1 #include "amd64_edac.h" 2 #include <asm/k8.h> 3 4 static struct edac_pci_ctl_info *amd64_ctl_pci; 5 6 static int report_gart_errors; 7 module_param(report_gart_errors, int, 0644); 8 9 /* 10 * Set by command line parameter. If BIOS has enabled the ECC, this override is 11 * cleared to prevent re-enabling the hardware by this driver. 12 */ 13 static int ecc_enable_override; 14 module_param(ecc_enable_override, int, 0644); 15 16 /* Lookup table for all possible MC control instances */ 17 struct amd64_pvt; 18 static struct mem_ctl_info *mci_lookup[MAX_NUMNODES]; 19 static struct amd64_pvt *pvt_lookup[MAX_NUMNODES]; 20 21 /* 22 * Memory scrubber control interface. For K8, memory scrubbing is handled by 23 * hardware and can involve L2 cache, dcache as well as the main memory. With 24 * F10, this is extended to L3 cache scrubbing on CPU models sporting that 25 * functionality. 26 * 27 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks 28 * (dram) over to cache lines. This is nasty, so we will use bandwidth in 29 * bytes/sec for the setting. 30 * 31 * Currently, we only do dram scrubbing. If the scrubbing is done in software on 32 * other archs, we might not have access to the caches directly. 33 */ 34 35 /* 36 * scan the scrub rate mapping table for a close or matching bandwidth value to 37 * issue. If requested is too big, then use last maximum value found. 38 */ 39 static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, 40 u32 min_scrubrate) 41 { 42 u32 scrubval; 43 int i; 44 45 /* 46 * map the configured rate (new_bw) to a value specific to the AMD64 47 * memory controller and apply to register. Search for the first 48 * bandwidth entry that is greater or equal than the setting requested 49 * and program that. If at last entry, turn off DRAM scrubbing. 50 */ 51 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { 52 /* 53 * skip scrub rates which aren't recommended 54 * (see F10 BKDG, F3x58) 55 */ 56 if (scrubrates[i].scrubval < min_scrubrate) 57 continue; 58 59 if (scrubrates[i].bandwidth <= new_bw) 60 break; 61 62 /* 63 * if no suitable bandwidth found, turn off DRAM scrubbing 64 * entirely by falling back to the last element in the 65 * scrubrates array. 66 */ 67 } 68 69 scrubval = scrubrates[i].scrubval; 70 if (scrubval) 71 edac_printk(KERN_DEBUG, EDAC_MC, 72 "Setting scrub rate bandwidth: %u\n", 73 scrubrates[i].bandwidth); 74 else 75 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n"); 76 77 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F); 78 79 return 0; 80 } 81 82 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth) 83 { 84 struct amd64_pvt *pvt = mci->pvt_info; 85 u32 min_scrubrate = 0x0; 86 87 switch (boot_cpu_data.x86) { 88 case 0xf: 89 min_scrubrate = K8_MIN_SCRUB_RATE_BITS; 90 break; 91 case 0x10: 92 min_scrubrate = F10_MIN_SCRUB_RATE_BITS; 93 break; 94 case 0x11: 95 min_scrubrate = F11_MIN_SCRUB_RATE_BITS; 96 break; 97 98 default: 99 amd64_printk(KERN_ERR, "Unsupported family!\n"); 100 break; 101 } 102 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth, 103 min_scrubrate); 104 } 105 106 static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw) 107 { 108 struct amd64_pvt *pvt = mci->pvt_info; 109 u32 scrubval = 0; 110 int status = -1, i, ret = 0; 111 112 ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval); 113 if (ret) 114 debugf0("Reading K8_SCRCTRL failed\n"); 115 116 scrubval = scrubval & 0x001F; 117 118 edac_printk(KERN_DEBUG, EDAC_MC, 119 "pci-read, sdram scrub control value: %d \n", scrubval); 120 121 for (i = 0; ARRAY_SIZE(scrubrates); i++) { 122 if (scrubrates[i].scrubval == scrubval) { 123 *bw = scrubrates[i].bandwidth; 124 status = 0; 125 break; 126 } 127 } 128 129 return status; 130 } 131 132 /* Map from a CSROW entry to the mask entry that operates on it */ 133 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow) 134 { 135 return csrow >> (pvt->num_dcsm >> 3); 136 } 137 138 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */ 139 static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow) 140 { 141 if (dct == 0) 142 return pvt->dcsb0[csrow]; 143 else 144 return pvt->dcsb1[csrow]; 145 } 146 147 /* 148 * Return the 'mask' address the i'th CS entry. This function is needed because 149 * there number of DCSM registers on Rev E and prior vs Rev F and later is 150 * different. 151 */ 152 static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow) 153 { 154 if (dct == 0) 155 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)]; 156 else 157 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)]; 158 } 159 160 161 /* 162 * In *base and *limit, pass back the full 40-bit base and limit physical 163 * addresses for the node given by node_id. This information is obtained from 164 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The 165 * base and limit addresses are of type SysAddr, as defined at the start of 166 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses 167 * in the address range they represent. 168 */ 169 static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id, 170 u64 *base, u64 *limit) 171 { 172 *base = pvt->dram_base[node_id]; 173 *limit = pvt->dram_limit[node_id]; 174 } 175 176 /* 177 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated 178 * with node_id 179 */ 180 static int amd64_base_limit_match(struct amd64_pvt *pvt, 181 u64 sys_addr, int node_id) 182 { 183 u64 base, limit, addr; 184 185 amd64_get_base_and_limit(pvt, node_id, &base, &limit); 186 187 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be 188 * all ones if the most significant implemented address bit is 1. 189 * Here we discard bits 63-40. See section 3.4.2 of AMD publication 190 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 191 * Application Programming. 192 */ 193 addr = sys_addr & 0x000000ffffffffffull; 194 195 return (addr >= base) && (addr <= limit); 196 } 197 198 /* 199 * Attempt to map a SysAddr to a node. On success, return a pointer to the 200 * mem_ctl_info structure for the node that the SysAddr maps to. 201 * 202 * On failure, return NULL. 203 */ 204 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, 205 u64 sys_addr) 206 { 207 struct amd64_pvt *pvt; 208 int node_id; 209 u32 intlv_en, bits; 210 211 /* 212 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section 213 * 3.4.4.2) registers to map the SysAddr to a node ID. 214 */ 215 pvt = mci->pvt_info; 216 217 /* 218 * The value of this field should be the same for all DRAM Base 219 * registers. Therefore we arbitrarily choose to read it from the 220 * register for node 0. 221 */ 222 intlv_en = pvt->dram_IntlvEn[0]; 223 224 if (intlv_en == 0) { 225 for (node_id = 0; ; ) { 226 if (amd64_base_limit_match(pvt, sys_addr, node_id)) 227 break; 228 229 if (++node_id >= DRAM_REG_COUNT) 230 goto err_no_match; 231 } 232 goto found; 233 } 234 235 if (unlikely((intlv_en != (0x01 << 8)) && 236 (intlv_en != (0x03 << 8)) && 237 (intlv_en != (0x07 << 8)))) { 238 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from " 239 "IntlvEn field of DRAM Base Register for node 0: " 240 "This probably indicates a BIOS bug.\n", intlv_en); 241 return NULL; 242 } 243 244 bits = (((u32) sys_addr) >> 12) & intlv_en; 245 246 for (node_id = 0; ; ) { 247 if ((pvt->dram_limit[node_id] & intlv_en) == bits) 248 break; /* intlv_sel field matches */ 249 250 if (++node_id >= DRAM_REG_COUNT) 251 goto err_no_match; 252 } 253 254 /* sanity test for sys_addr */ 255 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) { 256 amd64_printk(KERN_WARNING, 257 "%s(): sys_addr 0x%lx falls outside base/limit " 258 "address range for node %d with node interleaving " 259 "enabled.\n", __func__, (unsigned long)sys_addr, 260 node_id); 261 return NULL; 262 } 263 264 found: 265 return edac_mc_find(node_id); 266 267 err_no_match: 268 debugf2("sys_addr 0x%lx doesn't match any node\n", 269 (unsigned long)sys_addr); 270 271 return NULL; 272 } 273 274 /* 275 * Extract the DRAM CS base address from selected csrow register. 276 */ 277 static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow) 278 { 279 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) << 280 pvt->dcs_shift; 281 } 282 283 /* 284 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way. 285 */ 286 static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow) 287 { 288 u64 dcsm_bits, other_bits; 289 u64 mask; 290 291 /* Extract bits from DRAM CS Mask. */ 292 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask; 293 294 other_bits = pvt->dcsm_mask; 295 other_bits = ~(other_bits << pvt->dcs_shift); 296 297 /* 298 * The extracted bits from DCSM belong in the spaces represented by 299 * the cleared bits in other_bits. 300 */ 301 mask = (dcsm_bits << pvt->dcs_shift) | other_bits; 302 303 return mask; 304 } 305 306 /* 307 * @input_addr is an InputAddr associated with the node given by mci. Return the 308 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). 309 */ 310 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) 311 { 312 struct amd64_pvt *pvt; 313 int csrow; 314 u64 base, mask; 315 316 pvt = mci->pvt_info; 317 318 /* 319 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS 320 * base/mask register pair, test the condition shown near the start of 321 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E). 322 */ 323 for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) { 324 325 /* This DRAM chip select is disabled on this node */ 326 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0) 327 continue; 328 329 base = base_from_dct_base(pvt, csrow); 330 mask = ~mask_from_dct_mask(pvt, csrow); 331 332 if ((input_addr & mask) == (base & mask)) { 333 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n", 334 (unsigned long)input_addr, csrow, 335 pvt->mc_node_id); 336 337 return csrow; 338 } 339 } 340 341 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n", 342 (unsigned long)input_addr, pvt->mc_node_id); 343 344 return -1; 345 } 346 347 /* 348 * Return the base value defined by the DRAM Base register for the node 349 * represented by mci. This function returns the full 40-bit value despite the 350 * fact that the register only stores bits 39-24 of the value. See section 351 * 3.4.4.1 (BKDG #26094, K8, revA-E) 352 */ 353 static inline u64 get_dram_base(struct mem_ctl_info *mci) 354 { 355 struct amd64_pvt *pvt = mci->pvt_info; 356 357 return pvt->dram_base[pvt->mc_node_id]; 358 } 359 360 /* 361 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) 362 * for the node represented by mci. Info is passed back in *hole_base, 363 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if 364 * info is invalid. Info may be invalid for either of the following reasons: 365 * 366 * - The revision of the node is not E or greater. In this case, the DRAM Hole 367 * Address Register does not exist. 368 * 369 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, 370 * indicating that its contents are not valid. 371 * 372 * The values passed back in *hole_base, *hole_offset, and *hole_size are 373 * complete 32-bit values despite the fact that the bitfields in the DHAR 374 * only represent bits 31-24 of the base and offset values. 375 */ 376 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, 377 u64 *hole_offset, u64 *hole_size) 378 { 379 struct amd64_pvt *pvt = mci->pvt_info; 380 u64 base; 381 382 /* only revE and later have the DRAM Hole Address Register */ 383 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) { 384 debugf1(" revision %d for node %d does not support DHAR\n", 385 pvt->ext_model, pvt->mc_node_id); 386 return 1; 387 } 388 389 /* only valid for Fam10h */ 390 if (boot_cpu_data.x86 == 0x10 && 391 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) { 392 debugf1(" Dram Memory Hoisting is DISABLED on this system\n"); 393 return 1; 394 } 395 396 if ((pvt->dhar & DHAR_VALID) == 0) { 397 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n", 398 pvt->mc_node_id); 399 return 1; 400 } 401 402 /* This node has Memory Hoisting */ 403 404 /* +------------------+--------------------+--------------------+----- 405 * | memory | DRAM hole | relocated | 406 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from | 407 * | | | DRAM hole | 408 * | | | [0x100000000, | 409 * | | | (0x100000000+ | 410 * | | | (0xffffffff-x))] | 411 * +------------------+--------------------+--------------------+----- 412 * 413 * Above is a diagram of physical memory showing the DRAM hole and the 414 * relocated addresses from the DRAM hole. As shown, the DRAM hole 415 * starts at address x (the base address) and extends through address 416 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the 417 * addresses in the hole so that they start at 0x100000000. 418 */ 419 420 base = dhar_base(pvt->dhar); 421 422 *hole_base = base; 423 *hole_size = (0x1ull << 32) - base; 424 425 if (boot_cpu_data.x86 > 0xf) 426 *hole_offset = f10_dhar_offset(pvt->dhar); 427 else 428 *hole_offset = k8_dhar_offset(pvt->dhar); 429 430 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", 431 pvt->mc_node_id, (unsigned long)*hole_base, 432 (unsigned long)*hole_offset, (unsigned long)*hole_size); 433 434 return 0; 435 } 436 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info); 437 438 /* 439 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is 440 * assumed that sys_addr maps to the node given by mci. 441 * 442 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section 443 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a 444 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, 445 * then it is also involved in translating a SysAddr to a DramAddr. Sections 446 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. 447 * These parts of the documentation are unclear. I interpret them as follows: 448 * 449 * When node n receives a SysAddr, it processes the SysAddr as follows: 450 * 451 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM 452 * Limit registers for node n. If the SysAddr is not within the range 453 * specified by the base and limit values, then node n ignores the Sysaddr 454 * (since it does not map to node n). Otherwise continue to step 2 below. 455 * 456 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is 457 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within 458 * the range of relocated addresses (starting at 0x100000000) from the DRAM 459 * hole. If not, skip to step 3 below. Else get the value of the 460 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the 461 * offset defined by this value from the SysAddr. 462 * 463 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM 464 * Base register for node n. To obtain the DramAddr, subtract the base 465 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70). 466 */ 467 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) 468 { 469 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; 470 int ret = 0; 471 472 dram_base = get_dram_base(mci); 473 474 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, 475 &hole_size); 476 if (!ret) { 477 if ((sys_addr >= (1ull << 32)) && 478 (sys_addr < ((1ull << 32) + hole_size))) { 479 /* use DHAR to translate SysAddr to DramAddr */ 480 dram_addr = sys_addr - hole_offset; 481 482 debugf2("using DHAR to translate SysAddr 0x%lx to " 483 "DramAddr 0x%lx\n", 484 (unsigned long)sys_addr, 485 (unsigned long)dram_addr); 486 487 return dram_addr; 488 } 489 } 490 491 /* 492 * Translate the SysAddr to a DramAddr as shown near the start of 493 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8 494 * only deals with 40-bit values. Therefore we discard bits 63-40 of 495 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we 496 * discard are all 1s. Otherwise the bits we discard are all 0s. See 497 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture 498 * Programmer's Manual Volume 1 Application Programming. 499 */ 500 dram_addr = (sys_addr & 0xffffffffffull) - dram_base; 501 502 debugf2("using DRAM Base register to translate SysAddr 0x%lx to " 503 "DramAddr 0x%lx\n", (unsigned long)sys_addr, 504 (unsigned long)dram_addr); 505 return dram_addr; 506 } 507 508 /* 509 * @intlv_en is the value of the IntlvEn field from a DRAM Base register 510 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used 511 * for node interleaving. 512 */ 513 static int num_node_interleave_bits(unsigned intlv_en) 514 { 515 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; 516 int n; 517 518 BUG_ON(intlv_en > 7); 519 n = intlv_shift_table[intlv_en]; 520 return n; 521 } 522 523 /* Translate the DramAddr given by @dram_addr to an InputAddr. */ 524 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) 525 { 526 struct amd64_pvt *pvt; 527 int intlv_shift; 528 u64 input_addr; 529 530 pvt = mci->pvt_info; 531 532 /* 533 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) 534 * concerning translating a DramAddr to an InputAddr. 535 */ 536 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]); 537 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) + 538 (dram_addr & 0xfff); 539 540 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", 541 intlv_shift, (unsigned long)dram_addr, 542 (unsigned long)input_addr); 543 544 return input_addr; 545 } 546 547 /* 548 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is 549 * assumed that @sys_addr maps to the node given by mci. 550 */ 551 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) 552 { 553 u64 input_addr; 554 555 input_addr = 556 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); 557 558 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n", 559 (unsigned long)sys_addr, (unsigned long)input_addr); 560 561 return input_addr; 562 } 563 564 565 /* 566 * @input_addr is an InputAddr associated with the node represented by mci. 567 * Translate @input_addr to a DramAddr and return the result. 568 */ 569 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr) 570 { 571 struct amd64_pvt *pvt; 572 int node_id, intlv_shift; 573 u64 bits, dram_addr; 574 u32 intlv_sel; 575 576 /* 577 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) 578 * shows how to translate a DramAddr to an InputAddr. Here we reverse 579 * this procedure. When translating from a DramAddr to an InputAddr, the 580 * bits used for node interleaving are discarded. Here we recover these 581 * bits from the IntlvSel field of the DRAM Limit register (section 582 * 3.4.4.2) for the node that input_addr is associated with. 583 */ 584 pvt = mci->pvt_info; 585 node_id = pvt->mc_node_id; 586 BUG_ON((node_id < 0) || (node_id > 7)); 587 588 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]); 589 590 if (intlv_shift == 0) { 591 debugf1(" InputAddr 0x%lx translates to DramAddr of " 592 "same value\n", (unsigned long)input_addr); 593 594 return input_addr; 595 } 596 597 bits = ((input_addr & 0xffffff000ull) << intlv_shift) + 598 (input_addr & 0xfff); 599 600 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1); 601 dram_addr = bits + (intlv_sel << 12); 602 603 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx " 604 "(%d node interleave bits)\n", (unsigned long)input_addr, 605 (unsigned long)dram_addr, intlv_shift); 606 607 return dram_addr; 608 } 609 610 /* 611 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert 612 * @dram_addr to a SysAddr. 613 */ 614 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr) 615 { 616 struct amd64_pvt *pvt = mci->pvt_info; 617 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr; 618 int ret = 0; 619 620 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, 621 &hole_size); 622 if (!ret) { 623 if ((dram_addr >= hole_base) && 624 (dram_addr < (hole_base + hole_size))) { 625 sys_addr = dram_addr + hole_offset; 626 627 debugf1("using DHAR to translate DramAddr 0x%lx to " 628 "SysAddr 0x%lx\n", (unsigned long)dram_addr, 629 (unsigned long)sys_addr); 630 631 return sys_addr; 632 } 633 } 634 635 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit); 636 sys_addr = dram_addr + base; 637 638 /* 639 * The sys_addr we have computed up to this point is a 40-bit value 640 * because the k8 deals with 40-bit values. However, the value we are 641 * supposed to return is a full 64-bit physical address. The AMD 642 * x86-64 architecture specifies that the most significant implemented 643 * address bit through bit 63 of a physical address must be either all 644 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a 645 * 64-bit value below. See section 3.4.2 of AMD publication 24592: 646 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application 647 * Programming. 648 */ 649 sys_addr |= ~((sys_addr & (1ull << 39)) - 1); 650 651 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n", 652 pvt->mc_node_id, (unsigned long)dram_addr, 653 (unsigned long)sys_addr); 654 655 return sys_addr; 656 } 657 658 /* 659 * @input_addr is an InputAddr associated with the node given by mci. Translate 660 * @input_addr to a SysAddr. 661 */ 662 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci, 663 u64 input_addr) 664 { 665 return dram_addr_to_sys_addr(mci, 666 input_addr_to_dram_addr(mci, input_addr)); 667 } 668 669 /* 670 * Find the minimum and maximum InputAddr values that map to the given @csrow. 671 * Pass back these values in *input_addr_min and *input_addr_max. 672 */ 673 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow, 674 u64 *input_addr_min, u64 *input_addr_max) 675 { 676 struct amd64_pvt *pvt; 677 u64 base, mask; 678 679 pvt = mci->pvt_info; 680 BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT)); 681 682 base = base_from_dct_base(pvt, csrow); 683 mask = mask_from_dct_mask(pvt, csrow); 684 685 *input_addr_min = base & ~mask; 686 *input_addr_max = base | mask | pvt->dcs_mask_notused; 687 } 688 689 /* 690 * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB 691 * Address High (section 3.6.4.6) register values and return the result. Address 692 * is located in the info structure (nbeah and nbeal), the encoding is device 693 * specific. 694 */ 695 static u64 extract_error_address(struct mem_ctl_info *mci, 696 struct amd64_error_info_regs *info) 697 { 698 struct amd64_pvt *pvt = mci->pvt_info; 699 700 return pvt->ops->get_error_address(mci, info); 701 } 702 703 704 /* Map the Error address to a PAGE and PAGE OFFSET. */ 705 static inline void error_address_to_page_and_offset(u64 error_address, 706 u32 *page, u32 *offset) 707 { 708 *page = (u32) (error_address >> PAGE_SHIFT); 709 *offset = ((u32) error_address) & ~PAGE_MASK; 710 } 711 712 /* 713 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address 714 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers 715 * of a node that detected an ECC memory error. mci represents the node that 716 * the error address maps to (possibly different from the node that detected 717 * the error). Return the number of the csrow that sys_addr maps to, or -1 on 718 * error. 719 */ 720 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) 721 { 722 int csrow; 723 724 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); 725 726 if (csrow == -1) 727 amd64_mc_printk(mci, KERN_ERR, 728 "Failed to translate InputAddr to csrow for " 729 "address 0x%lx\n", (unsigned long)sys_addr); 730 return csrow; 731 } 732 733 static int get_channel_from_ecc_syndrome(unsigned short syndrome); 734 735 static void amd64_cpu_display_info(struct amd64_pvt *pvt) 736 { 737 if (boot_cpu_data.x86 == 0x11) 738 edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n"); 739 else if (boot_cpu_data.x86 == 0x10) 740 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n"); 741 else if (boot_cpu_data.x86 == 0xf) 742 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n", 743 (pvt->ext_model >= OPTERON_CPU_REV_F) ? 744 "Rev F or later" : "Rev E or earlier"); 745 else 746 /* we'll hardly ever ever get here */ 747 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n"); 748 } 749 750 /* 751 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs 752 * are ECC capable. 753 */ 754 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt) 755 { 756 int bit; 757 enum dev_type edac_cap = EDAC_NONE; 758 759 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F) 760 ? 19 761 : 17; 762 763 if (pvt->dclr0 >> BIT(bit)) 764 edac_cap = EDAC_FLAG_SECDED; 765 766 return edac_cap; 767 } 768 769 770 static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt, 771 int ganged); 772 773 /* Display and decode various NB registers for debug purposes. */ 774 static void amd64_dump_misc_regs(struct amd64_pvt *pvt) 775 { 776 int ganged; 777 778 debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n", 779 pvt->nbcap, 780 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False", 781 (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False", 782 (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False"); 783 debugf1(" ECC Capable=%s ChipKill Capable=%s\n", 784 (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False", 785 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False"); 786 debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n", 787 pvt->dclr0, 788 (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled", 789 (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled", 790 (pvt->dclr0 & BIT(11)) ? "128b" : "64b"); 791 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n", 792 (pvt->dclr0 & BIT(12)) ? "Y" : "N", 793 (pvt->dclr0 & BIT(13)) ? "Y" : "N", 794 (pvt->dclr0 & BIT(14)) ? "Y" : "N", 795 (pvt->dclr0 & BIT(15)) ? "Y" : "N", 796 (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered"); 797 798 799 debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare); 800 801 if (boot_cpu_data.x86 == 0xf) { 802 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n", 803 pvt->dhar, dhar_base(pvt->dhar), 804 k8_dhar_offset(pvt->dhar)); 805 debugf1(" DramHoleValid=%s\n", 806 (pvt->dhar & DHAR_VALID) ? "True" : "False"); 807 808 debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0); 809 810 /* everything below this point is Fam10h and above */ 811 return; 812 813 } else { 814 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n", 815 pvt->dhar, dhar_base(pvt->dhar), 816 f10_dhar_offset(pvt->dhar)); 817 debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n", 818 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ? 819 "True" : "False", 820 (pvt->dhar & DHAR_VALID) ? 821 "True" : "False"); 822 } 823 824 /* Only if NOT ganged does dcl1 have valid info */ 825 if (!dct_ganging_enabled(pvt)) { 826 debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s " 827 "Width=%s\n", pvt->dclr1, 828 (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled", 829 (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled", 830 (pvt->dclr1 & BIT(11)) ? "128b" : "64b"); 831 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s " 832 "DIMM Type=%s\n", 833 (pvt->dclr1 & BIT(12)) ? "Y" : "N", 834 (pvt->dclr1 & BIT(13)) ? "Y" : "N", 835 (pvt->dclr1 & BIT(14)) ? "Y" : "N", 836 (pvt->dclr1 & BIT(15)) ? "Y" : "N", 837 (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered"); 838 } 839 840 /* 841 * Determine if ganged and then dump memory sizes for first controller, 842 * and if NOT ganged dump info for 2nd controller. 843 */ 844 ganged = dct_ganging_enabled(pvt); 845 846 f10_debug_display_dimm_sizes(0, pvt, ganged); 847 848 if (!ganged) 849 f10_debug_display_dimm_sizes(1, pvt, ganged); 850 } 851 852 /* Read in both of DBAM registers */ 853 static void amd64_read_dbam_reg(struct amd64_pvt *pvt) 854 { 855 int err = 0; 856 unsigned int reg; 857 858 reg = DBAM0; 859 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0); 860 if (err) 861 goto err_reg; 862 863 if (boot_cpu_data.x86 >= 0x10) { 864 reg = DBAM1; 865 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1); 866 867 if (err) 868 goto err_reg; 869 } 870 871 err_reg: 872 debugf0("Error reading F2x%03x.\n", reg); 873 } 874 875 /* 876 * NOTE: CPU Revision Dependent code: Rev E and Rev F 877 * 878 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also 879 * set the shift factor for the DCSB and DCSM values. 880 * 881 * ->dcs_mask_notused, RevE: 882 * 883 * To find the max InputAddr for the csrow, start with the base address and set 884 * all bits that are "don't care" bits in the test at the start of section 885 * 3.5.4 (p. 84). 886 * 887 * The "don't care" bits are all set bits in the mask and all bits in the gaps 888 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS 889 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned 890 * gaps. 891 * 892 * ->dcs_mask_notused, RevF and later: 893 * 894 * To find the max InputAddr for the csrow, start with the base address and set 895 * all bits that are "don't care" bits in the test at the start of NPT section 896 * 4.5.4 (p. 87). 897 * 898 * The "don't care" bits are all set bits in the mask and all bits in the gaps 899 * between bit ranges [36:27] and [21:13]. 900 * 901 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0], 902 * which are all bits in the above-mentioned gaps. 903 */ 904 static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt) 905 { 906 if (pvt->ext_model >= OPTERON_CPU_REV_F) { 907 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS; 908 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS; 909 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS; 910 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT; 911 912 switch (boot_cpu_data.x86) { 913 case 0xf: 914 pvt->num_dcsm = REV_F_DCSM_COUNT; 915 break; 916 917 case 0x10: 918 pvt->num_dcsm = F10_DCSM_COUNT; 919 break; 920 921 case 0x11: 922 pvt->num_dcsm = F11_DCSM_COUNT; 923 break; 924 925 default: 926 amd64_printk(KERN_ERR, "Unsupported family!\n"); 927 break; 928 } 929 } else { 930 pvt->dcsb_base = REV_E_DCSB_BASE_BITS; 931 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS; 932 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS; 933 pvt->dcs_shift = REV_E_DCS_SHIFT; 934 pvt->num_dcsm = REV_E_DCSM_COUNT; 935 } 936 } 937 938 /* 939 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers 940 */ 941 static void amd64_read_dct_base_mask(struct amd64_pvt *pvt) 942 { 943 int cs, reg, err = 0; 944 945 amd64_set_dct_base_and_mask(pvt); 946 947 for (cs = 0; cs < CHIPSELECT_COUNT; cs++) { 948 reg = K8_DCSB0 + (cs * 4); 949 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, 950 &pvt->dcsb0[cs]); 951 if (unlikely(err)) 952 debugf0("Reading K8_DCSB0[%d] failed\n", cs); 953 else 954 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n", 955 cs, pvt->dcsb0[cs], reg); 956 957 /* If DCT are NOT ganged, then read in DCT1's base */ 958 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) { 959 reg = F10_DCSB1 + (cs * 4); 960 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, 961 &pvt->dcsb1[cs]); 962 if (unlikely(err)) 963 debugf0("Reading F10_DCSB1[%d] failed\n", cs); 964 else 965 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n", 966 cs, pvt->dcsb1[cs], reg); 967 } else { 968 pvt->dcsb1[cs] = 0; 969 } 970 } 971 972 for (cs = 0; cs < pvt->num_dcsm; cs++) { 973 reg = K8_DCSB0 + (cs * 4); 974 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, 975 &pvt->dcsm0[cs]); 976 if (unlikely(err)) 977 debugf0("Reading K8_DCSM0 failed\n"); 978 else 979 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n", 980 cs, pvt->dcsm0[cs], reg); 981 982 /* If DCT are NOT ganged, then read in DCT1's mask */ 983 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) { 984 reg = F10_DCSM1 + (cs * 4); 985 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, 986 &pvt->dcsm1[cs]); 987 if (unlikely(err)) 988 debugf0("Reading F10_DCSM1[%d] failed\n", cs); 989 else 990 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n", 991 cs, pvt->dcsm1[cs], reg); 992 } else 993 pvt->dcsm1[cs] = 0; 994 } 995 } 996 997 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt) 998 { 999 enum mem_type type; 1000 1001 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) { 1002 /* Rev F and later */ 1003 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; 1004 } else { 1005 /* Rev E and earlier */ 1006 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; 1007 } 1008 1009 debugf1(" Memory type is: %s\n", 1010 (type == MEM_DDR2) ? "MEM_DDR2" : 1011 (type == MEM_RDDR2) ? "MEM_RDDR2" : 1012 (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR"); 1013 1014 return type; 1015 } 1016 1017 /* 1018 * Read the DRAM Configuration Low register. It differs between CG, D & E revs 1019 * and the later RevF memory controllers (DDR vs DDR2) 1020 * 1021 * Return: 1022 * number of memory channels in operation 1023 * Pass back: 1024 * contents of the DCL0_LOW register 1025 */ 1026 static int k8_early_channel_count(struct amd64_pvt *pvt) 1027 { 1028 int flag, err = 0; 1029 1030 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0); 1031 if (err) 1032 return err; 1033 1034 if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) { 1035 /* RevF (NPT) and later */ 1036 flag = pvt->dclr0 & F10_WIDTH_128; 1037 } else { 1038 /* RevE and earlier */ 1039 flag = pvt->dclr0 & REVE_WIDTH_128; 1040 } 1041 1042 /* not used */ 1043 pvt->dclr1 = 0; 1044 1045 return (flag) ? 2 : 1; 1046 } 1047 1048 /* extract the ERROR ADDRESS for the K8 CPUs */ 1049 static u64 k8_get_error_address(struct mem_ctl_info *mci, 1050 struct amd64_error_info_regs *info) 1051 { 1052 return (((u64) (info->nbeah & 0xff)) << 32) + 1053 (info->nbeal & ~0x03); 1054 } 1055 1056 /* 1057 * Read the Base and Limit registers for K8 based Memory controllers; extract 1058 * fields from the 'raw' reg into separate data fields 1059 * 1060 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN 1061 */ 1062 static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram) 1063 { 1064 u32 low; 1065 u32 off = dram << 3; /* 8 bytes between DRAM entries */ 1066 int err; 1067 1068 err = pci_read_config_dword(pvt->addr_f1_ctl, 1069 K8_DRAM_BASE_LOW + off, &low); 1070 if (err) 1071 debugf0("Reading K8_DRAM_BASE_LOW failed\n"); 1072 1073 /* Extract parts into separate data entries */ 1074 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8; 1075 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7; 1076 pvt->dram_rw_en[dram] = (low & 0x3); 1077 1078 err = pci_read_config_dword(pvt->addr_f1_ctl, 1079 K8_DRAM_LIMIT_LOW + off, &low); 1080 if (err) 1081 debugf0("Reading K8_DRAM_LIMIT_LOW failed\n"); 1082 1083 /* 1084 * Extract parts into separate data entries. Limit is the HIGHEST memory 1085 * location of the region, so lower 24 bits need to be all ones 1086 */ 1087 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF; 1088 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7; 1089 pvt->dram_DstNode[dram] = (low & 0x7); 1090 } 1091 1092 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, 1093 struct amd64_error_info_regs *info, 1094 u64 SystemAddress) 1095 { 1096 struct mem_ctl_info *src_mci; 1097 unsigned short syndrome; 1098 int channel, csrow; 1099 u32 page, offset; 1100 1101 /* Extract the syndrome parts and form a 16-bit syndrome */ 1102 syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8; 1103 syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh); 1104 1105 /* CHIPKILL enabled */ 1106 if (info->nbcfg & K8_NBCFG_CHIPKILL) { 1107 channel = get_channel_from_ecc_syndrome(syndrome); 1108 if (channel < 0) { 1109 /* 1110 * Syndrome didn't map, so we don't know which of the 1111 * 2 DIMMs is in error. So we need to ID 'both' of them 1112 * as suspect. 1113 */ 1114 amd64_mc_printk(mci, KERN_WARNING, 1115 "unknown syndrome 0x%x - possible error " 1116 "reporting race\n", syndrome); 1117 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); 1118 return; 1119 } 1120 } else { 1121 /* 1122 * non-chipkill ecc mode 1123 * 1124 * The k8 documentation is unclear about how to determine the 1125 * channel number when using non-chipkill memory. This method 1126 * was obtained from email communication with someone at AMD. 1127 * (Wish the email was placed in this comment - norsk) 1128 */ 1129 channel = ((SystemAddress & BIT(3)) != 0); 1130 } 1131 1132 /* 1133 * Find out which node the error address belongs to. This may be 1134 * different from the node that detected the error. 1135 */ 1136 src_mci = find_mc_by_sys_addr(mci, SystemAddress); 1137 if (src_mci) { 1138 amd64_mc_printk(mci, KERN_ERR, 1139 "failed to map error address 0x%lx to a node\n", 1140 (unsigned long)SystemAddress); 1141 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); 1142 return; 1143 } 1144 1145 /* Now map the SystemAddress to a CSROW */ 1146 csrow = sys_addr_to_csrow(src_mci, SystemAddress); 1147 if (csrow < 0) { 1148 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR); 1149 } else { 1150 error_address_to_page_and_offset(SystemAddress, &page, &offset); 1151 1152 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow, 1153 channel, EDAC_MOD_STR); 1154 } 1155 } 1156 1157 /* 1158 * determrine the number of PAGES in for this DIMM's size based on its DRAM 1159 * Address Mapping. 1160 * 1161 * First step is to calc the number of bits to shift a value of 1 left to 1162 * indicate show many pages. Start with the DBAM value as the starting bits, 1163 * then proceed to adjust those shift bits, based on CPU rev and the table. 1164 * See BKDG on the DBAM 1165 */ 1166 static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map) 1167 { 1168 int nr_pages; 1169 1170 if (pvt->ext_model >= OPTERON_CPU_REV_F) { 1171 nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT); 1172 } else { 1173 /* 1174 * RevE and less section; this line is tricky. It collapses the 1175 * table used by RevD and later to one that matches revisions CG 1176 * and earlier. 1177 */ 1178 dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ? 1179 (dram_map > 8 ? 4 : (dram_map > 5 ? 1180 3 : (dram_map > 2 ? 1 : 0))) : 0; 1181 1182 /* 25 shift is 32MiB minimum DIMM size in RevE and prior */ 1183 nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT); 1184 } 1185 1186 return nr_pages; 1187 } 1188 1189 /* 1190 * Get the number of DCT channels in use. 1191 * 1192 * Return: 1193 * number of Memory Channels in operation 1194 * Pass back: 1195 * contents of the DCL0_LOW register 1196 */ 1197 static int f10_early_channel_count(struct amd64_pvt *pvt) 1198 { 1199 int err = 0, channels = 0; 1200 u32 dbam; 1201 1202 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0); 1203 if (err) 1204 goto err_reg; 1205 1206 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1); 1207 if (err) 1208 goto err_reg; 1209 1210 /* If we are in 128 bit mode, then we are using 2 channels */ 1211 if (pvt->dclr0 & F10_WIDTH_128) { 1212 debugf0("Data WIDTH is 128 bits - 2 channels\n"); 1213 channels = 2; 1214 return channels; 1215 } 1216 1217 /* 1218 * Need to check if in UN-ganged mode: In such, there are 2 channels, 1219 * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit 1220 * will be OFF. 1221 * 1222 * Need to check DCT0[0] and DCT1[0] to see if only one of them has 1223 * their CSEnable bit on. If so, then SINGLE DIMM case. 1224 */ 1225 debugf0("Data WIDTH is NOT 128 bits - need more decoding\n"); 1226 1227 /* 1228 * Check DRAM Bank Address Mapping values for each DIMM to see if there 1229 * is more than just one DIMM present in unganged mode. Need to check 1230 * both controllers since DIMMs can be placed in either one. 1231 */ 1232 channels = 0; 1233 err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM0, &dbam); 1234 if (err) 1235 goto err_reg; 1236 1237 if (DBAM_DIMM(0, dbam) > 0) 1238 channels++; 1239 if (DBAM_DIMM(1, dbam) > 0) 1240 channels++; 1241 if (DBAM_DIMM(2, dbam) > 0) 1242 channels++; 1243 if (DBAM_DIMM(3, dbam) > 0) 1244 channels++; 1245 1246 /* If more than 2 DIMMs are present, then we have 2 channels */ 1247 if (channels > 2) 1248 channels = 2; 1249 else if (channels == 0) { 1250 /* No DIMMs on DCT0, so look at DCT1 */ 1251 err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM1, &dbam); 1252 if (err) 1253 goto err_reg; 1254 1255 if (DBAM_DIMM(0, dbam) > 0) 1256 channels++; 1257 if (DBAM_DIMM(1, dbam) > 0) 1258 channels++; 1259 if (DBAM_DIMM(2, dbam) > 0) 1260 channels++; 1261 if (DBAM_DIMM(3, dbam) > 0) 1262 channels++; 1263 1264 if (channels > 2) 1265 channels = 2; 1266 } 1267 1268 /* If we found ALL 0 values, then assume just ONE DIMM-ONE Channel */ 1269 if (channels == 0) 1270 channels = 1; 1271 1272 debugf0("DIMM count= %d\n", channels); 1273 1274 return channels; 1275 1276 err_reg: 1277 return -1; 1278 1279 } 1280 1281 static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map) 1282 { 1283 return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT); 1284 } 1285 1286 /* Enable extended configuration access via 0xCF8 feature */ 1287 static void amd64_setup(struct amd64_pvt *pvt) 1288 { 1289 u32 reg; 1290 1291 pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, ®); 1292 1293 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG); 1294 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG; 1295 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg); 1296 } 1297 1298 /* Restore the extended configuration access via 0xCF8 feature */ 1299 static void amd64_teardown(struct amd64_pvt *pvt) 1300 { 1301 u32 reg; 1302 1303 pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, ®); 1304 1305 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG; 1306 if (pvt->flags.cf8_extcfg) 1307 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG; 1308 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg); 1309 } 1310 1311 static u64 f10_get_error_address(struct mem_ctl_info *mci, 1312 struct amd64_error_info_regs *info) 1313 { 1314 return (((u64) (info->nbeah & 0xffff)) << 32) + 1315 (info->nbeal & ~0x01); 1316 } 1317 1318 /* 1319 * Read the Base and Limit registers for F10 based Memory controllers. Extract 1320 * fields from the 'raw' reg into separate data fields. 1321 * 1322 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN. 1323 */ 1324 static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram) 1325 { 1326 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit; 1327 1328 low_offset = K8_DRAM_BASE_LOW + (dram << 3); 1329 high_offset = F10_DRAM_BASE_HIGH + (dram << 3); 1330 1331 /* read the 'raw' DRAM BASE Address register */ 1332 pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base); 1333 1334 /* Read from the ECS data register */ 1335 pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base); 1336 1337 /* Extract parts into separate data entries */ 1338 pvt->dram_rw_en[dram] = (low_base & 0x3); 1339 1340 if (pvt->dram_rw_en[dram] == 0) 1341 return; 1342 1343 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7; 1344 1345 pvt->dram_base[dram] = (((((u64) high_base & 0x000000FF) << 32) | 1346 ((u64) low_base & 0xFFFF0000))) << 8; 1347 1348 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3); 1349 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3); 1350 1351 /* read the 'raw' LIMIT registers */ 1352 pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit); 1353 1354 /* Read from the ECS data register for the HIGH portion */ 1355 pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit); 1356 1357 debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n", 1358 high_base, low_base, high_limit, low_limit); 1359 1360 pvt->dram_DstNode[dram] = (low_limit & 0x7); 1361 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7; 1362 1363 /* 1364 * Extract address values and form a LIMIT address. Limit is the HIGHEST 1365 * memory location of the region, so low 24 bits need to be all ones. 1366 */ 1367 low_limit |= 0x0000FFFF; 1368 pvt->dram_limit[dram] = 1369 ((((u64) high_limit << 32) + (u64) low_limit) << 8) | (0xFF); 1370 } 1371 1372 static void f10_read_dram_ctl_register(struct amd64_pvt *pvt) 1373 { 1374 int err = 0; 1375 1376 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW, 1377 &pvt->dram_ctl_select_low); 1378 if (err) { 1379 debugf0("Reading F10_DCTL_SEL_LOW failed\n"); 1380 } else { 1381 debugf0("DRAM_DCTL_SEL_LOW=0x%x DctSelBaseAddr=0x%x\n", 1382 pvt->dram_ctl_select_low, dct_sel_baseaddr(pvt)); 1383 1384 debugf0(" DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-" 1385 "sel-hi-range=%s\n", 1386 (dct_ganging_enabled(pvt) ? "GANGED" : "NOT GANGED"), 1387 (dct_dram_enabled(pvt) ? "Enabled" : "Disabled"), 1388 (dct_high_range_enabled(pvt) ? "Enabled" : "Disabled")); 1389 1390 debugf0(" DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n", 1391 (dct_data_intlv_enabled(pvt) ? "Enabled" : "Disabled"), 1392 (dct_memory_cleared(pvt) ? "True " : "False "), 1393 dct_sel_interleave_addr(pvt)); 1394 } 1395 1396 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH, 1397 &pvt->dram_ctl_select_high); 1398 if (err) 1399 debugf0("Reading F10_DCTL_SEL_HIGH failed\n"); 1400 } 1401 1402 /* 1403 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory 1404 * Interleaving Modes. 1405 */ 1406 static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, 1407 int hi_range_sel, u32 intlv_en) 1408 { 1409 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1; 1410 1411 if (dct_ganging_enabled(pvt)) 1412 cs = 0; 1413 else if (hi_range_sel) 1414 cs = dct_sel_high; 1415 else if (dct_interleave_enabled(pvt)) { 1416 /* 1417 * see F2x110[DctSelIntLvAddr] - channel interleave mode 1418 */ 1419 if (dct_sel_interleave_addr(pvt) == 0) 1420 cs = sys_addr >> 6 & 1; 1421 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) { 1422 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2; 1423 1424 if (dct_sel_interleave_addr(pvt) & 1) 1425 cs = (sys_addr >> 9 & 1) ^ temp; 1426 else 1427 cs = (sys_addr >> 6 & 1) ^ temp; 1428 } else if (intlv_en & 4) 1429 cs = sys_addr >> 15 & 1; 1430 else if (intlv_en & 2) 1431 cs = sys_addr >> 14 & 1; 1432 else if (intlv_en & 1) 1433 cs = sys_addr >> 13 & 1; 1434 else 1435 cs = sys_addr >> 12 & 1; 1436 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt)) 1437 cs = ~dct_sel_high & 1; 1438 else 1439 cs = 0; 1440 1441 return cs; 1442 } 1443 1444 static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en) 1445 { 1446 if (intlv_en == 1) 1447 return 1; 1448 else if (intlv_en == 3) 1449 return 2; 1450 else if (intlv_en == 7) 1451 return 3; 1452 1453 return 0; 1454 } 1455 1456 /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */ 1457 static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel, 1458 u32 dct_sel_base_addr, 1459 u64 dct_sel_base_off, 1460 u32 hole_valid, u32 hole_off, 1461 u64 dram_base) 1462 { 1463 u64 chan_off; 1464 1465 if (hi_range_sel) { 1466 if (!(dct_sel_base_addr & 0xFFFFF800) && 1467 hole_valid && (sys_addr >= 0x100000000ULL)) 1468 chan_off = hole_off << 16; 1469 else 1470 chan_off = dct_sel_base_off; 1471 } else { 1472 if (hole_valid && (sys_addr >= 0x100000000ULL)) 1473 chan_off = hole_off << 16; 1474 else 1475 chan_off = dram_base & 0xFFFFF8000000ULL; 1476 } 1477 1478 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) - 1479 (chan_off & 0x0000FFFFFF800000ULL); 1480 } 1481 1482 /* Hack for the time being - Can we get this from BIOS?? */ 1483 #define CH0SPARE_RANK 0 1484 #define CH1SPARE_RANK 1 1485 1486 /* 1487 * checks if the csrow passed in is marked as SPARED, if so returns the new 1488 * spare row 1489 */ 1490 static inline int f10_process_possible_spare(int csrow, 1491 u32 cs, struct amd64_pvt *pvt) 1492 { 1493 u32 swap_done; 1494 u32 bad_dram_cs; 1495 1496 /* Depending on channel, isolate respective SPARING info */ 1497 if (cs) { 1498 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare); 1499 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare); 1500 if (swap_done && (csrow == bad_dram_cs)) 1501 csrow = CH1SPARE_RANK; 1502 } else { 1503 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare); 1504 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare); 1505 if (swap_done && (csrow == bad_dram_cs)) 1506 csrow = CH0SPARE_RANK; 1507 } 1508 return csrow; 1509 } 1510 1511 /* 1512 * Iterate over the DRAM DCT "base" and "mask" registers looking for a 1513 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' 1514 * 1515 * Return: 1516 * -EINVAL: NOT FOUND 1517 * 0..csrow = Chip-Select Row 1518 */ 1519 static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs) 1520 { 1521 struct mem_ctl_info *mci; 1522 struct amd64_pvt *pvt; 1523 u32 cs_base, cs_mask; 1524 int cs_found = -EINVAL; 1525 int csrow; 1526 1527 mci = mci_lookup[nid]; 1528 if (!mci) 1529 return cs_found; 1530 1531 pvt = mci->pvt_info; 1532 1533 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs); 1534 1535 for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) { 1536 1537 cs_base = amd64_get_dct_base(pvt, cs, csrow); 1538 if (!(cs_base & K8_DCSB_CS_ENABLE)) 1539 continue; 1540 1541 /* 1542 * We have an ENABLED CSROW, Isolate just the MASK bits of the 1543 * target: [28:19] and [13:5], which map to [36:27] and [21:13] 1544 * of the actual address. 1545 */ 1546 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS; 1547 1548 /* 1549 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and 1550 * [4:0] to become ON. Then mask off bits [28:0] ([36:8]) 1551 */ 1552 cs_mask = amd64_get_dct_mask(pvt, cs, csrow); 1553 1554 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n", 1555 csrow, cs_base, cs_mask); 1556 1557 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF; 1558 1559 debugf1(" Final CSMask=0x%x\n", cs_mask); 1560 debugf1(" (InputAddr & ~CSMask)=0x%x " 1561 "(CSBase & ~CSMask)=0x%x\n", 1562 (in_addr & ~cs_mask), (cs_base & ~cs_mask)); 1563 1564 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) { 1565 cs_found = f10_process_possible_spare(csrow, cs, pvt); 1566 1567 debugf1(" MATCH csrow=%d\n", cs_found); 1568 break; 1569 } 1570 } 1571 return cs_found; 1572 } 1573 1574 /* For a given @dram_range, check if @sys_addr falls within it. */ 1575 static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range, 1576 u64 sys_addr, int *nid, int *chan_sel) 1577 { 1578 int node_id, cs_found = -EINVAL, high_range = 0; 1579 u32 intlv_en, intlv_sel, intlv_shift, hole_off; 1580 u32 hole_valid, tmp, dct_sel_base, channel; 1581 u64 dram_base, chan_addr, dct_sel_base_off; 1582 1583 dram_base = pvt->dram_base[dram_range]; 1584 intlv_en = pvt->dram_IntlvEn[dram_range]; 1585 1586 node_id = pvt->dram_DstNode[dram_range]; 1587 intlv_sel = pvt->dram_IntlvSel[dram_range]; 1588 1589 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n", 1590 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]); 1591 1592 /* 1593 * This assumes that one node's DHAR is the same as all the other 1594 * nodes' DHAR. 1595 */ 1596 hole_off = (pvt->dhar & 0x0000FF80); 1597 hole_valid = (pvt->dhar & 0x1); 1598 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16; 1599 1600 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n", 1601 hole_off, hole_valid, intlv_sel); 1602 1603 if (intlv_en || 1604 (intlv_sel != ((sys_addr >> 12) & intlv_en))) 1605 return -EINVAL; 1606 1607 dct_sel_base = dct_sel_baseaddr(pvt); 1608 1609 /* 1610 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to 1611 * select between DCT0 and DCT1. 1612 */ 1613 if (dct_high_range_enabled(pvt) && 1614 !dct_ganging_enabled(pvt) && 1615 ((sys_addr >> 27) >= (dct_sel_base >> 11))) 1616 high_range = 1; 1617 1618 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en); 1619 1620 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base, 1621 dct_sel_base_off, hole_valid, 1622 hole_off, dram_base); 1623 1624 intlv_shift = f10_map_intlv_en_to_shift(intlv_en); 1625 1626 /* remove Node ID (in case of memory interleaving) */ 1627 tmp = chan_addr & 0xFC0; 1628 1629 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp; 1630 1631 /* remove channel interleave and hash */ 1632 if (dct_interleave_enabled(pvt) && 1633 !dct_high_range_enabled(pvt) && 1634 !dct_ganging_enabled(pvt)) { 1635 if (dct_sel_interleave_addr(pvt) != 1) 1636 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL; 1637 else { 1638 tmp = chan_addr & 0xFC0; 1639 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1) 1640 | tmp; 1641 } 1642 } 1643 1644 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n", 1645 chan_addr, (u32)(chan_addr >> 8)); 1646 1647 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel); 1648 1649 if (cs_found >= 0) { 1650 *nid = node_id; 1651 *chan_sel = channel; 1652 } 1653 return cs_found; 1654 } 1655 1656 static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr, 1657 int *node, int *chan_sel) 1658 { 1659 int dram_range, cs_found = -EINVAL; 1660 u64 dram_base, dram_limit; 1661 1662 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) { 1663 1664 if (!pvt->dram_rw_en[dram_range]) 1665 continue; 1666 1667 dram_base = pvt->dram_base[dram_range]; 1668 dram_limit = pvt->dram_limit[dram_range]; 1669 1670 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) { 1671 1672 cs_found = f10_match_to_this_node(pvt, dram_range, 1673 sys_addr, node, 1674 chan_sel); 1675 if (cs_found >= 0) 1676 break; 1677 } 1678 } 1679 return cs_found; 1680 } 1681 1682 /* 1683 * This the F10h reference code from AMD to map a @sys_addr to NodeID, 1684 * CSROW, Channel. 1685 * 1686 * The @sys_addr is usually an error address received from the hardware. 1687 */ 1688 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci, 1689 struct amd64_error_info_regs *info, 1690 u64 sys_addr) 1691 { 1692 struct amd64_pvt *pvt = mci->pvt_info; 1693 u32 page, offset; 1694 unsigned short syndrome; 1695 int nid, csrow, chan = 0; 1696 1697 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan); 1698 1699 if (csrow >= 0) { 1700 error_address_to_page_and_offset(sys_addr, &page, &offset); 1701 1702 syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8; 1703 syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh); 1704 1705 /* 1706 * Is CHIPKILL on? If so, then we can attempt to use the 1707 * syndrome to isolate which channel the error was on. 1708 */ 1709 if (pvt->nbcfg & K8_NBCFG_CHIPKILL) 1710 chan = get_channel_from_ecc_syndrome(syndrome); 1711 1712 if (chan >= 0) { 1713 edac_mc_handle_ce(mci, page, offset, syndrome, 1714 csrow, chan, EDAC_MOD_STR); 1715 } else { 1716 /* 1717 * Channel unknown, report all channels on this 1718 * CSROW as failed. 1719 */ 1720 for (chan = 0; chan < mci->csrows[csrow].nr_channels; 1721 chan++) { 1722 edac_mc_handle_ce(mci, page, offset, 1723 syndrome, 1724 csrow, chan, 1725 EDAC_MOD_STR); 1726 } 1727 } 1728 1729 } else { 1730 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); 1731 } 1732 } 1733 1734 /* 1735 * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift 1736 * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0 1737 * indicates an empty DIMM slot, as reported by Hardware on empty slots. 1738 * 1739 * Normalize to 128MB by subracting 27 bit shift. 1740 */ 1741 static int map_dbam_to_csrow_size(int index) 1742 { 1743 int mega_bytes = 0; 1744 1745 if (index > 0 && index <= DBAM_MAX_VALUE) 1746 mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27))); 1747 1748 return mega_bytes; 1749 } 1750 1751 /* 1752 * debug routine to display the memory sizes of a DIMM (ganged or not) and it 1753 * CSROWs as well 1754 */ 1755 static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt, 1756 int ganged) 1757 { 1758 int dimm, size0, size1; 1759 u32 dbam; 1760 u32 *dcsb; 1761 1762 debugf1(" dbam%d: 0x%8.08x CSROW is %s\n", ctrl, 1763 ctrl ? pvt->dbam1 : pvt->dbam0, 1764 ganged ? "GANGED - dbam1 not used" : "NON-GANGED"); 1765 1766 dbam = ctrl ? pvt->dbam1 : pvt->dbam0; 1767 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0; 1768 1769 /* Dump memory sizes for DIMM and its CSROWs */ 1770 for (dimm = 0; dimm < 4; dimm++) { 1771 1772 size0 = 0; 1773 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE) 1774 size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam)); 1775 1776 size1 = 0; 1777 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE) 1778 size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam)); 1779 1780 debugf1(" CTRL-%d DIMM-%d=%5dMB CSROW-%d=%5dMB " 1781 "CSROW-%d=%5dMB\n", 1782 ctrl, 1783 dimm, 1784 size0 + size1, 1785 dimm * 2, 1786 size0, 1787 dimm * 2 + 1, 1788 size1); 1789 } 1790 } 1791 1792 /* 1793 * Very early hardware probe on pci_probe thread to determine if this module 1794 * supports the hardware. 1795 * 1796 * Return: 1797 * 0 for OK 1798 * 1 for error 1799 */ 1800 static int f10_probe_valid_hardware(struct amd64_pvt *pvt) 1801 { 1802 int ret = 0; 1803 1804 /* 1805 * If we are on a DDR3 machine, we don't know yet if 1806 * we support that properly at this time 1807 */ 1808 if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) || 1809 (pvt->dchr1 & F10_DCHR_Ddr3Mode)) { 1810 1811 amd64_printk(KERN_WARNING, 1812 "%s() This machine is running with DDR3 memory. " 1813 "This is not currently supported. " 1814 "DCHR0=0x%x DCHR1=0x%x\n", 1815 __func__, pvt->dchr0, pvt->dchr1); 1816 1817 amd64_printk(KERN_WARNING, 1818 " Contact '%s' module MAINTAINER to help add" 1819 " support.\n", 1820 EDAC_MOD_STR); 1821 1822 ret = 1; 1823 1824 } 1825 return ret; 1826 } 1827 1828 /* 1829 * There currently are 3 types type of MC devices for AMD Athlon/Opterons 1830 * (as per PCI DEVICE_IDs): 1831 * 1832 * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI 1833 * DEVICE ID, even though there is differences between the different Revisions 1834 * (CG,D,E,F). 1835 * 1836 * Family F10h and F11h. 1837 * 1838 */ 1839 static struct amd64_family_type amd64_family_types[] = { 1840 [K8_CPUS] = { 1841 .ctl_name = "RevF", 1842 .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP, 1843 .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC, 1844 .ops = { 1845 .early_channel_count = k8_early_channel_count, 1846 .get_error_address = k8_get_error_address, 1847 .read_dram_base_limit = k8_read_dram_base_limit, 1848 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow, 1849 .dbam_map_to_pages = k8_dbam_map_to_pages, 1850 } 1851 }, 1852 [F10_CPUS] = { 1853 .ctl_name = "Family 10h", 1854 .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP, 1855 .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC, 1856 .ops = { 1857 .probe_valid_hardware = f10_probe_valid_hardware, 1858 .early_channel_count = f10_early_channel_count, 1859 .get_error_address = f10_get_error_address, 1860 .read_dram_base_limit = f10_read_dram_base_limit, 1861 .read_dram_ctl_register = f10_read_dram_ctl_register, 1862 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow, 1863 .dbam_map_to_pages = f10_dbam_map_to_pages, 1864 } 1865 }, 1866 [F11_CPUS] = { 1867 .ctl_name = "Family 11h", 1868 .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP, 1869 .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC, 1870 .ops = { 1871 .probe_valid_hardware = f10_probe_valid_hardware, 1872 .early_channel_count = f10_early_channel_count, 1873 .get_error_address = f10_get_error_address, 1874 .read_dram_base_limit = f10_read_dram_base_limit, 1875 .read_dram_ctl_register = f10_read_dram_ctl_register, 1876 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow, 1877 .dbam_map_to_pages = f10_dbam_map_to_pages, 1878 } 1879 }, 1880 }; 1881 1882 static struct pci_dev *pci_get_related_function(unsigned int vendor, 1883 unsigned int device, 1884 struct pci_dev *related) 1885 { 1886 struct pci_dev *dev = NULL; 1887 1888 dev = pci_get_device(vendor, device, dev); 1889 while (dev) { 1890 if ((dev->bus->number == related->bus->number) && 1891 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) 1892 break; 1893 dev = pci_get_device(vendor, device, dev); 1894 } 1895 1896 return dev; 1897 } 1898 1899 /* 1900 * syndrome mapping table for ECC ChipKill devices 1901 * 1902 * The comment in each row is the token (nibble) number that is in error. 1903 * The least significant nibble of the syndrome is the mask for the bits 1904 * that are in error (need to be toggled) for the particular nibble. 1905 * 1906 * Each row contains 16 entries. 1907 * The first entry (0th) is the channel number for that row of syndromes. 1908 * The remaining 15 entries are the syndromes for the respective Error 1909 * bit mask index. 1910 * 1911 * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the 1912 * bit in error. 1913 * The 2nd index entry is 0x0010 that the second bit is damaged. 1914 * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits 1915 * are damaged. 1916 * Thus so on until index 15, 0x1111, whose entry has the syndrome 1917 * indicating that all 4 bits are damaged. 1918 * 1919 * A search is performed on this table looking for a given syndrome. 1920 * 1921 * See the AMD documentation for ECC syndromes. This ECC table is valid 1922 * across all the versions of the AMD64 processors. 1923 * 1924 * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a 1925 * COLUMN index, then search all ROWS of that column, looking for a match 1926 * with the input syndrome. The ROW value will be the token number. 1927 * 1928 * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this 1929 * error. 1930 */ 1931 #define NUMBER_ECC_ROWS 36 1932 static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = { 1933 /* Channel 0 syndromes */ 1934 {/*0*/ 0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57, 1935 0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df }, 1936 {/*1*/ 0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7, 1937 0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f }, 1938 {/*2*/ 0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007, 1939 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f }, 1940 {/*3*/ 0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057, 1941 0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df }, 1942 {/*4*/ 0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097, 1943 0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f }, 1944 {/*5*/ 0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857, 1945 0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf }, 1946 {/*6*/ 0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467, 1947 0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f }, 1948 {/*7*/ 0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27, 1949 0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff }, 1950 {/*8*/ 0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177, 1951 0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f }, 1952 {/*9*/ 0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07, 1953 0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f }, 1954 {/*a*/ 0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07, 1955 0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f }, 1956 {/*b*/ 0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7, 1957 0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f }, 1958 {/*c*/ 0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87, 1959 0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f }, 1960 {/*d*/ 0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067, 1961 0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f }, 1962 {/*e*/ 0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77, 1963 0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f }, 1964 {/*f*/ 0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77, 1965 0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f }, 1966 1967 /* Channel 1 syndromes */ 1968 {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187, 1969 0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f }, 1970 {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627, 1971 0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff }, 1972 {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97, 1973 0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f }, 1974 {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97, 1975 0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f }, 1976 {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987, 1977 0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f }, 1978 {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677, 1979 0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f }, 1980 {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387, 1981 0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f }, 1982 {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17, 1983 0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf }, 1984 {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7, 1985 0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f }, 1986 {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397, 1987 0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f }, 1988 {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617, 1989 0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf }, 1990 {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527, 1991 0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff }, 1992 {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7, 1993 0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef }, 1994 {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7, 1995 0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def }, 1996 {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67, 1997 0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f }, 1998 {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377, 1999 0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f }, 2000 2001 /* ECC bits are also in the set of tokens and they too can go bad 2002 * first 2 cover channel 0, while the second 2 cover channel 1 2003 */ 2004 {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807, 2005 0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f }, 2006 {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07, 2007 0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f }, 2008 {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97, 2009 0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f }, 2010 {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757, 2011 0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df } 2012 }; 2013 2014 /* 2015 * Given the syndrome argument, scan each of the channel tables for a syndrome 2016 * match. Depending on which table it is found, return the channel number. 2017 */ 2018 static int get_channel_from_ecc_syndrome(unsigned short syndrome) 2019 { 2020 int row; 2021 int column; 2022 2023 /* Determine column to scan */ 2024 column = syndrome & 0xF; 2025 2026 /* Scan all rows, looking for syndrome, or end of table */ 2027 for (row = 0; row < NUMBER_ECC_ROWS; row++) { 2028 if (ecc_chipkill_syndromes[row][column] == syndrome) 2029 return ecc_chipkill_syndromes[row][0]; 2030 } 2031 2032 debugf0("syndrome(%x) not found\n", syndrome); 2033 return -1; 2034 } 2035 2036 /* 2037 * Check for valid error in the NB Status High register. If so, proceed to read 2038 * NB Status Low, NB Address Low and NB Address High registers and store data 2039 * into error structure. 2040 * 2041 * Returns: 2042 * - 1: if hardware regs contains valid error info 2043 * - 0: if no valid error is indicated 2044 */ 2045 static int amd64_get_error_info_regs(struct mem_ctl_info *mci, 2046 struct amd64_error_info_regs *regs) 2047 { 2048 struct amd64_pvt *pvt; 2049 struct pci_dev *misc_f3_ctl; 2050 int err = 0; 2051 2052 pvt = mci->pvt_info; 2053 misc_f3_ctl = pvt->misc_f3_ctl; 2054 2055 err = pci_read_config_dword(misc_f3_ctl, K8_NBSH, ®s->nbsh); 2056 if (err) 2057 goto err_reg; 2058 2059 if (!(regs->nbsh & K8_NBSH_VALID_BIT)) 2060 return 0; 2061 2062 /* valid error, read remaining error information registers */ 2063 err = pci_read_config_dword(misc_f3_ctl, K8_NBSL, ®s->nbsl); 2064 if (err) 2065 goto err_reg; 2066 2067 err = pci_read_config_dword(misc_f3_ctl, K8_NBEAL, ®s->nbeal); 2068 if (err) 2069 goto err_reg; 2070 2071 err = pci_read_config_dword(misc_f3_ctl, K8_NBEAH, ®s->nbeah); 2072 if (err) 2073 goto err_reg; 2074 2075 err = pci_read_config_dword(misc_f3_ctl, K8_NBCFG, ®s->nbcfg); 2076 if (err) 2077 goto err_reg; 2078 2079 return 1; 2080 2081 err_reg: 2082 debugf0("Reading error info register failed\n"); 2083 return 0; 2084 } 2085 2086 /* 2087 * This function is called to retrieve the error data from hardware and store it 2088 * in the info structure. 2089 * 2090 * Returns: 2091 * - 1: if a valid error is found 2092 * - 0: if no error is found 2093 */ 2094 static int amd64_get_error_info(struct mem_ctl_info *mci, 2095 struct amd64_error_info_regs *info) 2096 { 2097 struct amd64_pvt *pvt; 2098 struct amd64_error_info_regs regs; 2099 2100 pvt = mci->pvt_info; 2101 2102 if (!amd64_get_error_info_regs(mci, info)) 2103 return 0; 2104 2105 /* 2106 * Here's the problem with the K8's EDAC reporting: There are four 2107 * registers which report pieces of error information. They are shared 2108 * between CEs and UEs. Furthermore, contrary to what is stated in the 2109 * BKDG, the overflow bit is never used! Every error always updates the 2110 * reporting registers. 2111 * 2112 * Can you see the race condition? All four error reporting registers 2113 * must be read before a new error updates them! There is no way to read 2114 * all four registers atomically. The best than can be done is to detect 2115 * that a race has occured and then report the error without any kind of 2116 * precision. 2117 * 2118 * What is still positive is that errors are still reported and thus 2119 * problems can still be detected - just not localized because the 2120 * syndrome and address are spread out across registers. 2121 * 2122 * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev. 2123 * UEs and CEs should have separate register sets with proper overflow 2124 * bits that are used! At very least the problem can be fixed by 2125 * honoring the ErrValid bit in 'nbsh' and not updating registers - just 2126 * set the overflow bit - unless the current error is CE and the new 2127 * error is UE which would be the only situation for overwriting the 2128 * current values. 2129 */ 2130 2131 regs = *info; 2132 2133 /* Use info from the second read - most current */ 2134 if (unlikely(!amd64_get_error_info_regs(mci, info))) 2135 return 0; 2136 2137 /* clear the error bits in hardware */ 2138 pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT); 2139 2140 /* Check for the possible race condition */ 2141 if ((regs.nbsh != info->nbsh) || 2142 (regs.nbsl != info->nbsl) || 2143 (regs.nbeah != info->nbeah) || 2144 (regs.nbeal != info->nbeal)) { 2145 amd64_mc_printk(mci, KERN_WARNING, 2146 "hardware STATUS read access race condition " 2147 "detected!\n"); 2148 return 0; 2149 } 2150 return 1; 2151 } 2152 2153 static inline void amd64_decode_gart_tlb_error(struct mem_ctl_info *mci, 2154 struct amd64_error_info_regs *info) 2155 { 2156 u32 err_code; 2157 u32 ec_tt; /* error code transaction type (2b) */ 2158 u32 ec_ll; /* error code cache level (2b) */ 2159 2160 err_code = EXTRACT_ERROR_CODE(info->nbsl); 2161 ec_ll = EXTRACT_LL_CODE(err_code); 2162 ec_tt = EXTRACT_TT_CODE(err_code); 2163 2164 amd64_mc_printk(mci, KERN_ERR, 2165 "GART TLB event: transaction type(%s), " 2166 "cache level(%s)\n", tt_msgs[ec_tt], ll_msgs[ec_ll]); 2167 } 2168 2169 static inline void amd64_decode_mem_cache_error(struct mem_ctl_info *mci, 2170 struct amd64_error_info_regs *info) 2171 { 2172 u32 err_code; 2173 u32 ec_rrrr; /* error code memory transaction (4b) */ 2174 u32 ec_tt; /* error code transaction type (2b) */ 2175 u32 ec_ll; /* error code cache level (2b) */ 2176 2177 err_code = EXTRACT_ERROR_CODE(info->nbsl); 2178 ec_ll = EXTRACT_LL_CODE(err_code); 2179 ec_tt = EXTRACT_TT_CODE(err_code); 2180 ec_rrrr = EXTRACT_RRRR_CODE(err_code); 2181 2182 amd64_mc_printk(mci, KERN_ERR, 2183 "cache hierarchy error: memory transaction type(%s), " 2184 "transaction type(%s), cache level(%s)\n", 2185 rrrr_msgs[ec_rrrr], tt_msgs[ec_tt], ll_msgs[ec_ll]); 2186 } 2187 2188 2189 /* 2190 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR 2191 * ADDRESS and process. 2192 */ 2193 static void amd64_handle_ce(struct mem_ctl_info *mci, 2194 struct amd64_error_info_regs *info) 2195 { 2196 struct amd64_pvt *pvt = mci->pvt_info; 2197 u64 SystemAddress; 2198 2199 /* Ensure that the Error Address is VALID */ 2200 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) { 2201 amd64_mc_printk(mci, KERN_ERR, 2202 "HW has no ERROR_ADDRESS available\n"); 2203 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); 2204 return; 2205 } 2206 2207 SystemAddress = extract_error_address(mci, info); 2208 2209 amd64_mc_printk(mci, KERN_ERR, 2210 "CE ERROR_ADDRESS= 0x%llx\n", SystemAddress); 2211 2212 pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress); 2213 } 2214 2215 /* Handle any Un-correctable Errors (UEs) */ 2216 static void amd64_handle_ue(struct mem_ctl_info *mci, 2217 struct amd64_error_info_regs *info) 2218 { 2219 int csrow; 2220 u64 SystemAddress; 2221 u32 page, offset; 2222 struct mem_ctl_info *log_mci, *src_mci = NULL; 2223 2224 log_mci = mci; 2225 2226 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) { 2227 amd64_mc_printk(mci, KERN_CRIT, 2228 "HW has no ERROR_ADDRESS available\n"); 2229 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); 2230 return; 2231 } 2232 2233 SystemAddress = extract_error_address(mci, info); 2234 2235 /* 2236 * Find out which node the error address belongs to. This may be 2237 * different from the node that detected the error. 2238 */ 2239 src_mci = find_mc_by_sys_addr(mci, SystemAddress); 2240 if (!src_mci) { 2241 amd64_mc_printk(mci, KERN_CRIT, 2242 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n", 2243 (unsigned long)SystemAddress); 2244 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); 2245 return; 2246 } 2247 2248 log_mci = src_mci; 2249 2250 csrow = sys_addr_to_csrow(log_mci, SystemAddress); 2251 if (csrow < 0) { 2252 amd64_mc_printk(mci, KERN_CRIT, 2253 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n", 2254 (unsigned long)SystemAddress); 2255 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); 2256 } else { 2257 error_address_to_page_and_offset(SystemAddress, &page, &offset); 2258 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR); 2259 } 2260 } 2261 2262 static void amd64_decode_bus_error(struct mem_ctl_info *mci, 2263 struct amd64_error_info_regs *info) 2264 { 2265 u32 err_code, ext_ec; 2266 u32 ec_pp; /* error code participating processor (2p) */ 2267 u32 ec_to; /* error code timed out (1b) */ 2268 u32 ec_rrrr; /* error code memory transaction (4b) */ 2269 u32 ec_ii; /* error code memory or I/O (2b) */ 2270 u32 ec_ll; /* error code cache level (2b) */ 2271 2272 ext_ec = EXTRACT_EXT_ERROR_CODE(info->nbsl); 2273 err_code = EXTRACT_ERROR_CODE(info->nbsl); 2274 2275 ec_ll = EXTRACT_LL_CODE(err_code); 2276 ec_ii = EXTRACT_II_CODE(err_code); 2277 ec_rrrr = EXTRACT_RRRR_CODE(err_code); 2278 ec_to = EXTRACT_TO_CODE(err_code); 2279 ec_pp = EXTRACT_PP_CODE(err_code); 2280 2281 amd64_mc_printk(mci, KERN_ERR, 2282 "BUS ERROR:\n" 2283 " time-out(%s) mem or i/o(%s)\n" 2284 " participating processor(%s)\n" 2285 " memory transaction type(%s)\n" 2286 " cache level(%s) Error Found by: %s\n", 2287 to_msgs[ec_to], 2288 ii_msgs[ec_ii], 2289 pp_msgs[ec_pp], 2290 rrrr_msgs[ec_rrrr], 2291 ll_msgs[ec_ll], 2292 (info->nbsh & K8_NBSH_ERR_SCRUBER) ? 2293 "Scrubber" : "Normal Operation"); 2294 2295 /* If this was an 'observed' error, early out */ 2296 if (ec_pp == K8_NBSL_PP_OBS) 2297 return; /* We aren't the node involved */ 2298 2299 /* Parse out the extended error code for ECC events */ 2300 switch (ext_ec) { 2301 /* F10 changed to one Extended ECC error code */ 2302 case F10_NBSL_EXT_ERR_RES: /* Reserved field */ 2303 case F10_NBSL_EXT_ERR_ECC: /* F10 ECC ext err code */ 2304 break; 2305 2306 default: 2307 amd64_mc_printk(mci, KERN_ERR, "NOT ECC: no special error " 2308 "handling for this error\n"); 2309 return; 2310 } 2311 2312 if (info->nbsh & K8_NBSH_CECC) 2313 amd64_handle_ce(mci, info); 2314 else if (info->nbsh & K8_NBSH_UECC) 2315 amd64_handle_ue(mci, info); 2316 2317 /* 2318 * If main error is CE then overflow must be CE. If main error is UE 2319 * then overflow is unknown. We'll call the overflow a CE - if 2320 * panic_on_ue is set then we're already panic'ed and won't arrive 2321 * here. Else, then apparently someone doesn't think that UE's are 2322 * catastrophic. 2323 */ 2324 if (info->nbsh & K8_NBSH_OVERFLOW) 2325 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR 2326 "Error Overflow set"); 2327 } 2328 2329 int amd64_process_error_info(struct mem_ctl_info *mci, 2330 struct amd64_error_info_regs *info, 2331 int handle_errors) 2332 { 2333 struct amd64_pvt *pvt; 2334 struct amd64_error_info_regs *regs; 2335 u32 err_code, ext_ec; 2336 int gart_tlb_error = 0; 2337 2338 pvt = mci->pvt_info; 2339 2340 /* If caller doesn't want us to process the error, return */ 2341 if (!handle_errors) 2342 return 1; 2343 2344 regs = info; 2345 2346 debugf1("NorthBridge ERROR: mci(0x%p)\n", mci); 2347 debugf1(" MC node(%d) Error-Address(0x%.8x-%.8x)\n", 2348 pvt->mc_node_id, regs->nbeah, regs->nbeal); 2349 debugf1(" nbsh(0x%.8x) nbsl(0x%.8x)\n", 2350 regs->nbsh, regs->nbsl); 2351 debugf1(" Valid Error=%s Overflow=%s\n", 2352 (regs->nbsh & K8_NBSH_VALID_BIT) ? "True" : "False", 2353 (regs->nbsh & K8_NBSH_OVERFLOW) ? "True" : "False"); 2354 debugf1(" Err Uncorrected=%s MCA Error Reporting=%s\n", 2355 (regs->nbsh & K8_NBSH_UNCORRECTED_ERR) ? 2356 "True" : "False", 2357 (regs->nbsh & K8_NBSH_ERR_ENABLE) ? 2358 "True" : "False"); 2359 debugf1(" MiscErr Valid=%s ErrAddr Valid=%s PCC=%s\n", 2360 (regs->nbsh & K8_NBSH_MISC_ERR_VALID) ? 2361 "True" : "False", 2362 (regs->nbsh & K8_NBSH_VALID_ERROR_ADDR) ? 2363 "True" : "False", 2364 (regs->nbsh & K8_NBSH_PCC) ? 2365 "True" : "False"); 2366 debugf1(" CECC=%s UECC=%s Found by Scruber=%s\n", 2367 (regs->nbsh & K8_NBSH_CECC) ? 2368 "True" : "False", 2369 (regs->nbsh & K8_NBSH_UECC) ? 2370 "True" : "False", 2371 (regs->nbsh & K8_NBSH_ERR_SCRUBER) ? 2372 "True" : "False"); 2373 debugf1(" CORE0=%s CORE1=%s CORE2=%s CORE3=%s\n", 2374 (regs->nbsh & K8_NBSH_CORE0) ? "True" : "False", 2375 (regs->nbsh & K8_NBSH_CORE1) ? "True" : "False", 2376 (regs->nbsh & K8_NBSH_CORE2) ? "True" : "False", 2377 (regs->nbsh & K8_NBSH_CORE3) ? "True" : "False"); 2378 2379 2380 err_code = EXTRACT_ERROR_CODE(regs->nbsl); 2381 2382 /* Determine which error type: 2383 * 1) GART errors - non-fatal, developmental events 2384 * 2) MEMORY errors 2385 * 3) BUS errors 2386 * 4) Unknown error 2387 */ 2388 if (TEST_TLB_ERROR(err_code)) { 2389 /* 2390 * GART errors are intended to help graphics driver developers 2391 * to detect bad GART PTEs. It is recommended by AMD to disable 2392 * GART table walk error reporting by default[1] (currently 2393 * being disabled in mce_cpu_quirks()) and according to the 2394 * comment in mce_cpu_quirks(), such GART errors can be 2395 * incorrectly triggered. We may see these errors anyway and 2396 * unless requested by the user, they won't be reported. 2397 * 2398 * [1] section 13.10.1 on BIOS and Kernel Developers Guide for 2399 * AMD NPT family 0Fh processors 2400 */ 2401 if (report_gart_errors == 0) 2402 return 1; 2403 2404 /* 2405 * Only if GART error reporting is requested should we generate 2406 * any logs. 2407 */ 2408 gart_tlb_error = 1; 2409 2410 debugf1("GART TLB error\n"); 2411 amd64_decode_gart_tlb_error(mci, info); 2412 } else if (TEST_MEM_ERROR(err_code)) { 2413 debugf1("Memory/Cache error\n"); 2414 amd64_decode_mem_cache_error(mci, info); 2415 } else if (TEST_BUS_ERROR(err_code)) { 2416 debugf1("Bus (Link/DRAM) error\n"); 2417 amd64_decode_bus_error(mci, info); 2418 } else { 2419 /* shouldn't reach here! */ 2420 amd64_mc_printk(mci, KERN_WARNING, 2421 "%s(): unknown MCE error 0x%x\n", __func__, 2422 err_code); 2423 } 2424 2425 ext_ec = EXTRACT_EXT_ERROR_CODE(regs->nbsl); 2426 amd64_mc_printk(mci, KERN_ERR, 2427 "ExtErr=(0x%x) %s\n", ext_ec, ext_msgs[ext_ec]); 2428 2429 if (((ext_ec >= F10_NBSL_EXT_ERR_CRC && 2430 ext_ec <= F10_NBSL_EXT_ERR_TGT) || 2431 (ext_ec == F10_NBSL_EXT_ERR_RMW)) && 2432 EXTRACT_LDT_LINK(info->nbsh)) { 2433 2434 amd64_mc_printk(mci, KERN_ERR, 2435 "Error on hypertransport link: %s\n", 2436 htlink_msgs[ 2437 EXTRACT_LDT_LINK(info->nbsh)]); 2438 } 2439 2440 /* 2441 * Check the UE bit of the NB status high register, if set generate some 2442 * logs. If NOT a GART error, then process the event as a NO-INFO event. 2443 * If it was a GART error, skip that process. 2444 */ 2445 if (regs->nbsh & K8_NBSH_UNCORRECTED_ERR) { 2446 amd64_mc_printk(mci, KERN_CRIT, "uncorrected error\n"); 2447 if (!gart_tlb_error) 2448 edac_mc_handle_ue_no_info(mci, "UE bit is set\n"); 2449 } 2450 2451 if (regs->nbsh & K8_NBSH_PCC) 2452 amd64_mc_printk(mci, KERN_CRIT, 2453 "PCC (processor context corrupt) set\n"); 2454 2455 return 1; 2456 } 2457 EXPORT_SYMBOL_GPL(amd64_process_error_info); 2458 2459 /* 2460 * The main polling 'check' function, called FROM the edac core to perform the 2461 * error checking and if an error is encountered, error processing. 2462 */ 2463 static void amd64_check(struct mem_ctl_info *mci) 2464 { 2465 struct amd64_error_info_regs info; 2466 2467 if (amd64_get_error_info(mci, &info)) 2468 amd64_process_error_info(mci, &info, 1); 2469 } 2470 2471 /* 2472 * Input: 2473 * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer 2474 * 2) AMD Family index value 2475 * 2476 * Ouput: 2477 * Upon return of 0, the following filled in: 2478 * 2479 * struct pvt->addr_f1_ctl 2480 * struct pvt->misc_f3_ctl 2481 * 2482 * Filled in with related device funcitions of 'dram_f2_ctl' 2483 * These devices are "reserved" via the pci_get_device() 2484 * 2485 * Upon return of 1 (error status): 2486 * 2487 * Nothing reserved 2488 */ 2489 static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx) 2490 { 2491 const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx]; 2492 2493 /* Reserve the ADDRESS MAP Device */ 2494 pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor, 2495 amd64_dev->addr_f1_ctl, 2496 pvt->dram_f2_ctl); 2497 2498 if (!pvt->addr_f1_ctl) { 2499 amd64_printk(KERN_ERR, "error address map device not found: " 2500 "vendor %x device 0x%x (broken BIOS?)\n", 2501 PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl); 2502 return 1; 2503 } 2504 2505 /* Reserve the MISC Device */ 2506 pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor, 2507 amd64_dev->misc_f3_ctl, 2508 pvt->dram_f2_ctl); 2509 2510 if (!pvt->misc_f3_ctl) { 2511 pci_dev_put(pvt->addr_f1_ctl); 2512 pvt->addr_f1_ctl = NULL; 2513 2514 amd64_printk(KERN_ERR, "error miscellaneous device not found: " 2515 "vendor %x device 0x%x (broken BIOS?)\n", 2516 PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl); 2517 return 1; 2518 } 2519 2520 debugf1(" Addr Map device PCI Bus ID:\t%s\n", 2521 pci_name(pvt->addr_f1_ctl)); 2522 debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n", 2523 pci_name(pvt->dram_f2_ctl)); 2524 debugf1(" Misc device PCI Bus ID:\t%s\n", 2525 pci_name(pvt->misc_f3_ctl)); 2526 2527 return 0; 2528 } 2529 2530 static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt) 2531 { 2532 pci_dev_put(pvt->addr_f1_ctl); 2533 pci_dev_put(pvt->misc_f3_ctl); 2534 } 2535 2536 /* 2537 * Retrieve the hardware registers of the memory controller (this includes the 2538 * 'Address Map' and 'Misc' device regs) 2539 */ 2540 static void amd64_read_mc_registers(struct amd64_pvt *pvt) 2541 { 2542 u64 msr_val; 2543 int dram, err = 0; 2544 2545 /* 2546 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since 2547 * those are Read-As-Zero 2548 */ 2549 rdmsrl(MSR_K8_TOP_MEM1, msr_val); 2550 pvt->top_mem = msr_val >> 23; 2551 debugf0(" TOP_MEM=0x%08llx\n", pvt->top_mem); 2552 2553 /* check first whether TOP_MEM2 is enabled */ 2554 rdmsrl(MSR_K8_SYSCFG, msr_val); 2555 if (msr_val & (1U << 21)) { 2556 rdmsrl(MSR_K8_TOP_MEM2, msr_val); 2557 pvt->top_mem2 = msr_val >> 23; 2558 debugf0(" TOP_MEM2=0x%08llx\n", pvt->top_mem2); 2559 } else 2560 debugf0(" TOP_MEM2 disabled.\n"); 2561 2562 amd64_cpu_display_info(pvt); 2563 2564 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap); 2565 if (err) 2566 goto err_reg; 2567 2568 if (pvt->ops->read_dram_ctl_register) 2569 pvt->ops->read_dram_ctl_register(pvt); 2570 2571 for (dram = 0; dram < DRAM_REG_COUNT; dram++) { 2572 /* 2573 * Call CPU specific READ function to get the DRAM Base and 2574 * Limit values from the DCT. 2575 */ 2576 pvt->ops->read_dram_base_limit(pvt, dram); 2577 2578 /* 2579 * Only print out debug info on rows with both R and W Enabled. 2580 * Normal processing, compiler should optimize this whole 'if' 2581 * debug output block away. 2582 */ 2583 if (pvt->dram_rw_en[dram] != 0) { 2584 debugf1(" DRAM_BASE[%d]: 0x%8.08x-%8.08x " 2585 "DRAM_LIMIT: 0x%8.08x-%8.08x\n", 2586 dram, 2587 (u32)(pvt->dram_base[dram] >> 32), 2588 (u32)(pvt->dram_base[dram] & 0xFFFFFFFF), 2589 (u32)(pvt->dram_limit[dram] >> 32), 2590 (u32)(pvt->dram_limit[dram] & 0xFFFFFFFF)); 2591 debugf1(" IntlvEn=%s %s %s " 2592 "IntlvSel=%d DstNode=%d\n", 2593 pvt->dram_IntlvEn[dram] ? 2594 "Enabled" : "Disabled", 2595 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W", 2596 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R", 2597 pvt->dram_IntlvSel[dram], 2598 pvt->dram_DstNode[dram]); 2599 } 2600 } 2601 2602 amd64_read_dct_base_mask(pvt); 2603 2604 err = pci_read_config_dword(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar); 2605 if (err) 2606 goto err_reg; 2607 2608 amd64_read_dbam_reg(pvt); 2609 2610 err = pci_read_config_dword(pvt->misc_f3_ctl, 2611 F10_ONLINE_SPARE, &pvt->online_spare); 2612 if (err) 2613 goto err_reg; 2614 2615 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0); 2616 if (err) 2617 goto err_reg; 2618 2619 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0); 2620 if (err) 2621 goto err_reg; 2622 2623 if (!dct_ganging_enabled(pvt)) { 2624 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, 2625 &pvt->dclr1); 2626 if (err) 2627 goto err_reg; 2628 2629 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_1, 2630 &pvt->dchr1); 2631 if (err) 2632 goto err_reg; 2633 } 2634 2635 amd64_dump_misc_regs(pvt); 2636 2637 err_reg: 2638 debugf0("Reading an MC register failed\n"); 2639 2640 } 2641 2642 /* 2643 * NOTE: CPU Revision Dependent code 2644 * 2645 * Input: 2646 * @csrow_nr ChipSelect Row Number (0..CHIPSELECT_COUNT-1) 2647 * k8 private pointer to --> 2648 * DRAM Bank Address mapping register 2649 * node_id 2650 * DCL register where dual_channel_active is 2651 * 2652 * The DBAM register consists of 4 sets of 4 bits each definitions: 2653 * 2654 * Bits: CSROWs 2655 * 0-3 CSROWs 0 and 1 2656 * 4-7 CSROWs 2 and 3 2657 * 8-11 CSROWs 4 and 5 2658 * 12-15 CSROWs 6 and 7 2659 * 2660 * Values range from: 0 to 15 2661 * The meaning of the values depends on CPU revision and dual-channel state, 2662 * see relevant BKDG more info. 2663 * 2664 * The memory controller provides for total of only 8 CSROWs in its current 2665 * architecture. Each "pair" of CSROWs normally represents just one DIMM in 2666 * single channel or two (2) DIMMs in dual channel mode. 2667 * 2668 * The following code logic collapses the various tables for CSROW based on CPU 2669 * revision. 2670 * 2671 * Returns: 2672 * The number of PAGE_SIZE pages on the specified CSROW number it 2673 * encompasses 2674 * 2675 */ 2676 static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt) 2677 { 2678 u32 dram_map, nr_pages; 2679 2680 /* 2681 * The math on this doesn't look right on the surface because x/2*4 can 2682 * be simplified to x*2 but this expression makes use of the fact that 2683 * it is integral math where 1/2=0. This intermediate value becomes the 2684 * number of bits to shift the DBAM register to extract the proper CSROW 2685 * field. 2686 */ 2687 dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF; 2688 2689 nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map); 2690 2691 /* 2692 * If dual channel then double the memory size of single channel. 2693 * Channel count is 1 or 2 2694 */ 2695 nr_pages <<= (pvt->channel_count - 1); 2696 2697 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map); 2698 debugf0(" nr_pages= %u channel-count = %d\n", 2699 nr_pages, pvt->channel_count); 2700 2701 return nr_pages; 2702 } 2703 2704 /* 2705 * Initialize the array of csrow attribute instances, based on the values 2706 * from pci config hardware registers. 2707 */ 2708 static int amd64_init_csrows(struct mem_ctl_info *mci) 2709 { 2710 struct csrow_info *csrow; 2711 struct amd64_pvt *pvt; 2712 u64 input_addr_min, input_addr_max, sys_addr; 2713 int i, err = 0, empty = 1; 2714 2715 pvt = mci->pvt_info; 2716 2717 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg); 2718 if (err) 2719 debugf0("Reading K8_NBCFG failed\n"); 2720 2721 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg, 2722 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled", 2723 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled" 2724 ); 2725 2726 for (i = 0; i < CHIPSELECT_COUNT; i++) { 2727 csrow = &mci->csrows[i]; 2728 2729 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) { 2730 debugf1("----CSROW %d EMPTY for node %d\n", i, 2731 pvt->mc_node_id); 2732 continue; 2733 } 2734 2735 debugf1("----CSROW %d VALID for MC node %d\n", 2736 i, pvt->mc_node_id); 2737 2738 empty = 0; 2739 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt); 2740 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max); 2741 sys_addr = input_addr_to_sys_addr(mci, input_addr_min); 2742 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT); 2743 sys_addr = input_addr_to_sys_addr(mci, input_addr_max); 2744 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT); 2745 csrow->page_mask = ~mask_from_dct_mask(pvt, i); 2746 /* 8 bytes of resolution */ 2747 2748 csrow->mtype = amd64_determine_memory_type(pvt); 2749 2750 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i); 2751 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n", 2752 (unsigned long)input_addr_min, 2753 (unsigned long)input_addr_max); 2754 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n", 2755 (unsigned long)sys_addr, csrow->page_mask); 2756 debugf1(" nr_pages: %u first_page: 0x%lx " 2757 "last_page: 0x%lx\n", 2758 (unsigned)csrow->nr_pages, 2759 csrow->first_page, csrow->last_page); 2760 2761 /* 2762 * determine whether CHIPKILL or JUST ECC or NO ECC is operating 2763 */ 2764 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) 2765 csrow->edac_mode = 2766 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? 2767 EDAC_S4ECD4ED : EDAC_SECDED; 2768 else 2769 csrow->edac_mode = EDAC_NONE; 2770 } 2771 2772 return empty; 2773 } 2774 2775 /* 2776 * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we" 2777 * enable it. 2778 */ 2779 static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci) 2780 { 2781 struct amd64_pvt *pvt = mci->pvt_info; 2782 const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id); 2783 int cpu, idx = 0, err = 0; 2784 struct msr msrs[cpumask_weight(cpumask)]; 2785 u32 value; 2786 u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn; 2787 2788 if (!ecc_enable_override) 2789 return; 2790 2791 memset(msrs, 0, sizeof(msrs)); 2792 2793 amd64_printk(KERN_WARNING, 2794 "'ecc_enable_override' parameter is active, " 2795 "Enabling AMD ECC hardware now: CAUTION\n"); 2796 2797 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value); 2798 if (err) 2799 debugf0("Reading K8_NBCTL failed\n"); 2800 2801 /* turn on UECCn and CECCEn bits */ 2802 pvt->old_nbctl = value & mask; 2803 pvt->nbctl_mcgctl_saved = 1; 2804 2805 value |= mask; 2806 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value); 2807 2808 rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs); 2809 2810 for_each_cpu(cpu, cpumask) { 2811 if (msrs[idx].l & K8_MSR_MCGCTL_NBE) 2812 set_bit(idx, &pvt->old_mcgctl); 2813 2814 msrs[idx].l |= K8_MSR_MCGCTL_NBE; 2815 idx++; 2816 } 2817 wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs); 2818 2819 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value); 2820 if (err) 2821 debugf0("Reading K8_NBCFG failed\n"); 2822 2823 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value, 2824 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled", 2825 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"); 2826 2827 if (!(value & K8_NBCFG_ECC_ENABLE)) { 2828 amd64_printk(KERN_WARNING, 2829 "This node reports that DRAM ECC is " 2830 "currently Disabled; ENABLING now\n"); 2831 2832 /* Attempt to turn on DRAM ECC Enable */ 2833 value |= K8_NBCFG_ECC_ENABLE; 2834 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value); 2835 2836 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value); 2837 if (err) 2838 debugf0("Reading K8_NBCFG failed\n"); 2839 2840 if (!(value & K8_NBCFG_ECC_ENABLE)) { 2841 amd64_printk(KERN_WARNING, 2842 "Hardware rejects Enabling DRAM ECC checking\n" 2843 "Check memory DIMM configuration\n"); 2844 } else { 2845 amd64_printk(KERN_DEBUG, 2846 "Hardware accepted DRAM ECC Enable\n"); 2847 } 2848 } 2849 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value, 2850 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled", 2851 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"); 2852 2853 pvt->ctl_error_info.nbcfg = value; 2854 } 2855 2856 static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt) 2857 { 2858 const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id); 2859 int cpu, idx = 0, err = 0; 2860 struct msr msrs[cpumask_weight(cpumask)]; 2861 u32 value; 2862 u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn; 2863 2864 if (!pvt->nbctl_mcgctl_saved) 2865 return; 2866 2867 memset(msrs, 0, sizeof(msrs)); 2868 2869 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value); 2870 if (err) 2871 debugf0("Reading K8_NBCTL failed\n"); 2872 value &= ~mask; 2873 value |= pvt->old_nbctl; 2874 2875 /* restore the NB Enable MCGCTL bit */ 2876 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value); 2877 2878 rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs); 2879 2880 for_each_cpu(cpu, cpumask) { 2881 msrs[idx].l &= ~K8_MSR_MCGCTL_NBE; 2882 msrs[idx].l |= 2883 test_bit(idx, &pvt->old_mcgctl) << K8_MSR_MCGCTL_NBE; 2884 idx++; 2885 } 2886 2887 wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs); 2888 } 2889 2890 static void check_mcg_ctl(void *ret) 2891 { 2892 u64 msr_val = 0; 2893 u8 nbe; 2894 2895 rdmsrl(MSR_IA32_MCG_CTL, msr_val); 2896 nbe = msr_val & K8_MSR_MCGCTL_NBE; 2897 2898 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n", 2899 raw_smp_processor_id(), msr_val, 2900 (nbe ? "enabled" : "disabled")); 2901 2902 if (!nbe) 2903 *(int *)ret = 0; 2904 } 2905 2906 /* check MCG_CTL on all the cpus on this node */ 2907 static int amd64_mcg_ctl_enabled_on_cpus(const cpumask_t *mask) 2908 { 2909 int ret = 1; 2910 preempt_disable(); 2911 smp_call_function_many(mask, check_mcg_ctl, &ret, 1); 2912 preempt_enable(); 2913 2914 return ret; 2915 } 2916 2917 /* 2918 * EDAC requires that the BIOS have ECC enabled before taking over the 2919 * processing of ECC errors. This is because the BIOS can properly initialize 2920 * the memory system completely. A command line option allows to force-enable 2921 * hardware ECC later in amd64_enable_ecc_error_reporting(). 2922 */ 2923 static int amd64_check_ecc_enabled(struct amd64_pvt *pvt) 2924 { 2925 u32 value; 2926 int err = 0, ret = 0; 2927 u8 ecc_enabled = 0; 2928 2929 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value); 2930 if (err) 2931 debugf0("Reading K8_NBCTL failed\n"); 2932 2933 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE); 2934 2935 ret = amd64_mcg_ctl_enabled_on_cpus(cpumask_of_node(pvt->mc_node_id)); 2936 2937 debugf0("K8_NBCFG=0x%x, DRAM ECC is %s\n", value, 2938 (value & K8_NBCFG_ECC_ENABLE ? "enabled" : "disabled")); 2939 2940 if (!ecc_enabled || !ret) { 2941 if (!ecc_enabled) { 2942 amd64_printk(KERN_WARNING, "This node reports that " 2943 "Memory ECC is currently " 2944 "disabled.\n"); 2945 2946 amd64_printk(KERN_WARNING, "bit 0x%lx in register " 2947 "F3x%x of the MISC_CONTROL device (%s) " 2948 "should be enabled\n", K8_NBCFG_ECC_ENABLE, 2949 K8_NBCFG, pci_name(pvt->misc_f3_ctl)); 2950 } 2951 if (!ret) { 2952 amd64_printk(KERN_WARNING, "bit 0x%016lx in MSR 0x%08x " 2953 "of node %d should be enabled\n", 2954 K8_MSR_MCGCTL_NBE, MSR_IA32_MCG_CTL, 2955 pvt->mc_node_id); 2956 } 2957 if (!ecc_enable_override) { 2958 amd64_printk(KERN_WARNING, "WARNING: ECC is NOT " 2959 "currently enabled by the BIOS. Module " 2960 "will NOT be loaded.\n" 2961 " Either Enable ECC in the BIOS, " 2962 "or use the 'ecc_enable_override' " 2963 "parameter.\n" 2964 " Might be a BIOS bug, if BIOS says " 2965 "ECC is enabled\n" 2966 " Use of the override can cause " 2967 "unknown side effects.\n"); 2968 ret = -ENODEV; 2969 } 2970 } else { 2971 amd64_printk(KERN_INFO, 2972 "ECC is enabled by BIOS, Proceeding " 2973 "with EDAC module initialization\n"); 2974 2975 /* CLEAR the override, since BIOS controlled it */ 2976 ecc_enable_override = 0; 2977 } 2978 2979 return ret; 2980 } 2981 2982 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) + 2983 ARRAY_SIZE(amd64_inj_attrs) + 2984 1]; 2985 2986 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } }; 2987 2988 static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci) 2989 { 2990 unsigned int i = 0, j = 0; 2991 2992 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++) 2993 sysfs_attrs[i] = amd64_dbg_attrs[i]; 2994 2995 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++) 2996 sysfs_attrs[i] = amd64_inj_attrs[j]; 2997 2998 sysfs_attrs[i] = terminator; 2999 3000 mci->mc_driver_sysfs_attributes = sysfs_attrs; 3001 } 3002 3003 static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci) 3004 { 3005 struct amd64_pvt *pvt = mci->pvt_info; 3006 3007 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2; 3008 mci->edac_ctl_cap = EDAC_FLAG_NONE; 3009 mci->edac_cap = EDAC_FLAG_NONE; 3010 3011 if (pvt->nbcap & K8_NBCAP_SECDED) 3012 mci->edac_ctl_cap |= EDAC_FLAG_SECDED; 3013 3014 if (pvt->nbcap & K8_NBCAP_CHIPKILL) 3015 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; 3016 3017 mci->edac_cap = amd64_determine_edac_cap(pvt); 3018 mci->mod_name = EDAC_MOD_STR; 3019 mci->mod_ver = EDAC_AMD64_VERSION; 3020 mci->ctl_name = get_amd_family_name(pvt->mc_type_index); 3021 mci->dev_name = pci_name(pvt->dram_f2_ctl); 3022 mci->ctl_page_to_phys = NULL; 3023 3024 /* IMPORTANT: Set the polling 'check' function in this module */ 3025 mci->edac_check = amd64_check; 3026 3027 /* memory scrubber interface */ 3028 mci->set_sdram_scrub_rate = amd64_set_scrub_rate; 3029 mci->get_sdram_scrub_rate = amd64_get_scrub_rate; 3030 } 3031 3032 /* 3033 * Init stuff for this DRAM Controller device. 3034 * 3035 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration 3036 * Space feature MUST be enabled on ALL Processors prior to actually reading 3037 * from the ECS registers. Since the loading of the module can occur on any 3038 * 'core', and cores don't 'see' all the other processors ECS data when the 3039 * others are NOT enabled. Our solution is to first enable ECS access in this 3040 * routine on all processors, gather some data in a amd64_pvt structure and 3041 * later come back in a finish-setup function to perform that final 3042 * initialization. See also amd64_init_2nd_stage() for that. 3043 */ 3044 static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl, 3045 int mc_type_index) 3046 { 3047 struct amd64_pvt *pvt = NULL; 3048 int err = 0, ret; 3049 3050 ret = -ENOMEM; 3051 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL); 3052 if (!pvt) 3053 goto err_exit; 3054 3055 pvt->mc_node_id = get_mc_node_id_from_pdev(dram_f2_ctl); 3056 3057 pvt->dram_f2_ctl = dram_f2_ctl; 3058 pvt->ext_model = boot_cpu_data.x86_model >> 4; 3059 pvt->mc_type_index = mc_type_index; 3060 pvt->ops = family_ops(mc_type_index); 3061 pvt->old_mcgctl = 0; 3062 3063 /* 3064 * We have the dram_f2_ctl device as an argument, now go reserve its 3065 * sibling devices from the PCI system. 3066 */ 3067 ret = -ENODEV; 3068 err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index); 3069 if (err) 3070 goto err_free; 3071 3072 ret = -EINVAL; 3073 err = amd64_check_ecc_enabled(pvt); 3074 if (err) 3075 goto err_put; 3076 3077 /* 3078 * Key operation here: setup of HW prior to performing ops on it. Some 3079 * setup is required to access ECS data. After this is performed, the 3080 * 'teardown' function must be called upon error and normal exit paths. 3081 */ 3082 if (boot_cpu_data.x86 >= 0x10) 3083 amd64_setup(pvt); 3084 3085 /* 3086 * Save the pointer to the private data for use in 2nd initialization 3087 * stage 3088 */ 3089 pvt_lookup[pvt->mc_node_id] = pvt; 3090 3091 return 0; 3092 3093 err_put: 3094 amd64_free_mc_sibling_devices(pvt); 3095 3096 err_free: 3097 kfree(pvt); 3098 3099 err_exit: 3100 return ret; 3101 } 3102 3103 /* 3104 * This is the finishing stage of the init code. Needs to be performed after all 3105 * MCs' hardware have been prepped for accessing extended config space. 3106 */ 3107 static int amd64_init_2nd_stage(struct amd64_pvt *pvt) 3108 { 3109 int node_id = pvt->mc_node_id; 3110 struct mem_ctl_info *mci; 3111 int ret, err = 0; 3112 3113 amd64_read_mc_registers(pvt); 3114 3115 ret = -ENODEV; 3116 if (pvt->ops->probe_valid_hardware) { 3117 err = pvt->ops->probe_valid_hardware(pvt); 3118 if (err) 3119 goto err_exit; 3120 } 3121 3122 /* 3123 * We need to determine how many memory channels there are. Then use 3124 * that information for calculating the size of the dynamic instance 3125 * tables in the 'mci' structure 3126 */ 3127 pvt->channel_count = pvt->ops->early_channel_count(pvt); 3128 if (pvt->channel_count < 0) 3129 goto err_exit; 3130 3131 ret = -ENOMEM; 3132 mci = edac_mc_alloc(0, CHIPSELECT_COUNT, pvt->channel_count, node_id); 3133 if (!mci) 3134 goto err_exit; 3135 3136 mci->pvt_info = pvt; 3137 3138 mci->dev = &pvt->dram_f2_ctl->dev; 3139 amd64_setup_mci_misc_attributes(mci); 3140 3141 if (amd64_init_csrows(mci)) 3142 mci->edac_cap = EDAC_FLAG_NONE; 3143 3144 amd64_enable_ecc_error_reporting(mci); 3145 amd64_set_mc_sysfs_attributes(mci); 3146 3147 ret = -ENODEV; 3148 if (edac_mc_add_mc(mci)) { 3149 debugf1("failed edac_mc_add_mc()\n"); 3150 goto err_add_mc; 3151 } 3152 3153 mci_lookup[node_id] = mci; 3154 pvt_lookup[node_id] = NULL; 3155 return 0; 3156 3157 err_add_mc: 3158 edac_mc_free(mci); 3159 3160 err_exit: 3161 debugf0("failure to init 2nd stage: ret=%d\n", ret); 3162 3163 amd64_restore_ecc_error_reporting(pvt); 3164 3165 if (boot_cpu_data.x86 > 0xf) 3166 amd64_teardown(pvt); 3167 3168 amd64_free_mc_sibling_devices(pvt); 3169 3170 kfree(pvt_lookup[pvt->mc_node_id]); 3171 pvt_lookup[node_id] = NULL; 3172 3173 return ret; 3174 } 3175 3176 3177 static int __devinit amd64_init_one_instance(struct pci_dev *pdev, 3178 const struct pci_device_id *mc_type) 3179 { 3180 int ret = 0; 3181 3182 debugf0("(MC node=%d,mc_type='%s')\n", 3183 get_mc_node_id_from_pdev(pdev), 3184 get_amd_family_name(mc_type->driver_data)); 3185 3186 ret = pci_enable_device(pdev); 3187 if (ret < 0) 3188 ret = -EIO; 3189 else 3190 ret = amd64_probe_one_instance(pdev, mc_type->driver_data); 3191 3192 if (ret < 0) 3193 debugf0("ret=%d\n", ret); 3194 3195 return ret; 3196 } 3197 3198 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev) 3199 { 3200 struct mem_ctl_info *mci; 3201 struct amd64_pvt *pvt; 3202 3203 /* Remove from EDAC CORE tracking list */ 3204 mci = edac_mc_del_mc(&pdev->dev); 3205 if (!mci) 3206 return; 3207 3208 pvt = mci->pvt_info; 3209 3210 amd64_restore_ecc_error_reporting(pvt); 3211 3212 if (boot_cpu_data.x86 > 0xf) 3213 amd64_teardown(pvt); 3214 3215 amd64_free_mc_sibling_devices(pvt); 3216 3217 kfree(pvt); 3218 mci->pvt_info = NULL; 3219 3220 mci_lookup[pvt->mc_node_id] = NULL; 3221 3222 /* Free the EDAC CORE resources */ 3223 edac_mc_free(mci); 3224 } 3225 3226 /* 3227 * This table is part of the interface for loading drivers for PCI devices. The 3228 * PCI core identifies what devices are on a system during boot, and then 3229 * inquiry this table to see if this driver is for a given device found. 3230 */ 3231 static const struct pci_device_id amd64_pci_table[] __devinitdata = { 3232 { 3233 .vendor = PCI_VENDOR_ID_AMD, 3234 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL, 3235 .subvendor = PCI_ANY_ID, 3236 .subdevice = PCI_ANY_ID, 3237 .class = 0, 3238 .class_mask = 0, 3239 .driver_data = K8_CPUS 3240 }, 3241 { 3242 .vendor = PCI_VENDOR_ID_AMD, 3243 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM, 3244 .subvendor = PCI_ANY_ID, 3245 .subdevice = PCI_ANY_ID, 3246 .class = 0, 3247 .class_mask = 0, 3248 .driver_data = F10_CPUS 3249 }, 3250 { 3251 .vendor = PCI_VENDOR_ID_AMD, 3252 .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM, 3253 .subvendor = PCI_ANY_ID, 3254 .subdevice = PCI_ANY_ID, 3255 .class = 0, 3256 .class_mask = 0, 3257 .driver_data = F11_CPUS 3258 }, 3259 {0, } 3260 }; 3261 MODULE_DEVICE_TABLE(pci, amd64_pci_table); 3262 3263 static struct pci_driver amd64_pci_driver = { 3264 .name = EDAC_MOD_STR, 3265 .probe = amd64_init_one_instance, 3266 .remove = __devexit_p(amd64_remove_one_instance), 3267 .id_table = amd64_pci_table, 3268 }; 3269 3270 static void amd64_setup_pci_device(void) 3271 { 3272 struct mem_ctl_info *mci; 3273 struct amd64_pvt *pvt; 3274 3275 if (amd64_ctl_pci) 3276 return; 3277 3278 mci = mci_lookup[0]; 3279 if (mci) { 3280 3281 pvt = mci->pvt_info; 3282 amd64_ctl_pci = 3283 edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev, 3284 EDAC_MOD_STR); 3285 3286 if (!amd64_ctl_pci) { 3287 pr_warning("%s(): Unable to create PCI control\n", 3288 __func__); 3289 3290 pr_warning("%s(): PCI error report via EDAC not set\n", 3291 __func__); 3292 } 3293 } 3294 } 3295 3296 static int __init amd64_edac_init(void) 3297 { 3298 int nb, err = -ENODEV; 3299 3300 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n"); 3301 3302 opstate_init(); 3303 3304 if (cache_k8_northbridges() < 0) 3305 goto err_exit; 3306 3307 err = pci_register_driver(&amd64_pci_driver); 3308 if (err) 3309 return err; 3310 3311 /* 3312 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd 3313 * amd64_pvt structs. These will be used in the 2nd stage init function 3314 * to finish initialization of the MC instances. 3315 */ 3316 for (nb = 0; nb < num_k8_northbridges; nb++) { 3317 if (!pvt_lookup[nb]) 3318 continue; 3319 3320 err = amd64_init_2nd_stage(pvt_lookup[nb]); 3321 if (err) 3322 goto err_exit; 3323 } 3324 3325 amd64_setup_pci_device(); 3326 3327 return 0; 3328 3329 err_exit: 3330 debugf0("'finish_setup' stage failed\n"); 3331 pci_unregister_driver(&amd64_pci_driver); 3332 3333 return err; 3334 } 3335 3336 static void __exit amd64_edac_exit(void) 3337 { 3338 if (amd64_ctl_pci) 3339 edac_pci_release_generic_ctl(amd64_ctl_pci); 3340 3341 pci_unregister_driver(&amd64_pci_driver); 3342 } 3343 3344 module_init(amd64_edac_init); 3345 module_exit(amd64_edac_exit); 3346 3347 MODULE_LICENSE("GPL"); 3348 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, " 3349 "Dave Peterson, Thayne Harbaugh"); 3350 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - " 3351 EDAC_AMD64_VERSION); 3352 3353 module_param(edac_op_state, int, 0444); 3354 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 3355