xref: /openbmc/linux/drivers/edac/amd64_edac.c (revision 4800cd83)
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
3 
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5 
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8 
9 /*
10  * Set by command line parameter. If BIOS has enabled the ECC, this override is
11  * cleared to prevent re-enabling the hardware by this driver.
12  */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15 
16 static struct msr __percpu *msrs;
17 
18 /*
19  * count successfully initialized driver instances for setup_pci_device()
20  */
21 static atomic_t drv_instances = ATOMIC_INIT(0);
22 
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
26 
27 /*
28  * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
29  * later.
30  */
31 static int ddr2_dbam_revCG[] = {
32 			   [0]		= 32,
33 			   [1]		= 64,
34 			   [2]		= 128,
35 			   [3]		= 256,
36 			   [4]		= 512,
37 			   [5]		= 1024,
38 			   [6]		= 2048,
39 };
40 
41 static int ddr2_dbam_revD[] = {
42 			   [0]		= 32,
43 			   [1]		= 64,
44 			   [2 ... 3]	= 128,
45 			   [4]		= 256,
46 			   [5]		= 512,
47 			   [6]		= 256,
48 			   [7]		= 512,
49 			   [8 ... 9]	= 1024,
50 			   [10]		= 2048,
51 };
52 
53 static int ddr2_dbam[] = { [0]		= 128,
54 			   [1]		= 256,
55 			   [2 ... 4]	= 512,
56 			   [5 ... 6]	= 1024,
57 			   [7 ... 8]	= 2048,
58 			   [9 ... 10]	= 4096,
59 			   [11]		= 8192,
60 };
61 
62 static int ddr3_dbam[] = { [0]		= -1,
63 			   [1]		= 256,
64 			   [2]		= 512,
65 			   [3 ... 4]	= -1,
66 			   [5 ... 6]	= 1024,
67 			   [7 ... 8]	= 2048,
68 			   [9 ... 10]	= 4096,
69 			   [11]		= 8192,
70 };
71 
72 /*
73  * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
74  * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
75  * or higher value'.
76  *
77  *FIXME: Produce a better mapping/linearisation.
78  */
79 
80 
81 struct scrubrate {
82        u32 scrubval;           /* bit pattern for scrub rate */
83        u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
84 } scrubrates[] = {
85 	{ 0x01, 1600000000UL},
86 	{ 0x02, 800000000UL},
87 	{ 0x03, 400000000UL},
88 	{ 0x04, 200000000UL},
89 	{ 0x05, 100000000UL},
90 	{ 0x06, 50000000UL},
91 	{ 0x07, 25000000UL},
92 	{ 0x08, 12284069UL},
93 	{ 0x09, 6274509UL},
94 	{ 0x0A, 3121951UL},
95 	{ 0x0B, 1560975UL},
96 	{ 0x0C, 781440UL},
97 	{ 0x0D, 390720UL},
98 	{ 0x0E, 195300UL},
99 	{ 0x0F, 97650UL},
100 	{ 0x10, 48854UL},
101 	{ 0x11, 24427UL},
102 	{ 0x12, 12213UL},
103 	{ 0x13, 6101UL},
104 	{ 0x14, 3051UL},
105 	{ 0x15, 1523UL},
106 	{ 0x16, 761UL},
107 	{ 0x00, 0UL},        /* scrubbing off */
108 };
109 
110 /*
111  * Memory scrubber control interface. For K8, memory scrubbing is handled by
112  * hardware and can involve L2 cache, dcache as well as the main memory. With
113  * F10, this is extended to L3 cache scrubbing on CPU models sporting that
114  * functionality.
115  *
116  * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
117  * (dram) over to cache lines. This is nasty, so we will use bandwidth in
118  * bytes/sec for the setting.
119  *
120  * Currently, we only do dram scrubbing. If the scrubbing is done in software on
121  * other archs, we might not have access to the caches directly.
122  */
123 
124 /*
125  * scan the scrub rate mapping table for a close or matching bandwidth value to
126  * issue. If requested is too big, then use last maximum value found.
127  */
128 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
129 {
130 	u32 scrubval;
131 	int i;
132 
133 	/*
134 	 * map the configured rate (new_bw) to a value specific to the AMD64
135 	 * memory controller and apply to register. Search for the first
136 	 * bandwidth entry that is greater or equal than the setting requested
137 	 * and program that. If at last entry, turn off DRAM scrubbing.
138 	 */
139 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
140 		/*
141 		 * skip scrub rates which aren't recommended
142 		 * (see F10 BKDG, F3x58)
143 		 */
144 		if (scrubrates[i].scrubval < min_rate)
145 			continue;
146 
147 		if (scrubrates[i].bandwidth <= new_bw)
148 			break;
149 
150 		/*
151 		 * if no suitable bandwidth found, turn off DRAM scrubbing
152 		 * entirely by falling back to the last element in the
153 		 * scrubrates array.
154 		 */
155 	}
156 
157 	scrubval = scrubrates[i].scrubval;
158 
159 	pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
160 
161 	if (scrubval)
162 		return scrubrates[i].bandwidth;
163 
164 	return 0;
165 }
166 
167 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
168 {
169 	struct amd64_pvt *pvt = mci->pvt_info;
170 
171 	return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
172 }
173 
174 static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
175 {
176 	struct amd64_pvt *pvt = mci->pvt_info;
177 	u32 scrubval = 0;
178 	int i, retval = -EINVAL;
179 
180 	amd64_read_pci_cfg(pvt->F3, K8_SCRCTRL, &scrubval);
181 
182 	scrubval = scrubval & 0x001F;
183 
184 	amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
185 
186 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
187 		if (scrubrates[i].scrubval == scrubval) {
188 			retval = scrubrates[i].bandwidth;
189 			break;
190 		}
191 	}
192 	return retval;
193 }
194 
195 /* Map from a CSROW entry to the mask entry that operates on it */
196 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
197 {
198 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
199 		return csrow;
200 	else
201 		return csrow >> 1;
202 }
203 
204 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
205 static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
206 {
207 	if (dct == 0)
208 		return pvt->dcsb0[csrow];
209 	else
210 		return pvt->dcsb1[csrow];
211 }
212 
213 /*
214  * Return the 'mask' address the i'th CS entry. This function is needed because
215  * there number of DCSM registers on Rev E and prior vs Rev F and later is
216  * different.
217  */
218 static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
219 {
220 	if (dct == 0)
221 		return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
222 	else
223 		return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
224 }
225 
226 
227 /*
228  * In *base and *limit, pass back the full 40-bit base and limit physical
229  * addresses for the node given by node_id.  This information is obtained from
230  * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
231  * base and limit addresses are of type SysAddr, as defined at the start of
232  * section 3.4.4 (p. 70).  They are the lowest and highest physical addresses
233  * in the address range they represent.
234  */
235 static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
236 			       u64 *base, u64 *limit)
237 {
238 	*base = pvt->dram_base[node_id];
239 	*limit = pvt->dram_limit[node_id];
240 }
241 
242 /*
243  * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
244  * with node_id
245  */
246 static int amd64_base_limit_match(struct amd64_pvt *pvt,
247 					u64 sys_addr, int node_id)
248 {
249 	u64 base, limit, addr;
250 
251 	amd64_get_base_and_limit(pvt, node_id, &base, &limit);
252 
253 	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
254 	 * all ones if the most significant implemented address bit is 1.
255 	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
256 	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
257 	 * Application Programming.
258 	 */
259 	addr = sys_addr & 0x000000ffffffffffull;
260 
261 	return (addr >= base) && (addr <= limit);
262 }
263 
264 /*
265  * Attempt to map a SysAddr to a node. On success, return a pointer to the
266  * mem_ctl_info structure for the node that the SysAddr maps to.
267  *
268  * On failure, return NULL.
269  */
270 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
271 						u64 sys_addr)
272 {
273 	struct amd64_pvt *pvt;
274 	int node_id;
275 	u32 intlv_en, bits;
276 
277 	/*
278 	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
279 	 * 3.4.4.2) registers to map the SysAddr to a node ID.
280 	 */
281 	pvt = mci->pvt_info;
282 
283 	/*
284 	 * The value of this field should be the same for all DRAM Base
285 	 * registers.  Therefore we arbitrarily choose to read it from the
286 	 * register for node 0.
287 	 */
288 	intlv_en = pvt->dram_IntlvEn[0];
289 
290 	if (intlv_en == 0) {
291 		for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
292 			if (amd64_base_limit_match(pvt, sys_addr, node_id))
293 				goto found;
294 		}
295 		goto err_no_match;
296 	}
297 
298 	if (unlikely((intlv_en != 0x01) &&
299 		     (intlv_en != 0x03) &&
300 		     (intlv_en != 0x07))) {
301 		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
302 		return NULL;
303 	}
304 
305 	bits = (((u32) sys_addr) >> 12) & intlv_en;
306 
307 	for (node_id = 0; ; ) {
308 		if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
309 			break;	/* intlv_sel field matches */
310 
311 		if (++node_id >= DRAM_REG_COUNT)
312 			goto err_no_match;
313 	}
314 
315 	/* sanity test for sys_addr */
316 	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
317 		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
318 			   "range for node %d with node interleaving enabled.\n",
319 			   __func__, sys_addr, node_id);
320 		return NULL;
321 	}
322 
323 found:
324 	return edac_mc_find(node_id);
325 
326 err_no_match:
327 	debugf2("sys_addr 0x%lx doesn't match any node\n",
328 		(unsigned long)sys_addr);
329 
330 	return NULL;
331 }
332 
333 /*
334  * Extract the DRAM CS base address from selected csrow register.
335  */
336 static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
337 {
338 	return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
339 				pvt->dcs_shift;
340 }
341 
342 /*
343  * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
344  */
345 static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
346 {
347 	u64 dcsm_bits, other_bits;
348 	u64 mask;
349 
350 	/* Extract bits from DRAM CS Mask. */
351 	dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
352 
353 	other_bits = pvt->dcsm_mask;
354 	other_bits = ~(other_bits << pvt->dcs_shift);
355 
356 	/*
357 	 * The extracted bits from DCSM belong in the spaces represented by
358 	 * the cleared bits in other_bits.
359 	 */
360 	mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
361 
362 	return mask;
363 }
364 
365 /*
366  * @input_addr is an InputAddr associated with the node given by mci. Return the
367  * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
368  */
369 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
370 {
371 	struct amd64_pvt *pvt;
372 	int csrow;
373 	u64 base, mask;
374 
375 	pvt = mci->pvt_info;
376 
377 	/*
378 	 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
379 	 * base/mask register pair, test the condition shown near the start of
380 	 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
381 	 */
382 	for (csrow = 0; csrow < pvt->cs_count; csrow++) {
383 
384 		/* This DRAM chip select is disabled on this node */
385 		if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
386 			continue;
387 
388 		base = base_from_dct_base(pvt, csrow);
389 		mask = ~mask_from_dct_mask(pvt, csrow);
390 
391 		if ((input_addr & mask) == (base & mask)) {
392 			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
393 				(unsigned long)input_addr, csrow,
394 				pvt->mc_node_id);
395 
396 			return csrow;
397 		}
398 	}
399 
400 	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
401 		(unsigned long)input_addr, pvt->mc_node_id);
402 
403 	return -1;
404 }
405 
406 /*
407  * Return the base value defined by the DRAM Base register for the node
408  * represented by mci.  This function returns the full 40-bit value despite the
409  * fact that the register only stores bits 39-24 of the value. See section
410  * 3.4.4.1 (BKDG #26094, K8, revA-E)
411  */
412 static inline u64 get_dram_base(struct mem_ctl_info *mci)
413 {
414 	struct amd64_pvt *pvt = mci->pvt_info;
415 
416 	return pvt->dram_base[pvt->mc_node_id];
417 }
418 
419 /*
420  * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
421  * for the node represented by mci. Info is passed back in *hole_base,
422  * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
423  * info is invalid. Info may be invalid for either of the following reasons:
424  *
425  * - The revision of the node is not E or greater.  In this case, the DRAM Hole
426  *   Address Register does not exist.
427  *
428  * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
429  *   indicating that its contents are not valid.
430  *
431  * The values passed back in *hole_base, *hole_offset, and *hole_size are
432  * complete 32-bit values despite the fact that the bitfields in the DHAR
433  * only represent bits 31-24 of the base and offset values.
434  */
435 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
436 			     u64 *hole_offset, u64 *hole_size)
437 {
438 	struct amd64_pvt *pvt = mci->pvt_info;
439 	u64 base;
440 
441 	/* only revE and later have the DRAM Hole Address Register */
442 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
443 		debugf1("  revision %d for node %d does not support DHAR\n",
444 			pvt->ext_model, pvt->mc_node_id);
445 		return 1;
446 	}
447 
448 	/* only valid for Fam10h */
449 	if (boot_cpu_data.x86 == 0x10 &&
450 	    (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
451 		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
452 		return 1;
453 	}
454 
455 	if ((pvt->dhar & DHAR_VALID) == 0) {
456 		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
457 			pvt->mc_node_id);
458 		return 1;
459 	}
460 
461 	/* This node has Memory Hoisting */
462 
463 	/* +------------------+--------------------+--------------------+-----
464 	 * | memory           | DRAM hole          | relocated          |
465 	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
466 	 * |                  |                    | DRAM hole          |
467 	 * |                  |                    | [0x100000000,      |
468 	 * |                  |                    |  (0x100000000+     |
469 	 * |                  |                    |   (0xffffffff-x))] |
470 	 * +------------------+--------------------+--------------------+-----
471 	 *
472 	 * Above is a diagram of physical memory showing the DRAM hole and the
473 	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
474 	 * starts at address x (the base address) and extends through address
475 	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
476 	 * addresses in the hole so that they start at 0x100000000.
477 	 */
478 
479 	base = dhar_base(pvt->dhar);
480 
481 	*hole_base = base;
482 	*hole_size = (0x1ull << 32) - base;
483 
484 	if (boot_cpu_data.x86 > 0xf)
485 		*hole_offset = f10_dhar_offset(pvt->dhar);
486 	else
487 		*hole_offset = k8_dhar_offset(pvt->dhar);
488 
489 	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
490 		pvt->mc_node_id, (unsigned long)*hole_base,
491 		(unsigned long)*hole_offset, (unsigned long)*hole_size);
492 
493 	return 0;
494 }
495 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
496 
497 /*
498  * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
499  * assumed that sys_addr maps to the node given by mci.
500  *
501  * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
502  * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
503  * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
504  * then it is also involved in translating a SysAddr to a DramAddr. Sections
505  * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
506  * These parts of the documentation are unclear. I interpret them as follows:
507  *
508  * When node n receives a SysAddr, it processes the SysAddr as follows:
509  *
510  * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
511  *    Limit registers for node n. If the SysAddr is not within the range
512  *    specified by the base and limit values, then node n ignores the Sysaddr
513  *    (since it does not map to node n). Otherwise continue to step 2 below.
514  *
515  * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
516  *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
517  *    the range of relocated addresses (starting at 0x100000000) from the DRAM
518  *    hole. If not, skip to step 3 below. Else get the value of the
519  *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
520  *    offset defined by this value from the SysAddr.
521  *
522  * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
523  *    Base register for node n. To obtain the DramAddr, subtract the base
524  *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
525  */
526 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
527 {
528 	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
529 	int ret = 0;
530 
531 	dram_base = get_dram_base(mci);
532 
533 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
534 				      &hole_size);
535 	if (!ret) {
536 		if ((sys_addr >= (1ull << 32)) &&
537 		    (sys_addr < ((1ull << 32) + hole_size))) {
538 			/* use DHAR to translate SysAddr to DramAddr */
539 			dram_addr = sys_addr - hole_offset;
540 
541 			debugf2("using DHAR to translate SysAddr 0x%lx to "
542 				"DramAddr 0x%lx\n",
543 				(unsigned long)sys_addr,
544 				(unsigned long)dram_addr);
545 
546 			return dram_addr;
547 		}
548 	}
549 
550 	/*
551 	 * Translate the SysAddr to a DramAddr as shown near the start of
552 	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
553 	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
554 	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
555 	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
556 	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
557 	 * Programmer's Manual Volume 1 Application Programming.
558 	 */
559 	dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
560 
561 	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
562 		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
563 		(unsigned long)dram_addr);
564 	return dram_addr;
565 }
566 
567 /*
568  * @intlv_en is the value of the IntlvEn field from a DRAM Base register
569  * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
570  * for node interleaving.
571  */
572 static int num_node_interleave_bits(unsigned intlv_en)
573 {
574 	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
575 	int n;
576 
577 	BUG_ON(intlv_en > 7);
578 	n = intlv_shift_table[intlv_en];
579 	return n;
580 }
581 
582 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
583 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
584 {
585 	struct amd64_pvt *pvt;
586 	int intlv_shift;
587 	u64 input_addr;
588 
589 	pvt = mci->pvt_info;
590 
591 	/*
592 	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
593 	 * concerning translating a DramAddr to an InputAddr.
594 	 */
595 	intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
596 	input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
597 	    (dram_addr & 0xfff);
598 
599 	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
600 		intlv_shift, (unsigned long)dram_addr,
601 		(unsigned long)input_addr);
602 
603 	return input_addr;
604 }
605 
606 /*
607  * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
608  * assumed that @sys_addr maps to the node given by mci.
609  */
610 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
611 {
612 	u64 input_addr;
613 
614 	input_addr =
615 	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
616 
617 	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
618 		(unsigned long)sys_addr, (unsigned long)input_addr);
619 
620 	return input_addr;
621 }
622 
623 
624 /*
625  * @input_addr is an InputAddr associated with the node represented by mci.
626  * Translate @input_addr to a DramAddr and return the result.
627  */
628 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
629 {
630 	struct amd64_pvt *pvt;
631 	int node_id, intlv_shift;
632 	u64 bits, dram_addr;
633 	u32 intlv_sel;
634 
635 	/*
636 	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
637 	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
638 	 * this procedure. When translating from a DramAddr to an InputAddr, the
639 	 * bits used for node interleaving are discarded.  Here we recover these
640 	 * bits from the IntlvSel field of the DRAM Limit register (section
641 	 * 3.4.4.2) for the node that input_addr is associated with.
642 	 */
643 	pvt = mci->pvt_info;
644 	node_id = pvt->mc_node_id;
645 	BUG_ON((node_id < 0) || (node_id > 7));
646 
647 	intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
648 
649 	if (intlv_shift == 0) {
650 		debugf1("    InputAddr 0x%lx translates to DramAddr of "
651 			"same value\n",	(unsigned long)input_addr);
652 
653 		return input_addr;
654 	}
655 
656 	bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
657 	    (input_addr & 0xfff);
658 
659 	intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
660 	dram_addr = bits + (intlv_sel << 12);
661 
662 	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
663 		"(%d node interleave bits)\n", (unsigned long)input_addr,
664 		(unsigned long)dram_addr, intlv_shift);
665 
666 	return dram_addr;
667 }
668 
669 /*
670  * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
671  * @dram_addr to a SysAddr.
672  */
673 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
674 {
675 	struct amd64_pvt *pvt = mci->pvt_info;
676 	u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
677 	int ret = 0;
678 
679 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
680 				      &hole_size);
681 	if (!ret) {
682 		if ((dram_addr >= hole_base) &&
683 		    (dram_addr < (hole_base + hole_size))) {
684 			sys_addr = dram_addr + hole_offset;
685 
686 			debugf1("using DHAR to translate DramAddr 0x%lx to "
687 				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
688 				(unsigned long)sys_addr);
689 
690 			return sys_addr;
691 		}
692 	}
693 
694 	amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
695 	sys_addr = dram_addr + base;
696 
697 	/*
698 	 * The sys_addr we have computed up to this point is a 40-bit value
699 	 * because the k8 deals with 40-bit values.  However, the value we are
700 	 * supposed to return is a full 64-bit physical address.  The AMD
701 	 * x86-64 architecture specifies that the most significant implemented
702 	 * address bit through bit 63 of a physical address must be either all
703 	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
704 	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
705 	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
706 	 * Programming.
707 	 */
708 	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
709 
710 	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
711 		pvt->mc_node_id, (unsigned long)dram_addr,
712 		(unsigned long)sys_addr);
713 
714 	return sys_addr;
715 }
716 
717 /*
718  * @input_addr is an InputAddr associated with the node given by mci. Translate
719  * @input_addr to a SysAddr.
720  */
721 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
722 					 u64 input_addr)
723 {
724 	return dram_addr_to_sys_addr(mci,
725 				     input_addr_to_dram_addr(mci, input_addr));
726 }
727 
728 /*
729  * Find the minimum and maximum InputAddr values that map to the given @csrow.
730  * Pass back these values in *input_addr_min and *input_addr_max.
731  */
732 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
733 			      u64 *input_addr_min, u64 *input_addr_max)
734 {
735 	struct amd64_pvt *pvt;
736 	u64 base, mask;
737 
738 	pvt = mci->pvt_info;
739 	BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
740 
741 	base = base_from_dct_base(pvt, csrow);
742 	mask = mask_from_dct_mask(pvt, csrow);
743 
744 	*input_addr_min = base & ~mask;
745 	*input_addr_max = base | mask | pvt->dcs_mask_notused;
746 }
747 
748 /* Map the Error address to a PAGE and PAGE OFFSET. */
749 static inline void error_address_to_page_and_offset(u64 error_address,
750 						    u32 *page, u32 *offset)
751 {
752 	*page = (u32) (error_address >> PAGE_SHIFT);
753 	*offset = ((u32) error_address) & ~PAGE_MASK;
754 }
755 
756 /*
757  * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
758  * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
759  * of a node that detected an ECC memory error.  mci represents the node that
760  * the error address maps to (possibly different from the node that detected
761  * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
762  * error.
763  */
764 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
765 {
766 	int csrow;
767 
768 	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
769 
770 	if (csrow == -1)
771 		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
772 				  "address 0x%lx\n", (unsigned long)sys_addr);
773 	return csrow;
774 }
775 
776 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
777 
778 static u16 extract_syndrome(struct err_regs *err)
779 {
780 	return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
781 }
782 
783 /*
784  * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
785  * are ECC capable.
786  */
787 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
788 {
789 	int bit;
790 	enum dev_type edac_cap = EDAC_FLAG_NONE;
791 
792 	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
793 		? 19
794 		: 17;
795 
796 	if (pvt->dclr0 & BIT(bit))
797 		edac_cap = EDAC_FLAG_SECDED;
798 
799 	return edac_cap;
800 }
801 
802 
803 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
804 
805 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
806 {
807 	debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
808 
809 	debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
810 		(dclr & BIT(16)) ?  "un" : "",
811 		(dclr & BIT(19)) ? "yes" : "no");
812 
813 	debugf1("  PAR/ERR parity: %s\n",
814 		(dclr & BIT(8)) ?  "enabled" : "disabled");
815 
816 	debugf1("  DCT 128bit mode width: %s\n",
817 		(dclr & BIT(11)) ?  "128b" : "64b");
818 
819 	debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
820 		(dclr & BIT(12)) ?  "yes" : "no",
821 		(dclr & BIT(13)) ?  "yes" : "no",
822 		(dclr & BIT(14)) ?  "yes" : "no",
823 		(dclr & BIT(15)) ?  "yes" : "no");
824 }
825 
826 /* Display and decode various NB registers for debug purposes. */
827 static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
828 {
829 	debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
830 
831 	debugf1("  NB two channel DRAM capable: %s\n",
832 		(pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
833 
834 	debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
835 		(pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
836 		(pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
837 
838 	amd64_dump_dramcfg_low(pvt->dclr0, 0);
839 
840 	debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
841 
842 	debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
843 			"offset: 0x%08x\n",
844 			pvt->dhar,
845 			dhar_base(pvt->dhar),
846 			(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
847 						   : f10_dhar_offset(pvt->dhar));
848 
849 	debugf1("  DramHoleValid: %s\n",
850 		(pvt->dhar & DHAR_VALID) ? "yes" : "no");
851 
852 	amd64_debug_display_dimm_sizes(0, pvt);
853 
854 	/* everything below this point is Fam10h and above */
855 	if (boot_cpu_data.x86 == 0xf)
856 		return;
857 
858 	amd64_debug_display_dimm_sizes(1, pvt);
859 
860 	amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
861 
862 	/* Only if NOT ganged does dclr1 have valid info */
863 	if (!dct_ganging_enabled(pvt))
864 		amd64_dump_dramcfg_low(pvt->dclr1, 1);
865 }
866 
867 /* Read in both of DBAM registers */
868 static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
869 {
870 	amd64_read_pci_cfg(pvt->F2, DBAM0, &pvt->dbam0);
871 
872 	if (boot_cpu_data.x86 >= 0x10)
873 		amd64_read_pci_cfg(pvt->F2, DBAM1, &pvt->dbam1);
874 }
875 
876 /*
877  * NOTE: CPU Revision Dependent code: Rev E and Rev F
878  *
879  * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
880  * set the shift factor for the DCSB and DCSM values.
881  *
882  * ->dcs_mask_notused, RevE:
883  *
884  * To find the max InputAddr for the csrow, start with the base address and set
885  * all bits that are "don't care" bits in the test at the start of section
886  * 3.5.4 (p. 84).
887  *
888  * The "don't care" bits are all set bits in the mask and all bits in the gaps
889  * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
890  * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
891  * gaps.
892  *
893  * ->dcs_mask_notused, RevF and later:
894  *
895  * To find the max InputAddr for the csrow, start with the base address and set
896  * all bits that are "don't care" bits in the test at the start of NPT section
897  * 4.5.4 (p. 87).
898  *
899  * The "don't care" bits are all set bits in the mask and all bits in the gaps
900  * between bit ranges [36:27] and [21:13].
901  *
902  * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
903  * which are all bits in the above-mentioned gaps.
904  */
905 static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
906 {
907 
908 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
909 		pvt->dcsb_base		= REV_E_DCSB_BASE_BITS;
910 		pvt->dcsm_mask		= REV_E_DCSM_MASK_BITS;
911 		pvt->dcs_mask_notused	= REV_E_DCS_NOTUSED_BITS;
912 		pvt->dcs_shift		= REV_E_DCS_SHIFT;
913 		pvt->cs_count		= 8;
914 		pvt->num_dcsm		= 8;
915 	} else {
916 		pvt->dcsb_base		= REV_F_F1Xh_DCSB_BASE_BITS;
917 		pvt->dcsm_mask		= REV_F_F1Xh_DCSM_MASK_BITS;
918 		pvt->dcs_mask_notused	= REV_F_F1Xh_DCS_NOTUSED_BITS;
919 		pvt->dcs_shift		= REV_F_F1Xh_DCS_SHIFT;
920 		pvt->cs_count		= 8;
921 		pvt->num_dcsm		= 4;
922 	}
923 }
924 
925 /*
926  * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
927  */
928 static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
929 {
930 	int cs, reg;
931 
932 	amd64_set_dct_base_and_mask(pvt);
933 
934 	for (cs = 0; cs < pvt->cs_count; cs++) {
935 		reg = K8_DCSB0 + (cs * 4);
936 		if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsb0[cs]))
937 			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
938 				cs, pvt->dcsb0[cs], reg);
939 
940 		/* If DCT are NOT ganged, then read in DCT1's base */
941 		if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
942 			reg = F10_DCSB1 + (cs * 4);
943 			if (!amd64_read_pci_cfg(pvt->F2, reg,
944 						&pvt->dcsb1[cs]))
945 				debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
946 					cs, pvt->dcsb1[cs], reg);
947 		} else {
948 			pvt->dcsb1[cs] = 0;
949 		}
950 	}
951 
952 	for (cs = 0; cs < pvt->num_dcsm; cs++) {
953 		reg = K8_DCSM0 + (cs * 4);
954 		if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsm0[cs]))
955 			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
956 				cs, pvt->dcsm0[cs], reg);
957 
958 		/* If DCT are NOT ganged, then read in DCT1's mask */
959 		if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
960 			reg = F10_DCSM1 + (cs * 4);
961 			if (!amd64_read_pci_cfg(pvt->F2, reg,
962 						&pvt->dcsm1[cs]))
963 				debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
964 					cs, pvt->dcsm1[cs], reg);
965 		} else {
966 			pvt->dcsm1[cs] = 0;
967 		}
968 	}
969 }
970 
971 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
972 {
973 	enum mem_type type;
974 
975 	if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
976 		if (pvt->dchr0 & DDR3_MODE)
977 			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
978 		else
979 			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
980 	} else {
981 		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
982 	}
983 
984 	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
985 
986 	return type;
987 }
988 
989 /*
990  * Read the DRAM Configuration Low register. It differs between CG, D & E revs
991  * and the later RevF memory controllers (DDR vs DDR2)
992  *
993  * Return:
994  *      number of memory channels in operation
995  * Pass back:
996  *      contents of the DCL0_LOW register
997  */
998 static int k8_early_channel_count(struct amd64_pvt *pvt)
999 {
1000 	int flag, err = 0;
1001 
1002 	err = amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
1003 	if (err)
1004 		return err;
1005 
1006 	if (pvt->ext_model >= K8_REV_F)
1007 		/* RevF (NPT) and later */
1008 		flag = pvt->dclr0 & F10_WIDTH_128;
1009 	else
1010 		/* RevE and earlier */
1011 		flag = pvt->dclr0 & REVE_WIDTH_128;
1012 
1013 	/* not used */
1014 	pvt->dclr1 = 0;
1015 
1016 	return (flag) ? 2 : 1;
1017 }
1018 
1019 /* extract the ERROR ADDRESS for the K8 CPUs */
1020 static u64 k8_get_error_address(struct mem_ctl_info *mci,
1021 				struct err_regs *info)
1022 {
1023 	return (((u64) (info->nbeah & 0xff)) << 32) +
1024 			(info->nbeal & ~0x03);
1025 }
1026 
1027 /*
1028  * Read the Base and Limit registers for K8 based Memory controllers; extract
1029  * fields from the 'raw' reg into separate data fields
1030  *
1031  * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1032  */
1033 static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1034 {
1035 	u32 low;
1036 	u32 off = dram << 3;	/* 8 bytes between DRAM entries */
1037 
1038 	amd64_read_pci_cfg(pvt->F1, K8_DRAM_BASE_LOW + off, &low);
1039 
1040 	/* Extract parts into separate data entries */
1041 	pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
1042 	pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1043 	pvt->dram_rw_en[dram] = (low & 0x3);
1044 
1045 	amd64_read_pci_cfg(pvt->F1, K8_DRAM_LIMIT_LOW + off, &low);
1046 
1047 	/*
1048 	 * Extract parts into separate data entries. Limit is the HIGHEST memory
1049 	 * location of the region, so lower 24 bits need to be all ones
1050 	 */
1051 	pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
1052 	pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1053 	pvt->dram_DstNode[dram] = (low & 0x7);
1054 }
1055 
1056 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1057 				    struct err_regs *err_info, u64 sys_addr)
1058 {
1059 	struct mem_ctl_info *src_mci;
1060 	int channel, csrow;
1061 	u32 page, offset;
1062 	u16 syndrome;
1063 
1064 	syndrome = extract_syndrome(err_info);
1065 
1066 	/* CHIPKILL enabled */
1067 	if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
1068 		channel = get_channel_from_ecc_syndrome(mci, syndrome);
1069 		if (channel < 0) {
1070 			/*
1071 			 * Syndrome didn't map, so we don't know which of the
1072 			 * 2 DIMMs is in error. So we need to ID 'both' of them
1073 			 * as suspect.
1074 			 */
1075 			amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1076 					   "error reporting race\n", syndrome);
1077 			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1078 			return;
1079 		}
1080 	} else {
1081 		/*
1082 		 * non-chipkill ecc mode
1083 		 *
1084 		 * The k8 documentation is unclear about how to determine the
1085 		 * channel number when using non-chipkill memory.  This method
1086 		 * was obtained from email communication with someone at AMD.
1087 		 * (Wish the email was placed in this comment - norsk)
1088 		 */
1089 		channel = ((sys_addr & BIT(3)) != 0);
1090 	}
1091 
1092 	/*
1093 	 * Find out which node the error address belongs to. This may be
1094 	 * different from the node that detected the error.
1095 	 */
1096 	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1097 	if (!src_mci) {
1098 		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1099 			     (unsigned long)sys_addr);
1100 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1101 		return;
1102 	}
1103 
1104 	/* Now map the sys_addr to a CSROW */
1105 	csrow = sys_addr_to_csrow(src_mci, sys_addr);
1106 	if (csrow < 0) {
1107 		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1108 	} else {
1109 		error_address_to_page_and_offset(sys_addr, &page, &offset);
1110 
1111 		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1112 				  channel, EDAC_MOD_STR);
1113 	}
1114 }
1115 
1116 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1117 {
1118 	int *dbam_map;
1119 
1120 	if (pvt->ext_model >= K8_REV_F)
1121 		dbam_map = ddr2_dbam;
1122 	else if (pvt->ext_model >= K8_REV_D)
1123 		dbam_map = ddr2_dbam_revD;
1124 	else
1125 		dbam_map = ddr2_dbam_revCG;
1126 
1127 	return dbam_map[cs_mode];
1128 }
1129 
1130 /*
1131  * Get the number of DCT channels in use.
1132  *
1133  * Return:
1134  *	number of Memory Channels in operation
1135  * Pass back:
1136  *	contents of the DCL0_LOW register
1137  */
1138 static int f10_early_channel_count(struct amd64_pvt *pvt)
1139 {
1140 	int dbams[] = { DBAM0, DBAM1 };
1141 	int i, j, channels = 0;
1142 	u32 dbam;
1143 
1144 	/* If we are in 128 bit mode, then we are using 2 channels */
1145 	if (pvt->dclr0 & F10_WIDTH_128) {
1146 		channels = 2;
1147 		return channels;
1148 	}
1149 
1150 	/*
1151 	 * Need to check if in unganged mode: In such, there are 2 channels,
1152 	 * but they are not in 128 bit mode and thus the above 'dclr0' status
1153 	 * bit will be OFF.
1154 	 *
1155 	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1156 	 * their CSEnable bit on. If so, then SINGLE DIMM case.
1157 	 */
1158 	debugf0("Data width is not 128 bits - need more decoding\n");
1159 
1160 	/*
1161 	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1162 	 * is more than just one DIMM present in unganged mode. Need to check
1163 	 * both controllers since DIMMs can be placed in either one.
1164 	 */
1165 	for (i = 0; i < ARRAY_SIZE(dbams); i++) {
1166 		if (amd64_read_pci_cfg(pvt->F2, dbams[i], &dbam))
1167 			goto err_reg;
1168 
1169 		for (j = 0; j < 4; j++) {
1170 			if (DBAM_DIMM(j, dbam) > 0) {
1171 				channels++;
1172 				break;
1173 			}
1174 		}
1175 	}
1176 
1177 	if (channels > 2)
1178 		channels = 2;
1179 
1180 	amd64_info("MCT channel count: %d\n", channels);
1181 
1182 	return channels;
1183 
1184 err_reg:
1185 	return -1;
1186 
1187 }
1188 
1189 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1190 {
1191 	int *dbam_map;
1192 
1193 	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1194 		dbam_map = ddr3_dbam;
1195 	else
1196 		dbam_map = ddr2_dbam;
1197 
1198 	return dbam_map[cs_mode];
1199 }
1200 
1201 static u64 f10_get_error_address(struct mem_ctl_info *mci,
1202 			struct err_regs *info)
1203 {
1204 	return (((u64) (info->nbeah & 0xffff)) << 32) +
1205 			(info->nbeal & ~0x01);
1206 }
1207 
1208 /*
1209  * Read the Base and Limit registers for F10 based Memory controllers. Extract
1210  * fields from the 'raw' reg into separate data fields.
1211  *
1212  * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1213  */
1214 static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1215 {
1216 	u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1217 
1218 	low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1219 	high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1220 
1221 	/* read the 'raw' DRAM BASE Address register */
1222 	amd64_read_pci_cfg(pvt->F1, low_offset, &low_base);
1223 	amd64_read_pci_cfg(pvt->F1, high_offset, &high_base);
1224 
1225 	/* Extract parts into separate data entries */
1226 	pvt->dram_rw_en[dram] = (low_base & 0x3);
1227 
1228 	if (pvt->dram_rw_en[dram] == 0)
1229 		return;
1230 
1231 	pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1232 
1233 	pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
1234 			       (((u64)low_base  & 0xFFFF0000) << 8);
1235 
1236 	low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1237 	high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1238 
1239 	/* read the 'raw' LIMIT registers */
1240 	amd64_read_pci_cfg(pvt->F1, low_offset, &low_limit);
1241 	amd64_read_pci_cfg(pvt->F1, high_offset, &high_limit);
1242 
1243 	pvt->dram_DstNode[dram] = (low_limit & 0x7);
1244 	pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1245 
1246 	/*
1247 	 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1248 	 * memory location of the region, so low 24 bits need to be all ones.
1249 	 */
1250 	pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
1251 				(((u64) low_limit & 0xFFFF0000) << 8) |
1252 				0x00FFFFFF;
1253 }
1254 
1255 static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1256 {
1257 
1258 	if (!amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_LOW,
1259 				&pvt->dram_ctl_select_low)) {
1260 		debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1261 			"High range addresses at: 0x%x\n",
1262 			pvt->dram_ctl_select_low,
1263 			dct_sel_baseaddr(pvt));
1264 
1265 		debugf0("  DCT mode: %s, All DCTs on: %s\n",
1266 			(dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1267 			(dct_dram_enabled(pvt) ? "yes"   : "no"));
1268 
1269 		if (!dct_ganging_enabled(pvt))
1270 			debugf0("  Address range split per DCT: %s\n",
1271 				(dct_high_range_enabled(pvt) ? "yes" : "no"));
1272 
1273 		debugf0("  DCT data interleave for ECC: %s, "
1274 			"DRAM cleared since last warm reset: %s\n",
1275 			(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1276 			(dct_memory_cleared(pvt) ? "yes" : "no"));
1277 
1278 		debugf0("  DCT channel interleave: %s, "
1279 			"DCT interleave bits selector: 0x%x\n",
1280 			(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1281 			dct_sel_interleave_addr(pvt));
1282 	}
1283 
1284 	amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_HIGH,
1285 			   &pvt->dram_ctl_select_high);
1286 }
1287 
1288 /*
1289  * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1290  * Interleaving Modes.
1291  */
1292 static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1293 				int hi_range_sel, u32 intlv_en)
1294 {
1295 	u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1296 
1297 	if (dct_ganging_enabled(pvt))
1298 		cs = 0;
1299 	else if (hi_range_sel)
1300 		cs = dct_sel_high;
1301 	else if (dct_interleave_enabled(pvt)) {
1302 		/*
1303 		 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1304 		 */
1305 		if (dct_sel_interleave_addr(pvt) == 0)
1306 			cs = sys_addr >> 6 & 1;
1307 		else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1308 			temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1309 
1310 			if (dct_sel_interleave_addr(pvt) & 1)
1311 				cs = (sys_addr >> 9 & 1) ^ temp;
1312 			else
1313 				cs = (sys_addr >> 6 & 1) ^ temp;
1314 		} else if (intlv_en & 4)
1315 			cs = sys_addr >> 15 & 1;
1316 		else if (intlv_en & 2)
1317 			cs = sys_addr >> 14 & 1;
1318 		else if (intlv_en & 1)
1319 			cs = sys_addr >> 13 & 1;
1320 		else
1321 			cs = sys_addr >> 12 & 1;
1322 	} else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1323 		cs = ~dct_sel_high & 1;
1324 	else
1325 		cs = 0;
1326 
1327 	return cs;
1328 }
1329 
1330 static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1331 {
1332 	if (intlv_en == 1)
1333 		return 1;
1334 	else if (intlv_en == 3)
1335 		return 2;
1336 	else if (intlv_en == 7)
1337 		return 3;
1338 
1339 	return 0;
1340 }
1341 
1342 /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1343 static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
1344 						 u32 dct_sel_base_addr,
1345 						 u64 dct_sel_base_off,
1346 						 u32 hole_valid, u32 hole_off,
1347 						 u64 dram_base)
1348 {
1349 	u64 chan_off;
1350 
1351 	if (hi_range_sel) {
1352 		if (!(dct_sel_base_addr & 0xFFFF0000) &&
1353 		   hole_valid && (sys_addr >= 0x100000000ULL))
1354 			chan_off = hole_off << 16;
1355 		else
1356 			chan_off = dct_sel_base_off;
1357 	} else {
1358 		if (hole_valid && (sys_addr >= 0x100000000ULL))
1359 			chan_off = hole_off << 16;
1360 		else
1361 			chan_off = dram_base & 0xFFFFF8000000ULL;
1362 	}
1363 
1364 	return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1365 			(chan_off & 0x0000FFFFFF800000ULL);
1366 }
1367 
1368 /* Hack for the time being - Can we get this from BIOS?? */
1369 #define	CH0SPARE_RANK	0
1370 #define	CH1SPARE_RANK	1
1371 
1372 /*
1373  * checks if the csrow passed in is marked as SPARED, if so returns the new
1374  * spare row
1375  */
1376 static inline int f10_process_possible_spare(int csrow,
1377 				u32 cs, struct amd64_pvt *pvt)
1378 {
1379 	u32 swap_done;
1380 	u32 bad_dram_cs;
1381 
1382 	/* Depending on channel, isolate respective SPARING info */
1383 	if (cs) {
1384 		swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1385 		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1386 		if (swap_done && (csrow == bad_dram_cs))
1387 			csrow = CH1SPARE_RANK;
1388 	} else {
1389 		swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1390 		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1391 		if (swap_done && (csrow == bad_dram_cs))
1392 			csrow = CH0SPARE_RANK;
1393 	}
1394 	return csrow;
1395 }
1396 
1397 /*
1398  * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1399  * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1400  *
1401  * Return:
1402  *	-EINVAL:  NOT FOUND
1403  *	0..csrow = Chip-Select Row
1404  */
1405 static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1406 {
1407 	struct mem_ctl_info *mci;
1408 	struct amd64_pvt *pvt;
1409 	u32 cs_base, cs_mask;
1410 	int cs_found = -EINVAL;
1411 	int csrow;
1412 
1413 	mci = mcis[nid];
1414 	if (!mci)
1415 		return cs_found;
1416 
1417 	pvt = mci->pvt_info;
1418 
1419 	debugf1("InputAddr=0x%x  channelselect=%d\n", in_addr, cs);
1420 
1421 	for (csrow = 0; csrow < pvt->cs_count; csrow++) {
1422 
1423 		cs_base = amd64_get_dct_base(pvt, cs, csrow);
1424 		if (!(cs_base & K8_DCSB_CS_ENABLE))
1425 			continue;
1426 
1427 		/*
1428 		 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1429 		 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1430 		 * of the actual address.
1431 		 */
1432 		cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1433 
1434 		/*
1435 		 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1436 		 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1437 		 */
1438 		cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1439 
1440 		debugf1("    CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1441 				csrow, cs_base, cs_mask);
1442 
1443 		cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1444 
1445 		debugf1("              Final CSMask=0x%x\n", cs_mask);
1446 		debugf1("    (InputAddr & ~CSMask)=0x%x "
1447 				"(CSBase & ~CSMask)=0x%x\n",
1448 				(in_addr & ~cs_mask), (cs_base & ~cs_mask));
1449 
1450 		if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1451 			cs_found = f10_process_possible_spare(csrow, cs, pvt);
1452 
1453 			debugf1(" MATCH csrow=%d\n", cs_found);
1454 			break;
1455 		}
1456 	}
1457 	return cs_found;
1458 }
1459 
1460 /* For a given @dram_range, check if @sys_addr falls within it. */
1461 static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1462 				  u64 sys_addr, int *nid, int *chan_sel)
1463 {
1464 	int node_id, cs_found = -EINVAL, high_range = 0;
1465 	u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1466 	u32 hole_valid, tmp, dct_sel_base, channel;
1467 	u64 dram_base, chan_addr, dct_sel_base_off;
1468 
1469 	dram_base = pvt->dram_base[dram_range];
1470 	intlv_en = pvt->dram_IntlvEn[dram_range];
1471 
1472 	node_id = pvt->dram_DstNode[dram_range];
1473 	intlv_sel = pvt->dram_IntlvSel[dram_range];
1474 
1475 	debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1476 		dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1477 
1478 	/*
1479 	 * This assumes that one node's DHAR is the same as all the other
1480 	 * nodes' DHAR.
1481 	 */
1482 	hole_off = (pvt->dhar & 0x0000FF80);
1483 	hole_valid = (pvt->dhar & 0x1);
1484 	dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1485 
1486 	debugf1("   HoleOffset=0x%x  HoleValid=0x%x IntlvSel=0x%x\n",
1487 			hole_off, hole_valid, intlv_sel);
1488 
1489 	if (intlv_en &&
1490 	    (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1491 		return -EINVAL;
1492 
1493 	dct_sel_base = dct_sel_baseaddr(pvt);
1494 
1495 	/*
1496 	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1497 	 * select between DCT0 and DCT1.
1498 	 */
1499 	if (dct_high_range_enabled(pvt) &&
1500 	   !dct_ganging_enabled(pvt) &&
1501 	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1502 		high_range = 1;
1503 
1504 	channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1505 
1506 	chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1507 					     dct_sel_base_off, hole_valid,
1508 					     hole_off, dram_base);
1509 
1510 	intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1511 
1512 	/* remove Node ID (in case of memory interleaving) */
1513 	tmp = chan_addr & 0xFC0;
1514 
1515 	chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1516 
1517 	/* remove channel interleave and hash */
1518 	if (dct_interleave_enabled(pvt) &&
1519 	   !dct_high_range_enabled(pvt) &&
1520 	   !dct_ganging_enabled(pvt)) {
1521 		if (dct_sel_interleave_addr(pvt) != 1)
1522 			chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1523 		else {
1524 			tmp = chan_addr & 0xFC0;
1525 			chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1526 					| tmp;
1527 		}
1528 	}
1529 
1530 	debugf1("   (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1531 		chan_addr, (u32)(chan_addr >> 8));
1532 
1533 	cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1534 
1535 	if (cs_found >= 0) {
1536 		*nid = node_id;
1537 		*chan_sel = channel;
1538 	}
1539 	return cs_found;
1540 }
1541 
1542 static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1543 				       int *node, int *chan_sel)
1544 {
1545 	int dram_range, cs_found = -EINVAL;
1546 	u64 dram_base, dram_limit;
1547 
1548 	for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1549 
1550 		if (!pvt->dram_rw_en[dram_range])
1551 			continue;
1552 
1553 		dram_base = pvt->dram_base[dram_range];
1554 		dram_limit = pvt->dram_limit[dram_range];
1555 
1556 		if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1557 
1558 			cs_found = f10_match_to_this_node(pvt, dram_range,
1559 							  sys_addr, node,
1560 							  chan_sel);
1561 			if (cs_found >= 0)
1562 				break;
1563 		}
1564 	}
1565 	return cs_found;
1566 }
1567 
1568 /*
1569  * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1570  * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1571  *
1572  * The @sys_addr is usually an error address received from the hardware
1573  * (MCX_ADDR).
1574  */
1575 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1576 				     struct err_regs *err_info,
1577 				     u64 sys_addr)
1578 {
1579 	struct amd64_pvt *pvt = mci->pvt_info;
1580 	u32 page, offset;
1581 	int nid, csrow, chan = 0;
1582 	u16 syndrome;
1583 
1584 	csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1585 
1586 	if (csrow < 0) {
1587 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1588 		return;
1589 	}
1590 
1591 	error_address_to_page_and_offset(sys_addr, &page, &offset);
1592 
1593 	syndrome = extract_syndrome(err_info);
1594 
1595 	/*
1596 	 * We need the syndromes for channel detection only when we're
1597 	 * ganged. Otherwise @chan should already contain the channel at
1598 	 * this point.
1599 	 */
1600 	if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
1601 		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1602 
1603 	if (chan >= 0)
1604 		edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1605 				  EDAC_MOD_STR);
1606 	else
1607 		/*
1608 		 * Channel unknown, report all channels on this CSROW as failed.
1609 		 */
1610 		for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1611 			edac_mc_handle_ce(mci, page, offset, syndrome,
1612 					  csrow, chan, EDAC_MOD_STR);
1613 }
1614 
1615 /*
1616  * debug routine to display the memory sizes of all logical DIMMs and its
1617  * CSROWs as well
1618  */
1619 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
1620 {
1621 	int dimm, size0, size1, factor = 0;
1622 	u32 dbam;
1623 	u32 *dcsb;
1624 
1625 	if (boot_cpu_data.x86 == 0xf) {
1626 		if (pvt->dclr0 & F10_WIDTH_128)
1627 			factor = 1;
1628 
1629 		/* K8 families < revF not supported yet */
1630 	       if (pvt->ext_model < K8_REV_F)
1631 			return;
1632 	       else
1633 		       WARN_ON(ctrl != 0);
1634 	}
1635 
1636 	dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1637 	dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dcsb1 : pvt->dcsb0;
1638 
1639 	debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1640 
1641 	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1642 
1643 	/* Dump memory sizes for DIMM and its CSROWs */
1644 	for (dimm = 0; dimm < 4; dimm++) {
1645 
1646 		size0 = 0;
1647 		if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1648 			size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1649 
1650 		size1 = 0;
1651 		if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1652 			size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1653 
1654 		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1655 				dimm * 2,     size0 << factor,
1656 				dimm * 2 + 1, size1 << factor);
1657 	}
1658 }
1659 
1660 static struct amd64_family_type amd64_family_types[] = {
1661 	[K8_CPUS] = {
1662 		.ctl_name = "K8",
1663 		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1664 		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1665 		.ops = {
1666 			.early_channel_count	= k8_early_channel_count,
1667 			.get_error_address	= k8_get_error_address,
1668 			.read_dram_base_limit	= k8_read_dram_base_limit,
1669 			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
1670 			.dbam_to_cs		= k8_dbam_to_chip_select,
1671 		}
1672 	},
1673 	[F10_CPUS] = {
1674 		.ctl_name = "F10h",
1675 		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1676 		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1677 		.ops = {
1678 			.early_channel_count	= f10_early_channel_count,
1679 			.get_error_address	= f10_get_error_address,
1680 			.read_dram_base_limit	= f10_read_dram_base_limit,
1681 			.read_dram_ctl_register	= f10_read_dram_ctl_register,
1682 			.map_sysaddr_to_csrow	= f10_map_sysaddr_to_csrow,
1683 			.dbam_to_cs		= f10_dbam_to_chip_select,
1684 		}
1685 	},
1686 };
1687 
1688 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1689 						unsigned int device,
1690 						struct pci_dev *related)
1691 {
1692 	struct pci_dev *dev = NULL;
1693 
1694 	dev = pci_get_device(vendor, device, dev);
1695 	while (dev) {
1696 		if ((dev->bus->number == related->bus->number) &&
1697 		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1698 			break;
1699 		dev = pci_get_device(vendor, device, dev);
1700 	}
1701 
1702 	return dev;
1703 }
1704 
1705 /*
1706  * These are tables of eigenvectors (one per line) which can be used for the
1707  * construction of the syndrome tables. The modified syndrome search algorithm
1708  * uses those to find the symbol in error and thus the DIMM.
1709  *
1710  * Algorithm courtesy of Ross LaFetra from AMD.
1711  */
1712 static u16 x4_vectors[] = {
1713 	0x2f57, 0x1afe, 0x66cc, 0xdd88,
1714 	0x11eb, 0x3396, 0x7f4c, 0xeac8,
1715 	0x0001, 0x0002, 0x0004, 0x0008,
1716 	0x1013, 0x3032, 0x4044, 0x8088,
1717 	0x106b, 0x30d6, 0x70fc, 0xe0a8,
1718 	0x4857, 0xc4fe, 0x13cc, 0x3288,
1719 	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1720 	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1721 	0x15c1, 0x2a42, 0x89ac, 0x4758,
1722 	0x2b03, 0x1602, 0x4f0c, 0xca08,
1723 	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1724 	0x8ba7, 0x465e, 0x244c, 0x1cc8,
1725 	0x2b87, 0x164e, 0x642c, 0xdc18,
1726 	0x40b9, 0x80de, 0x1094, 0x20e8,
1727 	0x27db, 0x1eb6, 0x9dac, 0x7b58,
1728 	0x11c1, 0x2242, 0x84ac, 0x4c58,
1729 	0x1be5, 0x2d7a, 0x5e34, 0xa718,
1730 	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1731 	0x4c97, 0xc87e, 0x11fc, 0x33a8,
1732 	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1733 	0x16b3, 0x3d62, 0x4f34, 0x8518,
1734 	0x1e2f, 0x391a, 0x5cac, 0xf858,
1735 	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1736 	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1737 	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1738 	0x4397, 0xc27e, 0x17fc, 0x3ea8,
1739 	0x1617, 0x3d3e, 0x6464, 0xb8b8,
1740 	0x23ff, 0x12aa, 0xab6c, 0x56d8,
1741 	0x2dfb, 0x1ba6, 0x913c, 0x7328,
1742 	0x185d, 0x2ca6, 0x7914, 0x9e28,
1743 	0x171b, 0x3e36, 0x7d7c, 0xebe8,
1744 	0x4199, 0x82ee, 0x19f4, 0x2e58,
1745 	0x4807, 0xc40e, 0x130c, 0x3208,
1746 	0x1905, 0x2e0a, 0x5804, 0xac08,
1747 	0x213f, 0x132a, 0xadfc, 0x5ba8,
1748 	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1749 };
1750 
1751 static u16 x8_vectors[] = {
1752 	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1753 	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1754 	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1755 	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1756 	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1757 	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1758 	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1759 	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1760 	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1761 	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1762 	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1763 	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1764 	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1765 	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1766 	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1767 	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1768 	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1769 	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1770 	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1771 };
1772 
1773 static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
1774 			   int v_dim)
1775 {
1776 	unsigned int i, err_sym;
1777 
1778 	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1779 		u16 s = syndrome;
1780 		int v_idx =  err_sym * v_dim;
1781 		int v_end = (err_sym + 1) * v_dim;
1782 
1783 		/* walk over all 16 bits of the syndrome */
1784 		for (i = 1; i < (1U << 16); i <<= 1) {
1785 
1786 			/* if bit is set in that eigenvector... */
1787 			if (v_idx < v_end && vectors[v_idx] & i) {
1788 				u16 ev_comp = vectors[v_idx++];
1789 
1790 				/* ... and bit set in the modified syndrome, */
1791 				if (s & i) {
1792 					/* remove it. */
1793 					s ^= ev_comp;
1794 
1795 					if (!s)
1796 						return err_sym;
1797 				}
1798 
1799 			} else if (s & i)
1800 				/* can't get to zero, move to next symbol */
1801 				break;
1802 		}
1803 	}
1804 
1805 	debugf0("syndrome(%x) not found\n", syndrome);
1806 	return -1;
1807 }
1808 
1809 static int map_err_sym_to_channel(int err_sym, int sym_size)
1810 {
1811 	if (sym_size == 4)
1812 		switch (err_sym) {
1813 		case 0x20:
1814 		case 0x21:
1815 			return 0;
1816 			break;
1817 		case 0x22:
1818 		case 0x23:
1819 			return 1;
1820 			break;
1821 		default:
1822 			return err_sym >> 4;
1823 			break;
1824 		}
1825 	/* x8 symbols */
1826 	else
1827 		switch (err_sym) {
1828 		/* imaginary bits not in a DIMM */
1829 		case 0x10:
1830 			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1831 					  err_sym);
1832 			return -1;
1833 			break;
1834 
1835 		case 0x11:
1836 			return 0;
1837 			break;
1838 		case 0x12:
1839 			return 1;
1840 			break;
1841 		default:
1842 			return err_sym >> 3;
1843 			break;
1844 		}
1845 	return -1;
1846 }
1847 
1848 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1849 {
1850 	struct amd64_pvt *pvt = mci->pvt_info;
1851 	int err_sym = -1;
1852 
1853 	if (pvt->syn_type == 8)
1854 		err_sym = decode_syndrome(syndrome, x8_vectors,
1855 					  ARRAY_SIZE(x8_vectors),
1856 					  pvt->syn_type);
1857 	else if (pvt->syn_type == 4)
1858 		err_sym = decode_syndrome(syndrome, x4_vectors,
1859 					  ARRAY_SIZE(x4_vectors),
1860 					  pvt->syn_type);
1861 	else {
1862 		amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
1863 		return err_sym;
1864 	}
1865 
1866 	return map_err_sym_to_channel(err_sym, pvt->syn_type);
1867 }
1868 
1869 /*
1870  * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1871  * ADDRESS and process.
1872  */
1873 static void amd64_handle_ce(struct mem_ctl_info *mci,
1874 			    struct err_regs *info)
1875 {
1876 	struct amd64_pvt *pvt = mci->pvt_info;
1877 	u64 sys_addr;
1878 
1879 	/* Ensure that the Error Address is VALID */
1880 	if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1881 		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1882 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1883 		return;
1884 	}
1885 
1886 	sys_addr = pvt->ops->get_error_address(mci, info);
1887 
1888 	amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1889 
1890 	pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
1891 }
1892 
1893 /* Handle any Un-correctable Errors (UEs) */
1894 static void amd64_handle_ue(struct mem_ctl_info *mci,
1895 			    struct err_regs *info)
1896 {
1897 	struct amd64_pvt *pvt = mci->pvt_info;
1898 	struct mem_ctl_info *log_mci, *src_mci = NULL;
1899 	int csrow;
1900 	u64 sys_addr;
1901 	u32 page, offset;
1902 
1903 	log_mci = mci;
1904 
1905 	if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1906 		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1907 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1908 		return;
1909 	}
1910 
1911 	sys_addr = pvt->ops->get_error_address(mci, info);
1912 
1913 	/*
1914 	 * Find out which node the error address belongs to. This may be
1915 	 * different from the node that detected the error.
1916 	 */
1917 	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1918 	if (!src_mci) {
1919 		amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1920 				  (unsigned long)sys_addr);
1921 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1922 		return;
1923 	}
1924 
1925 	log_mci = src_mci;
1926 
1927 	csrow = sys_addr_to_csrow(log_mci, sys_addr);
1928 	if (csrow < 0) {
1929 		amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1930 				  (unsigned long)sys_addr);
1931 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1932 	} else {
1933 		error_address_to_page_and_offset(sys_addr, &page, &offset);
1934 		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1935 	}
1936 }
1937 
1938 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1939 					    struct err_regs *info)
1940 {
1941 	u16 ec = EC(info->nbsl);
1942 	u8 xec = XEC(info->nbsl, 0x1f);
1943 	int ecc_type = (info->nbsh >> 13) & 0x3;
1944 
1945 	/* Bail early out if this was an 'observed' error */
1946 	if (PP(ec) == K8_NBSL_PP_OBS)
1947 		return;
1948 
1949 	/* Do only ECC errors */
1950 	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1951 		return;
1952 
1953 	if (ecc_type == 2)
1954 		amd64_handle_ce(mci, info);
1955 	else if (ecc_type == 1)
1956 		amd64_handle_ue(mci, info);
1957 }
1958 
1959 void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
1960 {
1961 	struct mem_ctl_info *mci = mcis[node_id];
1962 	struct err_regs regs;
1963 
1964 	regs.nbsl  = (u32) m->status;
1965 	regs.nbsh  = (u32)(m->status >> 32);
1966 	regs.nbeal = (u32) m->addr;
1967 	regs.nbeah = (u32)(m->addr >> 32);
1968 	regs.nbcfg = nbcfg;
1969 
1970 	__amd64_decode_bus_error(mci, &regs);
1971 
1972 	/*
1973 	 * Check the UE bit of the NB status high register, if set generate some
1974 	 * logs. If NOT a GART error, then process the event as a NO-INFO event.
1975 	 * If it was a GART error, skip that process.
1976 	 *
1977 	 * FIXME: this should go somewhere else, if at all.
1978 	 */
1979 	if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
1980 		edac_mc_handle_ue_no_info(mci, "UE bit is set");
1981 
1982 }
1983 
1984 /*
1985  * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1986  * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1987  */
1988 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
1989 {
1990 	/* Reserve the ADDRESS MAP Device */
1991 	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1992 	if (!pvt->F1) {
1993 		amd64_err("error address map device not found: "
1994 			  "vendor %x device 0x%x (broken BIOS?)\n",
1995 			  PCI_VENDOR_ID_AMD, f1_id);
1996 		return -ENODEV;
1997 	}
1998 
1999 	/* Reserve the MISC Device */
2000 	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2001 	if (!pvt->F3) {
2002 		pci_dev_put(pvt->F1);
2003 		pvt->F1 = NULL;
2004 
2005 		amd64_err("error F3 device not found: "
2006 			  "vendor %x device 0x%x (broken BIOS?)\n",
2007 			  PCI_VENDOR_ID_AMD, f3_id);
2008 
2009 		return -ENODEV;
2010 	}
2011 	debugf1("F1: %s\n", pci_name(pvt->F1));
2012 	debugf1("F2: %s\n", pci_name(pvt->F2));
2013 	debugf1("F3: %s\n", pci_name(pvt->F3));
2014 
2015 	return 0;
2016 }
2017 
2018 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2019 {
2020 	pci_dev_put(pvt->F1);
2021 	pci_dev_put(pvt->F3);
2022 }
2023 
2024 /*
2025  * Retrieve the hardware registers of the memory controller (this includes the
2026  * 'Address Map' and 'Misc' device regs)
2027  */
2028 static void read_mc_regs(struct amd64_pvt *pvt)
2029 {
2030 	u64 msr_val;
2031 	u32 tmp;
2032 	int dram;
2033 
2034 	/*
2035 	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2036 	 * those are Read-As-Zero
2037 	 */
2038 	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2039 	debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2040 
2041 	/* check first whether TOP_MEM2 is enabled */
2042 	rdmsrl(MSR_K8_SYSCFG, msr_val);
2043 	if (msr_val & (1U << 21)) {
2044 		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2045 		debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2046 	} else
2047 		debugf0("  TOP_MEM2 disabled.\n");
2048 
2049 	amd64_read_pci_cfg(pvt->F3, K8_NBCAP, &pvt->nbcap);
2050 
2051 	if (pvt->ops->read_dram_ctl_register)
2052 		pvt->ops->read_dram_ctl_register(pvt);
2053 
2054 	for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2055 		/*
2056 		 * Call CPU specific READ function to get the DRAM Base and
2057 		 * Limit values from the DCT.
2058 		 */
2059 		pvt->ops->read_dram_base_limit(pvt, dram);
2060 
2061 		/*
2062 		 * Only print out debug info on rows with both R and W Enabled.
2063 		 * Normal processing, compiler should optimize this whole 'if'
2064 		 * debug output block away.
2065 		 */
2066 		if (pvt->dram_rw_en[dram] != 0) {
2067 			debugf1("  DRAM-BASE[%d]: 0x%016llx "
2068 				"DRAM-LIMIT:  0x%016llx\n",
2069 				dram,
2070 				pvt->dram_base[dram],
2071 				pvt->dram_limit[dram]);
2072 
2073 			debugf1("        IntlvEn=%s %s %s "
2074 				"IntlvSel=%d DstNode=%d\n",
2075 				pvt->dram_IntlvEn[dram] ?
2076 					"Enabled" : "Disabled",
2077 				(pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2078 				(pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2079 				pvt->dram_IntlvSel[dram],
2080 				pvt->dram_DstNode[dram]);
2081 		}
2082 	}
2083 
2084 	amd64_read_dct_base_mask(pvt);
2085 
2086 	amd64_read_pci_cfg(pvt->F1, K8_DHAR, &pvt->dhar);
2087 	amd64_read_dbam_reg(pvt);
2088 
2089 	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2090 
2091 	amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
2092 	amd64_read_pci_cfg(pvt->F2, F10_DCHR_0, &pvt->dchr0);
2093 
2094 	if (boot_cpu_data.x86 >= 0x10) {
2095 		if (!dct_ganging_enabled(pvt)) {
2096 			amd64_read_pci_cfg(pvt->F2, F10_DCLR_1, &pvt->dclr1);
2097 			amd64_read_pci_cfg(pvt->F2, F10_DCHR_1, &pvt->dchr1);
2098 		}
2099 		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2100 	}
2101 
2102 	if (boot_cpu_data.x86 == 0x10 &&
2103 	    boot_cpu_data.x86_model > 7 &&
2104 	    /* F3x180[EccSymbolSize]=1 => x8 symbols */
2105 	    tmp & BIT(25))
2106 		pvt->syn_type = 8;
2107 	else
2108 		pvt->syn_type = 4;
2109 
2110 	amd64_dump_misc_regs(pvt);
2111 }
2112 
2113 /*
2114  * NOTE: CPU Revision Dependent code
2115  *
2116  * Input:
2117  *	@csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
2118  *	k8 private pointer to -->
2119  *			DRAM Bank Address mapping register
2120  *			node_id
2121  *			DCL register where dual_channel_active is
2122  *
2123  * The DBAM register consists of 4 sets of 4 bits each definitions:
2124  *
2125  * Bits:	CSROWs
2126  * 0-3		CSROWs 0 and 1
2127  * 4-7		CSROWs 2 and 3
2128  * 8-11		CSROWs 4 and 5
2129  * 12-15	CSROWs 6 and 7
2130  *
2131  * Values range from: 0 to 15
2132  * The meaning of the values depends on CPU revision and dual-channel state,
2133  * see relevant BKDG more info.
2134  *
2135  * The memory controller provides for total of only 8 CSROWs in its current
2136  * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2137  * single channel or two (2) DIMMs in dual channel mode.
2138  *
2139  * The following code logic collapses the various tables for CSROW based on CPU
2140  * revision.
2141  *
2142  * Returns:
2143  *	The number of PAGE_SIZE pages on the specified CSROW number it
2144  *	encompasses
2145  *
2146  */
2147 static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2148 {
2149 	u32 cs_mode, nr_pages;
2150 
2151 	/*
2152 	 * The math on this doesn't look right on the surface because x/2*4 can
2153 	 * be simplified to x*2 but this expression makes use of the fact that
2154 	 * it is integral math where 1/2=0. This intermediate value becomes the
2155 	 * number of bits to shift the DBAM register to extract the proper CSROW
2156 	 * field.
2157 	 */
2158 	cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2159 
2160 	nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
2161 
2162 	/*
2163 	 * If dual channel then double the memory size of single channel.
2164 	 * Channel count is 1 or 2
2165 	 */
2166 	nr_pages <<= (pvt->channel_count - 1);
2167 
2168 	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2169 	debugf0("    nr_pages= %u  channel-count = %d\n",
2170 		nr_pages, pvt->channel_count);
2171 
2172 	return nr_pages;
2173 }
2174 
2175 /*
2176  * Initialize the array of csrow attribute instances, based on the values
2177  * from pci config hardware registers.
2178  */
2179 static int init_csrows(struct mem_ctl_info *mci)
2180 {
2181 	struct csrow_info *csrow;
2182 	struct amd64_pvt *pvt = mci->pvt_info;
2183 	u64 input_addr_min, input_addr_max, sys_addr;
2184 	u32 val;
2185 	int i, empty = 1;
2186 
2187 	amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &val);
2188 
2189 	pvt->nbcfg = val;
2190 	pvt->ctl_error_info.nbcfg = val;
2191 
2192 	debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2193 		pvt->mc_node_id, val,
2194 		!!(val & K8_NBCFG_CHIPKILL), !!(val & K8_NBCFG_ECC_ENABLE));
2195 
2196 	for (i = 0; i < pvt->cs_count; i++) {
2197 		csrow = &mci->csrows[i];
2198 
2199 		if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2200 			debugf1("----CSROW %d EMPTY for node %d\n", i,
2201 				pvt->mc_node_id);
2202 			continue;
2203 		}
2204 
2205 		debugf1("----CSROW %d VALID for MC node %d\n",
2206 			i, pvt->mc_node_id);
2207 
2208 		empty = 0;
2209 		csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2210 		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2211 		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2212 		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2213 		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2214 		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2215 		csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2216 		/* 8 bytes of resolution */
2217 
2218 		csrow->mtype = amd64_determine_memory_type(pvt, i);
2219 
2220 		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2221 		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2222 			(unsigned long)input_addr_min,
2223 			(unsigned long)input_addr_max);
2224 		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
2225 			(unsigned long)sys_addr, csrow->page_mask);
2226 		debugf1("    nr_pages: %u  first_page: 0x%lx "
2227 			"last_page: 0x%lx\n",
2228 			(unsigned)csrow->nr_pages,
2229 			csrow->first_page, csrow->last_page);
2230 
2231 		/*
2232 		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2233 		 */
2234 		if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2235 			csrow->edac_mode =
2236 			    (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2237 			    EDAC_S4ECD4ED : EDAC_SECDED;
2238 		else
2239 			csrow->edac_mode = EDAC_NONE;
2240 	}
2241 
2242 	return empty;
2243 }
2244 
2245 /* get all cores on this DCT */
2246 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2247 {
2248 	int cpu;
2249 
2250 	for_each_online_cpu(cpu)
2251 		if (amd_get_nb_id(cpu) == nid)
2252 			cpumask_set_cpu(cpu, mask);
2253 }
2254 
2255 /* check MCG_CTL on all the cpus on this node */
2256 static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2257 {
2258 	cpumask_var_t mask;
2259 	int cpu, nbe;
2260 	bool ret = false;
2261 
2262 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2263 		amd64_warn("%s: Error allocating mask\n", __func__);
2264 		return false;
2265 	}
2266 
2267 	get_cpus_on_this_dct_cpumask(mask, nid);
2268 
2269 	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2270 
2271 	for_each_cpu(cpu, mask) {
2272 		struct msr *reg = per_cpu_ptr(msrs, cpu);
2273 		nbe = reg->l & K8_MSR_MCGCTL_NBE;
2274 
2275 		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2276 			cpu, reg->q,
2277 			(nbe ? "enabled" : "disabled"));
2278 
2279 		if (!nbe)
2280 			goto out;
2281 	}
2282 	ret = true;
2283 
2284 out:
2285 	free_cpumask_var(mask);
2286 	return ret;
2287 }
2288 
2289 static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2290 {
2291 	cpumask_var_t cmask;
2292 	int cpu;
2293 
2294 	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2295 		amd64_warn("%s: error allocating mask\n", __func__);
2296 		return false;
2297 	}
2298 
2299 	get_cpus_on_this_dct_cpumask(cmask, nid);
2300 
2301 	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2302 
2303 	for_each_cpu(cpu, cmask) {
2304 
2305 		struct msr *reg = per_cpu_ptr(msrs, cpu);
2306 
2307 		if (on) {
2308 			if (reg->l & K8_MSR_MCGCTL_NBE)
2309 				s->flags.nb_mce_enable = 1;
2310 
2311 			reg->l |= K8_MSR_MCGCTL_NBE;
2312 		} else {
2313 			/*
2314 			 * Turn off NB MCE reporting only when it was off before
2315 			 */
2316 			if (!s->flags.nb_mce_enable)
2317 				reg->l &= ~K8_MSR_MCGCTL_NBE;
2318 		}
2319 	}
2320 	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2321 
2322 	free_cpumask_var(cmask);
2323 
2324 	return 0;
2325 }
2326 
2327 static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2328 				       struct pci_dev *F3)
2329 {
2330 	bool ret = true;
2331 	u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2332 
2333 	if (toggle_ecc_err_reporting(s, nid, ON)) {
2334 		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2335 		return false;
2336 	}
2337 
2338 	amd64_read_pci_cfg(F3, K8_NBCTL, &value);
2339 
2340 	/* turn on UECCEn and CECCEn bits */
2341 	s->old_nbctl   = value & mask;
2342 	s->nbctl_valid = true;
2343 
2344 	value |= mask;
2345 	pci_write_config_dword(F3, K8_NBCTL, value);
2346 
2347 	amd64_read_pci_cfg(F3, K8_NBCFG, &value);
2348 
2349 	debugf0("1: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2350 		nid, value,
2351 		!!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
2352 
2353 	if (!(value & K8_NBCFG_ECC_ENABLE)) {
2354 		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2355 
2356 		s->flags.nb_ecc_prev = 0;
2357 
2358 		/* Attempt to turn on DRAM ECC Enable */
2359 		value |= K8_NBCFG_ECC_ENABLE;
2360 		pci_write_config_dword(F3, K8_NBCFG, value);
2361 
2362 		amd64_read_pci_cfg(F3, K8_NBCFG, &value);
2363 
2364 		if (!(value & K8_NBCFG_ECC_ENABLE)) {
2365 			amd64_warn("Hardware rejected DRAM ECC enable,"
2366 				   "check memory DIMM configuration.\n");
2367 			ret = false;
2368 		} else {
2369 			amd64_info("Hardware accepted DRAM ECC Enable\n");
2370 		}
2371 	} else {
2372 		s->flags.nb_ecc_prev = 1;
2373 	}
2374 
2375 	debugf0("2: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2376 		nid, value,
2377 		!!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
2378 
2379 	return ret;
2380 }
2381 
2382 static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2383 					struct pci_dev *F3)
2384 {
2385 	u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2386 
2387 	if (!s->nbctl_valid)
2388 		return;
2389 
2390 	amd64_read_pci_cfg(F3, K8_NBCTL, &value);
2391 	value &= ~mask;
2392 	value |= s->old_nbctl;
2393 
2394 	pci_write_config_dword(F3, K8_NBCTL, value);
2395 
2396 	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2397 	if (!s->flags.nb_ecc_prev) {
2398 		amd64_read_pci_cfg(F3, K8_NBCFG, &value);
2399 		value &= ~K8_NBCFG_ECC_ENABLE;
2400 		pci_write_config_dword(F3, K8_NBCFG, value);
2401 	}
2402 
2403 	/* restore the NB Enable MCGCTL bit */
2404 	if (toggle_ecc_err_reporting(s, nid, OFF))
2405 		amd64_warn("Error restoring NB MCGCTL settings!\n");
2406 }
2407 
2408 /*
2409  * EDAC requires that the BIOS have ECC enabled before
2410  * taking over the processing of ECC errors. A command line
2411  * option allows to force-enable hardware ECC later in
2412  * enable_ecc_error_reporting().
2413  */
2414 static const char *ecc_msg =
2415 	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2416 	" Either enable ECC checking or force module loading by setting "
2417 	"'ecc_enable_override'.\n"
2418 	" (Note that use of the override may cause unknown side effects.)\n";
2419 
2420 static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2421 {
2422 	u32 value;
2423 	u8 ecc_en = 0;
2424 	bool nb_mce_en = false;
2425 
2426 	amd64_read_pci_cfg(F3, K8_NBCFG, &value);
2427 
2428 	ecc_en = !!(value & K8_NBCFG_ECC_ENABLE);
2429 	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2430 
2431 	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2432 	if (!nb_mce_en)
2433 		amd64_notice("NB MCE bank disabled, set MSR "
2434 			     "0x%08x[4] on node %d to enable.\n",
2435 			     MSR_IA32_MCG_CTL, nid);
2436 
2437 	if (!ecc_en || !nb_mce_en) {
2438 		amd64_notice("%s", ecc_msg);
2439 		return false;
2440 	}
2441 	return true;
2442 }
2443 
2444 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2445 					  ARRAY_SIZE(amd64_inj_attrs) +
2446 					  1];
2447 
2448 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2449 
2450 static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2451 {
2452 	unsigned int i = 0, j = 0;
2453 
2454 	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2455 		sysfs_attrs[i] = amd64_dbg_attrs[i];
2456 
2457 	if (boot_cpu_data.x86 >= 0x10)
2458 		for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2459 			sysfs_attrs[i] = amd64_inj_attrs[j];
2460 
2461 	sysfs_attrs[i] = terminator;
2462 
2463 	mci->mc_driver_sysfs_attributes = sysfs_attrs;
2464 }
2465 
2466 static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
2467 {
2468 	struct amd64_pvt *pvt = mci->pvt_info;
2469 
2470 	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2471 	mci->edac_ctl_cap	= EDAC_FLAG_NONE;
2472 
2473 	if (pvt->nbcap & K8_NBCAP_SECDED)
2474 		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2475 
2476 	if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2477 		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2478 
2479 	mci->edac_cap		= amd64_determine_edac_cap(pvt);
2480 	mci->mod_name		= EDAC_MOD_STR;
2481 	mci->mod_ver		= EDAC_AMD64_VERSION;
2482 	mci->ctl_name		= pvt->ctl_name;
2483 	mci->dev_name		= pci_name(pvt->F2);
2484 	mci->ctl_page_to_phys	= NULL;
2485 
2486 	/* memory scrubber interface */
2487 	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2488 	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2489 }
2490 
2491 /*
2492  * returns a pointer to the family descriptor on success, NULL otherwise.
2493  */
2494 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2495 {
2496 	u8 fam = boot_cpu_data.x86;
2497 	struct amd64_family_type *fam_type = NULL;
2498 
2499 	switch (fam) {
2500 	case 0xf:
2501 		fam_type		= &amd64_family_types[K8_CPUS];
2502 		pvt->ops		= &amd64_family_types[K8_CPUS].ops;
2503 		pvt->ctl_name		= fam_type->ctl_name;
2504 		pvt->min_scrubrate	= K8_MIN_SCRUB_RATE_BITS;
2505 		break;
2506 	case 0x10:
2507 		fam_type		= &amd64_family_types[F10_CPUS];
2508 		pvt->ops		= &amd64_family_types[F10_CPUS].ops;
2509 		pvt->ctl_name		= fam_type->ctl_name;
2510 		pvt->min_scrubrate	= F10_MIN_SCRUB_RATE_BITS;
2511 		break;
2512 
2513 	default:
2514 		amd64_err("Unsupported family!\n");
2515 		return NULL;
2516 	}
2517 
2518 	pvt->ext_model = boot_cpu_data.x86_model >> 4;
2519 
2520 	amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
2521 		     (fam == 0xf ?
2522 				(pvt->ext_model >= K8_REV_F  ? "revF or later "
2523 							     : "revE or earlier ")
2524 				 : ""), pvt->mc_node_id);
2525 	return fam_type;
2526 }
2527 
2528 static int amd64_init_one_instance(struct pci_dev *F2)
2529 {
2530 	struct amd64_pvt *pvt = NULL;
2531 	struct amd64_family_type *fam_type = NULL;
2532 	struct mem_ctl_info *mci = NULL;
2533 	int err = 0, ret;
2534 	u8 nid = get_node_id(F2);
2535 
2536 	ret = -ENOMEM;
2537 	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2538 	if (!pvt)
2539 		goto err_ret;
2540 
2541 	pvt->mc_node_id	= nid;
2542 	pvt->F2 = F2;
2543 
2544 	ret = -EINVAL;
2545 	fam_type = amd64_per_family_init(pvt);
2546 	if (!fam_type)
2547 		goto err_free;
2548 
2549 	ret = -ENODEV;
2550 	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2551 	if (err)
2552 		goto err_free;
2553 
2554 	read_mc_regs(pvt);
2555 
2556 	/*
2557 	 * We need to determine how many memory channels there are. Then use
2558 	 * that information for calculating the size of the dynamic instance
2559 	 * tables in the 'mci' structure.
2560 	 */
2561 	ret = -EINVAL;
2562 	pvt->channel_count = pvt->ops->early_channel_count(pvt);
2563 	if (pvt->channel_count < 0)
2564 		goto err_siblings;
2565 
2566 	ret = -ENOMEM;
2567 	mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, nid);
2568 	if (!mci)
2569 		goto err_siblings;
2570 
2571 	mci->pvt_info = pvt;
2572 	mci->dev = &pvt->F2->dev;
2573 
2574 	setup_mci_misc_attrs(mci);
2575 
2576 	if (init_csrows(mci))
2577 		mci->edac_cap = EDAC_FLAG_NONE;
2578 
2579 	set_mc_sysfs_attrs(mci);
2580 
2581 	ret = -ENODEV;
2582 	if (edac_mc_add_mc(mci)) {
2583 		debugf1("failed edac_mc_add_mc()\n");
2584 		goto err_add_mc;
2585 	}
2586 
2587 	/* register stuff with EDAC MCE */
2588 	if (report_gart_errors)
2589 		amd_report_gart_errors(true);
2590 
2591 	amd_register_ecc_decoder(amd64_decode_bus_error);
2592 
2593 	mcis[nid] = mci;
2594 
2595 	atomic_inc(&drv_instances);
2596 
2597 	return 0;
2598 
2599 err_add_mc:
2600 	edac_mc_free(mci);
2601 
2602 err_siblings:
2603 	free_mc_sibling_devs(pvt);
2604 
2605 err_free:
2606 	kfree(pvt);
2607 
2608 err_ret:
2609 	return ret;
2610 }
2611 
2612 static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2613 					     const struct pci_device_id *mc_type)
2614 {
2615 	u8 nid = get_node_id(pdev);
2616 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2617 	struct ecc_settings *s;
2618 	int ret = 0;
2619 
2620 	ret = pci_enable_device(pdev);
2621 	if (ret < 0) {
2622 		debugf0("ret=%d\n", ret);
2623 		return -EIO;
2624 	}
2625 
2626 	ret = -ENOMEM;
2627 	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2628 	if (!s)
2629 		goto err_out;
2630 
2631 	ecc_stngs[nid] = s;
2632 
2633 	if (!ecc_enabled(F3, nid)) {
2634 		ret = -ENODEV;
2635 
2636 		if (!ecc_enable_override)
2637 			goto err_enable;
2638 
2639 		amd64_warn("Forcing ECC on!\n");
2640 
2641 		if (!enable_ecc_error_reporting(s, nid, F3))
2642 			goto err_enable;
2643 	}
2644 
2645 	ret = amd64_init_one_instance(pdev);
2646 	if (ret < 0) {
2647 		amd64_err("Error probing instance: %d\n", nid);
2648 		restore_ecc_error_reporting(s, nid, F3);
2649 	}
2650 
2651 	return ret;
2652 
2653 err_enable:
2654 	kfree(s);
2655 	ecc_stngs[nid] = NULL;
2656 
2657 err_out:
2658 	return ret;
2659 }
2660 
2661 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2662 {
2663 	struct mem_ctl_info *mci;
2664 	struct amd64_pvt *pvt;
2665 	u8 nid = get_node_id(pdev);
2666 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2667 	struct ecc_settings *s = ecc_stngs[nid];
2668 
2669 	/* Remove from EDAC CORE tracking list */
2670 	mci = edac_mc_del_mc(&pdev->dev);
2671 	if (!mci)
2672 		return;
2673 
2674 	pvt = mci->pvt_info;
2675 
2676 	restore_ecc_error_reporting(s, nid, F3);
2677 
2678 	free_mc_sibling_devs(pvt);
2679 
2680 	/* unregister from EDAC MCE */
2681 	amd_report_gart_errors(false);
2682 	amd_unregister_ecc_decoder(amd64_decode_bus_error);
2683 
2684 	kfree(ecc_stngs[nid]);
2685 	ecc_stngs[nid] = NULL;
2686 
2687 	/* Free the EDAC CORE resources */
2688 	mci->pvt_info = NULL;
2689 	mcis[nid] = NULL;
2690 
2691 	kfree(pvt);
2692 	edac_mc_free(mci);
2693 }
2694 
2695 /*
2696  * This table is part of the interface for loading drivers for PCI devices. The
2697  * PCI core identifies what devices are on a system during boot, and then
2698  * inquiry this table to see if this driver is for a given device found.
2699  */
2700 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2701 	{
2702 		.vendor		= PCI_VENDOR_ID_AMD,
2703 		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2704 		.subvendor	= PCI_ANY_ID,
2705 		.subdevice	= PCI_ANY_ID,
2706 		.class		= 0,
2707 		.class_mask	= 0,
2708 	},
2709 	{
2710 		.vendor		= PCI_VENDOR_ID_AMD,
2711 		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2712 		.subvendor	= PCI_ANY_ID,
2713 		.subdevice	= PCI_ANY_ID,
2714 		.class		= 0,
2715 		.class_mask	= 0,
2716 	},
2717 	{0, }
2718 };
2719 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2720 
2721 static struct pci_driver amd64_pci_driver = {
2722 	.name		= EDAC_MOD_STR,
2723 	.probe		= amd64_probe_one_instance,
2724 	.remove		= __devexit_p(amd64_remove_one_instance),
2725 	.id_table	= amd64_pci_table,
2726 };
2727 
2728 static void setup_pci_device(void)
2729 {
2730 	struct mem_ctl_info *mci;
2731 	struct amd64_pvt *pvt;
2732 
2733 	if (amd64_ctl_pci)
2734 		return;
2735 
2736 	mci = mcis[0];
2737 	if (mci) {
2738 
2739 		pvt = mci->pvt_info;
2740 		amd64_ctl_pci =
2741 			edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2742 
2743 		if (!amd64_ctl_pci) {
2744 			pr_warning("%s(): Unable to create PCI control\n",
2745 				   __func__);
2746 
2747 			pr_warning("%s(): PCI error report via EDAC not set\n",
2748 				   __func__);
2749 			}
2750 	}
2751 }
2752 
2753 static int __init amd64_edac_init(void)
2754 {
2755 	int err = -ENODEV;
2756 
2757 	edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2758 
2759 	opstate_init();
2760 
2761 	if (amd_cache_northbridges() < 0)
2762 		goto err_ret;
2763 
2764 	err = -ENOMEM;
2765 	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2766 	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2767 	if (!(mcis && ecc_stngs))
2768 		goto err_ret;
2769 
2770 	msrs = msrs_alloc();
2771 	if (!msrs)
2772 		goto err_free;
2773 
2774 	err = pci_register_driver(&amd64_pci_driver);
2775 	if (err)
2776 		goto err_pci;
2777 
2778 	err = -ENODEV;
2779 	if (!atomic_read(&drv_instances))
2780 		goto err_no_instances;
2781 
2782 	setup_pci_device();
2783 	return 0;
2784 
2785 err_no_instances:
2786 	pci_unregister_driver(&amd64_pci_driver);
2787 
2788 err_pci:
2789 	msrs_free(msrs);
2790 	msrs = NULL;
2791 
2792 err_free:
2793 	kfree(mcis);
2794 	mcis = NULL;
2795 
2796 	kfree(ecc_stngs);
2797 	ecc_stngs = NULL;
2798 
2799 err_ret:
2800 	return err;
2801 }
2802 
2803 static void __exit amd64_edac_exit(void)
2804 {
2805 	if (amd64_ctl_pci)
2806 		edac_pci_release_generic_ctl(amd64_ctl_pci);
2807 
2808 	pci_unregister_driver(&amd64_pci_driver);
2809 
2810 	kfree(ecc_stngs);
2811 	ecc_stngs = NULL;
2812 
2813 	kfree(mcis);
2814 	mcis = NULL;
2815 
2816 	msrs_free(msrs);
2817 	msrs = NULL;
2818 }
2819 
2820 module_init(amd64_edac_init);
2821 module_exit(amd64_edac_exit);
2822 
2823 MODULE_LICENSE("GPL");
2824 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2825 		"Dave Peterson, Thayne Harbaugh");
2826 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2827 		EDAC_AMD64_VERSION);
2828 
2829 module_param(edac_op_state, int, 0444);
2830 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2831