xref: /openbmc/linux/drivers/edac/amd64_edac.c (revision 63dc02bd)
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
3 
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5 
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8 
9 /*
10  * Set by command line parameter. If BIOS has enabled the ECC, this override is
11  * cleared to prevent re-enabling the hardware by this driver.
12  */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15 
16 static struct msr __percpu *msrs;
17 
18 /*
19  * count successfully initialized driver instances for setup_pci_device()
20  */
21 static atomic_t drv_instances = ATOMIC_INIT(0);
22 
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
26 
27 /*
28  * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29  * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30  * or higher value'.
31  *
32  *FIXME: Produce a better mapping/linearisation.
33  */
34 struct scrubrate {
35        u32 scrubval;           /* bit pattern for scrub rate */
36        u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
37 } scrubrates[] = {
38 	{ 0x01, 1600000000UL},
39 	{ 0x02, 800000000UL},
40 	{ 0x03, 400000000UL},
41 	{ 0x04, 200000000UL},
42 	{ 0x05, 100000000UL},
43 	{ 0x06, 50000000UL},
44 	{ 0x07, 25000000UL},
45 	{ 0x08, 12284069UL},
46 	{ 0x09, 6274509UL},
47 	{ 0x0A, 3121951UL},
48 	{ 0x0B, 1560975UL},
49 	{ 0x0C, 781440UL},
50 	{ 0x0D, 390720UL},
51 	{ 0x0E, 195300UL},
52 	{ 0x0F, 97650UL},
53 	{ 0x10, 48854UL},
54 	{ 0x11, 24427UL},
55 	{ 0x12, 12213UL},
56 	{ 0x13, 6101UL},
57 	{ 0x14, 3051UL},
58 	{ 0x15, 1523UL},
59 	{ 0x16, 761UL},
60 	{ 0x00, 0UL},        /* scrubbing off */
61 };
62 
63 static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 				      u32 *val, const char *func)
65 {
66 	int err = 0;
67 
68 	err = pci_read_config_dword(pdev, offset, val);
69 	if (err)
70 		amd64_warn("%s: error reading F%dx%03x.\n",
71 			   func, PCI_FUNC(pdev->devfn), offset);
72 
73 	return err;
74 }
75 
76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 				u32 val, const char *func)
78 {
79 	int err = 0;
80 
81 	err = pci_write_config_dword(pdev, offset, val);
82 	if (err)
83 		amd64_warn("%s: error writing to F%dx%03x.\n",
84 			   func, PCI_FUNC(pdev->devfn), offset);
85 
86 	return err;
87 }
88 
89 /*
90  *
91  * Depending on the family, F2 DCT reads need special handling:
92  *
93  * K8: has a single DCT only
94  *
95  * F10h: each DCT has its own set of regs
96  *	DCT0 -> F2x040..
97  *	DCT1 -> F2x140..
98  *
99  * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100  *
101  */
102 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 			       const char *func)
104 {
105 	if (addr >= 0x100)
106 		return -EINVAL;
107 
108 	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109 }
110 
111 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 				 const char *func)
113 {
114 	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115 }
116 
117 /*
118  * Select DCT to which PCI cfg accesses are routed
119  */
120 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
121 {
122 	u32 reg = 0;
123 
124 	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
125 	reg &= 0xfffffffe;
126 	reg |= dct;
127 	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
128 }
129 
130 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
131 				 const char *func)
132 {
133 	u8 dct  = 0;
134 
135 	if (addr >= 0x140 && addr <= 0x1a0) {
136 		dct   = 1;
137 		addr -= 0x100;
138 	}
139 
140 	f15h_select_dct(pvt, dct);
141 
142 	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
143 }
144 
145 /*
146  * Memory scrubber control interface. For K8, memory scrubbing is handled by
147  * hardware and can involve L2 cache, dcache as well as the main memory. With
148  * F10, this is extended to L3 cache scrubbing on CPU models sporting that
149  * functionality.
150  *
151  * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
152  * (dram) over to cache lines. This is nasty, so we will use bandwidth in
153  * bytes/sec for the setting.
154  *
155  * Currently, we only do dram scrubbing. If the scrubbing is done in software on
156  * other archs, we might not have access to the caches directly.
157  */
158 
159 /*
160  * scan the scrub rate mapping table for a close or matching bandwidth value to
161  * issue. If requested is too big, then use last maximum value found.
162  */
163 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
164 {
165 	u32 scrubval;
166 	int i;
167 
168 	/*
169 	 * map the configured rate (new_bw) to a value specific to the AMD64
170 	 * memory controller and apply to register. Search for the first
171 	 * bandwidth entry that is greater or equal than the setting requested
172 	 * and program that. If at last entry, turn off DRAM scrubbing.
173 	 */
174 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
175 		/*
176 		 * skip scrub rates which aren't recommended
177 		 * (see F10 BKDG, F3x58)
178 		 */
179 		if (scrubrates[i].scrubval < min_rate)
180 			continue;
181 
182 		if (scrubrates[i].bandwidth <= new_bw)
183 			break;
184 
185 		/*
186 		 * if no suitable bandwidth found, turn off DRAM scrubbing
187 		 * entirely by falling back to the last element in the
188 		 * scrubrates array.
189 		 */
190 	}
191 
192 	scrubval = scrubrates[i].scrubval;
193 
194 	pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
195 
196 	if (scrubval)
197 		return scrubrates[i].bandwidth;
198 
199 	return 0;
200 }
201 
202 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
203 {
204 	struct amd64_pvt *pvt = mci->pvt_info;
205 	u32 min_scrubrate = 0x5;
206 
207 	if (boot_cpu_data.x86 == 0xf)
208 		min_scrubrate = 0x0;
209 
210 	/* F15h Erratum #505 */
211 	if (boot_cpu_data.x86 == 0x15)
212 		f15h_select_dct(pvt, 0);
213 
214 	return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
215 }
216 
217 static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
218 {
219 	struct amd64_pvt *pvt = mci->pvt_info;
220 	u32 scrubval = 0;
221 	int i, retval = -EINVAL;
222 
223 	/* F15h Erratum #505 */
224 	if (boot_cpu_data.x86 == 0x15)
225 		f15h_select_dct(pvt, 0);
226 
227 	amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
228 
229 	scrubval = scrubval & 0x001F;
230 
231 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
232 		if (scrubrates[i].scrubval == scrubval) {
233 			retval = scrubrates[i].bandwidth;
234 			break;
235 		}
236 	}
237 	return retval;
238 }
239 
240 /*
241  * returns true if the SysAddr given by sys_addr matches the
242  * DRAM base/limit associated with node_id
243  */
244 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
245 				   unsigned nid)
246 {
247 	u64 addr;
248 
249 	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
250 	 * all ones if the most significant implemented address bit is 1.
251 	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
252 	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
253 	 * Application Programming.
254 	 */
255 	addr = sys_addr & 0x000000ffffffffffull;
256 
257 	return ((addr >= get_dram_base(pvt, nid)) &&
258 		(addr <= get_dram_limit(pvt, nid)));
259 }
260 
261 /*
262  * Attempt to map a SysAddr to a node. On success, return a pointer to the
263  * mem_ctl_info structure for the node that the SysAddr maps to.
264  *
265  * On failure, return NULL.
266  */
267 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
268 						u64 sys_addr)
269 {
270 	struct amd64_pvt *pvt;
271 	unsigned node_id;
272 	u32 intlv_en, bits;
273 
274 	/*
275 	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
276 	 * 3.4.4.2) registers to map the SysAddr to a node ID.
277 	 */
278 	pvt = mci->pvt_info;
279 
280 	/*
281 	 * The value of this field should be the same for all DRAM Base
282 	 * registers.  Therefore we arbitrarily choose to read it from the
283 	 * register for node 0.
284 	 */
285 	intlv_en = dram_intlv_en(pvt, 0);
286 
287 	if (intlv_en == 0) {
288 		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
289 			if (amd64_base_limit_match(pvt, sys_addr, node_id))
290 				goto found;
291 		}
292 		goto err_no_match;
293 	}
294 
295 	if (unlikely((intlv_en != 0x01) &&
296 		     (intlv_en != 0x03) &&
297 		     (intlv_en != 0x07))) {
298 		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
299 		return NULL;
300 	}
301 
302 	bits = (((u32) sys_addr) >> 12) & intlv_en;
303 
304 	for (node_id = 0; ; ) {
305 		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
306 			break;	/* intlv_sel field matches */
307 
308 		if (++node_id >= DRAM_RANGES)
309 			goto err_no_match;
310 	}
311 
312 	/* sanity test for sys_addr */
313 	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
314 		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
315 			   "range for node %d with node interleaving enabled.\n",
316 			   __func__, sys_addr, node_id);
317 		return NULL;
318 	}
319 
320 found:
321 	return edac_mc_find((int)node_id);
322 
323 err_no_match:
324 	debugf2("sys_addr 0x%lx doesn't match any node\n",
325 		(unsigned long)sys_addr);
326 
327 	return NULL;
328 }
329 
330 /*
331  * compute the CS base address of the @csrow on the DRAM controller @dct.
332  * For details see F2x[5C:40] in the processor's BKDG
333  */
334 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
335 				 u64 *base, u64 *mask)
336 {
337 	u64 csbase, csmask, base_bits, mask_bits;
338 	u8 addr_shift;
339 
340 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
341 		csbase		= pvt->csels[dct].csbases[csrow];
342 		csmask		= pvt->csels[dct].csmasks[csrow];
343 		base_bits	= GENMASK(21, 31) | GENMASK(9, 15);
344 		mask_bits	= GENMASK(21, 29) | GENMASK(9, 15);
345 		addr_shift	= 4;
346 	} else {
347 		csbase		= pvt->csels[dct].csbases[csrow];
348 		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
349 		addr_shift	= 8;
350 
351 		if (boot_cpu_data.x86 == 0x15)
352 			base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
353 		else
354 			base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
355 	}
356 
357 	*base  = (csbase & base_bits) << addr_shift;
358 
359 	*mask  = ~0ULL;
360 	/* poke holes for the csmask */
361 	*mask &= ~(mask_bits << addr_shift);
362 	/* OR them in */
363 	*mask |= (csmask & mask_bits) << addr_shift;
364 }
365 
366 #define for_each_chip_select(i, dct, pvt) \
367 	for (i = 0; i < pvt->csels[dct].b_cnt; i++)
368 
369 #define chip_select_base(i, dct, pvt) \
370 	pvt->csels[dct].csbases[i]
371 
372 #define for_each_chip_select_mask(i, dct, pvt) \
373 	for (i = 0; i < pvt->csels[dct].m_cnt; i++)
374 
375 /*
376  * @input_addr is an InputAddr associated with the node given by mci. Return the
377  * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
378  */
379 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
380 {
381 	struct amd64_pvt *pvt;
382 	int csrow;
383 	u64 base, mask;
384 
385 	pvt = mci->pvt_info;
386 
387 	for_each_chip_select(csrow, 0, pvt) {
388 		if (!csrow_enabled(csrow, 0, pvt))
389 			continue;
390 
391 		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
392 
393 		mask = ~mask;
394 
395 		if ((input_addr & mask) == (base & mask)) {
396 			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
397 				(unsigned long)input_addr, csrow,
398 				pvt->mc_node_id);
399 
400 			return csrow;
401 		}
402 	}
403 	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
404 		(unsigned long)input_addr, pvt->mc_node_id);
405 
406 	return -1;
407 }
408 
409 /*
410  * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
411  * for the node represented by mci. Info is passed back in *hole_base,
412  * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
413  * info is invalid. Info may be invalid for either of the following reasons:
414  *
415  * - The revision of the node is not E or greater.  In this case, the DRAM Hole
416  *   Address Register does not exist.
417  *
418  * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
419  *   indicating that its contents are not valid.
420  *
421  * The values passed back in *hole_base, *hole_offset, and *hole_size are
422  * complete 32-bit values despite the fact that the bitfields in the DHAR
423  * only represent bits 31-24 of the base and offset values.
424  */
425 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
426 			     u64 *hole_offset, u64 *hole_size)
427 {
428 	struct amd64_pvt *pvt = mci->pvt_info;
429 	u64 base;
430 
431 	/* only revE and later have the DRAM Hole Address Register */
432 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
433 		debugf1("  revision %d for node %d does not support DHAR\n",
434 			pvt->ext_model, pvt->mc_node_id);
435 		return 1;
436 	}
437 
438 	/* valid for Fam10h and above */
439 	if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
440 		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
441 		return 1;
442 	}
443 
444 	if (!dhar_valid(pvt)) {
445 		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
446 			pvt->mc_node_id);
447 		return 1;
448 	}
449 
450 	/* This node has Memory Hoisting */
451 
452 	/* +------------------+--------------------+--------------------+-----
453 	 * | memory           | DRAM hole          | relocated          |
454 	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
455 	 * |                  |                    | DRAM hole          |
456 	 * |                  |                    | [0x100000000,      |
457 	 * |                  |                    |  (0x100000000+     |
458 	 * |                  |                    |   (0xffffffff-x))] |
459 	 * +------------------+--------------------+--------------------+-----
460 	 *
461 	 * Above is a diagram of physical memory showing the DRAM hole and the
462 	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
463 	 * starts at address x (the base address) and extends through address
464 	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
465 	 * addresses in the hole so that they start at 0x100000000.
466 	 */
467 
468 	base = dhar_base(pvt);
469 
470 	*hole_base = base;
471 	*hole_size = (0x1ull << 32) - base;
472 
473 	if (boot_cpu_data.x86 > 0xf)
474 		*hole_offset = f10_dhar_offset(pvt);
475 	else
476 		*hole_offset = k8_dhar_offset(pvt);
477 
478 	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
479 		pvt->mc_node_id, (unsigned long)*hole_base,
480 		(unsigned long)*hole_offset, (unsigned long)*hole_size);
481 
482 	return 0;
483 }
484 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
485 
486 /*
487  * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
488  * assumed that sys_addr maps to the node given by mci.
489  *
490  * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
491  * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
492  * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
493  * then it is also involved in translating a SysAddr to a DramAddr. Sections
494  * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
495  * These parts of the documentation are unclear. I interpret them as follows:
496  *
497  * When node n receives a SysAddr, it processes the SysAddr as follows:
498  *
499  * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
500  *    Limit registers for node n. If the SysAddr is not within the range
501  *    specified by the base and limit values, then node n ignores the Sysaddr
502  *    (since it does not map to node n). Otherwise continue to step 2 below.
503  *
504  * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
505  *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
506  *    the range of relocated addresses (starting at 0x100000000) from the DRAM
507  *    hole. If not, skip to step 3 below. Else get the value of the
508  *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
509  *    offset defined by this value from the SysAddr.
510  *
511  * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
512  *    Base register for node n. To obtain the DramAddr, subtract the base
513  *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
514  */
515 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
516 {
517 	struct amd64_pvt *pvt = mci->pvt_info;
518 	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
519 	int ret = 0;
520 
521 	dram_base = get_dram_base(pvt, pvt->mc_node_id);
522 
523 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
524 				      &hole_size);
525 	if (!ret) {
526 		if ((sys_addr >= (1ull << 32)) &&
527 		    (sys_addr < ((1ull << 32) + hole_size))) {
528 			/* use DHAR to translate SysAddr to DramAddr */
529 			dram_addr = sys_addr - hole_offset;
530 
531 			debugf2("using DHAR to translate SysAddr 0x%lx to "
532 				"DramAddr 0x%lx\n",
533 				(unsigned long)sys_addr,
534 				(unsigned long)dram_addr);
535 
536 			return dram_addr;
537 		}
538 	}
539 
540 	/*
541 	 * Translate the SysAddr to a DramAddr as shown near the start of
542 	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
543 	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
544 	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
545 	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
546 	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
547 	 * Programmer's Manual Volume 1 Application Programming.
548 	 */
549 	dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
550 
551 	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
552 		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
553 		(unsigned long)dram_addr);
554 	return dram_addr;
555 }
556 
557 /*
558  * @intlv_en is the value of the IntlvEn field from a DRAM Base register
559  * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
560  * for node interleaving.
561  */
562 static int num_node_interleave_bits(unsigned intlv_en)
563 {
564 	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
565 	int n;
566 
567 	BUG_ON(intlv_en > 7);
568 	n = intlv_shift_table[intlv_en];
569 	return n;
570 }
571 
572 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
573 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
574 {
575 	struct amd64_pvt *pvt;
576 	int intlv_shift;
577 	u64 input_addr;
578 
579 	pvt = mci->pvt_info;
580 
581 	/*
582 	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
583 	 * concerning translating a DramAddr to an InputAddr.
584 	 */
585 	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
586 	input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
587 		      (dram_addr & 0xfff);
588 
589 	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
590 		intlv_shift, (unsigned long)dram_addr,
591 		(unsigned long)input_addr);
592 
593 	return input_addr;
594 }
595 
596 /*
597  * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
598  * assumed that @sys_addr maps to the node given by mci.
599  */
600 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
601 {
602 	u64 input_addr;
603 
604 	input_addr =
605 	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
606 
607 	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
608 		(unsigned long)sys_addr, (unsigned long)input_addr);
609 
610 	return input_addr;
611 }
612 
613 
614 /*
615  * @input_addr is an InputAddr associated with the node represented by mci.
616  * Translate @input_addr to a DramAddr and return the result.
617  */
618 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
619 {
620 	struct amd64_pvt *pvt;
621 	unsigned node_id, intlv_shift;
622 	u64 bits, dram_addr;
623 	u32 intlv_sel;
624 
625 	/*
626 	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
627 	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
628 	 * this procedure. When translating from a DramAddr to an InputAddr, the
629 	 * bits used for node interleaving are discarded.  Here we recover these
630 	 * bits from the IntlvSel field of the DRAM Limit register (section
631 	 * 3.4.4.2) for the node that input_addr is associated with.
632 	 */
633 	pvt = mci->pvt_info;
634 	node_id = pvt->mc_node_id;
635 
636 	BUG_ON(node_id > 7);
637 
638 	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
639 	if (intlv_shift == 0) {
640 		debugf1("    InputAddr 0x%lx translates to DramAddr of "
641 			"same value\n",	(unsigned long)input_addr);
642 
643 		return input_addr;
644 	}
645 
646 	bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
647 		(input_addr & 0xfff);
648 
649 	intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
650 	dram_addr = bits + (intlv_sel << 12);
651 
652 	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
653 		"(%d node interleave bits)\n", (unsigned long)input_addr,
654 		(unsigned long)dram_addr, intlv_shift);
655 
656 	return dram_addr;
657 }
658 
659 /*
660  * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
661  * @dram_addr to a SysAddr.
662  */
663 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
664 {
665 	struct amd64_pvt *pvt = mci->pvt_info;
666 	u64 hole_base, hole_offset, hole_size, base, sys_addr;
667 	int ret = 0;
668 
669 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
670 				      &hole_size);
671 	if (!ret) {
672 		if ((dram_addr >= hole_base) &&
673 		    (dram_addr < (hole_base + hole_size))) {
674 			sys_addr = dram_addr + hole_offset;
675 
676 			debugf1("using DHAR to translate DramAddr 0x%lx to "
677 				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
678 				(unsigned long)sys_addr);
679 
680 			return sys_addr;
681 		}
682 	}
683 
684 	base     = get_dram_base(pvt, pvt->mc_node_id);
685 	sys_addr = dram_addr + base;
686 
687 	/*
688 	 * The sys_addr we have computed up to this point is a 40-bit value
689 	 * because the k8 deals with 40-bit values.  However, the value we are
690 	 * supposed to return is a full 64-bit physical address.  The AMD
691 	 * x86-64 architecture specifies that the most significant implemented
692 	 * address bit through bit 63 of a physical address must be either all
693 	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
694 	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
695 	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
696 	 * Programming.
697 	 */
698 	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
699 
700 	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
701 		pvt->mc_node_id, (unsigned long)dram_addr,
702 		(unsigned long)sys_addr);
703 
704 	return sys_addr;
705 }
706 
707 /*
708  * @input_addr is an InputAddr associated with the node given by mci. Translate
709  * @input_addr to a SysAddr.
710  */
711 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
712 					 u64 input_addr)
713 {
714 	return dram_addr_to_sys_addr(mci,
715 				     input_addr_to_dram_addr(mci, input_addr));
716 }
717 
718 /*
719  * Find the minimum and maximum InputAddr values that map to the given @csrow.
720  * Pass back these values in *input_addr_min and *input_addr_max.
721  */
722 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
723 			      u64 *input_addr_min, u64 *input_addr_max)
724 {
725 	struct amd64_pvt *pvt;
726 	u64 base, mask;
727 
728 	pvt = mci->pvt_info;
729 	BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
730 
731 	get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
732 
733 	*input_addr_min = base & ~mask;
734 	*input_addr_max = base | mask;
735 }
736 
737 /* Map the Error address to a PAGE and PAGE OFFSET. */
738 static inline void error_address_to_page_and_offset(u64 error_address,
739 						    u32 *page, u32 *offset)
740 {
741 	*page = (u32) (error_address >> PAGE_SHIFT);
742 	*offset = ((u32) error_address) & ~PAGE_MASK;
743 }
744 
745 /*
746  * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
747  * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
748  * of a node that detected an ECC memory error.  mci represents the node that
749  * the error address maps to (possibly different from the node that detected
750  * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
751  * error.
752  */
753 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
754 {
755 	int csrow;
756 
757 	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
758 
759 	if (csrow == -1)
760 		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
761 				  "address 0x%lx\n", (unsigned long)sys_addr);
762 	return csrow;
763 }
764 
765 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
766 
767 /*
768  * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
769  * are ECC capable.
770  */
771 static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
772 {
773 	u8 bit;
774 	unsigned long edac_cap = EDAC_FLAG_NONE;
775 
776 	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
777 		? 19
778 		: 17;
779 
780 	if (pvt->dclr0 & BIT(bit))
781 		edac_cap = EDAC_FLAG_SECDED;
782 
783 	return edac_cap;
784 }
785 
786 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
787 
788 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
789 {
790 	debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
791 
792 	debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
793 		(dclr & BIT(16)) ?  "un" : "",
794 		(dclr & BIT(19)) ? "yes" : "no");
795 
796 	debugf1("  PAR/ERR parity: %s\n",
797 		(dclr & BIT(8)) ?  "enabled" : "disabled");
798 
799 	if (boot_cpu_data.x86 == 0x10)
800 		debugf1("  DCT 128bit mode width: %s\n",
801 			(dclr & BIT(11)) ?  "128b" : "64b");
802 
803 	debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
804 		(dclr & BIT(12)) ?  "yes" : "no",
805 		(dclr & BIT(13)) ?  "yes" : "no",
806 		(dclr & BIT(14)) ?  "yes" : "no",
807 		(dclr & BIT(15)) ?  "yes" : "no");
808 }
809 
810 /* Display and decode various NB registers for debug purposes. */
811 static void dump_misc_regs(struct amd64_pvt *pvt)
812 {
813 	debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
814 
815 	debugf1("  NB two channel DRAM capable: %s\n",
816 		(pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
817 
818 	debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
819 		(pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
820 		(pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
821 
822 	amd64_dump_dramcfg_low(pvt->dclr0, 0);
823 
824 	debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
825 
826 	debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
827 			"offset: 0x%08x\n",
828 			pvt->dhar, dhar_base(pvt),
829 			(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
830 						   : f10_dhar_offset(pvt));
831 
832 	debugf1("  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
833 
834 	amd64_debug_display_dimm_sizes(pvt, 0);
835 
836 	/* everything below this point is Fam10h and above */
837 	if (boot_cpu_data.x86 == 0xf)
838 		return;
839 
840 	amd64_debug_display_dimm_sizes(pvt, 1);
841 
842 	amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
843 
844 	/* Only if NOT ganged does dclr1 have valid info */
845 	if (!dct_ganging_enabled(pvt))
846 		amd64_dump_dramcfg_low(pvt->dclr1, 1);
847 }
848 
849 /*
850  * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
851  */
852 static void prep_chip_selects(struct amd64_pvt *pvt)
853 {
854 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
855 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
856 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
857 	} else {
858 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
859 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
860 	}
861 }
862 
863 /*
864  * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
865  */
866 static void read_dct_base_mask(struct amd64_pvt *pvt)
867 {
868 	int cs;
869 
870 	prep_chip_selects(pvt);
871 
872 	for_each_chip_select(cs, 0, pvt) {
873 		int reg0   = DCSB0 + (cs * 4);
874 		int reg1   = DCSB1 + (cs * 4);
875 		u32 *base0 = &pvt->csels[0].csbases[cs];
876 		u32 *base1 = &pvt->csels[1].csbases[cs];
877 
878 		if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
879 			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
880 				cs, *base0, reg0);
881 
882 		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
883 			continue;
884 
885 		if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
886 			debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
887 				cs, *base1, reg1);
888 	}
889 
890 	for_each_chip_select_mask(cs, 0, pvt) {
891 		int reg0   = DCSM0 + (cs * 4);
892 		int reg1   = DCSM1 + (cs * 4);
893 		u32 *mask0 = &pvt->csels[0].csmasks[cs];
894 		u32 *mask1 = &pvt->csels[1].csmasks[cs];
895 
896 		if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
897 			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
898 				cs, *mask0, reg0);
899 
900 		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
901 			continue;
902 
903 		if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
904 			debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
905 				cs, *mask1, reg1);
906 	}
907 }
908 
909 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
910 {
911 	enum mem_type type;
912 
913 	/* F15h supports only DDR3 */
914 	if (boot_cpu_data.x86 >= 0x15)
915 		type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
916 	else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
917 		if (pvt->dchr0 & DDR3_MODE)
918 			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
919 		else
920 			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
921 	} else {
922 		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
923 	}
924 
925 	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
926 
927 	return type;
928 }
929 
930 /* Get the number of DCT channels the memory controller is using. */
931 static int k8_early_channel_count(struct amd64_pvt *pvt)
932 {
933 	int flag;
934 
935 	if (pvt->ext_model >= K8_REV_F)
936 		/* RevF (NPT) and later */
937 		flag = pvt->dclr0 & WIDTH_128;
938 	else
939 		/* RevE and earlier */
940 		flag = pvt->dclr0 & REVE_WIDTH_128;
941 
942 	/* not used */
943 	pvt->dclr1 = 0;
944 
945 	return (flag) ? 2 : 1;
946 }
947 
948 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
949 static u64 get_error_address(struct mce *m)
950 {
951 	struct cpuinfo_x86 *c = &boot_cpu_data;
952 	u64 addr;
953 	u8 start_bit = 1;
954 	u8 end_bit   = 47;
955 
956 	if (c->x86 == 0xf) {
957 		start_bit = 3;
958 		end_bit   = 39;
959 	}
960 
961 	addr = m->addr & GENMASK(start_bit, end_bit);
962 
963 	/*
964 	 * Erratum 637 workaround
965 	 */
966 	if (c->x86 == 0x15) {
967 		struct amd64_pvt *pvt;
968 		u64 cc6_base, tmp_addr;
969 		u32 tmp;
970 		u8 mce_nid, intlv_en;
971 
972 		if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
973 			return addr;
974 
975 		mce_nid	= amd_get_nb_id(m->extcpu);
976 		pvt	= mcis[mce_nid]->pvt_info;
977 
978 		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
979 		intlv_en = tmp >> 21 & 0x7;
980 
981 		/* add [47:27] + 3 trailing bits */
982 		cc6_base  = (tmp & GENMASK(0, 20)) << 3;
983 
984 		/* reverse and add DramIntlvEn */
985 		cc6_base |= intlv_en ^ 0x7;
986 
987 		/* pin at [47:24] */
988 		cc6_base <<= 24;
989 
990 		if (!intlv_en)
991 			return cc6_base | (addr & GENMASK(0, 23));
992 
993 		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
994 
995 							/* faster log2 */
996 		tmp_addr  = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
997 
998 		/* OR DramIntlvSel into bits [14:12] */
999 		tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
1000 
1001 		/* add remaining [11:0] bits from original MC4_ADDR */
1002 		tmp_addr |= addr & GENMASK(0, 11);
1003 
1004 		return cc6_base | tmp_addr;
1005 	}
1006 
1007 	return addr;
1008 }
1009 
1010 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1011 {
1012 	struct cpuinfo_x86 *c = &boot_cpu_data;
1013 	int off = range << 3;
1014 
1015 	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
1016 	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1017 
1018 	if (c->x86 == 0xf)
1019 		return;
1020 
1021 	if (!dram_rw(pvt, range))
1022 		return;
1023 
1024 	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
1025 	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1026 
1027 	/* Factor in CC6 save area by reading dst node's limit reg */
1028 	if (c->x86 == 0x15) {
1029 		struct pci_dev *f1 = NULL;
1030 		u8 nid = dram_dst_node(pvt, range);
1031 		u32 llim;
1032 
1033 		f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
1034 		if (WARN_ON(!f1))
1035 			return;
1036 
1037 		amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1038 
1039 		pvt->ranges[range].lim.lo &= GENMASK(0, 15);
1040 
1041 					    /* {[39:27],111b} */
1042 		pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1043 
1044 		pvt->ranges[range].lim.hi &= GENMASK(0, 7);
1045 
1046 					    /* [47:40] */
1047 		pvt->ranges[range].lim.hi |= llim >> 13;
1048 
1049 		pci_dev_put(f1);
1050 	}
1051 }
1052 
1053 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1054 				    u16 syndrome)
1055 {
1056 	struct mem_ctl_info *src_mci;
1057 	struct amd64_pvt *pvt = mci->pvt_info;
1058 	int channel, csrow;
1059 	u32 page, offset;
1060 
1061 	/* CHIPKILL enabled */
1062 	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1063 		channel = get_channel_from_ecc_syndrome(mci, syndrome);
1064 		if (channel < 0) {
1065 			/*
1066 			 * Syndrome didn't map, so we don't know which of the
1067 			 * 2 DIMMs is in error. So we need to ID 'both' of them
1068 			 * as suspect.
1069 			 */
1070 			amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1071 					   "error reporting race\n", syndrome);
1072 			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1073 			return;
1074 		}
1075 	} else {
1076 		/*
1077 		 * non-chipkill ecc mode
1078 		 *
1079 		 * The k8 documentation is unclear about how to determine the
1080 		 * channel number when using non-chipkill memory.  This method
1081 		 * was obtained from email communication with someone at AMD.
1082 		 * (Wish the email was placed in this comment - norsk)
1083 		 */
1084 		channel = ((sys_addr & BIT(3)) != 0);
1085 	}
1086 
1087 	/*
1088 	 * Find out which node the error address belongs to. This may be
1089 	 * different from the node that detected the error.
1090 	 */
1091 	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1092 	if (!src_mci) {
1093 		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1094 			     (unsigned long)sys_addr);
1095 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1096 		return;
1097 	}
1098 
1099 	/* Now map the sys_addr to a CSROW */
1100 	csrow = sys_addr_to_csrow(src_mci, sys_addr);
1101 	if (csrow < 0) {
1102 		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1103 	} else {
1104 		error_address_to_page_and_offset(sys_addr, &page, &offset);
1105 
1106 		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1107 				  channel, EDAC_MOD_STR);
1108 	}
1109 }
1110 
1111 static int ddr2_cs_size(unsigned i, bool dct_width)
1112 {
1113 	unsigned shift = 0;
1114 
1115 	if (i <= 2)
1116 		shift = i;
1117 	else if (!(i & 0x1))
1118 		shift = i >> 1;
1119 	else
1120 		shift = (i + 1) >> 1;
1121 
1122 	return 128 << (shift + !!dct_width);
1123 }
1124 
1125 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1126 				  unsigned cs_mode)
1127 {
1128 	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1129 
1130 	if (pvt->ext_model >= K8_REV_F) {
1131 		WARN_ON(cs_mode > 11);
1132 		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1133 	}
1134 	else if (pvt->ext_model >= K8_REV_D) {
1135 		unsigned diff;
1136 		WARN_ON(cs_mode > 10);
1137 
1138 		/*
1139 		 * the below calculation, besides trying to win an obfuscated C
1140 		 * contest, maps cs_mode values to DIMM chip select sizes. The
1141 		 * mappings are:
1142 		 *
1143 		 * cs_mode	CS size (mb)
1144 		 * =======	============
1145 		 * 0		32
1146 		 * 1		64
1147 		 * 2		128
1148 		 * 3		128
1149 		 * 4		256
1150 		 * 5		512
1151 		 * 6		256
1152 		 * 7		512
1153 		 * 8		1024
1154 		 * 9		1024
1155 		 * 10		2048
1156 		 *
1157 		 * Basically, it calculates a value with which to shift the
1158 		 * smallest CS size of 32MB.
1159 		 *
1160 		 * ddr[23]_cs_size have a similar purpose.
1161 		 */
1162 		diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1163 
1164 		return 32 << (cs_mode - diff);
1165 	}
1166 	else {
1167 		WARN_ON(cs_mode > 6);
1168 		return 32 << cs_mode;
1169 	}
1170 }
1171 
1172 /*
1173  * Get the number of DCT channels in use.
1174  *
1175  * Return:
1176  *	number of Memory Channels in operation
1177  * Pass back:
1178  *	contents of the DCL0_LOW register
1179  */
1180 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1181 {
1182 	int i, j, channels = 0;
1183 
1184 	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1185 	if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1186 		return 2;
1187 
1188 	/*
1189 	 * Need to check if in unganged mode: In such, there are 2 channels,
1190 	 * but they are not in 128 bit mode and thus the above 'dclr0' status
1191 	 * bit will be OFF.
1192 	 *
1193 	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1194 	 * their CSEnable bit on. If so, then SINGLE DIMM case.
1195 	 */
1196 	debugf0("Data width is not 128 bits - need more decoding\n");
1197 
1198 	/*
1199 	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1200 	 * is more than just one DIMM present in unganged mode. Need to check
1201 	 * both controllers since DIMMs can be placed in either one.
1202 	 */
1203 	for (i = 0; i < 2; i++) {
1204 		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1205 
1206 		for (j = 0; j < 4; j++) {
1207 			if (DBAM_DIMM(j, dbam) > 0) {
1208 				channels++;
1209 				break;
1210 			}
1211 		}
1212 	}
1213 
1214 	if (channels > 2)
1215 		channels = 2;
1216 
1217 	amd64_info("MCT channel count: %d\n", channels);
1218 
1219 	return channels;
1220 }
1221 
1222 static int ddr3_cs_size(unsigned i, bool dct_width)
1223 {
1224 	unsigned shift = 0;
1225 	int cs_size = 0;
1226 
1227 	if (i == 0 || i == 3 || i == 4)
1228 		cs_size = -1;
1229 	else if (i <= 2)
1230 		shift = i;
1231 	else if (i == 12)
1232 		shift = 7;
1233 	else if (!(i & 0x1))
1234 		shift = i >> 1;
1235 	else
1236 		shift = (i + 1) >> 1;
1237 
1238 	if (cs_size != -1)
1239 		cs_size = (128 * (1 << !!dct_width)) << shift;
1240 
1241 	return cs_size;
1242 }
1243 
1244 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1245 				   unsigned cs_mode)
1246 {
1247 	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1248 
1249 	WARN_ON(cs_mode > 11);
1250 
1251 	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1252 		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1253 	else
1254 		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1255 }
1256 
1257 /*
1258  * F15h supports only 64bit DCT interfaces
1259  */
1260 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1261 				   unsigned cs_mode)
1262 {
1263 	WARN_ON(cs_mode > 12);
1264 
1265 	return ddr3_cs_size(cs_mode, false);
1266 }
1267 
1268 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1269 {
1270 
1271 	if (boot_cpu_data.x86 == 0xf)
1272 		return;
1273 
1274 	if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1275 		debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1276 			pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1277 
1278 		debugf0("  DCTs operate in %s mode.\n",
1279 			(dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1280 
1281 		if (!dct_ganging_enabled(pvt))
1282 			debugf0("  Address range split per DCT: %s\n",
1283 				(dct_high_range_enabled(pvt) ? "yes" : "no"));
1284 
1285 		debugf0("  data interleave for ECC: %s, "
1286 			"DRAM cleared since last warm reset: %s\n",
1287 			(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1288 			(dct_memory_cleared(pvt) ? "yes" : "no"));
1289 
1290 		debugf0("  channel interleave: %s, "
1291 			"interleave bits selector: 0x%x\n",
1292 			(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1293 			dct_sel_interleave_addr(pvt));
1294 	}
1295 
1296 	amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1297 }
1298 
1299 /*
1300  * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1301  * Interleaving Modes.
1302  */
1303 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1304 				bool hi_range_sel, u8 intlv_en)
1305 {
1306 	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1307 
1308 	if (dct_ganging_enabled(pvt))
1309 		return 0;
1310 
1311 	if (hi_range_sel)
1312 		return dct_sel_high;
1313 
1314 	/*
1315 	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1316 	 */
1317 	if (dct_interleave_enabled(pvt)) {
1318 		u8 intlv_addr = dct_sel_interleave_addr(pvt);
1319 
1320 		/* return DCT select function: 0=DCT0, 1=DCT1 */
1321 		if (!intlv_addr)
1322 			return sys_addr >> 6 & 1;
1323 
1324 		if (intlv_addr & 0x2) {
1325 			u8 shift = intlv_addr & 0x1 ? 9 : 6;
1326 			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1327 
1328 			return ((sys_addr >> shift) & 1) ^ temp;
1329 		}
1330 
1331 		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1332 	}
1333 
1334 	if (dct_high_range_enabled(pvt))
1335 		return ~dct_sel_high & 1;
1336 
1337 	return 0;
1338 }
1339 
1340 /* Convert the sys_addr to the normalized DCT address */
1341 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
1342 				 u64 sys_addr, bool hi_rng,
1343 				 u32 dct_sel_base_addr)
1344 {
1345 	u64 chan_off;
1346 	u64 dram_base		= get_dram_base(pvt, range);
1347 	u64 hole_off		= f10_dhar_offset(pvt);
1348 	u64 dct_sel_base_off	= (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1349 
1350 	if (hi_rng) {
1351 		/*
1352 		 * if
1353 		 * base address of high range is below 4Gb
1354 		 * (bits [47:27] at [31:11])
1355 		 * DRAM address space on this DCT is hoisted above 4Gb	&&
1356 		 * sys_addr > 4Gb
1357 		 *
1358 		 *	remove hole offset from sys_addr
1359 		 * else
1360 		 *	remove high range offset from sys_addr
1361 		 */
1362 		if ((!(dct_sel_base_addr >> 16) ||
1363 		     dct_sel_base_addr < dhar_base(pvt)) &&
1364 		    dhar_valid(pvt) &&
1365 		    (sys_addr >= BIT_64(32)))
1366 			chan_off = hole_off;
1367 		else
1368 			chan_off = dct_sel_base_off;
1369 	} else {
1370 		/*
1371 		 * if
1372 		 * we have a valid hole		&&
1373 		 * sys_addr > 4Gb
1374 		 *
1375 		 *	remove hole
1376 		 * else
1377 		 *	remove dram base to normalize to DCT address
1378 		 */
1379 		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1380 			chan_off = hole_off;
1381 		else
1382 			chan_off = dram_base;
1383 	}
1384 
1385 	return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1386 }
1387 
1388 /*
1389  * checks if the csrow passed in is marked as SPARED, if so returns the new
1390  * spare row
1391  */
1392 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1393 {
1394 	int tmp_cs;
1395 
1396 	if (online_spare_swap_done(pvt, dct) &&
1397 	    csrow == online_spare_bad_dramcs(pvt, dct)) {
1398 
1399 		for_each_chip_select(tmp_cs, dct, pvt) {
1400 			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1401 				csrow = tmp_cs;
1402 				break;
1403 			}
1404 		}
1405 	}
1406 	return csrow;
1407 }
1408 
1409 /*
1410  * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1411  * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1412  *
1413  * Return:
1414  *	-EINVAL:  NOT FOUND
1415  *	0..csrow = Chip-Select Row
1416  */
1417 static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1418 {
1419 	struct mem_ctl_info *mci;
1420 	struct amd64_pvt *pvt;
1421 	u64 cs_base, cs_mask;
1422 	int cs_found = -EINVAL;
1423 	int csrow;
1424 
1425 	mci = mcis[nid];
1426 	if (!mci)
1427 		return cs_found;
1428 
1429 	pvt = mci->pvt_info;
1430 
1431 	debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1432 
1433 	for_each_chip_select(csrow, dct, pvt) {
1434 		if (!csrow_enabled(csrow, dct, pvt))
1435 			continue;
1436 
1437 		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1438 
1439 		debugf1("    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1440 			csrow, cs_base, cs_mask);
1441 
1442 		cs_mask = ~cs_mask;
1443 
1444 		debugf1("    (InputAddr & ~CSMask)=0x%llx "
1445 			"(CSBase & ~CSMask)=0x%llx\n",
1446 			(in_addr & cs_mask), (cs_base & cs_mask));
1447 
1448 		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1449 			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1450 
1451 			debugf1(" MATCH csrow=%d\n", cs_found);
1452 			break;
1453 		}
1454 	}
1455 	return cs_found;
1456 }
1457 
1458 /*
1459  * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1460  * swapped with a region located at the bottom of memory so that the GPU can use
1461  * the interleaved region and thus two channels.
1462  */
1463 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1464 {
1465 	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1466 
1467 	if (boot_cpu_data.x86 == 0x10) {
1468 		/* only revC3 and revE have that feature */
1469 		if (boot_cpu_data.x86_model < 4 ||
1470 		    (boot_cpu_data.x86_model < 0xa &&
1471 		     boot_cpu_data.x86_mask < 3))
1472 			return sys_addr;
1473 	}
1474 
1475 	amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1476 
1477 	if (!(swap_reg & 0x1))
1478 		return sys_addr;
1479 
1480 	swap_base	= (swap_reg >> 3) & 0x7f;
1481 	swap_limit	= (swap_reg >> 11) & 0x7f;
1482 	rgn_size	= (swap_reg >> 20) & 0x7f;
1483 	tmp_addr	= sys_addr >> 27;
1484 
1485 	if (!(sys_addr >> 34) &&
1486 	    (((tmp_addr >= swap_base) &&
1487 	     (tmp_addr <= swap_limit)) ||
1488 	     (tmp_addr < rgn_size)))
1489 		return sys_addr ^ (u64)swap_base << 27;
1490 
1491 	return sys_addr;
1492 }
1493 
1494 /* For a given @dram_range, check if @sys_addr falls within it. */
1495 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1496 				  u64 sys_addr, int *nid, int *chan_sel)
1497 {
1498 	int cs_found = -EINVAL;
1499 	u64 chan_addr;
1500 	u32 dct_sel_base;
1501 	u8 channel;
1502 	bool high_range = false;
1503 
1504 	u8 node_id    = dram_dst_node(pvt, range);
1505 	u8 intlv_en   = dram_intlv_en(pvt, range);
1506 	u32 intlv_sel = dram_intlv_sel(pvt, range);
1507 
1508 	debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1509 		range, sys_addr, get_dram_limit(pvt, range));
1510 
1511 	if (dhar_valid(pvt) &&
1512 	    dhar_base(pvt) <= sys_addr &&
1513 	    sys_addr < BIT_64(32)) {
1514 		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1515 			    sys_addr);
1516 		return -EINVAL;
1517 	}
1518 
1519 	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1520 		return -EINVAL;
1521 
1522 	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1523 
1524 	dct_sel_base = dct_sel_baseaddr(pvt);
1525 
1526 	/*
1527 	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1528 	 * select between DCT0 and DCT1.
1529 	 */
1530 	if (dct_high_range_enabled(pvt) &&
1531 	   !dct_ganging_enabled(pvt) &&
1532 	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1533 		high_range = true;
1534 
1535 	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1536 
1537 	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1538 					  high_range, dct_sel_base);
1539 
1540 	/* Remove node interleaving, see F1x120 */
1541 	if (intlv_en)
1542 		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1543 			    (chan_addr & 0xfff);
1544 
1545 	/* remove channel interleave */
1546 	if (dct_interleave_enabled(pvt) &&
1547 	   !dct_high_range_enabled(pvt) &&
1548 	   !dct_ganging_enabled(pvt)) {
1549 
1550 		if (dct_sel_interleave_addr(pvt) != 1) {
1551 			if (dct_sel_interleave_addr(pvt) == 0x3)
1552 				/* hash 9 */
1553 				chan_addr = ((chan_addr >> 10) << 9) |
1554 					     (chan_addr & 0x1ff);
1555 			else
1556 				/* A[6] or hash 6 */
1557 				chan_addr = ((chan_addr >> 7) << 6) |
1558 					     (chan_addr & 0x3f);
1559 		} else
1560 			/* A[12] */
1561 			chan_addr = ((chan_addr >> 13) << 12) |
1562 				     (chan_addr & 0xfff);
1563 	}
1564 
1565 	debugf1("   Normalized DCT addr: 0x%llx\n", chan_addr);
1566 
1567 	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1568 
1569 	if (cs_found >= 0) {
1570 		*nid = node_id;
1571 		*chan_sel = channel;
1572 	}
1573 	return cs_found;
1574 }
1575 
1576 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1577 				       int *node, int *chan_sel)
1578 {
1579 	int cs_found = -EINVAL;
1580 	unsigned range;
1581 
1582 	for (range = 0; range < DRAM_RANGES; range++) {
1583 
1584 		if (!dram_rw(pvt, range))
1585 			continue;
1586 
1587 		if ((get_dram_base(pvt, range)  <= sys_addr) &&
1588 		    (get_dram_limit(pvt, range) >= sys_addr)) {
1589 
1590 			cs_found = f1x_match_to_this_node(pvt, range,
1591 							  sys_addr, node,
1592 							  chan_sel);
1593 			if (cs_found >= 0)
1594 				break;
1595 		}
1596 	}
1597 	return cs_found;
1598 }
1599 
1600 /*
1601  * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1602  * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1603  *
1604  * The @sys_addr is usually an error address received from the hardware
1605  * (MCX_ADDR).
1606  */
1607 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1608 				     u16 syndrome)
1609 {
1610 	struct amd64_pvt *pvt = mci->pvt_info;
1611 	u32 page, offset;
1612 	int nid, csrow, chan = 0;
1613 
1614 	csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1615 
1616 	if (csrow < 0) {
1617 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1618 		return;
1619 	}
1620 
1621 	error_address_to_page_and_offset(sys_addr, &page, &offset);
1622 
1623 	/*
1624 	 * We need the syndromes for channel detection only when we're
1625 	 * ganged. Otherwise @chan should already contain the channel at
1626 	 * this point.
1627 	 */
1628 	if (dct_ganging_enabled(pvt))
1629 		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1630 
1631 	if (chan >= 0)
1632 		edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1633 				  EDAC_MOD_STR);
1634 	else
1635 		/*
1636 		 * Channel unknown, report all channels on this CSROW as failed.
1637 		 */
1638 		for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1639 			edac_mc_handle_ce(mci, page, offset, syndrome,
1640 					  csrow, chan, EDAC_MOD_STR);
1641 }
1642 
1643 /*
1644  * debug routine to display the memory sizes of all logical DIMMs and its
1645  * CSROWs
1646  */
1647 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1648 {
1649 	int dimm, size0, size1, factor = 0;
1650 	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1651 	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
1652 
1653 	if (boot_cpu_data.x86 == 0xf) {
1654 		if (pvt->dclr0 & WIDTH_128)
1655 			factor = 1;
1656 
1657 		/* K8 families < revF not supported yet */
1658 	       if (pvt->ext_model < K8_REV_F)
1659 			return;
1660 	       else
1661 		       WARN_ON(ctrl != 0);
1662 	}
1663 
1664 	dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1665 	dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1666 						   : pvt->csels[0].csbases;
1667 
1668 	debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1669 
1670 	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1671 
1672 	/* Dump memory sizes for DIMM and its CSROWs */
1673 	for (dimm = 0; dimm < 4; dimm++) {
1674 
1675 		size0 = 0;
1676 		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1677 			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1678 						     DBAM_DIMM(dimm, dbam));
1679 
1680 		size1 = 0;
1681 		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1682 			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1683 						     DBAM_DIMM(dimm, dbam));
1684 
1685 		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1686 				dimm * 2,     size0 << factor,
1687 				dimm * 2 + 1, size1 << factor);
1688 	}
1689 }
1690 
1691 static struct amd64_family_type amd64_family_types[] = {
1692 	[K8_CPUS] = {
1693 		.ctl_name = "K8",
1694 		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1695 		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1696 		.ops = {
1697 			.early_channel_count	= k8_early_channel_count,
1698 			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
1699 			.dbam_to_cs		= k8_dbam_to_chip_select,
1700 			.read_dct_pci_cfg	= k8_read_dct_pci_cfg,
1701 		}
1702 	},
1703 	[F10_CPUS] = {
1704 		.ctl_name = "F10h",
1705 		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1706 		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1707 		.ops = {
1708 			.early_channel_count	= f1x_early_channel_count,
1709 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1710 			.dbam_to_cs		= f10_dbam_to_chip_select,
1711 			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
1712 		}
1713 	},
1714 	[F15_CPUS] = {
1715 		.ctl_name = "F15h",
1716 		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1717 		.f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1718 		.ops = {
1719 			.early_channel_count	= f1x_early_channel_count,
1720 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1721 			.dbam_to_cs		= f15_dbam_to_chip_select,
1722 			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
1723 		}
1724 	},
1725 };
1726 
1727 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1728 						unsigned int device,
1729 						struct pci_dev *related)
1730 {
1731 	struct pci_dev *dev = NULL;
1732 
1733 	dev = pci_get_device(vendor, device, dev);
1734 	while (dev) {
1735 		if ((dev->bus->number == related->bus->number) &&
1736 		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1737 			break;
1738 		dev = pci_get_device(vendor, device, dev);
1739 	}
1740 
1741 	return dev;
1742 }
1743 
1744 /*
1745  * These are tables of eigenvectors (one per line) which can be used for the
1746  * construction of the syndrome tables. The modified syndrome search algorithm
1747  * uses those to find the symbol in error and thus the DIMM.
1748  *
1749  * Algorithm courtesy of Ross LaFetra from AMD.
1750  */
1751 static u16 x4_vectors[] = {
1752 	0x2f57, 0x1afe, 0x66cc, 0xdd88,
1753 	0x11eb, 0x3396, 0x7f4c, 0xeac8,
1754 	0x0001, 0x0002, 0x0004, 0x0008,
1755 	0x1013, 0x3032, 0x4044, 0x8088,
1756 	0x106b, 0x30d6, 0x70fc, 0xe0a8,
1757 	0x4857, 0xc4fe, 0x13cc, 0x3288,
1758 	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1759 	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1760 	0x15c1, 0x2a42, 0x89ac, 0x4758,
1761 	0x2b03, 0x1602, 0x4f0c, 0xca08,
1762 	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1763 	0x8ba7, 0x465e, 0x244c, 0x1cc8,
1764 	0x2b87, 0x164e, 0x642c, 0xdc18,
1765 	0x40b9, 0x80de, 0x1094, 0x20e8,
1766 	0x27db, 0x1eb6, 0x9dac, 0x7b58,
1767 	0x11c1, 0x2242, 0x84ac, 0x4c58,
1768 	0x1be5, 0x2d7a, 0x5e34, 0xa718,
1769 	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1770 	0x4c97, 0xc87e, 0x11fc, 0x33a8,
1771 	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1772 	0x16b3, 0x3d62, 0x4f34, 0x8518,
1773 	0x1e2f, 0x391a, 0x5cac, 0xf858,
1774 	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1775 	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1776 	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1777 	0x4397, 0xc27e, 0x17fc, 0x3ea8,
1778 	0x1617, 0x3d3e, 0x6464, 0xb8b8,
1779 	0x23ff, 0x12aa, 0xab6c, 0x56d8,
1780 	0x2dfb, 0x1ba6, 0x913c, 0x7328,
1781 	0x185d, 0x2ca6, 0x7914, 0x9e28,
1782 	0x171b, 0x3e36, 0x7d7c, 0xebe8,
1783 	0x4199, 0x82ee, 0x19f4, 0x2e58,
1784 	0x4807, 0xc40e, 0x130c, 0x3208,
1785 	0x1905, 0x2e0a, 0x5804, 0xac08,
1786 	0x213f, 0x132a, 0xadfc, 0x5ba8,
1787 	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1788 };
1789 
1790 static u16 x8_vectors[] = {
1791 	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1792 	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1793 	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1794 	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1795 	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1796 	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1797 	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1798 	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1799 	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1800 	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1801 	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1802 	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1803 	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1804 	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1805 	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1806 	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1807 	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1808 	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1809 	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1810 };
1811 
1812 static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1813 			   unsigned v_dim)
1814 {
1815 	unsigned int i, err_sym;
1816 
1817 	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1818 		u16 s = syndrome;
1819 		unsigned v_idx =  err_sym * v_dim;
1820 		unsigned v_end = (err_sym + 1) * v_dim;
1821 
1822 		/* walk over all 16 bits of the syndrome */
1823 		for (i = 1; i < (1U << 16); i <<= 1) {
1824 
1825 			/* if bit is set in that eigenvector... */
1826 			if (v_idx < v_end && vectors[v_idx] & i) {
1827 				u16 ev_comp = vectors[v_idx++];
1828 
1829 				/* ... and bit set in the modified syndrome, */
1830 				if (s & i) {
1831 					/* remove it. */
1832 					s ^= ev_comp;
1833 
1834 					if (!s)
1835 						return err_sym;
1836 				}
1837 
1838 			} else if (s & i)
1839 				/* can't get to zero, move to next symbol */
1840 				break;
1841 		}
1842 	}
1843 
1844 	debugf0("syndrome(%x) not found\n", syndrome);
1845 	return -1;
1846 }
1847 
1848 static int map_err_sym_to_channel(int err_sym, int sym_size)
1849 {
1850 	if (sym_size == 4)
1851 		switch (err_sym) {
1852 		case 0x20:
1853 		case 0x21:
1854 			return 0;
1855 			break;
1856 		case 0x22:
1857 		case 0x23:
1858 			return 1;
1859 			break;
1860 		default:
1861 			return err_sym >> 4;
1862 			break;
1863 		}
1864 	/* x8 symbols */
1865 	else
1866 		switch (err_sym) {
1867 		/* imaginary bits not in a DIMM */
1868 		case 0x10:
1869 			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1870 					  err_sym);
1871 			return -1;
1872 			break;
1873 
1874 		case 0x11:
1875 			return 0;
1876 			break;
1877 		case 0x12:
1878 			return 1;
1879 			break;
1880 		default:
1881 			return err_sym >> 3;
1882 			break;
1883 		}
1884 	return -1;
1885 }
1886 
1887 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1888 {
1889 	struct amd64_pvt *pvt = mci->pvt_info;
1890 	int err_sym = -1;
1891 
1892 	if (pvt->ecc_sym_sz == 8)
1893 		err_sym = decode_syndrome(syndrome, x8_vectors,
1894 					  ARRAY_SIZE(x8_vectors),
1895 					  pvt->ecc_sym_sz);
1896 	else if (pvt->ecc_sym_sz == 4)
1897 		err_sym = decode_syndrome(syndrome, x4_vectors,
1898 					  ARRAY_SIZE(x4_vectors),
1899 					  pvt->ecc_sym_sz);
1900 	else {
1901 		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1902 		return err_sym;
1903 	}
1904 
1905 	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1906 }
1907 
1908 /*
1909  * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1910  * ADDRESS and process.
1911  */
1912 static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
1913 {
1914 	struct amd64_pvt *pvt = mci->pvt_info;
1915 	u64 sys_addr;
1916 	u16 syndrome;
1917 
1918 	/* Ensure that the Error Address is VALID */
1919 	if (!(m->status & MCI_STATUS_ADDRV)) {
1920 		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1921 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1922 		return;
1923 	}
1924 
1925 	sys_addr = get_error_address(m);
1926 	syndrome = extract_syndrome(m->status);
1927 
1928 	amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1929 
1930 	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
1931 }
1932 
1933 /* Handle any Un-correctable Errors (UEs) */
1934 static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
1935 {
1936 	struct mem_ctl_info *log_mci, *src_mci = NULL;
1937 	int csrow;
1938 	u64 sys_addr;
1939 	u32 page, offset;
1940 
1941 	log_mci = mci;
1942 
1943 	if (!(m->status & MCI_STATUS_ADDRV)) {
1944 		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1945 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1946 		return;
1947 	}
1948 
1949 	sys_addr = get_error_address(m);
1950 
1951 	/*
1952 	 * Find out which node the error address belongs to. This may be
1953 	 * different from the node that detected the error.
1954 	 */
1955 	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1956 	if (!src_mci) {
1957 		amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1958 				  (unsigned long)sys_addr);
1959 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1960 		return;
1961 	}
1962 
1963 	log_mci = src_mci;
1964 
1965 	csrow = sys_addr_to_csrow(log_mci, sys_addr);
1966 	if (csrow < 0) {
1967 		amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1968 				  (unsigned long)sys_addr);
1969 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1970 	} else {
1971 		error_address_to_page_and_offset(sys_addr, &page, &offset);
1972 		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1973 	}
1974 }
1975 
1976 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1977 					    struct mce *m)
1978 {
1979 	u16 ec = EC(m->status);
1980 	u8 xec = XEC(m->status, 0x1f);
1981 	u8 ecc_type = (m->status >> 45) & 0x3;
1982 
1983 	/* Bail early out if this was an 'observed' error */
1984 	if (PP(ec) == NBSL_PP_OBS)
1985 		return;
1986 
1987 	/* Do only ECC errors */
1988 	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1989 		return;
1990 
1991 	if (ecc_type == 2)
1992 		amd64_handle_ce(mci, m);
1993 	else if (ecc_type == 1)
1994 		amd64_handle_ue(mci, m);
1995 }
1996 
1997 void amd64_decode_bus_error(int node_id, struct mce *m)
1998 {
1999 	__amd64_decode_bus_error(mcis[node_id], m);
2000 }
2001 
2002 /*
2003  * Use pvt->F2 which contains the F2 CPU PCI device to get the related
2004  * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
2005  */
2006 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
2007 {
2008 	/* Reserve the ADDRESS MAP Device */
2009 	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2010 	if (!pvt->F1) {
2011 		amd64_err("error address map device not found: "
2012 			  "vendor %x device 0x%x (broken BIOS?)\n",
2013 			  PCI_VENDOR_ID_AMD, f1_id);
2014 		return -ENODEV;
2015 	}
2016 
2017 	/* Reserve the MISC Device */
2018 	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2019 	if (!pvt->F3) {
2020 		pci_dev_put(pvt->F1);
2021 		pvt->F1 = NULL;
2022 
2023 		amd64_err("error F3 device not found: "
2024 			  "vendor %x device 0x%x (broken BIOS?)\n",
2025 			  PCI_VENDOR_ID_AMD, f3_id);
2026 
2027 		return -ENODEV;
2028 	}
2029 	debugf1("F1: %s\n", pci_name(pvt->F1));
2030 	debugf1("F2: %s\n", pci_name(pvt->F2));
2031 	debugf1("F3: %s\n", pci_name(pvt->F3));
2032 
2033 	return 0;
2034 }
2035 
2036 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2037 {
2038 	pci_dev_put(pvt->F1);
2039 	pci_dev_put(pvt->F3);
2040 }
2041 
2042 /*
2043  * Retrieve the hardware registers of the memory controller (this includes the
2044  * 'Address Map' and 'Misc' device regs)
2045  */
2046 static void read_mc_regs(struct amd64_pvt *pvt)
2047 {
2048 	struct cpuinfo_x86 *c = &boot_cpu_data;
2049 	u64 msr_val;
2050 	u32 tmp;
2051 	unsigned range;
2052 
2053 	/*
2054 	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2055 	 * those are Read-As-Zero
2056 	 */
2057 	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2058 	debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2059 
2060 	/* check first whether TOP_MEM2 is enabled */
2061 	rdmsrl(MSR_K8_SYSCFG, msr_val);
2062 	if (msr_val & (1U << 21)) {
2063 		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2064 		debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2065 	} else
2066 		debugf0("  TOP_MEM2 disabled.\n");
2067 
2068 	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2069 
2070 	read_dram_ctl_register(pvt);
2071 
2072 	for (range = 0; range < DRAM_RANGES; range++) {
2073 		u8 rw;
2074 
2075 		/* read settings for this DRAM range */
2076 		read_dram_base_limit_regs(pvt, range);
2077 
2078 		rw = dram_rw(pvt, range);
2079 		if (!rw)
2080 			continue;
2081 
2082 		debugf1("  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2083 			range,
2084 			get_dram_base(pvt, range),
2085 			get_dram_limit(pvt, range));
2086 
2087 		debugf1("   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2088 			dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2089 			(rw & 0x1) ? "R" : "-",
2090 			(rw & 0x2) ? "W" : "-",
2091 			dram_intlv_sel(pvt, range),
2092 			dram_dst_node(pvt, range));
2093 	}
2094 
2095 	read_dct_base_mask(pvt);
2096 
2097 	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2098 	amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
2099 
2100 	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2101 
2102 	amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2103 	amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
2104 
2105 	if (!dct_ganging_enabled(pvt)) {
2106 		amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2107 		amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2108 	}
2109 
2110 	pvt->ecc_sym_sz = 4;
2111 
2112 	if (c->x86 >= 0x10) {
2113 		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2114 		amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2115 
2116 		/* F10h, revD and later can do x8 ECC too */
2117 		if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2118 			pvt->ecc_sym_sz = 8;
2119 	}
2120 	dump_misc_regs(pvt);
2121 }
2122 
2123 /*
2124  * NOTE: CPU Revision Dependent code
2125  *
2126  * Input:
2127  *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2128  *	k8 private pointer to -->
2129  *			DRAM Bank Address mapping register
2130  *			node_id
2131  *			DCL register where dual_channel_active is
2132  *
2133  * The DBAM register consists of 4 sets of 4 bits each definitions:
2134  *
2135  * Bits:	CSROWs
2136  * 0-3		CSROWs 0 and 1
2137  * 4-7		CSROWs 2 and 3
2138  * 8-11		CSROWs 4 and 5
2139  * 12-15	CSROWs 6 and 7
2140  *
2141  * Values range from: 0 to 15
2142  * The meaning of the values depends on CPU revision and dual-channel state,
2143  * see relevant BKDG more info.
2144  *
2145  * The memory controller provides for total of only 8 CSROWs in its current
2146  * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2147  * single channel or two (2) DIMMs in dual channel mode.
2148  *
2149  * The following code logic collapses the various tables for CSROW based on CPU
2150  * revision.
2151  *
2152  * Returns:
2153  *	The number of PAGE_SIZE pages on the specified CSROW number it
2154  *	encompasses
2155  *
2156  */
2157 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2158 {
2159 	u32 cs_mode, nr_pages;
2160 	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2161 
2162 	/*
2163 	 * The math on this doesn't look right on the surface because x/2*4 can
2164 	 * be simplified to x*2 but this expression makes use of the fact that
2165 	 * it is integral math where 1/2=0. This intermediate value becomes the
2166 	 * number of bits to shift the DBAM register to extract the proper CSROW
2167 	 * field.
2168 	 */
2169 	cs_mode =  (dbam >> ((csrow_nr / 2) * 4)) & 0xF;
2170 
2171 	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2172 
2173 	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2174 	debugf0("    nr_pages= %u  channel-count = %d\n",
2175 		nr_pages, pvt->channel_count);
2176 
2177 	return nr_pages;
2178 }
2179 
2180 /*
2181  * Initialize the array of csrow attribute instances, based on the values
2182  * from pci config hardware registers.
2183  */
2184 static int init_csrows(struct mem_ctl_info *mci)
2185 {
2186 	struct csrow_info *csrow;
2187 	struct amd64_pvt *pvt = mci->pvt_info;
2188 	u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2189 	u32 val;
2190 	int i, empty = 1;
2191 
2192 	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2193 
2194 	pvt->nbcfg = val;
2195 
2196 	debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2197 		pvt->mc_node_id, val,
2198 		!!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2199 
2200 	for_each_chip_select(i, 0, pvt) {
2201 		csrow = &mci->csrows[i];
2202 
2203 		if (!csrow_enabled(i, 0, pvt) && !csrow_enabled(i, 1, pvt)) {
2204 			debugf1("----CSROW %d EMPTY for node %d\n", i,
2205 				pvt->mc_node_id);
2206 			continue;
2207 		}
2208 
2209 		debugf1("----CSROW %d VALID for MC node %d\n",
2210 			i, pvt->mc_node_id);
2211 
2212 		empty = 0;
2213 		if (csrow_enabled(i, 0, pvt))
2214 			csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2215 		if (csrow_enabled(i, 1, pvt))
2216 			csrow->nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
2217 		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2218 		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2219 		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2220 		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2221 		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2222 
2223 		get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2224 		csrow->page_mask = ~mask;
2225 		/* 8 bytes of resolution */
2226 
2227 		csrow->mtype = amd64_determine_memory_type(pvt, i);
2228 
2229 		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2230 		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2231 			(unsigned long)input_addr_min,
2232 			(unsigned long)input_addr_max);
2233 		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
2234 			(unsigned long)sys_addr, csrow->page_mask);
2235 		debugf1("    nr_pages: %u  first_page: 0x%lx "
2236 			"last_page: 0x%lx\n",
2237 			(unsigned)csrow->nr_pages,
2238 			csrow->first_page, csrow->last_page);
2239 
2240 		/*
2241 		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2242 		 */
2243 		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2244 			csrow->edac_mode =
2245 			    (pvt->nbcfg & NBCFG_CHIPKILL) ?
2246 			    EDAC_S4ECD4ED : EDAC_SECDED;
2247 		else
2248 			csrow->edac_mode = EDAC_NONE;
2249 	}
2250 
2251 	return empty;
2252 }
2253 
2254 /* get all cores on this DCT */
2255 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
2256 {
2257 	int cpu;
2258 
2259 	for_each_online_cpu(cpu)
2260 		if (amd_get_nb_id(cpu) == nid)
2261 			cpumask_set_cpu(cpu, mask);
2262 }
2263 
2264 /* check MCG_CTL on all the cpus on this node */
2265 static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
2266 {
2267 	cpumask_var_t mask;
2268 	int cpu, nbe;
2269 	bool ret = false;
2270 
2271 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2272 		amd64_warn("%s: Error allocating mask\n", __func__);
2273 		return false;
2274 	}
2275 
2276 	get_cpus_on_this_dct_cpumask(mask, nid);
2277 
2278 	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2279 
2280 	for_each_cpu(cpu, mask) {
2281 		struct msr *reg = per_cpu_ptr(msrs, cpu);
2282 		nbe = reg->l & MSR_MCGCTL_NBE;
2283 
2284 		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2285 			cpu, reg->q,
2286 			(nbe ? "enabled" : "disabled"));
2287 
2288 		if (!nbe)
2289 			goto out;
2290 	}
2291 	ret = true;
2292 
2293 out:
2294 	free_cpumask_var(mask);
2295 	return ret;
2296 }
2297 
2298 static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2299 {
2300 	cpumask_var_t cmask;
2301 	int cpu;
2302 
2303 	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2304 		amd64_warn("%s: error allocating mask\n", __func__);
2305 		return false;
2306 	}
2307 
2308 	get_cpus_on_this_dct_cpumask(cmask, nid);
2309 
2310 	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2311 
2312 	for_each_cpu(cpu, cmask) {
2313 
2314 		struct msr *reg = per_cpu_ptr(msrs, cpu);
2315 
2316 		if (on) {
2317 			if (reg->l & MSR_MCGCTL_NBE)
2318 				s->flags.nb_mce_enable = 1;
2319 
2320 			reg->l |= MSR_MCGCTL_NBE;
2321 		} else {
2322 			/*
2323 			 * Turn off NB MCE reporting only when it was off before
2324 			 */
2325 			if (!s->flags.nb_mce_enable)
2326 				reg->l &= ~MSR_MCGCTL_NBE;
2327 		}
2328 	}
2329 	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2330 
2331 	free_cpumask_var(cmask);
2332 
2333 	return 0;
2334 }
2335 
2336 static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2337 				       struct pci_dev *F3)
2338 {
2339 	bool ret = true;
2340 	u32 value, mask = 0x3;		/* UECC/CECC enable */
2341 
2342 	if (toggle_ecc_err_reporting(s, nid, ON)) {
2343 		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2344 		return false;
2345 	}
2346 
2347 	amd64_read_pci_cfg(F3, NBCTL, &value);
2348 
2349 	s->old_nbctl   = value & mask;
2350 	s->nbctl_valid = true;
2351 
2352 	value |= mask;
2353 	amd64_write_pci_cfg(F3, NBCTL, value);
2354 
2355 	amd64_read_pci_cfg(F3, NBCFG, &value);
2356 
2357 	debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2358 		nid, value, !!(value & NBCFG_ECC_ENABLE));
2359 
2360 	if (!(value & NBCFG_ECC_ENABLE)) {
2361 		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2362 
2363 		s->flags.nb_ecc_prev = 0;
2364 
2365 		/* Attempt to turn on DRAM ECC Enable */
2366 		value |= NBCFG_ECC_ENABLE;
2367 		amd64_write_pci_cfg(F3, NBCFG, value);
2368 
2369 		amd64_read_pci_cfg(F3, NBCFG, &value);
2370 
2371 		if (!(value & NBCFG_ECC_ENABLE)) {
2372 			amd64_warn("Hardware rejected DRAM ECC enable,"
2373 				   "check memory DIMM configuration.\n");
2374 			ret = false;
2375 		} else {
2376 			amd64_info("Hardware accepted DRAM ECC Enable\n");
2377 		}
2378 	} else {
2379 		s->flags.nb_ecc_prev = 1;
2380 	}
2381 
2382 	debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2383 		nid, value, !!(value & NBCFG_ECC_ENABLE));
2384 
2385 	return ret;
2386 }
2387 
2388 static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2389 					struct pci_dev *F3)
2390 {
2391 	u32 value, mask = 0x3;		/* UECC/CECC enable */
2392 
2393 
2394 	if (!s->nbctl_valid)
2395 		return;
2396 
2397 	amd64_read_pci_cfg(F3, NBCTL, &value);
2398 	value &= ~mask;
2399 	value |= s->old_nbctl;
2400 
2401 	amd64_write_pci_cfg(F3, NBCTL, value);
2402 
2403 	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2404 	if (!s->flags.nb_ecc_prev) {
2405 		amd64_read_pci_cfg(F3, NBCFG, &value);
2406 		value &= ~NBCFG_ECC_ENABLE;
2407 		amd64_write_pci_cfg(F3, NBCFG, value);
2408 	}
2409 
2410 	/* restore the NB Enable MCGCTL bit */
2411 	if (toggle_ecc_err_reporting(s, nid, OFF))
2412 		amd64_warn("Error restoring NB MCGCTL settings!\n");
2413 }
2414 
2415 /*
2416  * EDAC requires that the BIOS have ECC enabled before
2417  * taking over the processing of ECC errors. A command line
2418  * option allows to force-enable hardware ECC later in
2419  * enable_ecc_error_reporting().
2420  */
2421 static const char *ecc_msg =
2422 	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2423 	" Either enable ECC checking or force module loading by setting "
2424 	"'ecc_enable_override'.\n"
2425 	" (Note that use of the override may cause unknown side effects.)\n";
2426 
2427 static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2428 {
2429 	u32 value;
2430 	u8 ecc_en = 0;
2431 	bool nb_mce_en = false;
2432 
2433 	amd64_read_pci_cfg(F3, NBCFG, &value);
2434 
2435 	ecc_en = !!(value & NBCFG_ECC_ENABLE);
2436 	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2437 
2438 	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2439 	if (!nb_mce_en)
2440 		amd64_notice("NB MCE bank disabled, set MSR "
2441 			     "0x%08x[4] on node %d to enable.\n",
2442 			     MSR_IA32_MCG_CTL, nid);
2443 
2444 	if (!ecc_en || !nb_mce_en) {
2445 		amd64_notice("%s", ecc_msg);
2446 		return false;
2447 	}
2448 	return true;
2449 }
2450 
2451 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2452 					  ARRAY_SIZE(amd64_inj_attrs) +
2453 					  1];
2454 
2455 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2456 
2457 static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2458 {
2459 	unsigned int i = 0, j = 0;
2460 
2461 	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2462 		sysfs_attrs[i] = amd64_dbg_attrs[i];
2463 
2464 	if (boot_cpu_data.x86 >= 0x10)
2465 		for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2466 			sysfs_attrs[i] = amd64_inj_attrs[j];
2467 
2468 	sysfs_attrs[i] = terminator;
2469 
2470 	mci->mc_driver_sysfs_attributes = sysfs_attrs;
2471 }
2472 
2473 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2474 				 struct amd64_family_type *fam)
2475 {
2476 	struct amd64_pvt *pvt = mci->pvt_info;
2477 
2478 	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2479 	mci->edac_ctl_cap	= EDAC_FLAG_NONE;
2480 
2481 	if (pvt->nbcap & NBCAP_SECDED)
2482 		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2483 
2484 	if (pvt->nbcap & NBCAP_CHIPKILL)
2485 		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2486 
2487 	mci->edac_cap		= amd64_determine_edac_cap(pvt);
2488 	mci->mod_name		= EDAC_MOD_STR;
2489 	mci->mod_ver		= EDAC_AMD64_VERSION;
2490 	mci->ctl_name		= fam->ctl_name;
2491 	mci->dev_name		= pci_name(pvt->F2);
2492 	mci->ctl_page_to_phys	= NULL;
2493 
2494 	/* memory scrubber interface */
2495 	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2496 	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2497 }
2498 
2499 /*
2500  * returns a pointer to the family descriptor on success, NULL otherwise.
2501  */
2502 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2503 {
2504 	u8 fam = boot_cpu_data.x86;
2505 	struct amd64_family_type *fam_type = NULL;
2506 
2507 	switch (fam) {
2508 	case 0xf:
2509 		fam_type		= &amd64_family_types[K8_CPUS];
2510 		pvt->ops		= &amd64_family_types[K8_CPUS].ops;
2511 		break;
2512 
2513 	case 0x10:
2514 		fam_type		= &amd64_family_types[F10_CPUS];
2515 		pvt->ops		= &amd64_family_types[F10_CPUS].ops;
2516 		break;
2517 
2518 	case 0x15:
2519 		fam_type		= &amd64_family_types[F15_CPUS];
2520 		pvt->ops		= &amd64_family_types[F15_CPUS].ops;
2521 		break;
2522 
2523 	default:
2524 		amd64_err("Unsupported family!\n");
2525 		return NULL;
2526 	}
2527 
2528 	pvt->ext_model = boot_cpu_data.x86_model >> 4;
2529 
2530 	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2531 		     (fam == 0xf ?
2532 				(pvt->ext_model >= K8_REV_F  ? "revF or later "
2533 							     : "revE or earlier ")
2534 				 : ""), pvt->mc_node_id);
2535 	return fam_type;
2536 }
2537 
2538 static int amd64_init_one_instance(struct pci_dev *F2)
2539 {
2540 	struct amd64_pvt *pvt = NULL;
2541 	struct amd64_family_type *fam_type = NULL;
2542 	struct mem_ctl_info *mci = NULL;
2543 	int err = 0, ret;
2544 	u8 nid = get_node_id(F2);
2545 
2546 	ret = -ENOMEM;
2547 	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2548 	if (!pvt)
2549 		goto err_ret;
2550 
2551 	pvt->mc_node_id	= nid;
2552 	pvt->F2 = F2;
2553 
2554 	ret = -EINVAL;
2555 	fam_type = amd64_per_family_init(pvt);
2556 	if (!fam_type)
2557 		goto err_free;
2558 
2559 	ret = -ENODEV;
2560 	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2561 	if (err)
2562 		goto err_free;
2563 
2564 	read_mc_regs(pvt);
2565 
2566 	/*
2567 	 * We need to determine how many memory channels there are. Then use
2568 	 * that information for calculating the size of the dynamic instance
2569 	 * tables in the 'mci' structure.
2570 	 */
2571 	ret = -EINVAL;
2572 	pvt->channel_count = pvt->ops->early_channel_count(pvt);
2573 	if (pvt->channel_count < 0)
2574 		goto err_siblings;
2575 
2576 	ret = -ENOMEM;
2577 	mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
2578 	if (!mci)
2579 		goto err_siblings;
2580 
2581 	mci->pvt_info = pvt;
2582 	mci->dev = &pvt->F2->dev;
2583 
2584 	setup_mci_misc_attrs(mci, fam_type);
2585 
2586 	if (init_csrows(mci))
2587 		mci->edac_cap = EDAC_FLAG_NONE;
2588 
2589 	set_mc_sysfs_attrs(mci);
2590 
2591 	ret = -ENODEV;
2592 	if (edac_mc_add_mc(mci)) {
2593 		debugf1("failed edac_mc_add_mc()\n");
2594 		goto err_add_mc;
2595 	}
2596 
2597 	/* register stuff with EDAC MCE */
2598 	if (report_gart_errors)
2599 		amd_report_gart_errors(true);
2600 
2601 	amd_register_ecc_decoder(amd64_decode_bus_error);
2602 
2603 	mcis[nid] = mci;
2604 
2605 	atomic_inc(&drv_instances);
2606 
2607 	return 0;
2608 
2609 err_add_mc:
2610 	edac_mc_free(mci);
2611 
2612 err_siblings:
2613 	free_mc_sibling_devs(pvt);
2614 
2615 err_free:
2616 	kfree(pvt);
2617 
2618 err_ret:
2619 	return ret;
2620 }
2621 
2622 static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2623 					     const struct pci_device_id *mc_type)
2624 {
2625 	u8 nid = get_node_id(pdev);
2626 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2627 	struct ecc_settings *s;
2628 	int ret = 0;
2629 
2630 	ret = pci_enable_device(pdev);
2631 	if (ret < 0) {
2632 		debugf0("ret=%d\n", ret);
2633 		return -EIO;
2634 	}
2635 
2636 	ret = -ENOMEM;
2637 	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2638 	if (!s)
2639 		goto err_out;
2640 
2641 	ecc_stngs[nid] = s;
2642 
2643 	if (!ecc_enabled(F3, nid)) {
2644 		ret = -ENODEV;
2645 
2646 		if (!ecc_enable_override)
2647 			goto err_enable;
2648 
2649 		amd64_warn("Forcing ECC on!\n");
2650 
2651 		if (!enable_ecc_error_reporting(s, nid, F3))
2652 			goto err_enable;
2653 	}
2654 
2655 	ret = amd64_init_one_instance(pdev);
2656 	if (ret < 0) {
2657 		amd64_err("Error probing instance: %d\n", nid);
2658 		restore_ecc_error_reporting(s, nid, F3);
2659 	}
2660 
2661 	return ret;
2662 
2663 err_enable:
2664 	kfree(s);
2665 	ecc_stngs[nid] = NULL;
2666 
2667 err_out:
2668 	return ret;
2669 }
2670 
2671 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2672 {
2673 	struct mem_ctl_info *mci;
2674 	struct amd64_pvt *pvt;
2675 	u8 nid = get_node_id(pdev);
2676 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2677 	struct ecc_settings *s = ecc_stngs[nid];
2678 
2679 	/* Remove from EDAC CORE tracking list */
2680 	mci = edac_mc_del_mc(&pdev->dev);
2681 	if (!mci)
2682 		return;
2683 
2684 	pvt = mci->pvt_info;
2685 
2686 	restore_ecc_error_reporting(s, nid, F3);
2687 
2688 	free_mc_sibling_devs(pvt);
2689 
2690 	/* unregister from EDAC MCE */
2691 	amd_report_gart_errors(false);
2692 	amd_unregister_ecc_decoder(amd64_decode_bus_error);
2693 
2694 	kfree(ecc_stngs[nid]);
2695 	ecc_stngs[nid] = NULL;
2696 
2697 	/* Free the EDAC CORE resources */
2698 	mci->pvt_info = NULL;
2699 	mcis[nid] = NULL;
2700 
2701 	kfree(pvt);
2702 	edac_mc_free(mci);
2703 }
2704 
2705 /*
2706  * This table is part of the interface for loading drivers for PCI devices. The
2707  * PCI core identifies what devices are on a system during boot, and then
2708  * inquiry this table to see if this driver is for a given device found.
2709  */
2710 static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
2711 	{
2712 		.vendor		= PCI_VENDOR_ID_AMD,
2713 		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2714 		.subvendor	= PCI_ANY_ID,
2715 		.subdevice	= PCI_ANY_ID,
2716 		.class		= 0,
2717 		.class_mask	= 0,
2718 	},
2719 	{
2720 		.vendor		= PCI_VENDOR_ID_AMD,
2721 		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2722 		.subvendor	= PCI_ANY_ID,
2723 		.subdevice	= PCI_ANY_ID,
2724 		.class		= 0,
2725 		.class_mask	= 0,
2726 	},
2727 	{
2728 		.vendor		= PCI_VENDOR_ID_AMD,
2729 		.device		= PCI_DEVICE_ID_AMD_15H_NB_F2,
2730 		.subvendor	= PCI_ANY_ID,
2731 		.subdevice	= PCI_ANY_ID,
2732 		.class		= 0,
2733 		.class_mask	= 0,
2734 	},
2735 
2736 	{0, }
2737 };
2738 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2739 
2740 static struct pci_driver amd64_pci_driver = {
2741 	.name		= EDAC_MOD_STR,
2742 	.probe		= amd64_probe_one_instance,
2743 	.remove		= __devexit_p(amd64_remove_one_instance),
2744 	.id_table	= amd64_pci_table,
2745 };
2746 
2747 static void setup_pci_device(void)
2748 {
2749 	struct mem_ctl_info *mci;
2750 	struct amd64_pvt *pvt;
2751 
2752 	if (amd64_ctl_pci)
2753 		return;
2754 
2755 	mci = mcis[0];
2756 	if (mci) {
2757 
2758 		pvt = mci->pvt_info;
2759 		amd64_ctl_pci =
2760 			edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2761 
2762 		if (!amd64_ctl_pci) {
2763 			pr_warning("%s(): Unable to create PCI control\n",
2764 				   __func__);
2765 
2766 			pr_warning("%s(): PCI error report via EDAC not set\n",
2767 				   __func__);
2768 			}
2769 	}
2770 }
2771 
2772 static int __init amd64_edac_init(void)
2773 {
2774 	int err = -ENODEV;
2775 
2776 	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2777 
2778 	opstate_init();
2779 
2780 	if (amd_cache_northbridges() < 0)
2781 		goto err_ret;
2782 
2783 	err = -ENOMEM;
2784 	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2785 	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2786 	if (!(mcis && ecc_stngs))
2787 		goto err_free;
2788 
2789 	msrs = msrs_alloc();
2790 	if (!msrs)
2791 		goto err_free;
2792 
2793 	err = pci_register_driver(&amd64_pci_driver);
2794 	if (err)
2795 		goto err_pci;
2796 
2797 	err = -ENODEV;
2798 	if (!atomic_read(&drv_instances))
2799 		goto err_no_instances;
2800 
2801 	setup_pci_device();
2802 	return 0;
2803 
2804 err_no_instances:
2805 	pci_unregister_driver(&amd64_pci_driver);
2806 
2807 err_pci:
2808 	msrs_free(msrs);
2809 	msrs = NULL;
2810 
2811 err_free:
2812 	kfree(mcis);
2813 	mcis = NULL;
2814 
2815 	kfree(ecc_stngs);
2816 	ecc_stngs = NULL;
2817 
2818 err_ret:
2819 	return err;
2820 }
2821 
2822 static void __exit amd64_edac_exit(void)
2823 {
2824 	if (amd64_ctl_pci)
2825 		edac_pci_release_generic_ctl(amd64_ctl_pci);
2826 
2827 	pci_unregister_driver(&amd64_pci_driver);
2828 
2829 	kfree(ecc_stngs);
2830 	ecc_stngs = NULL;
2831 
2832 	kfree(mcis);
2833 	mcis = NULL;
2834 
2835 	msrs_free(msrs);
2836 	msrs = NULL;
2837 }
2838 
2839 module_init(amd64_edac_init);
2840 module_exit(amd64_edac_exit);
2841 
2842 MODULE_LICENSE("GPL");
2843 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2844 		"Dave Peterson, Thayne Harbaugh");
2845 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2846 		EDAC_AMD64_VERSION);
2847 
2848 module_param(edac_op_state, int, 0444);
2849 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2850