channels == 0)
1270 		channels = 1;
1271 
1272 	debugf0("DIMM count= %d\n", channels);
1273 
1274 	return channels;
1275 
1276 err_reg:
1277 	return -1;
1278 
1279 }
1280 
1281 static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
1282 {
1283 	return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
1284 }
1285 
1286 /* Enable extended configuration access via 0xCF8 feature */
1287 static void amd64_setup(struct amd64_pvt *pvt)
1288 {
1289 	u32 reg;
1290 
1291 	pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1292 
1293 	pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1294 	reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1295 	pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1296 }
1297 
1298 /* Restore the extended configuration access via 0xCF8 feature */
1299 static void amd64_teardown(struct amd64_pvt *pvt)
1300 {
1301 	u32 reg;
1302 
1303 	pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1304 
1305 	reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1306 	if (pvt->flags.cf8_extcfg)
1307 		reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1308 	pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1309 }
1310 
1311 static u64 f10_get_error_address(struct mem_ctl_info *mci,
1312 			struct amd64_error_info_regs *info)
1313 {
1314 	return (((u64) (info->nbeah & 0xffff)) << 32) +
1315 			(info->nbeal & ~0x01);
1316 }
1317 
1318 /*
1319  * Read the Base and Limit registers for F10 based Memory controllers. Extract
1320  * fields from the 'raw' reg into separate data fields.
1321  *
1322  * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1323  */
1324 static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1325 {
1326 	u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1327 
1328 	low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1329 	high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1330 
1331 	/* read the 'raw' DRAM BASE Address register */
1332 	pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base);
1333 
1334 	/* Read from the ECS data register */
1335 	pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base);
1336 
1337 	/* Extract parts into separate data entries */
1338 	pvt->dram_rw_en[dram] = (low_base & 0x3);
1339 
1340 	if (pvt->dram_rw_en[dram] == 0)
1341 		return;
1342 
1343 	pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1344 
1345 	pvt->dram_base[dram] = (((((u64) high_base & 0x000000FF) << 32) |
1346 				((u64) low_base & 0xFFFF0000))) << 8;
1347 
1348 	low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1349 	high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1350 
1351 	/* read the 'raw' LIMIT registers */
1352 	pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit);
1353 
1354 	/* Read from the ECS data register for the HIGH portion */
1355 	pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit);
1356 
1357 	debugf0("  HW Regs: BASE=0x%08x-%08x      LIMIT=  0x%08x-%08x\n",
1358 		high_base, low_base, high_limit, low_limit);
1359 
1360 	pvt->dram_DstNode[dram] = (low_limit & 0x7);
1361 	pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1362 
1363 	/*
1364 	 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1365 	 * memory location of the region, so low 24 bits need to be all ones.
1366 	 */
1367 	low_limit |= 0x0000FFFF;
1368 	pvt->dram_limit[dram] =
1369 		((((u64) high_limit << 32) + (u64) low_limit) << 8) | (0xFF);
1370 }
1371 
1372 static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1373 {
1374 	int err = 0;
1375 
1376 	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1377 				    &pvt->dram_ctl_select_low);
1378 	if (err) {
1379 		debugf0("Reading F10_DCTL_SEL_LOW failed\n");
1380 	} else {
1381 		debugf0("DRAM_DCTL_SEL_LOW=0x%x  DctSelBaseAddr=0x%x\n",
1382 			pvt->dram_ctl_select_low, dct_sel_baseaddr(pvt));
1383 
1384 		debugf0("  DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-"
1385 				"sel-hi-range=%s\n",
1386 			(dct_ganging_enabled(pvt) ? "GANGED" : "NOT GANGED"),
1387 			(dct_dram_enabled(pvt) ? "Enabled"   : "Disabled"),
1388 			(dct_high_range_enabled(pvt) ? "Enabled" : "Disabled"));
1389 
1390 		debugf0("  DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n",
1391 			(dct_data_intlv_enabled(pvt) ? "Enabled" : "Disabled"),
1392 			(dct_memory_cleared(pvt) ? "True " : "False "),
1393 			dct_sel_interleave_addr(pvt));
1394 	}
1395 
1396 	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1397 				    &pvt->dram_ctl_select_high);
1398 	if (err)
1399 		debugf0("Reading F10_DCTL_SEL_HIGH failed\n");
1400 }
1401 
1402 /*
1403  * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1404  * Interleaving Modes.
1405  */
1406 static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1407 				int hi_range_sel, u32 intlv_en)
1408 {
1409 	u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1410 
1411 	if (dct_ganging_enabled(pvt))
1412 		cs = 0;
1413 	else if (hi_range_sel)
1414 		cs = dct_sel_high;
1415 	else if (dct_interleave_enabled(pvt)) {
1416 		/*
1417 		 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1418 		 */
1419 		if (dct_sel_interleave_addr(pvt) == 0)
1420 			cs = sys_addr >> 6 & 1;
1421 		else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1422 			temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1423 
1424 			if (dct_sel_interleave_addr(pvt) & 1)
1425 				cs = (sys_addr >> 9 & 1) ^ temp;
1426 			else
1427 				cs = (sys_addr >> 6 & 1) ^ temp;
1428 		} else if (intlv_en & 4)
1429 			cs = sys_addr >> 15 & 1;
1430 		else if (intlv_en & 2)
1431 			cs = sys_addr >> 14 & 1;
1432 		else if (intlv_en & 1)
1433 			cs = sys_addr >> 13 & 1;
1434 		else
1435 			cs = sys_addr >> 12 & 1;
1436 	} else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1437 		cs = ~dct_sel_high & 1;
1438 	else
1439 		cs = 0;
1440 
1441 	return cs;
1442 }
1443 
1444 static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1445 {
1446 	if (intlv_en == 1)
1447 		return 1;
1448 	else if (intlv_en == 3)
1449 		return 2;
1450 	else if (intlv_en == 7)
1451 		return 3;
1452 
1453 	return 0;
1454 }
1455 
1456 /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1457 static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
1458 						 u32 dct_sel_base_addr,
1459 						 u64 dct_sel_base_off,
1460 						 u32 hole_valid, u32 hole_off,
1461 						 u64 dram_base)
1462 {
1463 	u64 chan_off;
1464 
1465 	if (hi_range_sel) {
1466 		if (!(dct_sel_base_addr & 0xFFFFF800) &&
1467 		   hole_valid && (sys_addr >= 0x100000000ULL))
1468 			chan_off = hole_off << 16;
1469 		else
1470 			chan_off = dct_sel_base_off;
1471 	} else {
1472 		if (hole_valid && (sys_addr >= 0x100000000ULL))
1473 			chan_off = hole_off << 16;
1474 		else
1475 			chan_off = dram_base & 0xFFFFF8000000ULL;
1476 	}
1477 
1478 	return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1479 			(chan_off & 0x0000FFFFFF800000ULL);
1480 }
1481 
1482 /* Hack for the time being - Can we get this from BIOS?? */
1483 #define	CH0SPARE_RANK	0
1484 #define	CH1SPARE_RANK	1
1485 
1486 /*
1487  * checks if the csrow passed in is marked as SPARED, if so returns the new
1488  * spare row
1489  */
1490 static inline int f10_process_possible_spare(int csrow,
1491 				u32 cs, struct amd64_pvt *pvt)
1492 {
1493 	u32 swap_done;
1494 	u32 bad_dram_cs;
1495 
1496 	/* Depending on channel, isolate respective SPARING info */
1497 	if (cs) {
1498 		swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1499 		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1500 		if (swap_done && (csrow == bad_dram_cs))
1501 			csrow = CH1SPARE_RANK;
1502 	} else {
1503 		swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1504 		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1505 		if (swap_done && (csrow == bad_dram_cs))
1506 			csrow = CH0SPARE_RANK;
1507 	}
1508 	return csrow;
1509 }
1510 
1511 /*
1512  * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1513  * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1514  *
1515  * Return:
1516  *	-EINVAL:  NOT FOUND
1517  *	0..csrow = Chip-Select Row
1518  */
1519 static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1520 {
1521 	struct mem_ctl_info *mci;
1522 	struct amd64_pvt *pvt;
1523 	u32 cs_base, cs_mask;
1524 	int cs_found = -EINVAL;
1525 	int csrow;
1526 
1527 	mci = mci_lookup[nid];
1528 	if (!mci)
1529 		return cs_found;
1530 
1531 	pvt = mci->pvt_info;
1532 
1533 	debugf1("InputAddr=0x%x  channelselect=%d\n", in_addr, cs);
1534 
1535 	for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
1536 
1537 		cs_base = amd64_get_dct_base(pvt, cs, csrow);
1538 		if (!(cs_base & K8_DCSB_CS_ENABLE))
1539 			continue;
1540 
1541 		/*
1542 		 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1543 		 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1544 		 * of the actual address.
1545 		 */
1546 		cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1547 
1548 		/*
1549 		 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1550 		 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1551 		 */
1552 		cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1553 
1554 		debugf1("    CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1555 				csrow, cs_base, cs_mask);
1556 
1557 		cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1558 
1559 		debugf1("              Final CSMask=0x%x\n", cs_mask);
1560 		debugf1("    (InputAddr & ~CSMask)=0x%x "
1561 				"(CSBase & ~CSMask)=0x%x\n",
1562 				(in_addr & ~cs_mask), (cs_base & ~cs_mask));
1563 
1564 		if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1565 			cs_found = f10_process_possible_spare(csrow, cs, pvt);
1566 
1567 			debugf1(" MATCH csrow=%d\n", cs_found);
1568 			break;
1569 		}
1570 	}
1571 	return cs_found;
1572 }
1573 
1574 /* For a given @dram_range, check if @sys_addr falls within it. */
1575 static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1576 				  u64 sys_addr, int *nid, int *chan_sel)
1577 {
1578 	int node_id, cs_found = -EINVAL, high_range = 0;
1579 	u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1580 	u32 hole_valid, tmp, dct_sel_base, channel;
1581 	u64 dram_base, chan_addr, dct_sel_base_off;
1582 
1583 	dram_base = pvt->dram_base[dram_range];
1584 	intlv_en = pvt->dram_IntlvEn[dram_range];
1585 
1586 	node_id = pvt->dram_DstNode[dram_range];
1587 	intlv_sel = pvt->dram_IntlvSel[dram_range];
1588 
1589 	debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1590 		dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1591 
1592 	/*
1593 	 * This assumes that one node's DHAR is the same as all the other
1594 	 * nodes' DHAR.
1595 	 */
1596 	hole_off = (pvt->dhar & 0x0000FF80);
1597 	hole_valid = (pvt->dhar & 0x1);
1598 	dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1599 
1600 	debugf1("   HoleOffset=0x%x  HoleValid=0x%x IntlvSel=0x%x\n",
1601 			hole_off, hole_valid, intlv_sel);
1602 
1603 	if (intlv_en ||
1604 	    (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1605 		return -EINVAL;
1606 
1607 	dct_sel_base = dct_sel_baseaddr(pvt);
1608 
1609 	/*
1610 	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1611 	 * select between DCT0 and DCT1.
1612 	 */
1613 	if (dct_high_range_enabled(pvt) &&
1614 	   !dct_ganging_enabled(pvt) &&
1615 	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1616 		high_range = 1;
1617 
1618 	channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1619 
1620 	chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1621 					     dct_sel_base_off, hole_valid,
1622 					     hole_off, dram_base);
1623 
1624 	intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1625 
1626 	/* remove Node ID (in case of memory interleaving) */
1627 	tmp = chan_addr & 0xFC0;
1628 
1629 	chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1630 
1631 	/* remove channel interleave and hash */
1632 	if (dct_interleave_enabled(pvt) &&
1633 	   !dct_high_range_enabled(pvt) &&
1634 	   !dct_ganging_enabled(pvt)) {
1635 		if (dct_sel_interleave_addr(pvt) != 1)
1636 			chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1637 		else {
1638 			tmp = chan_addr & 0xFC0;
1639 			chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1640 					| tmp;
1641 		}
1642 	}
1643 
1644 	debugf1("   (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1645 		chan_addr, (u32)(chan_addr >> 8));
1646 
1647 	cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1648 
1649 	if (cs_found >= 0) {
1650 		*nid = node_id;
1651 		*chan_sel = channel;
1652 	}
1653 	return cs_found;
1654 }
1655 
1656 static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1657 				       int *node, int *chan_sel)
1658 {
1659 	int dram_range, cs_found = -EINVAL;
1660 	u64 dram_base, dram_limit;
1661 
1662 	for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1663 
1664 		if (!pvt->dram_rw_en[dram_range])
1665 			continue;
1666 
1667 		dram_base = pvt->dram_base[dram_range];
1668 		dram_limit = pvt->dram_limit[dram_range];
1669 
1670 		if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1671 
1672 			cs_found = f10_match_to_this_node(pvt, dram_range,
1673 							  sys_addr, node,
1674 							  chan_sel);
1675 			if (cs_found >= 0)
1676 				break;
1677 		}
1678 	}
1679 	return cs_found;
1680 }
1681 
1682 /*
1683  * This the F10h reference code from AMD to map a @sys_addr to NodeID,
1684  * CSROW, Channel.
1685  *
1686  * The @sys_addr is usually an error address received from the hardware.
1687  */
1688 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1689 				     struct amd64_error_info_regs *info,
1690 				     u64 sys_addr)
1691 {
1692 	struct amd64_pvt *pvt = mci->pvt_info;
1693 	u32 page, offset;
1694 	unsigned short syndrome;
1695 	int nid, csrow, chan = 0;
1696 
1697 	csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1698 
1699 	if (csrow >= 0) {
1700 		error_address_to_page_and_offset(sys_addr, &page, &offset);
1701 
1702 		syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8;
1703 		syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh);
1704 
1705 		/*
1706 		 * Is CHIPKILL on? If so, then we can attempt to use the
1707 		 * syndrome to isolate which channel the error was on.
1708 		 */
1709 		if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
1710 			chan = get_channel_from_ecc_syndrome(syndrome);
1711 
1712 		if (chan >= 0) {
1713 			edac_mc_handle_ce(mci, page, offset, syndrome,
1714 					csrow, chan, EDAC_MOD_STR);
1715 		} else {
1716 			/*
1717 			 * Channel unknown, report all channels on this
1718 			 * CSROW as failed.
1719 			 */
1720 			for (chan = 0; chan < mci->csrows[csrow].nr_channels;
1721 								chan++) {
1722 					edac_mc_handle_ce(mci, page, offset,
1723 							syndrome,
1724 							csrow, chan,
1725 							EDAC_MOD_STR);
1726 			}
1727 		}
1728 
1729 	} else {
1730 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1731 	}
1732 }
1733 
1734 /*
1735  * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
1736  * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
1737  * indicates an empty DIMM slot, as reported by Hardware on empty slots.
1738  *
1739  * Normalize to 128MB by subracting 27 bit shift.
1740  */
1741 static int map_dbam_to_csrow_size(int index)
1742 {
1743 	int mega_bytes = 0;
1744 
1745 	if (index > 0 && index <= DBAM_MAX_VALUE)
1746 		mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));
1747 
1748 	return mega_bytes;
1749 }
1750 
1751 /*
1752  * debug routine to display the memory sizes of a DIMM (ganged or not) and it
1753  * CSROWs as well
1754  */
1755 static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
1756 					 int ganged)
1757 {
1758 	int dimm, size0, size1;
1759 	u32 dbam;
1760 	u32 *dcsb;
1761 
1762 	debugf1("  dbam%d: 0x%8.08x  CSROW is %s\n", ctrl,
1763 			ctrl ? pvt->dbam1 : pvt->dbam0,
1764 			ganged ? "GANGED - dbam1 not used" : "NON-GANGED");
1765 
1766 	dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1767 	dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1768 
1769 	/* Dump memory sizes for DIMM and its CSROWs */
1770 	for (dimm = 0; dimm < 4; dimm++) {
1771 
1772 		size0 = 0;
1773 		if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1774 			size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
1775 
1776 		size1 = 0;
1777 		if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1778 			size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
1779 
1780 		debugf1("     CTRL-%d DIMM-%d=%5dMB   CSROW-%d=%5dMB "
1781 				"CSROW-%d=%5dMB\n",
1782 				ctrl,
1783 				dimm,
1784 				size0 + size1,
1785 				dimm * 2,
1786 				size0,
1787 				dimm * 2 + 1,
1788 				size1);
1789 	}
1790 }
1791 
1792 /*
1793  * Very early hardware probe on pci_probe thread to determine if this module
1794  * supports the hardware.
1795  *
1796  * Return:
1797  *      0 for OK
1798  *      1 for error
1799  */
1800 static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
1801 {
1802 	int ret = 0;
1803 
1804 	/*
1805 	 * If we are on a DDR3 machine, we don't know yet if
1806 	 * we support that properly at this time
1807 	 */
1808 	if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
1809 	    (pvt->dchr1 & F10_DCHR_Ddr3Mode)) {
1810 
1811 		amd64_printk(KERN_WARNING,
1812 			"%s() This machine is running with DDR3 memory. "
1813 			"This is not currently supported. "
1814 			"DCHR0=0x%x DCHR1=0x%x\n",
1815 			__func__, pvt->dchr0, pvt->dchr1);
1816 
1817 		amd64_printk(KERN_WARNING,
1818 			"   Contact '%s' module MAINTAINER to help add"
1819 			" support.\n",
1820 			EDAC_MOD_STR);
1821 
1822 		ret = 1;
1823 
1824 	}
1825 	return ret;
1826 }
1827 
1828 /*
1829  * There currently are 3 types type of MC devices for AMD Athlon/Opterons
1830  * (as per PCI DEVICE_IDs):
1831  *
1832  * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
1833  * DEVICE ID, even though there is differences between the different Revisions
1834  * (CG,D,E,F).
1835  *
1836  * Family F10h and F11h.
1837  *
1838  */
1839 static struct amd64_family_type amd64_family_types[] = {
1840 	[K8_CPUS] = {
1841 		.ctl_name = "RevF",
1842 		.addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1843 		.misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1844 		.ops = {
1845 			.early_channel_count = k8_early_channel_count,
1846 			.get_error_address = k8_get_error_address,
1847 			.read_dram_base_limit = k8_read_dram_base_limit,
1848 			.map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1849 			.dbam_map_to_pages = k8_dbam_map_to_pages,
1850 		}
1851 	},
1852 	[F10_CPUS] = {
1853 		.ctl_name = "Family 10h",
1854 		.addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1855 		.misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1856 		.ops = {
1857 			.probe_valid_hardware = f10_probe_valid_hardware,
1858 			.early_channel_count = f10_early_channel_count,
1859 			.get_error_address = f10_get_error_address,
1860 			.read_dram_base_limit = f10_read_dram_base_limit,
1861 			.read_dram_ctl_register = f10_read_dram_ctl_register,
1862 			.map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1863 			.dbam_map_to_pages = f10_dbam_map_to_pages,
1864 		}
1865 	},
1866 	[F11_CPUS] = {
1867 		.ctl_name = "Family 11h",
1868 		.addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
1869 		.misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
1870 		.ops = {
1871 			.probe_valid_hardware = f10_probe_valid_hardware,
1872 			.early_channel_count = f10_early_channel_count,
1873 			.get_error_address = f10_get_error_address,
1874 			.read_dram_base_limit = f10_read_dram_base_limit,
1875 			.read_dram_ctl_register = f10_read_dram_ctl_register,
1876 			.map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1877 			.dbam_map_to_pages = f10_dbam_map_to_pages,
1878 		}
1879 	},
1880 };
1881 
1882 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1883 						unsigned int device,
1884 						struct pci_dev *related)
1885 {
1886 	struct pci_dev *dev = NULL;
1887 
1888 	dev = pci_get_device(vendor, device, dev);
1889 	while (dev) {
1890 		if ((dev->bus->number == related->bus->number) &&
1891 		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1892 			break;
1893 		dev = pci_get_device(vendor, device, dev);
1894 	}
1895 
1896 	return dev;
1897 }
1898 
1899 /*
1900  * syndrome mapping table for ECC ChipKill devices
1901  *
1902  * The comment in each row is the token (nibble) number that is in error.
1903  * The least significant nibble of the syndrome is the mask for the bits
1904  * that are in error (need to be toggled) for the particular nibble.
1905  *
1906  * Each row contains 16 entries.
1907  * The first entry (0th) is the channel number for that row of syndromes.
1908  * The remaining 15 entries are the syndromes for the respective Error
1909  * bit mask index.
1910  *
1911  * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
1912  * bit in error.
1913  * The 2nd index entry is 0x0010 that the second bit is damaged.
1914  * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
1915  * are damaged.
1916  * Thus so on until index 15, 0x1111, whose entry has the syndrome
1917  * indicating that all 4 bits are damaged.
1918  *
1919  * A search is performed on this table looking for a given syndrome.
1920  *
1921  * See the AMD documentation for ECC syndromes. This ECC table is valid
1922  * across all the versions of the AMD64 processors.
1923  *
1924  * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
1925  * COLUMN index, then search all ROWS of that column, looking for a match
1926  * with the input syndrome. The ROW value will be the token number.
1927  *
1928  * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
1929  * error.
1930  */
1931 #define NUMBER_ECC_ROWS  36
1932 static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
1933 	/* Channel 0 syndromes */
1934 	{/*0*/  0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
1935 	   0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
1936 	{/*1*/  0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
1937 	   0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
1938 	{/*2*/  0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
1939 	   0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
1940 	{/*3*/  0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
1941 	   0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
1942 	{/*4*/  0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
1943 	   0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
1944 	{/*5*/  0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
1945 	   0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
1946 	{/*6*/  0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
1947 	   0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
1948 	{/*7*/  0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
1949 	   0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
1950 	{/*8*/  0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
1951 	   0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
1952 	{/*9*/  0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
1953 	   0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
1954 	{/*a*/  0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
1955 	   0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
1956 	{/*b*/  0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
1957 	   0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
1958 	{/*c*/  0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
1959 	   0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
1960 	{/*d*/  0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
1961 	   0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
1962 	{/*e*/  0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
1963 	   0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
1964 	{/*f*/  0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
1965 	   0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
1966 
1967 	/* Channel 1 syndromes */
1968 	{/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
1969 	   0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
1970 	{/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
1971 	   0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
1972 	{/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
1973 	   0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
1974 	{/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
1975 	   0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
1976 	{/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
1977 	   0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
1978 	{/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
1979 	   0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
1980 	{/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
1981 	   0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
1982 	{/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
1983 	   0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
1984 	{/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
1985 	   0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
1986 	{/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
1987 	   0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
1988 	{/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
1989 	   0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
1990 	{/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
1991 	   0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
1992 	{/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
1993 	   0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
1994 	{/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
1995 	   0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
1996 	{/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
1997 	   0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
1998 	{/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
1999 	   0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
2000 
2001 	/* ECC bits are also in the set of tokens and they too can go bad
2002 	 * first 2 cover channel 0, while the second 2 cover channel 1
2003 	 */
2004 	{/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
2005 	   0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
2006 	{/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
2007 	   0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
2008 	{/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
2009 	   0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
2010 	{/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
2011 	   0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
2012 };
2013 
2014 /*
2015  * Given the syndrome argument, scan each of the channel tables for a syndrome
2016  * match. Depending on which table it is found, return the channel number.
2017  */
2018 static int get_channel_from_ecc_syndrome(unsigned short syndrome)
2019 {
2020 	int row;
2021 	int column;
2022 
2023 	/* Determine column to scan */
2024 	column = syndrome & 0xF;
2025 
2026 	/* Scan all rows, looking for syndrome, or end of table */
2027 	for (row = 0; row < NUMBER_ECC_ROWS; row++) {
2028 		if (ecc_chipkill_syndromes[row][column] == syndrome)
2029 			return ecc_chipkill_syndromes[row][0];
2030 	}
2031 
2032 	debugf0("syndrome(%x) not found\n", syndrome);
2033 	return -1;
2034 }
2035 
2036 /*
2037  * Check for valid error in the NB Status High register. If so, proceed to read
2038  * NB Status Low, NB Address Low and NB Address High registers and store data
2039  * into error structure.
2040  *
2041  * Returns:
2042  *	- 1: if hardware regs contains valid error info
2043  *	- 0: if no valid error is indicated
2044  */
2045 static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
2046 				     struct amd64_error_info_regs *regs)
2047 {
2048 	struct amd64_pvt *pvt;
2049 	struct pci_dev *misc_f3_ctl;
2050 	int err = 0;
2051 
2052 	pvt = mci->pvt_info;
2053 	misc_f3_ctl = pvt->misc_f3_ctl;
2054 
2055 	err = pci_read_config_dword(misc_f3_ctl, K8_NBSH, &regs->nbsh);
2056 	if (err)
2057 		goto err_reg;
2058 
2059 	if (!(regs->nbsh & K8_NBSH_VALID_BIT))
2060 		return 0;
2061 
2062 	/* valid error, read remaining error information registers */
2063 	err = pci_read_config_dword(misc_f3_ctl, K8_NBSL, &regs->nbsl);
2064 	if (err)
2065 		goto err_reg;
2066 
2067 	err = pci_read_config_dword(misc_f3_ctl, K8_NBEAL, &regs->nbeal);
2068 	if (err)
2069 		goto err_reg;
2070 
2071 	err = pci_read_config_dword(misc_f3_ctl, K8_NBEAH, &regs->nbeah);
2072 	if (err)
2073 		goto err_reg;
2074 
2075 	err = pci_read_config_dword(misc_f3_ctl, K8_NBCFG, &regs->nbcfg);
2076 	if (err)
2077 		goto err_reg;
2078 
2079 	return 1;
2080 
2081 err_reg:
2082 	debugf0("Reading error info register failed\n");
2083 	return 0;
2084 }
2085 
2086 /*
2087  * This function is called to retrieve the error data from hardware and store it
2088  * in the info structure.
2089  *
2090  * Returns:
2091  *	- 1: if a valid error is found
2092  *	- 0: if no error is found
2093  */
2094 static int amd64_get_error_info(struct mem_ctl_info *mci,
2095 				struct amd64_error_info_regs *info)
2096 {
2097 	struct amd64_pvt *pvt;
2098 	struct amd64_error_info_regs regs;
2099 
2100 	pvt = mci->pvt_info;
2101 
2102 	if (!amd64_get_error_info_regs(mci, info))
2103 		return 0;
2104 
2105 	/*
2106 	 * Here's the problem with the K8's EDAC reporting: There are four
2107 	 * registers which report pieces of error information. They are shared
2108 	 * between CEs and UEs. Furthermore, contrary to what is stated in the
2109 	 * BKDG, the overflow bit is never used! Every error always updates the
2110 	 * reporting registers.
2111 	 *
2112 	 * Can you see the race condition? All four error reporting registers
2113 	 * must be read before a new error updates them! There is no way to read
2114 	 * all four registers atomically. The best than can be done is to detect
2115 	 * that a race has occured and then report the error without any kind of
2116 	 * precision.
2117 	 *
2118 	 * What is still positive is that errors are still reported and thus
2119 	 * problems can still be detected - just not localized because the
2120 	 * syndrome and address are spread out across registers.
2121 	 *
2122 	 * Grrrrr!!!!!  Here's hoping that AMD fixes this in some future K8 rev.
2123 	 * UEs and CEs should have separate register sets with proper overflow
2124 	 * bits that are used! At very least the problem can be fixed by
2125 	 * honoring the ErrValid bit in 'nbsh' and not updating registers - just
2126 	 * set the overflow bit - unless the current error is CE and the new
2127 	 * error is UE which would be the only situation for overwriting the
2128 	 * current values.
2129 	 */
2130 
2131 	regs = *info;
2132 
2133 	/* Use info from the second read - most current */
2134 	if (unlikely(!amd64_get_error_info_regs(mci, info)))
2135 		return 0;
2136 
2137 	/* clear the error bits in hardware */
2138 	pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
2139 
2140 	/* Check for the possible race condition */
2141 	if ((regs.nbsh != info->nbsh) ||
2142 	     (regs.nbsl != info->nbsl) ||
2143 	     (regs.nbeah != info->nbeah) ||
2144 	     (regs.nbeal != info->nbeal)) {
2145 		amd64_mc_printk(mci, KERN_WARNING,
2146 				"hardware STATUS read access race condition "
2147 				"detected!\n");
2148 		return 0;
2149 	}
2150 	return 1;
2151 }
2152 
2153 static inline void amd64_decode_gart_tlb_error(struct mem_ctl_info *mci,
2154 					 struct amd64_error_info_regs *info)
2155 {
2156 	u32 err_code;
2157 	u32 ec_tt;		/* error code transaction type (2b) */
2158 	u32 ec_ll;		/* error code cache level (2b) */
2159 
2160 	err_code = EXTRACT_ERROR_CODE(info->nbsl);
2161 	ec_ll = EXTRACT_LL_CODE(err_code);
2162 	ec_tt = EXTRACT_TT_CODE(err_code);
2163 
2164 	amd64_mc_printk(mci, KERN_ERR,
2165 		     "GART TLB event: transaction type(%s), "
2166 		     "cache level(%s)\n", tt_msgs[ec_tt], ll_msgs[ec_ll]);
2167 }
2168 
2169 static inline void amd64_decode_mem_cache_error(struct mem_ctl_info *mci,
2170 				      struct amd64_error_info_regs *info)
2171 {
2172 	u32 err_code;
2173 	u32 ec_rrrr;		/* error code memory transaction (4b) */
2174 	u32 ec_tt;		/* error code transaction type (2b) */
2175 	u32 ec_ll;		/* error code cache level (2b) */
2176 
2177 	err_code = EXTRACT_ERROR_CODE(info->nbsl);
2178 	ec_ll = EXTRACT_LL_CODE(err_code);
2179 	ec_tt = EXTRACT_TT_CODE(err_code);
2180 	ec_rrrr = EXTRACT_RRRR_CODE(err_code);
2181 
2182 	amd64_mc_printk(mci, KERN_ERR,
2183 		     "cache hierarchy error: memory transaction type(%s), "
2184 		     "transaction type(%s), cache level(%s)\n",
2185 		     rrrr_msgs[ec_rrrr], tt_msgs[ec_tt], ll_msgs[ec_ll]);
2186 }
2187 
2188 
2189 /*
2190  * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
2191  * ADDRESS and process.
2192  */
2193 static void amd64_handle_ce(struct mem_ctl_info *mci,
2194 			    struct amd64_error_info_regs *info)
2195 {
2196 	struct amd64_pvt *pvt = mci->pvt_info;
2197 	u64 SystemAddress;
2198 
2199 	/* Ensure that the Error Address is VALID */
2200 	if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2201 		amd64_mc_printk(mci, KERN_ERR,
2202 			"HW has no ERROR_ADDRESS available\n");
2203 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
2204 		return;
2205 	}
2206 
2207 	SystemAddress = extract_error_address(mci, info);
2208 
2209 	amd64_mc_printk(mci, KERN_ERR,
2210 		"CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);
2211 
2212 	pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
2213 }
2214 
2215 /* Handle any Un-correctable Errors (UEs) */
2216 static void amd64_handle_ue(struct mem_ctl_info *mci,
2217 			    struct amd64_error_info_regs *info)
2218 {
2219 	int csrow;
2220 	u64 SystemAddress;
2221 	u32 page, offset;
2222 	struct mem_ctl_info *log_mci, *src_mci = NULL;
2223 
2224 	log_mci = mci;
2225 
2226 	if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2227 		amd64_mc_printk(mci, KERN_CRIT,
2228 			"HW has no ERROR_ADDRESS available\n");
2229 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2230 		return;
2231 	}
2232 
2233 	SystemAddress = extract_error_address(mci, info);
2234 
2235 	/*
2236 	 * Find out which node the error address belongs to. This may be
2237 	 * different from the node that detected the error.
2238 	 */
2239 	src_mci = find_mc_by_sys_addr(mci, SystemAddress);
2240 	if (!src_mci) {
2241 		amd64_mc_printk(mci, KERN_CRIT,
2242 			"ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
2243 			(unsigned long)SystemAddress);
2244 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2245 		return;
2246 	}
2247 
2248 	log_mci = src_mci;
2249 
2250 	csrow = sys_addr_to_csrow(log_mci, SystemAddress);
2251 	if (csrow < 0) {
2252 		amd64_mc_printk(mci, KERN_CRIT,
2253 			"ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
2254 			(unsigned long)SystemAddress);
2255 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2256 	} else {
2257 		error_address_to_page_and_offset(SystemAddress, &page, &offset);
2258 		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2259 	}
2260 }
2261 
2262 static void amd64_decode_bus_error(struct mem_ctl_info *mci,
2263 				   struct amd64_error_info_regs *info)
2264 {
2265 	u32 err_code, ext_ec;
2266 	u32 ec_pp;		/* error code participating processor (2p) */
2267 	u32 ec_to;		/* error code timed out (1b) */
2268 	u32 ec_rrrr;		/* error code memory transaction (4b) */
2269 	u32 ec_ii;		/* error code memory or I/O (2b) */
2270 	u32 ec_ll;		/* error code cache level (2b) */
2271 
2272 	ext_ec = EXTRACT_EXT_ERROR_CODE(info->nbsl);
2273 	err_code = EXTRACT_ERROR_CODE(info->nbsl);
2274 
2275 	ec_ll = EXTRACT_LL_CODE(err_code);
2276 	ec_ii = EXTRACT_II_CODE(err_code);
2277 	ec_rrrr = EXTRACT_RRRR_CODE(err_code);
2278 	ec_to = EXTRACT_TO_CODE(err_code);
2279 	ec_pp = EXTRACT_PP_CODE(err_code);
2280 
2281 	amd64_mc_printk(mci, KERN_ERR,
2282 		"BUS ERROR:\n"
2283 		"  time-out(%s) mem or i/o(%s)\n"
2284 		"  participating processor(%s)\n"
2285 		"  memory transaction type(%s)\n"
2286 		"  cache level(%s) Error Found by: %s\n",
2287 		to_msgs[ec_to],
2288 		ii_msgs[ec_ii],
2289 		pp_msgs[ec_pp],
2290 		rrrr_msgs[ec_rrrr],
2291 		ll_msgs[ec_ll],
2292 		(info->nbsh & K8_NBSH_ERR_SCRUBER) ?
2293 			"Scrubber" : "Normal Operation");
2294 
2295 	/* If this was an 'observed' error, early out */
2296 	if (ec_pp == K8_NBSL_PP_OBS)
2297 		return;		/* We aren't the node involved */
2298 
2299 	/* Parse out the extended error code for ECC events */
2300 	switch (ext_ec) {
2301 	/* F10 changed to one Extended ECC error code */
2302 	case F10_NBSL_EXT_ERR_RES:		/* Reserved field */
2303 	case F10_NBSL_EXT_ERR_ECC:		/* F10 ECC ext err code */
2304 		break;
2305 
2306 	default:
2307 		amd64_mc_printk(mci, KERN_ERR, "NOT ECC: no special error "
2308 					       "handling for this error\n");
2309 		return;
2310 	}
2311 
2312 	if (info->nbsh & K8_NBSH_CECC)
2313 		amd64_handle_ce(mci, info);
2314 	else if (info->nbsh & K8_NBSH_UECC)
2315 		amd64_handle_ue(mci, info);
2316 
2317 	/*
2318 	 * If main error is CE then overflow must be CE.  If main error is UE
2319 	 * then overflow is unknown.  We'll call the overflow a CE - if
2320 	 * panic_on_ue is set then we're already panic'ed and won't arrive
2321 	 * here. Else, then apparently someone doesn't think that UE's are
2322 	 * catastrophic.
2323 	 */
2324 	if (info->nbsh & K8_NBSH_OVERFLOW)
2325 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR
2326 					  "Error Overflow set");
2327 }
2328 
2329 int amd64_process_error_info(struct mem_ctl_info *mci,
2330 			     struct amd64_error_info_regs *info,
2331 			     int handle_errors)
2332 {
2333 	struct amd64_pvt *pvt;
2334 	struct amd64_error_info_regs *regs;
2335 	u32 err_code, ext_ec;
2336 	int gart_tlb_error = 0;
2337 
2338 	pvt = mci->pvt_info;
2339 
2340 	/* If caller doesn't want us to process the error, return */
2341 	if (!handle_errors)
2342 		return 1;
2343 
2344 	regs = info;
2345 
2346 	debugf1("NorthBridge ERROR: mci(0x%p)\n", mci);
2347 	debugf1("  MC node(%d) Error-Address(0x%.8x-%.8x)\n",
2348 		pvt->mc_node_id, regs->nbeah, regs->nbeal);
2349 	debugf1("  nbsh(0x%.8x) nbsl(0x%.8x)\n",
2350 		regs->nbsh, regs->nbsl);
2351 	debugf1("  Valid Error=%s Overflow=%s\n",
2352 		(regs->nbsh & K8_NBSH_VALID_BIT) ? "True" : "False",
2353 		(regs->nbsh & K8_NBSH_OVERFLOW) ? "True" : "False");
2354 	debugf1("  Err Uncorrected=%s MCA Error Reporting=%s\n",
2355 		(regs->nbsh & K8_NBSH_UNCORRECTED_ERR) ?
2356 			"True" : "False",
2357 		(regs->nbsh & K8_NBSH_ERR_ENABLE) ?
2358 			"True" : "False");
2359 	debugf1("  MiscErr Valid=%s ErrAddr Valid=%s PCC=%s\n",
2360 		(regs->nbsh & K8_NBSH_MISC_ERR_VALID) ?
2361 			"True" : "False",
2362 		(regs->nbsh & K8_NBSH_VALID_ERROR_ADDR) ?
2363 			"True" : "False",
2364 		(regs->nbsh & K8_NBSH_PCC) ?
2365 			"True" : "False");
2366 	debugf1("  CECC=%s UECC=%s Found by Scruber=%s\n",
2367 		(regs->nbsh & K8_NBSH_CECC) ?
2368 			"True" : "False",
2369 		(regs->nbsh & K8_NBSH_UECC) ?
2370 			"True" : "False",
2371 		(regs->nbsh & K8_NBSH_ERR_SCRUBER) ?
2372 			"True" : "False");
2373 	debugf1("  CORE0=%s CORE1=%s CORE2=%s CORE3=%s\n",
2374 		(regs->nbsh & K8_NBSH_CORE0) ? "True" : "False",
2375 		(regs->nbsh & K8_NBSH_CORE1) ? "True" : "False",
2376 		(regs->nbsh & K8_NBSH_CORE2) ? "True" : "False",
2377 		(regs->nbsh & K8_NBSH_CORE3) ? "True" : "False");
2378 
2379 
2380 	err_code = EXTRACT_ERROR_CODE(regs->nbsl);
2381 
2382 	/* Determine which error type:
2383 	 *	1) GART errors - non-fatal, developmental events
2384 	 *	2) MEMORY errors
2385 	 *	3) BUS errors
2386 	 *	4) Unknown error
2387 	 */
2388 	if (TEST_TLB_ERROR(err_code)) {
2389 		/*
2390 		 * GART errors are intended to help graphics driver developers
2391 		 * to detect bad GART PTEs. It is recommended by AMD to disable
2392 		 * GART table walk error reporting by default[1] (currently
2393 		 * being disabled in mce_cpu_quirks()) and according to the
2394 		 * comment in mce_cpu_quirks(), such GART errors can be
2395 		 * incorrectly triggered. We may see these errors anyway and
2396 		 * unless requested by the user, they won't be reported.
2397 		 *
2398 		 * [1] section 13.10.1 on BIOS and Kernel Developers Guide for
2399 		 *     AMD NPT family 0Fh processors
2400 		 */
2401 		if (report_gart_errors == 0)
2402 			return 1;
2403 
2404 		/*
2405 		 * Only if GART error reporting is requested should we generate
2406 		 * any logs.
2407 		 */
2408 		gart_tlb_error = 1;
2409 
2410 		debugf1("GART TLB error\n");
2411 		amd64_decode_gart_tlb_error(mci, info);
2412 	} else if (TEST_MEM_ERROR(err_code)) {
2413 		debugf1("Memory/Cache error\n");
2414 		amd64_decode_mem_cache_error(mci, info);
2415 	} else if (TEST_BUS_ERROR(err_code)) {
2416 		debugf1("Bus (Link/DRAM) error\n");
2417 		amd64_decode_bus_error(mci, info);
2418 	} else {
2419 		/* shouldn't reach here! */
2420 		amd64_mc_printk(mci, KERN_WARNING,
2421 			     "%s(): unknown MCE error 0x%x\n", __func__,
2422 			     err_code);
2423 	}
2424 
2425 	ext_ec = EXTRACT_EXT_ERROR_CODE(regs->nbsl);
2426 	amd64_mc_printk(mci, KERN_ERR,
2427 		"ExtErr=(0x%x) %s\n", ext_ec, ext_msgs[ext_ec]);
2428 
2429 	if (((ext_ec >= F10_NBSL_EXT_ERR_CRC &&
2430 			ext_ec <= F10_NBSL_EXT_ERR_TGT) ||
2431 			(ext_ec == F10_NBSL_EXT_ERR_RMW)) &&
2432 			EXTRACT_LDT_LINK(info->nbsh)) {
2433 
2434 		amd64_mc_printk(mci, KERN_ERR,
2435 			"Error on hypertransport link: %s\n",
2436 			htlink_msgs[
2437 			EXTRACT_LDT_LINK(info->nbsh)]);
2438 	}
2439 
2440 	/*
2441 	 * Check the UE bit of the NB status high register, if set generate some
2442 	 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2443 	 * If it was a GART error, skip that process.
2444 	 */
2445 	if (regs->nbsh & K8_NBSH_UNCORRECTED_ERR) {
2446 		amd64_mc_printk(mci, KERN_CRIT, "uncorrected error\n");
2447 		if (!gart_tlb_error)
2448 			edac_mc_handle_ue_no_info(mci, "UE bit is set\n");
2449 	}
2450 
2451 	if (regs->nbsh & K8_NBSH_PCC)
2452 		amd64_mc_printk(mci, KERN_CRIT,
2453 			"PCC (processor context corrupt) set\n");
2454 
2455 	return 1;
2456 }
2457 EXPORT_SYMBOL_GPL(amd64_process_error_info);
2458 
2459 /*
2460  * The main polling 'check' function, called FROM the edac core to perform the
2461  * error checking and if an error is encountered, error processing.
2462  */
2463 static void amd64_check(struct mem_ctl_info *mci)
2464 {
2465 	struct amd64_error_info_regs info;
2466 
2467 	if (amd64_get_error_info(mci, &info))
2468 		amd64_process_error_info(mci, &info, 1);
2469 }
2470 
2471 /*
2472  * Input:
2473  *	1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2474  *	2) AMD Family index value
2475  *
2476  * Ouput:
2477  *	Upon return of 0, the following filled in:
2478  *
2479  *		struct pvt->addr_f1_ctl
2480  *		struct pvt->misc_f3_ctl
2481  *
2482  *	Filled in with related device funcitions of 'dram_f2_ctl'
2483  *	These devices are "reserved" via the pci_get_device()
2484  *
2485  *	Upon return of 1 (error status):
2486  *
2487  *		Nothing reserved
2488  */
2489 static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2490 {
2491 	const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2492 
2493 	/* Reserve the ADDRESS MAP Device */
2494 	pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2495 						    amd64_dev->addr_f1_ctl,
2496 						    pvt->dram_f2_ctl);
2497 
2498 	if (!pvt->addr_f1_ctl) {
2499 		amd64_printk(KERN_ERR, "error address map device not found: "
2500 			     "vendor %x device 0x%x (broken BIOS?)\n",
2501 			     PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2502 		return 1;
2503 	}
2504 
2505 	/* Reserve the MISC Device */
2506 	pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2507 						    amd64_dev->misc_f3_ctl,
2508 						    pvt->dram_f2_ctl);
2509 
2510 	if (!pvt->misc_f3_ctl) {
2511 		pci_dev_put(pvt->addr_f1_ctl);
2512 		pvt->addr_f1_ctl = NULL;
2513 
2514 		amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2515 			     "vendor %x device 0x%x (broken BIOS?)\n",
2516 			     PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2517 		return 1;
2518 	}
2519 
2520 	debugf1("    Addr Map device PCI Bus ID:\t%s\n",
2521 		pci_name(pvt->addr_f1_ctl));
2522 	debugf1("    DRAM MEM-CTL PCI Bus ID:\t%s\n",
2523 		pci_name(pvt->dram_f2_ctl));
2524 	debugf1("    Misc device PCI Bus ID:\t%s\n",
2525 		pci_name(pvt->misc_f3_ctl));
2526 
2527 	return 0;
2528 }
2529 
2530 static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2531 {
2532 	pci_dev_put(pvt->addr_f1_ctl);
2533 	pci_dev_put(pvt->misc_f3_ctl);
2534 }
2535 
2536 /*
2537  * Retrieve the hardware registers of the memory controller (this includes the
2538  * 'Address Map' and 'Misc' device regs)
2539  */
2540 static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2541 {
2542 	u64 msr_val;
2543 	int dram, err = 0;
2544 
2545 	/*
2546 	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2547 	 * those are Read-As-Zero
2548 	 */
2549 	rdmsrl(MSR_K8_TOP_MEM1, msr_val);
2550 	pvt->top_mem = msr_val >> 23;
2551 	debugf0("  TOP_MEM=0x%08llx\n", pvt->top_mem);
2552 
2553 	/* check first whether TOP_MEM2 is enabled */
2554 	rdmsrl(MSR_K8_SYSCFG, msr_val);
2555 	if (msr_val & (1U << 21)) {
2556 		rdmsrl(MSR_K8_TOP_MEM2, msr_val);
2557 		pvt->top_mem2 = msr_val >> 23;
2558 		debugf0("  TOP_MEM2=0x%08llx\n", pvt->top_mem2);
2559 	} else
2560 		debugf0("  TOP_MEM2 disabled.\n");
2561 
2562 	amd64_cpu_display_info(pvt);
2563 
2564 	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
2565 	if (err)
2566 		goto err_reg;
2567 
2568 	if (pvt->ops->read_dram_ctl_register)
2569 		pvt->ops->read_dram_ctl_register(pvt);
2570 
2571 	for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2572 		/*
2573 		 * Call CPU specific READ function to get the DRAM Base and
2574 		 * Limit values from the DCT.
2575 		 */
2576 		pvt->ops->read_dram_base_limit(pvt, dram);
2577 
2578 		/*
2579 		 * Only print out debug info on rows with both R and W Enabled.
2580 		 * Normal processing, compiler should optimize this whole 'if'
2581 		 * debug output block away.
2582 		 */
2583 		if (pvt->dram_rw_en[dram] != 0) {
2584 			debugf1("  DRAM_BASE[%d]: 0x%8.08x-%8.08x "
2585 				"DRAM_LIMIT:  0x%8.08x-%8.08x\n",
2586 				dram,
2587 				(u32)(pvt->dram_base[dram] >> 32),
2588 				(u32)(pvt->dram_base[dram] & 0xFFFFFFFF),
2589 				(u32)(pvt->dram_limit[dram] >> 32),
2590 				(u32)(pvt->dram_limit[dram] & 0xFFFFFFFF));
2591 			debugf1("        IntlvEn=%s %s %s "
2592 				"IntlvSel=%d DstNode=%d\n",
2593 				pvt->dram_IntlvEn[dram] ?
2594 					"Enabled" : "Disabled",
2595 				(pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2596 				(pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2597 				pvt->dram_IntlvSel[dram],
2598 				pvt->dram_DstNode[dram]);
2599 		}
2600 	}
2601 
2602 	amd64_read_dct_base_mask(pvt);
2603 
2604 	err = pci_read_config_dword(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
2605 	if (err)
2606 		goto err_reg;
2607 
2608 	amd64_read_dbam_reg(pvt);
2609 
2610 	err = pci_read_config_dword(pvt->misc_f3_ctl,
2611 				F10_ONLINE_SPARE, &pvt->online_spare);
2612 	if (err)
2613 		goto err_reg;
2614 
2615 	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2616 	if (err)
2617 		goto err_reg;
2618 
2619 	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
2620 	if (err)
2621 		goto err_reg;
2622 
2623 	if (!dct_ganging_enabled(pvt)) {
2624 		err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1,
2625 						&pvt->dclr1);
2626 		if (err)
2627 			goto err_reg;
2628 
2629 		err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_1,
2630 						&pvt->dchr1);
2631 		if (err)
2632 			goto err_reg;
2633 	}
2634 
2635 	amd64_dump_misc_regs(pvt);
2636 
2637 err_reg:
2638 	debugf0("Reading an MC register failed\n");
2639 
2640 }
2641 
2642 /*
2643  * NOTE: CPU Revision Dependent code
2644  *
2645  * Input:
2646  *	@csrow_nr ChipSelect Row Number (0..CHIPSELECT_COUNT-1)
2647  *	k8 private pointer to -->
2648  *			DRAM Bank Address mapping register
2649  *			node_id
2650  *			DCL register where dual_channel_active is
2651  *
2652  * The DBAM register consists of 4 sets of 4 bits each definitions:
2653  *
2654  * Bits:	CSROWs
2655  * 0-3		CSROWs 0 and 1
2656  * 4-7		CSROWs 2 and 3
2657  * 8-11		CSROWs 4 and 5
2658  * 12-15	CSROWs 6 and 7
2659  *
2660  * Values range from: 0 to 15
2661  * The meaning of the values depends on CPU revision and dual-channel state,
2662  * see relevant BKDG more info.
2663  *
2664  * The memory controller provides for total of only 8 CSROWs in its current
2665  * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2666  * single channel or two (2) DIMMs in dual channel mode.
2667  *
2668  * The following code logic collapses the various tables for CSROW based on CPU
2669  * revision.
2670  *
2671  * Returns:
2672  *	The number of PAGE_SIZE pages on the specified CSROW number it
2673  *	encompasses
2674  *
2675  */
2676 static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2677 {
2678 	u32 dram_map, nr_pages;
2679 
2680 	/*
2681 	 * The math on this doesn't look right on the surface because x/2*4 can
2682 	 * be simplified to x*2 but this expression makes use of the fact that
2683 	 * it is integral math where 1/2=0. This intermediate value becomes the
2684 	 * number of bits to shift the DBAM register to extract the proper CSROW
2685 	 * field.
2686 	 */
2687 	dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2688 
2689 	nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map);
2690 
2691 	/*
2692 	 * If dual channel then double the memory size of single channel.
2693 	 * Channel count is 1 or 2
2694 	 */
2695 	nr_pages <<= (pvt->channel_count - 1);
2696 
2697 	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map);
2698 	debugf0("    nr_pages= %u  channel-count = %d\n",
2699 		nr_pages, pvt->channel_count);
2700 
2701 	return nr_pages;
2702 }
2703 
2704 /*
2705  * Initialize the array of csrow attribute instances, based on the values
2706  * from pci config hardware registers.
2707  */
2708 static int amd64_init_csrows(struct mem_ctl_info *mci)
2709 {
2710 	struct csrow_info *csrow;
2711 	struct amd64_pvt *pvt;
2712 	u64 input_addr_min, input_addr_max, sys_addr;
2713 	int i, err = 0, empty = 1;
2714 
2715 	pvt = mci->pvt_info;
2716 
2717 	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
2718 	if (err)
2719 		debugf0("Reading K8_NBCFG failed\n");
2720 
2721 	debugf0("NBCFG= 0x%x  CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2722 		(pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2723 		(pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2724 		);
2725 
2726 	for (i = 0; i < CHIPSELECT_COUNT; i++) {
2727 		csrow = &mci->csrows[i];
2728 
2729 		if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2730 			debugf1("----CSROW %d EMPTY for node %d\n", i,
2731 				pvt->mc_node_id);
2732 			continue;
2733 		}
2734 
2735 		debugf1("----CSROW %d VALID for MC node %d\n",
2736 			i, pvt->mc_node_id);
2737 
2738 		empty = 0;
2739 		csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2740 		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2741 		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2742 		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2743 		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2744 		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2745 		csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2746 		/* 8 bytes of resolution */
2747 
2748 		csrow->mtype = amd64_determine_memory_type(pvt);
2749 
2750 		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2751 		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2752 			(unsigned long)input_addr_min,
2753 			(unsigned long)input_addr_max);
2754 		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
2755 			(unsigned long)sys_addr, csrow->page_mask);
2756 		debugf1("    nr_pages: %u  first_page: 0x%lx "
2757 			"last_page: 0x%lx\n",
2758 			(unsigned)csrow->nr_pages,
2759 			csrow->first_page, csrow->last_page);
2760 
2761 		/*
2762 		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2763 		 */
2764 		if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2765 			csrow->edac_mode =
2766 			    (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2767 			    EDAC_S4ECD4ED : EDAC_SECDED;
2768 		else
2769 			csrow->edac_mode = EDAC_NONE;
2770 	}
2771 
2772 	return empty;
2773 }
2774 
2775 /*
2776  * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
2777  * enable it.
2778  */
2779 static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2780 {
2781 	struct amd64_pvt *pvt = mci->pvt_info;
2782 	const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
2783 	int cpu, idx = 0, err = 0;
2784 	struct msr msrs[cpumask_weight(cpumask)];
2785 	u32 value;
2786 	u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2787 
2788 	if (!ecc_enable_override)
2789 		return;
2790 
2791 	memset(msrs, 0, sizeof(msrs));
2792 
2793 	amd64_printk(KERN_WARNING,
2794 		"'ecc_enable_override' parameter is active, "
2795 		"Enabling AMD ECC hardware now: CAUTION\n");
2796 
2797 	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
2798 	if (err)
2799 		debugf0("Reading K8_NBCTL failed\n");
2800 
2801 	/* turn on UECCn and CECCEn bits */
2802 	pvt->old_nbctl = value & mask;
2803 	pvt->nbctl_mcgctl_saved = 1;
2804 
2805 	value |= mask;
2806 	pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2807 
2808 	rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
2809 
2810 	for_each_cpu(cpu, cpumask) {
2811 		if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
2812 			set_bit(idx, &pvt->old_mcgctl);
2813 
2814 		msrs[idx].l |= K8_MSR_MCGCTL_NBE;
2815 		idx++;
2816 	}
2817 	wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
2818 
2819 	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
2820 	if (err)
2821 		debugf0("Reading K8_NBCFG failed\n");
2822 
2823 	debugf0("NBCFG(1)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value,
2824 		(value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2825 		(value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2826 
2827 	if (!(value & K8_NBCFG_ECC_ENABLE)) {
2828 		amd64_printk(KERN_WARNING,
2829 			"This node reports that DRAM ECC is "
2830 			"currently Disabled; ENABLING now\n");
2831 
2832 		/* Attempt to turn on DRAM ECC Enable */
2833 		value |= K8_NBCFG_ECC_ENABLE;
2834 		pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2835 
2836 		err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
2837 		if (err)
2838 			debugf0("Reading K8_NBCFG failed\n");
2839 
2840 		if (!(value & K8_NBCFG_ECC_ENABLE)) {
2841 			amd64_printk(KERN_WARNING,
2842 				"Hardware rejects Enabling DRAM ECC checking\n"
2843 				"Check memory DIMM configuration\n");
2844 		} else {
2845 			amd64_printk(KERN_DEBUG,
2846 				"Hardware accepted DRAM ECC Enable\n");
2847 		}
2848 	}
2849 	debugf0("NBCFG(2)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value,
2850 		(value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2851 		(value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2852 
2853 	pvt->ctl_error_info.nbcfg = value;
2854 }
2855 
2856 static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2857 {
2858 	const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
2859 	int cpu, idx = 0, err = 0;
2860 	struct msr msrs[cpumask_weight(cpumask)];
2861 	u32 value;
2862 	u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2863 
2864 	if (!pvt->nbctl_mcgctl_saved)
2865 		return;
2866 
2867 	memset(msrs, 0, sizeof(msrs));
2868 
2869 	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
2870 	if (err)
2871 		debugf0("Reading K8_NBCTL failed\n");
2872 	value &= ~mask;
2873 	value |= pvt->old_nbctl;
2874 
2875 	/* restore the NB Enable MCGCTL bit */
2876 	pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2877 
2878 	rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
2879 
2880 	for_each_cpu(cpu, cpumask) {
2881 		msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
2882 		msrs[idx].l |=
2883 			test_bit(idx, &pvt->old_mcgctl) << K8_MSR_MCGCTL_NBE;
2884 		idx++;
2885 	}
2886 
2887 	wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
2888 }
2889 
2890 static void check_mcg_ctl(void *ret)
2891 {
2892 	u64 msr_val = 0;
2893 	u8 nbe;
2894 
2895 	rdmsrl(MSR_IA32_MCG_CTL, msr_val);
2896 	nbe = msr_val & K8_MSR_MCGCTL_NBE;
2897 
2898 	debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2899 		raw_smp_processor_id(), msr_val,
2900 		(nbe ? "enabled" : "disabled"));
2901 
2902 	if (!nbe)
2903 		*(int *)ret = 0;
2904 }
2905 
2906 /* check MCG_CTL on all the cpus on this node */
2907 static int amd64_mcg_ctl_enabled_on_cpus(const cpumask_t *mask)
2908 {
2909 	int ret = 1;
2910 	preempt_disable();
2911 	smp_call_function_many(mask, check_mcg_ctl, &ret, 1);
2912 	preempt_enable();
2913 
2914 	return ret;
2915 }
2916 
2917 /*
2918  * EDAC requires that the BIOS have ECC enabled before taking over the
2919  * processing of ECC errors. This is because the BIOS can properly initialize
2920  * the memory system completely. A command line option allows to force-enable
2921  * hardware ECC later in amd64_enable_ecc_error_reporting().
2922  */
2923 static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2924 {
2925 	u32 value;
2926 	int err = 0, ret = 0;
2927 	u8 ecc_enabled = 0;
2928 
2929 	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
2930 	if (err)
2931 		debugf0("Reading K8_NBCTL failed\n");
2932 
2933 	ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
2934 
2935 	ret = amd64_mcg_ctl_enabled_on_cpus(cpumask_of_node(pvt->mc_node_id));
2936 
2937 	debugf0("K8_NBCFG=0x%x,  DRAM ECC is %s\n", value,
2938 			(value & K8_NBCFG_ECC_ENABLE ? "enabled" : "disabled"));
2939 
2940 	if (!ecc_enabled || !ret) {
2941 		if (!ecc_enabled) {
2942 			amd64_printk(KERN_WARNING, "This node reports that "
2943 						   "Memory ECC is currently "
2944 						   "disabled.\n");
2945 
2946 			amd64_printk(KERN_WARNING, "bit 0x%lx in register "
2947 				"F3x%x of the MISC_CONTROL device (%s) "
2948 				"should be enabled\n", K8_NBCFG_ECC_ENABLE,
2949 				K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2950 		}
2951 		if (!ret) {
2952 			amd64_printk(KERN_WARNING, "bit 0x%016lx in MSR 0x%08x "
2953 					"of node %d should be enabled\n",
2954 					K8_MSR_MCGCTL_NBE, MSR_IA32_MCG_CTL,
2955 					pvt->mc_node_id);
2956 		}
2957 		if (!ecc_enable_override) {
2958 			amd64_printk(KERN_WARNING, "WARNING: ECC is NOT "
2959 				"currently enabled by the BIOS. Module "
2960 				"will NOT be loaded.\n"
2961 				"    Either Enable ECC in the BIOS, "
2962 				"or use the 'ecc_enable_override' "
2963 				"parameter.\n"
2964 				"    Might be a BIOS bug, if BIOS says "
2965 				"ECC is enabled\n"
2966 				"    Use of the override can cause "
2967 				"unknown side effects.\n");
2968 			ret = -ENODEV;
2969 		}
2970 	} else {
2971 		amd64_printk(KERN_INFO,
2972 			"ECC is enabled by BIOS, Proceeding "
2973 			"with EDAC module initialization\n");
2974 
2975 		/* CLEAR the override, since BIOS controlled it */
2976 		ecc_enable_override = 0;
2977 	}
2978 
2979 	return ret;
2980 }
2981 
2982 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2983 					  ARRAY_SIZE(amd64_inj_attrs) +
2984 					  1];
2985 
2986 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2987 
2988 static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2989 {
2990 	unsigned int i = 0, j = 0;
2991 
2992 	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2993 		sysfs_attrs[i] = amd64_dbg_attrs[i];
2994 
2995 	for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2996 		sysfs_attrs[i] = amd64_inj_attrs[j];
2997 
2998 	sysfs_attrs[i] = terminator;
2999 
3000 	mci->mc_driver_sysfs_attributes = sysfs_attrs;
3001 }
3002 
3003 static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
3004 {
3005 	struct amd64_pvt *pvt = mci->pvt_info;
3006 
3007 	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
3008 	mci->edac_ctl_cap	= EDAC_FLAG_NONE;
3009 	mci->edac_cap		= EDAC_FLAG_NONE;
3010 
3011 	if (pvt->nbcap & K8_NBCAP_SECDED)
3012 		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3013 
3014 	if (pvt->nbcap & K8_NBCAP_CHIPKILL)
3015 		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3016 
3017 	mci->edac_cap		= amd64_determine_edac_cap(pvt);
3018 	mci->mod_name		= EDAC_MOD_STR;
3019 	mci->mod_ver		= EDAC_AMD64_VERSION;
3020 	mci->ctl_name		= get_amd_family_name(pvt->mc_type_index);
3021 	mci->dev_name		= pci_name(pvt->dram_f2_ctl);
3022 	mci->ctl_page_to_phys	= NULL;
3023 
3024 	/* IMPORTANT: Set the polling 'check' function in this module */
3025 	mci->edac_check		= amd64_check;
3026 
3027 	/* memory scrubber interface */
3028 	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
3029 	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
3030 }
3031 
3032 /*
3033  * Init stuff for this DRAM Controller device.
3034  *
3035  * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
3036  * Space feature MUST be enabled on ALL Processors prior to actually reading
3037  * from the ECS registers. Since the loading of the module can occur on any
3038  * 'core', and cores don't 'see' all the other processors ECS data when the
3039  * others are NOT enabled. Our solution is to first enable ECS access in this
3040  * routine on all processors, gather some data in a amd64_pvt structure and
3041  * later come back in a finish-setup function to perform that final
3042  * initialization. See also amd64_init_2nd_stage() for that.
3043  */
3044 static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
3045 				    int mc_type_index)
3046 {
3047 	struct amd64_pvt *pvt = NULL;
3048 	int err = 0, ret;
3049 
3050 	ret = -ENOMEM;
3051 	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
3052 	if (!pvt)
3053 		goto err_exit;
3054 
3055 	pvt->mc_node_id = get_mc_node_id_from_pdev(dram_f2_ctl);
3056 
3057 	pvt->dram_f2_ctl	= dram_f2_ctl;
3058 	pvt->ext_model		= boot_cpu_data.x86_model >> 4;
3059 	pvt->mc_type_index	= mc_type_index;
3060 	pvt->ops		= family_ops(mc_type_index);
3061 	pvt->old_mcgctl		= 0;
3062 
3063 	/*
3064 	 * We have the dram_f2_ctl device as an argument, now go reserve its
3065 	 * sibling devices from the PCI system.
3066 	 */
3067 	ret = -ENODEV;
3068 	err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
3069 	if (err)
3070 		goto err_free;
3071 
3072 	ret = -EINVAL;
3073 	err = amd64_check_ecc_enabled(pvt);
3074 	if (err)
3075 		goto err_put;
3076 
3077 	/*
3078 	 * Key operation here: setup of HW prior to performing ops on it. Some
3079 	 * setup is required to access ECS data. After this is performed, the
3080 	 * 'teardown' function must be called upon error and normal exit paths.
3081 	 */
3082 	if (boot_cpu_data.x86 >= 0x10)
3083 		amd64_setup(pvt);
3084 
3085 	/*
3086 	 * Save the pointer to the private data for use in 2nd initialization
3087 	 * stage
3088 	 */
3089 	pvt_lookup[pvt->mc_node_id] = pvt;
3090 
3091 	return 0;
3092 
3093 err_put:
3094 	amd64_free_mc_sibling_devices(pvt);
3095 
3096 err_free:
3097 	kfree(pvt);
3098 
3099 err_exit:
3100 	return ret;
3101 }
3102 
3103 /*
3104  * This is the finishing stage of the init code. Needs to be performed after all
3105  * MCs' hardware have been prepped for accessing extended config space.
3106  */
3107 static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
3108 {
3109 	int node_id = pvt->mc_node_id;
3110 	struct mem_ctl_info *mci;
3111 	int ret, err = 0;
3112 
3113 	amd64_read_mc_registers(pvt);
3114 
3115 	ret = -ENODEV;
3116 	if (pvt->ops->probe_valid_hardware) {
3117 		err = pvt->ops->probe_valid_hardware(pvt);
3118 		if (err)
3119 			goto err_exit;
3120 	}
3121 
3122 	/*
3123 	 * We need to determine how many memory channels there are. Then use
3124 	 * that information for calculating the size of the dynamic instance
3125 	 * tables in the 'mci' structure
3126 	 */
3127 	pvt->channel_count = pvt->ops->early_channel_count(pvt);
3128 	if (pvt->channel_count < 0)
3129 		goto err_exit;
3130 
3131 	ret = -ENOMEM;
3132 	mci = edac_mc_alloc(0, CHIPSELECT_COUNT, pvt->channel_count, node_id);
3133 	if (!mci)
3134 		goto err_exit;
3135 
3136 	mci->pvt_info = pvt;
3137 
3138 	mci->dev = &pvt->dram_f2_ctl->dev;
3139 	amd64_setup_mci_misc_attributes(mci);
3140 
3141 	if (amd64_init_csrows(mci))
3142 		mci->edac_cap = EDAC_FLAG_NONE;
3143 
3144 	amd64_enable_ecc_error_reporting(mci);
3145 	amd64_set_mc_sysfs_attributes(mci);
3146 
3147 	ret = -ENODEV;
3148 	if (edac_mc_add_mc(mci)) {
3149 		debugf1("failed edac_mc_add_mc()\n");
3150 		goto err_add_mc;
3151 	}
3152 
3153 	mci_lookup[node_id] = mci;
3154 	pvt_lookup[node_id] = NULL;
3155 	return 0;
3156 
3157 err_add_mc:
3158 	edac_mc_free(mci);
3159 
3160 err_exit:
3161 	debugf0("failure to init 2nd stage: ret=%d\n", ret);
3162 
3163 	amd64_restore_ecc_error_reporting(pvt);
3164 
3165 	if (boot_cpu_data.x86 > 0xf)
3166 		amd64_teardown(pvt);
3167 
3168 	amd64_free_mc_sibling_devices(pvt);
3169 
3170 	kfree(pvt_lookup[pvt->mc_node_id]);
3171 	pvt_lookup[node_id] = NULL;
3172 
3173 	return ret;
3174 }
3175 
3176 
3177 static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
3178 				 const struct pci_device_id *mc_type)
3179 {
3180 	int ret = 0;
3181 
3182 	debugf0("(MC node=%d,mc_type='%s')\n",
3183 		get_mc_node_id_from_pdev(pdev),
3184 		get_amd_family_name(mc_type->driver_data));
3185 
3186 	ret = pci_enable_device(pdev);
3187 	if (ret < 0)
3188 		ret = -EIO;
3189 	else
3190 		ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
3191 
3192 	if (ret < 0)
3193 		debugf0("ret=%d\n", ret);
3194 
3195 	return ret;
3196 }
3197 
3198 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
3199 {
3200 	struct mem_ctl_info *mci;
3201 	struct amd64_pvt *pvt;
3202 
3203 	/* Remove from EDAC CORE tracking list */
3204 	mci = edac_mc_del_mc(&pdev->dev);
3205 	if (!mci)
3206 		return;
3207 
3208 	pvt = mci->pvt_info;
3209 
3210 	amd64_restore_ecc_error_reporting(pvt);
3211 
3212 	if (boot_cpu_data.x86 > 0xf)
3213 		amd64_teardown(pvt);
3214 
3215 	amd64_free_mc_sibling_devices(pvt);
3216 
3217 	kfree(pvt);
3218 	mci->pvt_info = NULL;
3219 
3220 	mci_lookup[pvt->mc_node_id] = NULL;
3221 
3222 	/* Free the EDAC CORE resources */
3223 	edac_mc_free(mci);
3224 }
3225 
3226 /*
3227  * This table is part of the interface for loading drivers for PCI devices. The
3228  * PCI core identifies what devices are on a system during boot, and then
3229  * inquiry this table to see if this driver is for a given device found.
3230  */
3231 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
3232 	{
3233 		.vendor		= PCI_VENDOR_ID_AMD,
3234 		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
3235 		.subvendor	= PCI_ANY_ID,
3236 		.subdevice	= PCI_ANY_ID,
3237 		.class		= 0,
3238 		.class_mask	= 0,
3239 		.driver_data	= K8_CPUS
3240 	},
3241 	{
3242 		.vendor		= PCI_VENDOR_ID_AMD,
3243 		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
3244 		.subvendor	= PCI_ANY_ID,
3245 		.subdevice	= PCI_ANY_ID,
3246 		.class		= 0,
3247 		.class_mask	= 0,
3248 		.driver_data	= F10_CPUS
3249 	},
3250 	{
3251 		.vendor		= PCI_VENDOR_ID_AMD,
3252 		.device		= PCI_DEVICE_ID_AMD_11H_NB_DRAM,
3253 		.subvendor	= PCI_ANY_ID,
3254 		.subdevice	= PCI_ANY_ID,
3255 		.class		= 0,
3256 		.class_mask	= 0,
3257 		.driver_data	= F11_CPUS
3258 	},
3259 	{0, }
3260 };
3261 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
3262 
3263 static struct pci_driver amd64_pci_driver = {
3264 	.name		= EDAC_MOD_STR,
3265 	.probe		= amd64_init_one_instance,
3266 	.remove		= __devexit_p(amd64_remove_one_instance),
3267 	.id_table	= amd64_pci_table,
3268 };
3269 
3270 static void amd64_setup_pci_device(void)
3271 {
3272 	struct mem_ctl_info *mci;
3273 	struct amd64_pvt *pvt;
3274 
3275 	if (amd64_ctl_pci)
3276 		return;
3277 
3278 	mci = mci_lookup[0];
3279 	if (mci) {
3280 
3281 		pvt = mci->pvt_info;
3282 		amd64_ctl_pci =
3283 			edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
3284 						    EDAC_MOD_STR);
3285 
3286 		if (!amd64_ctl_pci) {
3287 			pr_warning("%s(): Unable to create PCI control\n",
3288 				   __func__);
3289 
3290 			pr_warning("%s(): PCI error report via EDAC not set\n",
3291 				   __func__);
3292 			}
3293 	}
3294 }
3295 
3296 static int __init amd64_edac_init(void)
3297 {
3298 	int nb, err = -ENODEV;
3299 
3300 	edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
3301 
3302 	opstate_init();
3303 
3304 	if (cache_k8_northbridges() < 0)
3305 		goto err_exit;
3306 
3307 	err = pci_register_driver(&amd64_pci_driver);
3308 	if (err)
3309 		return err;
3310 
3311 	/*
3312 	 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
3313 	 * amd64_pvt structs. These will be used in the 2nd stage init function
3314 	 * to finish initialization of the MC instances.
3315 	 */
3316 	for (nb = 0; nb < num_k8_northbridges; nb++) {
3317 		if (!pvt_lookup[nb])
3318 			continue;
3319 
3320 		err = amd64_init_2nd_stage(pvt_lookup[nb]);
3321 		if (err)
3322 			goto err_exit;
3323 	}
3324 
3325 	amd64_setup_pci_device();
3326 
3327 	return 0;
3328 
3329 err_exit:
3330 	debugf0("'finish_setup' stage failed\n");
3331 	pci_unregister_driver(&amd64_pci_driver);
3332 
3333 	return err;
3334 }
3335 
3336 static void __exit amd64_edac_exit(void)
3337 {
3338 	if (amd64_ctl_pci)
3339 		edac_pci_release_generic_ctl(amd64_ctl_pci);
3340 
3341 	pci_unregister_driver(&amd64_pci_driver);
3342 }
3343 
3344 module_init(amd64_edac_init);
3345 module_exit(amd64_edac_exit);
3346 
3347 MODULE_LICENSE("GPL");
3348 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3349 		"Dave Peterson, Thayne Harbaugh");
3350 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3351 		EDAC_AMD64_VERSION);
3352 
3353 module_param(edac_op_state, int, 0444);
3354 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3355