1 #include "amd64_edac.h" 2 #include <asm/amd_nb.h> 3 4 static struct edac_pci_ctl_info *pci_ctl; 5 6 static int report_gart_errors; 7 module_param(report_gart_errors, int, 0644); 8 9 /* 10 * Set by command line parameter. If BIOS has enabled the ECC, this override is 11 * cleared to prevent re-enabling the hardware by this driver. 12 */ 13 static int ecc_enable_override; 14 module_param(ecc_enable_override, int, 0644); 15 16 static struct msr __percpu *msrs; 17 18 /* 19 * count successfully initialized driver instances for setup_pci_device() 20 */ 21 static atomic_t drv_instances = ATOMIC_INIT(0); 22 23 /* Per-node driver instances */ 24 static struct mem_ctl_info **mcis; 25 static struct ecc_settings **ecc_stngs; 26 27 /* 28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing 29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching- 30 * or higher value'. 31 * 32 *FIXME: Produce a better mapping/linearisation. 33 */ 34 static const struct scrubrate { 35 u32 scrubval; /* bit pattern for scrub rate */ 36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */ 37 } scrubrates[] = { 38 { 0x01, 1600000000UL}, 39 { 0x02, 800000000UL}, 40 { 0x03, 400000000UL}, 41 { 0x04, 200000000UL}, 42 { 0x05, 100000000UL}, 43 { 0x06, 50000000UL}, 44 { 0x07, 25000000UL}, 45 { 0x08, 12284069UL}, 46 { 0x09, 6274509UL}, 47 { 0x0A, 3121951UL}, 48 { 0x0B, 1560975UL}, 49 { 0x0C, 781440UL}, 50 { 0x0D, 390720UL}, 51 { 0x0E, 195300UL}, 52 { 0x0F, 97650UL}, 53 { 0x10, 48854UL}, 54 { 0x11, 24427UL}, 55 { 0x12, 12213UL}, 56 { 0x13, 6101UL}, 57 { 0x14, 3051UL}, 58 { 0x15, 1523UL}, 59 { 0x16, 761UL}, 60 { 0x00, 0UL}, /* scrubbing off */ 61 }; 62 63 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset, 64 u32 *val, const char *func) 65 { 66 int err = 0; 67 68 err = pci_read_config_dword(pdev, offset, val); 69 if (err) 70 amd64_warn("%s: error reading F%dx%03x.\n", 71 func, PCI_FUNC(pdev->devfn), offset); 72 73 return err; 74 } 75 76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset, 77 u32 val, const char *func) 78 { 79 int err = 0; 80 81 err = pci_write_config_dword(pdev, offset, val); 82 if (err) 83 amd64_warn("%s: error writing to F%dx%03x.\n", 84 func, PCI_FUNC(pdev->devfn), offset); 85 86 return err; 87 } 88 89 /* 90 * 91 * Depending on the family, F2 DCT reads need special handling: 92 * 93 * K8: has a single DCT only 94 * 95 * F10h: each DCT has its own set of regs 96 * DCT0 -> F2x040.. 97 * DCT1 -> F2x140.. 98 * 99 * F15h: we select which DCT we access using F1x10C[DctCfgSel] 100 * 101 * F16h: has only 1 DCT 102 */ 103 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, 104 const char *func) 105 { 106 if (addr >= 0x100) 107 return -EINVAL; 108 109 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); 110 } 111 112 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, 113 const char *func) 114 { 115 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); 116 } 117 118 /* 119 * Select DCT to which PCI cfg accesses are routed 120 */ 121 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct) 122 { 123 u32 reg = 0; 124 125 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®); 126 reg &= (pvt->model >= 0x30) ? ~3 : ~1; 127 reg |= dct; 128 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg); 129 } 130 131 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, 132 const char *func) 133 { 134 u8 dct = 0; 135 136 /* For F15 M30h, the second dct is DCT 3, refer to BKDG Section 2.10 */ 137 if (addr >= 0x140 && addr <= 0x1a0) { 138 dct = (pvt->model >= 0x30) ? 3 : 1; 139 addr -= 0x100; 140 } 141 142 f15h_select_dct(pvt, dct); 143 144 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); 145 } 146 147 /* 148 * Memory scrubber control interface. For K8, memory scrubbing is handled by 149 * hardware and can involve L2 cache, dcache as well as the main memory. With 150 * F10, this is extended to L3 cache scrubbing on CPU models sporting that 151 * functionality. 152 * 153 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks 154 * (dram) over to cache lines. This is nasty, so we will use bandwidth in 155 * bytes/sec for the setting. 156 * 157 * Currently, we only do dram scrubbing. If the scrubbing is done in software on 158 * other archs, we might not have access to the caches directly. 159 */ 160 161 /* 162 * scan the scrub rate mapping table for a close or matching bandwidth value to 163 * issue. If requested is too big, then use last maximum value found. 164 */ 165 static int __set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate) 166 { 167 u32 scrubval; 168 int i; 169 170 /* 171 * map the configured rate (new_bw) to a value specific to the AMD64 172 * memory controller and apply to register. Search for the first 173 * bandwidth entry that is greater or equal than the setting requested 174 * and program that. If at last entry, turn off DRAM scrubbing. 175 * 176 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely 177 * by falling back to the last element in scrubrates[]. 178 */ 179 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) { 180 /* 181 * skip scrub rates which aren't recommended 182 * (see F10 BKDG, F3x58) 183 */ 184 if (scrubrates[i].scrubval < min_rate) 185 continue; 186 187 if (scrubrates[i].bandwidth <= new_bw) 188 break; 189 } 190 191 scrubval = scrubrates[i].scrubval; 192 193 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F); 194 195 if (scrubval) 196 return scrubrates[i].bandwidth; 197 198 return 0; 199 } 200 201 static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw) 202 { 203 struct amd64_pvt *pvt = mci->pvt_info; 204 u32 min_scrubrate = 0x5; 205 206 if (pvt->fam == 0xf) 207 min_scrubrate = 0x0; 208 209 /* Erratum #505 */ 210 if (pvt->fam == 0x15 && pvt->model < 0x10) 211 f15h_select_dct(pvt, 0); 212 213 return __set_scrub_rate(pvt->F3, bw, min_scrubrate); 214 } 215 216 static int get_scrub_rate(struct mem_ctl_info *mci) 217 { 218 struct amd64_pvt *pvt = mci->pvt_info; 219 u32 scrubval = 0; 220 int i, retval = -EINVAL; 221 222 /* Erratum #505 */ 223 if (pvt->fam == 0x15 && pvt->model < 0x10) 224 f15h_select_dct(pvt, 0); 225 226 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval); 227 228 scrubval = scrubval & 0x001F; 229 230 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { 231 if (scrubrates[i].scrubval == scrubval) { 232 retval = scrubrates[i].bandwidth; 233 break; 234 } 235 } 236 return retval; 237 } 238 239 /* 240 * returns true if the SysAddr given by sys_addr matches the 241 * DRAM base/limit associated with node_id 242 */ 243 static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid) 244 { 245 u64 addr; 246 247 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be 248 * all ones if the most significant implemented address bit is 1. 249 * Here we discard bits 63-40. See section 3.4.2 of AMD publication 250 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 251 * Application Programming. 252 */ 253 addr = sys_addr & 0x000000ffffffffffull; 254 255 return ((addr >= get_dram_base(pvt, nid)) && 256 (addr <= get_dram_limit(pvt, nid))); 257 } 258 259 /* 260 * Attempt to map a SysAddr to a node. On success, return a pointer to the 261 * mem_ctl_info structure for the node that the SysAddr maps to. 262 * 263 * On failure, return NULL. 264 */ 265 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, 266 u64 sys_addr) 267 { 268 struct amd64_pvt *pvt; 269 u8 node_id; 270 u32 intlv_en, bits; 271 272 /* 273 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section 274 * 3.4.4.2) registers to map the SysAddr to a node ID. 275 */ 276 pvt = mci->pvt_info; 277 278 /* 279 * The value of this field should be the same for all DRAM Base 280 * registers. Therefore we arbitrarily choose to read it from the 281 * register for node 0. 282 */ 283 intlv_en = dram_intlv_en(pvt, 0); 284 285 if (intlv_en == 0) { 286 for (node_id = 0; node_id < DRAM_RANGES; node_id++) { 287 if (base_limit_match(pvt, sys_addr, node_id)) 288 goto found; 289 } 290 goto err_no_match; 291 } 292 293 if (unlikely((intlv_en != 0x01) && 294 (intlv_en != 0x03) && 295 (intlv_en != 0x07))) { 296 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en); 297 return NULL; 298 } 299 300 bits = (((u32) sys_addr) >> 12) & intlv_en; 301 302 for (node_id = 0; ; ) { 303 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits) 304 break; /* intlv_sel field matches */ 305 306 if (++node_id >= DRAM_RANGES) 307 goto err_no_match; 308 } 309 310 /* sanity test for sys_addr */ 311 if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) { 312 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address" 313 "range for node %d with node interleaving enabled.\n", 314 __func__, sys_addr, node_id); 315 return NULL; 316 } 317 318 found: 319 return edac_mc_find((int)node_id); 320 321 err_no_match: 322 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n", 323 (unsigned long)sys_addr); 324 325 return NULL; 326 } 327 328 /* 329 * compute the CS base address of the @csrow on the DRAM controller @dct. 330 * For details see F2x[5C:40] in the processor's BKDG 331 */ 332 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct, 333 u64 *base, u64 *mask) 334 { 335 u64 csbase, csmask, base_bits, mask_bits; 336 u8 addr_shift; 337 338 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) { 339 csbase = pvt->csels[dct].csbases[csrow]; 340 csmask = pvt->csels[dct].csmasks[csrow]; 341 base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9); 342 mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9); 343 addr_shift = 4; 344 345 /* 346 * F16h and F15h, models 30h and later need two addr_shift values: 347 * 8 for high and 6 for low (cf. F16h BKDG). 348 */ 349 } else if (pvt->fam == 0x16 || 350 (pvt->fam == 0x15 && pvt->model >= 0x30)) { 351 csbase = pvt->csels[dct].csbases[csrow]; 352 csmask = pvt->csels[dct].csmasks[csrow >> 1]; 353 354 *base = (csbase & GENMASK_ULL(15, 5)) << 6; 355 *base |= (csbase & GENMASK_ULL(30, 19)) << 8; 356 357 *mask = ~0ULL; 358 /* poke holes for the csmask */ 359 *mask &= ~((GENMASK_ULL(15, 5) << 6) | 360 (GENMASK_ULL(30, 19) << 8)); 361 362 *mask |= (csmask & GENMASK_ULL(15, 5)) << 6; 363 *mask |= (csmask & GENMASK_ULL(30, 19)) << 8; 364 365 return; 366 } else { 367 csbase = pvt->csels[dct].csbases[csrow]; 368 csmask = pvt->csels[dct].csmasks[csrow >> 1]; 369 addr_shift = 8; 370 371 if (pvt->fam == 0x15) 372 base_bits = mask_bits = 373 GENMASK_ULL(30,19) | GENMASK_ULL(13,5); 374 else 375 base_bits = mask_bits = 376 GENMASK_ULL(28,19) | GENMASK_ULL(13,5); 377 } 378 379 *base = (csbase & base_bits) << addr_shift; 380 381 *mask = ~0ULL; 382 /* poke holes for the csmask */ 383 *mask &= ~(mask_bits << addr_shift); 384 /* OR them in */ 385 *mask |= (csmask & mask_bits) << addr_shift; 386 } 387 388 #define for_each_chip_select(i, dct, pvt) \ 389 for (i = 0; i < pvt->csels[dct].b_cnt; i++) 390 391 #define chip_select_base(i, dct, pvt) \ 392 pvt->csels[dct].csbases[i] 393 394 #define for_each_chip_select_mask(i, dct, pvt) \ 395 for (i = 0; i < pvt->csels[dct].m_cnt; i++) 396 397 /* 398 * @input_addr is an InputAddr associated with the node given by mci. Return the 399 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). 400 */ 401 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) 402 { 403 struct amd64_pvt *pvt; 404 int csrow; 405 u64 base, mask; 406 407 pvt = mci->pvt_info; 408 409 for_each_chip_select(csrow, 0, pvt) { 410 if (!csrow_enabled(csrow, 0, pvt)) 411 continue; 412 413 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask); 414 415 mask = ~mask; 416 417 if ((input_addr & mask) == (base & mask)) { 418 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n", 419 (unsigned long)input_addr, csrow, 420 pvt->mc_node_id); 421 422 return csrow; 423 } 424 } 425 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n", 426 (unsigned long)input_addr, pvt->mc_node_id); 427 428 return -1; 429 } 430 431 /* 432 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) 433 * for the node represented by mci. Info is passed back in *hole_base, 434 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if 435 * info is invalid. Info may be invalid for either of the following reasons: 436 * 437 * - The revision of the node is not E or greater. In this case, the DRAM Hole 438 * Address Register does not exist. 439 * 440 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, 441 * indicating that its contents are not valid. 442 * 443 * The values passed back in *hole_base, *hole_offset, and *hole_size are 444 * complete 32-bit values despite the fact that the bitfields in the DHAR 445 * only represent bits 31-24 of the base and offset values. 446 */ 447 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, 448 u64 *hole_offset, u64 *hole_size) 449 { 450 struct amd64_pvt *pvt = mci->pvt_info; 451 452 /* only revE and later have the DRAM Hole Address Register */ 453 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) { 454 edac_dbg(1, " revision %d for node %d does not support DHAR\n", 455 pvt->ext_model, pvt->mc_node_id); 456 return 1; 457 } 458 459 /* valid for Fam10h and above */ 460 if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) { 461 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n"); 462 return 1; 463 } 464 465 if (!dhar_valid(pvt)) { 466 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n", 467 pvt->mc_node_id); 468 return 1; 469 } 470 471 /* This node has Memory Hoisting */ 472 473 /* +------------------+--------------------+--------------------+----- 474 * | memory | DRAM hole | relocated | 475 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from | 476 * | | | DRAM hole | 477 * | | | [0x100000000, | 478 * | | | (0x100000000+ | 479 * | | | (0xffffffff-x))] | 480 * +------------------+--------------------+--------------------+----- 481 * 482 * Above is a diagram of physical memory showing the DRAM hole and the 483 * relocated addresses from the DRAM hole. As shown, the DRAM hole 484 * starts at address x (the base address) and extends through address 485 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the 486 * addresses in the hole so that they start at 0x100000000. 487 */ 488 489 *hole_base = dhar_base(pvt); 490 *hole_size = (1ULL << 32) - *hole_base; 491 492 *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt) 493 : k8_dhar_offset(pvt); 494 495 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", 496 pvt->mc_node_id, (unsigned long)*hole_base, 497 (unsigned long)*hole_offset, (unsigned long)*hole_size); 498 499 return 0; 500 } 501 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info); 502 503 /* 504 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is 505 * assumed that sys_addr maps to the node given by mci. 506 * 507 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section 508 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a 509 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, 510 * then it is also involved in translating a SysAddr to a DramAddr. Sections 511 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. 512 * These parts of the documentation are unclear. I interpret them as follows: 513 * 514 * When node n receives a SysAddr, it processes the SysAddr as follows: 515 * 516 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM 517 * Limit registers for node n. If the SysAddr is not within the range 518 * specified by the base and limit values, then node n ignores the Sysaddr 519 * (since it does not map to node n). Otherwise continue to step 2 below. 520 * 521 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is 522 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within 523 * the range of relocated addresses (starting at 0x100000000) from the DRAM 524 * hole. If not, skip to step 3 below. Else get the value of the 525 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the 526 * offset defined by this value from the SysAddr. 527 * 528 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM 529 * Base register for node n. To obtain the DramAddr, subtract the base 530 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70). 531 */ 532 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) 533 { 534 struct amd64_pvt *pvt = mci->pvt_info; 535 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; 536 int ret; 537 538 dram_base = get_dram_base(pvt, pvt->mc_node_id); 539 540 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, 541 &hole_size); 542 if (!ret) { 543 if ((sys_addr >= (1ULL << 32)) && 544 (sys_addr < ((1ULL << 32) + hole_size))) { 545 /* use DHAR to translate SysAddr to DramAddr */ 546 dram_addr = sys_addr - hole_offset; 547 548 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n", 549 (unsigned long)sys_addr, 550 (unsigned long)dram_addr); 551 552 return dram_addr; 553 } 554 } 555 556 /* 557 * Translate the SysAddr to a DramAddr as shown near the start of 558 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8 559 * only deals with 40-bit values. Therefore we discard bits 63-40 of 560 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we 561 * discard are all 1s. Otherwise the bits we discard are all 0s. See 562 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture 563 * Programmer's Manual Volume 1 Application Programming. 564 */ 565 dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base; 566 567 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n", 568 (unsigned long)sys_addr, (unsigned long)dram_addr); 569 return dram_addr; 570 } 571 572 /* 573 * @intlv_en is the value of the IntlvEn field from a DRAM Base register 574 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used 575 * for node interleaving. 576 */ 577 static int num_node_interleave_bits(unsigned intlv_en) 578 { 579 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; 580 int n; 581 582 BUG_ON(intlv_en > 7); 583 n = intlv_shift_table[intlv_en]; 584 return n; 585 } 586 587 /* Translate the DramAddr given by @dram_addr to an InputAddr. */ 588 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) 589 { 590 struct amd64_pvt *pvt; 591 int intlv_shift; 592 u64 input_addr; 593 594 pvt = mci->pvt_info; 595 596 /* 597 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) 598 * concerning translating a DramAddr to an InputAddr. 599 */ 600 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); 601 input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) + 602 (dram_addr & 0xfff); 603 604 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", 605 intlv_shift, (unsigned long)dram_addr, 606 (unsigned long)input_addr); 607 608 return input_addr; 609 } 610 611 /* 612 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is 613 * assumed that @sys_addr maps to the node given by mci. 614 */ 615 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) 616 { 617 u64 input_addr; 618 619 input_addr = 620 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); 621 622 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n", 623 (unsigned long)sys_addr, (unsigned long)input_addr); 624 625 return input_addr; 626 } 627 628 /* Map the Error address to a PAGE and PAGE OFFSET. */ 629 static inline void error_address_to_page_and_offset(u64 error_address, 630 struct err_info *err) 631 { 632 err->page = (u32) (error_address >> PAGE_SHIFT); 633 err->offset = ((u32) error_address) & ~PAGE_MASK; 634 } 635 636 /* 637 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address 638 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers 639 * of a node that detected an ECC memory error. mci represents the node that 640 * the error address maps to (possibly different from the node that detected 641 * the error). Return the number of the csrow that sys_addr maps to, or -1 on 642 * error. 643 */ 644 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) 645 { 646 int csrow; 647 648 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); 649 650 if (csrow == -1) 651 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for " 652 "address 0x%lx\n", (unsigned long)sys_addr); 653 return csrow; 654 } 655 656 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); 657 658 /* 659 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs 660 * are ECC capable. 661 */ 662 static unsigned long determine_edac_cap(struct amd64_pvt *pvt) 663 { 664 u8 bit; 665 unsigned long edac_cap = EDAC_FLAG_NONE; 666 667 bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F) 668 ? 19 669 : 17; 670 671 if (pvt->dclr0 & BIT(bit)) 672 edac_cap = EDAC_FLAG_SECDED; 673 674 return edac_cap; 675 } 676 677 static void debug_display_dimm_sizes(struct amd64_pvt *, u8); 678 679 static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan) 680 { 681 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr); 682 683 edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n", 684 (dclr & BIT(16)) ? "un" : "", 685 (dclr & BIT(19)) ? "yes" : "no"); 686 687 edac_dbg(1, " PAR/ERR parity: %s\n", 688 (dclr & BIT(8)) ? "enabled" : "disabled"); 689 690 if (pvt->fam == 0x10) 691 edac_dbg(1, " DCT 128bit mode width: %s\n", 692 (dclr & BIT(11)) ? "128b" : "64b"); 693 694 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n", 695 (dclr & BIT(12)) ? "yes" : "no", 696 (dclr & BIT(13)) ? "yes" : "no", 697 (dclr & BIT(14)) ? "yes" : "no", 698 (dclr & BIT(15)) ? "yes" : "no"); 699 } 700 701 /* Display and decode various NB registers for debug purposes. */ 702 static void dump_misc_regs(struct amd64_pvt *pvt) 703 { 704 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap); 705 706 edac_dbg(1, " NB two channel DRAM capable: %s\n", 707 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no"); 708 709 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n", 710 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no", 711 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no"); 712 713 debug_dump_dramcfg_low(pvt, pvt->dclr0, 0); 714 715 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare); 716 717 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n", 718 pvt->dhar, dhar_base(pvt), 719 (pvt->fam == 0xf) ? k8_dhar_offset(pvt) 720 : f10_dhar_offset(pvt)); 721 722 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no"); 723 724 debug_display_dimm_sizes(pvt, 0); 725 726 /* everything below this point is Fam10h and above */ 727 if (pvt->fam == 0xf) 728 return; 729 730 debug_display_dimm_sizes(pvt, 1); 731 732 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4")); 733 734 /* Only if NOT ganged does dclr1 have valid info */ 735 if (!dct_ganging_enabled(pvt)) 736 debug_dump_dramcfg_low(pvt, pvt->dclr1, 1); 737 } 738 739 /* 740 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60] 741 */ 742 static void prep_chip_selects(struct amd64_pvt *pvt) 743 { 744 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) { 745 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; 746 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8; 747 } else if (pvt->fam == 0x15 && pvt->model >= 0x30) { 748 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4; 749 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2; 750 } else { 751 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; 752 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4; 753 } 754 } 755 756 /* 757 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers 758 */ 759 static void read_dct_base_mask(struct amd64_pvt *pvt) 760 { 761 int cs; 762 763 prep_chip_selects(pvt); 764 765 for_each_chip_select(cs, 0, pvt) { 766 int reg0 = DCSB0 + (cs * 4); 767 int reg1 = DCSB1 + (cs * 4); 768 u32 *base0 = &pvt->csels[0].csbases[cs]; 769 u32 *base1 = &pvt->csels[1].csbases[cs]; 770 771 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0)) 772 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n", 773 cs, *base0, reg0); 774 775 if (pvt->fam == 0xf || dct_ganging_enabled(pvt)) 776 continue; 777 778 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1)) 779 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n", 780 cs, *base1, reg1); 781 } 782 783 for_each_chip_select_mask(cs, 0, pvt) { 784 int reg0 = DCSM0 + (cs * 4); 785 int reg1 = DCSM1 + (cs * 4); 786 u32 *mask0 = &pvt->csels[0].csmasks[cs]; 787 u32 *mask1 = &pvt->csels[1].csmasks[cs]; 788 789 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0)) 790 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n", 791 cs, *mask0, reg0); 792 793 if (pvt->fam == 0xf || dct_ganging_enabled(pvt)) 794 continue; 795 796 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1)) 797 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n", 798 cs, *mask1, reg1); 799 } 800 } 801 802 static enum mem_type determine_memory_type(struct amd64_pvt *pvt, int cs) 803 { 804 enum mem_type type; 805 806 /* F15h supports only DDR3 */ 807 if (pvt->fam >= 0x15) 808 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; 809 else if (pvt->fam == 0x10 || pvt->ext_model >= K8_REV_F) { 810 if (pvt->dchr0 & DDR3_MODE) 811 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; 812 else 813 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; 814 } else { 815 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; 816 } 817 818 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]); 819 820 return type; 821 } 822 823 /* Get the number of DCT channels the memory controller is using. */ 824 static int k8_early_channel_count(struct amd64_pvt *pvt) 825 { 826 int flag; 827 828 if (pvt->ext_model >= K8_REV_F) 829 /* RevF (NPT) and later */ 830 flag = pvt->dclr0 & WIDTH_128; 831 else 832 /* RevE and earlier */ 833 flag = pvt->dclr0 & REVE_WIDTH_128; 834 835 /* not used */ 836 pvt->dclr1 = 0; 837 838 return (flag) ? 2 : 1; 839 } 840 841 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */ 842 static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m) 843 { 844 u64 addr; 845 u8 start_bit = 1; 846 u8 end_bit = 47; 847 848 if (pvt->fam == 0xf) { 849 start_bit = 3; 850 end_bit = 39; 851 } 852 853 addr = m->addr & GENMASK_ULL(end_bit, start_bit); 854 855 /* 856 * Erratum 637 workaround 857 */ 858 if (pvt->fam == 0x15) { 859 struct amd64_pvt *pvt; 860 u64 cc6_base, tmp_addr; 861 u32 tmp; 862 u16 mce_nid; 863 u8 intlv_en; 864 865 if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7) 866 return addr; 867 868 mce_nid = amd_get_nb_id(m->extcpu); 869 pvt = mcis[mce_nid]->pvt_info; 870 871 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp); 872 intlv_en = tmp >> 21 & 0x7; 873 874 /* add [47:27] + 3 trailing bits */ 875 cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3; 876 877 /* reverse and add DramIntlvEn */ 878 cc6_base |= intlv_en ^ 0x7; 879 880 /* pin at [47:24] */ 881 cc6_base <<= 24; 882 883 if (!intlv_en) 884 return cc6_base | (addr & GENMASK_ULL(23, 0)); 885 886 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp); 887 888 /* faster log2 */ 889 tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1); 890 891 /* OR DramIntlvSel into bits [14:12] */ 892 tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9; 893 894 /* add remaining [11:0] bits from original MC4_ADDR */ 895 tmp_addr |= addr & GENMASK_ULL(11, 0); 896 897 return cc6_base | tmp_addr; 898 } 899 900 return addr; 901 } 902 903 static struct pci_dev *pci_get_related_function(unsigned int vendor, 904 unsigned int device, 905 struct pci_dev *related) 906 { 907 struct pci_dev *dev = NULL; 908 909 while ((dev = pci_get_device(vendor, device, dev))) { 910 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) && 911 (dev->bus->number == related->bus->number) && 912 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) 913 break; 914 } 915 916 return dev; 917 } 918 919 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range) 920 { 921 struct amd_northbridge *nb; 922 struct pci_dev *f1 = NULL; 923 unsigned int pci_func; 924 int off = range << 3; 925 u32 llim; 926 927 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo); 928 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo); 929 930 if (pvt->fam == 0xf) 931 return; 932 933 if (!dram_rw(pvt, range)) 934 return; 935 936 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi); 937 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi); 938 939 /* F15h: factor in CC6 save area by reading dst node's limit reg */ 940 if (pvt->fam != 0x15) 941 return; 942 943 nb = node_to_amd_nb(dram_dst_node(pvt, range)); 944 if (WARN_ON(!nb)) 945 return; 946 947 pci_func = (pvt->model == 0x30) ? PCI_DEVICE_ID_AMD_15H_M30H_NB_F1 948 : PCI_DEVICE_ID_AMD_15H_NB_F1; 949 950 f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc); 951 if (WARN_ON(!f1)) 952 return; 953 954 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim); 955 956 pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0); 957 958 /* {[39:27],111b} */ 959 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16; 960 961 pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0); 962 963 /* [47:40] */ 964 pvt->ranges[range].lim.hi |= llim >> 13; 965 966 pci_dev_put(f1); 967 } 968 969 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, 970 struct err_info *err) 971 { 972 struct amd64_pvt *pvt = mci->pvt_info; 973 974 error_address_to_page_and_offset(sys_addr, err); 975 976 /* 977 * Find out which node the error address belongs to. This may be 978 * different from the node that detected the error. 979 */ 980 err->src_mci = find_mc_by_sys_addr(mci, sys_addr); 981 if (!err->src_mci) { 982 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n", 983 (unsigned long)sys_addr); 984 err->err_code = ERR_NODE; 985 return; 986 } 987 988 /* Now map the sys_addr to a CSROW */ 989 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr); 990 if (err->csrow < 0) { 991 err->err_code = ERR_CSROW; 992 return; 993 } 994 995 /* CHIPKILL enabled */ 996 if (pvt->nbcfg & NBCFG_CHIPKILL) { 997 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); 998 if (err->channel < 0) { 999 /* 1000 * Syndrome didn't map, so we don't know which of the 1001 * 2 DIMMs is in error. So we need to ID 'both' of them 1002 * as suspect. 1003 */ 1004 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - " 1005 "possible error reporting race\n", 1006 err->syndrome); 1007 err->err_code = ERR_CHANNEL; 1008 return; 1009 } 1010 } else { 1011 /* 1012 * non-chipkill ecc mode 1013 * 1014 * The k8 documentation is unclear about how to determine the 1015 * channel number when using non-chipkill memory. This method 1016 * was obtained from email communication with someone at AMD. 1017 * (Wish the email was placed in this comment - norsk) 1018 */ 1019 err->channel = ((sys_addr & BIT(3)) != 0); 1020 } 1021 } 1022 1023 static int ddr2_cs_size(unsigned i, bool dct_width) 1024 { 1025 unsigned shift = 0; 1026 1027 if (i <= 2) 1028 shift = i; 1029 else if (!(i & 0x1)) 1030 shift = i >> 1; 1031 else 1032 shift = (i + 1) >> 1; 1033 1034 return 128 << (shift + !!dct_width); 1035 } 1036 1037 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1038 unsigned cs_mode) 1039 { 1040 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; 1041 1042 if (pvt->ext_model >= K8_REV_F) { 1043 WARN_ON(cs_mode > 11); 1044 return ddr2_cs_size(cs_mode, dclr & WIDTH_128); 1045 } 1046 else if (pvt->ext_model >= K8_REV_D) { 1047 unsigned diff; 1048 WARN_ON(cs_mode > 10); 1049 1050 /* 1051 * the below calculation, besides trying to win an obfuscated C 1052 * contest, maps cs_mode values to DIMM chip select sizes. The 1053 * mappings are: 1054 * 1055 * cs_mode CS size (mb) 1056 * ======= ============ 1057 * 0 32 1058 * 1 64 1059 * 2 128 1060 * 3 128 1061 * 4 256 1062 * 5 512 1063 * 6 256 1064 * 7 512 1065 * 8 1024 1066 * 9 1024 1067 * 10 2048 1068 * 1069 * Basically, it calculates a value with which to shift the 1070 * smallest CS size of 32MB. 1071 * 1072 * ddr[23]_cs_size have a similar purpose. 1073 */ 1074 diff = cs_mode/3 + (unsigned)(cs_mode > 5); 1075 1076 return 32 << (cs_mode - diff); 1077 } 1078 else { 1079 WARN_ON(cs_mode > 6); 1080 return 32 << cs_mode; 1081 } 1082 } 1083 1084 /* 1085 * Get the number of DCT channels in use. 1086 * 1087 * Return: 1088 * number of Memory Channels in operation 1089 * Pass back: 1090 * contents of the DCL0_LOW register 1091 */ 1092 static int f1x_early_channel_count(struct amd64_pvt *pvt) 1093 { 1094 int i, j, channels = 0; 1095 1096 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */ 1097 if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128)) 1098 return 2; 1099 1100 /* 1101 * Need to check if in unganged mode: In such, there are 2 channels, 1102 * but they are not in 128 bit mode and thus the above 'dclr0' status 1103 * bit will be OFF. 1104 * 1105 * Need to check DCT0[0] and DCT1[0] to see if only one of them has 1106 * their CSEnable bit on. If so, then SINGLE DIMM case. 1107 */ 1108 edac_dbg(0, "Data width is not 128 bits - need more decoding\n"); 1109 1110 /* 1111 * Check DRAM Bank Address Mapping values for each DIMM to see if there 1112 * is more than just one DIMM present in unganged mode. Need to check 1113 * both controllers since DIMMs can be placed in either one. 1114 */ 1115 for (i = 0; i < 2; i++) { 1116 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0); 1117 1118 for (j = 0; j < 4; j++) { 1119 if (DBAM_DIMM(j, dbam) > 0) { 1120 channels++; 1121 break; 1122 } 1123 } 1124 } 1125 1126 if (channels > 2) 1127 channels = 2; 1128 1129 amd64_info("MCT channel count: %d\n", channels); 1130 1131 return channels; 1132 } 1133 1134 static int ddr3_cs_size(unsigned i, bool dct_width) 1135 { 1136 unsigned shift = 0; 1137 int cs_size = 0; 1138 1139 if (i == 0 || i == 3 || i == 4) 1140 cs_size = -1; 1141 else if (i <= 2) 1142 shift = i; 1143 else if (i == 12) 1144 shift = 7; 1145 else if (!(i & 0x1)) 1146 shift = i >> 1; 1147 else 1148 shift = (i + 1) >> 1; 1149 1150 if (cs_size != -1) 1151 cs_size = (128 * (1 << !!dct_width)) << shift; 1152 1153 return cs_size; 1154 } 1155 1156 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1157 unsigned cs_mode) 1158 { 1159 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; 1160 1161 WARN_ON(cs_mode > 11); 1162 1163 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE) 1164 return ddr3_cs_size(cs_mode, dclr & WIDTH_128); 1165 else 1166 return ddr2_cs_size(cs_mode, dclr & WIDTH_128); 1167 } 1168 1169 /* 1170 * F15h supports only 64bit DCT interfaces 1171 */ 1172 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1173 unsigned cs_mode) 1174 { 1175 WARN_ON(cs_mode > 12); 1176 1177 return ddr3_cs_size(cs_mode, false); 1178 } 1179 1180 /* 1181 * F16h and F15h model 30h have only limited cs_modes. 1182 */ 1183 static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1184 unsigned cs_mode) 1185 { 1186 WARN_ON(cs_mode > 12); 1187 1188 if (cs_mode == 6 || cs_mode == 8 || 1189 cs_mode == 9 || cs_mode == 12) 1190 return -1; 1191 else 1192 return ddr3_cs_size(cs_mode, false); 1193 } 1194 1195 static void read_dram_ctl_register(struct amd64_pvt *pvt) 1196 { 1197 1198 if (pvt->fam == 0xf) 1199 return; 1200 1201 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) { 1202 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n", 1203 pvt->dct_sel_lo, dct_sel_baseaddr(pvt)); 1204 1205 edac_dbg(0, " DCTs operate in %s mode\n", 1206 (dct_ganging_enabled(pvt) ? "ganged" : "unganged")); 1207 1208 if (!dct_ganging_enabled(pvt)) 1209 edac_dbg(0, " Address range split per DCT: %s\n", 1210 (dct_high_range_enabled(pvt) ? "yes" : "no")); 1211 1212 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n", 1213 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"), 1214 (dct_memory_cleared(pvt) ? "yes" : "no")); 1215 1216 edac_dbg(0, " channel interleave: %s, " 1217 "interleave bits selector: 0x%x\n", 1218 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"), 1219 dct_sel_interleave_addr(pvt)); 1220 } 1221 1222 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi); 1223 } 1224 1225 /* 1226 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG, 1227 * 2.10.12 Memory Interleaving Modes). 1228 */ 1229 static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, 1230 u8 intlv_en, int num_dcts_intlv, 1231 u32 dct_sel) 1232 { 1233 u8 channel = 0; 1234 u8 select; 1235 1236 if (!(intlv_en)) 1237 return (u8)(dct_sel); 1238 1239 if (num_dcts_intlv == 2) { 1240 select = (sys_addr >> 8) & 0x3; 1241 channel = select ? 0x3 : 0; 1242 } else if (num_dcts_intlv == 4) { 1243 u8 intlv_addr = dct_sel_interleave_addr(pvt); 1244 switch (intlv_addr) { 1245 case 0x4: 1246 channel = (sys_addr >> 8) & 0x3; 1247 break; 1248 case 0x5: 1249 channel = (sys_addr >> 9) & 0x3; 1250 break; 1251 } 1252 } 1253 return channel; 1254 } 1255 1256 /* 1257 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory 1258 * Interleaving Modes. 1259 */ 1260 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, 1261 bool hi_range_sel, u8 intlv_en) 1262 { 1263 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1; 1264 1265 if (dct_ganging_enabled(pvt)) 1266 return 0; 1267 1268 if (hi_range_sel) 1269 return dct_sel_high; 1270 1271 /* 1272 * see F2x110[DctSelIntLvAddr] - channel interleave mode 1273 */ 1274 if (dct_interleave_enabled(pvt)) { 1275 u8 intlv_addr = dct_sel_interleave_addr(pvt); 1276 1277 /* return DCT select function: 0=DCT0, 1=DCT1 */ 1278 if (!intlv_addr) 1279 return sys_addr >> 6 & 1; 1280 1281 if (intlv_addr & 0x2) { 1282 u8 shift = intlv_addr & 0x1 ? 9 : 6; 1283 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2; 1284 1285 return ((sys_addr >> shift) & 1) ^ temp; 1286 } 1287 1288 return (sys_addr >> (12 + hweight8(intlv_en))) & 1; 1289 } 1290 1291 if (dct_high_range_enabled(pvt)) 1292 return ~dct_sel_high & 1; 1293 1294 return 0; 1295 } 1296 1297 /* Convert the sys_addr to the normalized DCT address */ 1298 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range, 1299 u64 sys_addr, bool hi_rng, 1300 u32 dct_sel_base_addr) 1301 { 1302 u64 chan_off; 1303 u64 dram_base = get_dram_base(pvt, range); 1304 u64 hole_off = f10_dhar_offset(pvt); 1305 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16; 1306 1307 if (hi_rng) { 1308 /* 1309 * if 1310 * base address of high range is below 4Gb 1311 * (bits [47:27] at [31:11]) 1312 * DRAM address space on this DCT is hoisted above 4Gb && 1313 * sys_addr > 4Gb 1314 * 1315 * remove hole offset from sys_addr 1316 * else 1317 * remove high range offset from sys_addr 1318 */ 1319 if ((!(dct_sel_base_addr >> 16) || 1320 dct_sel_base_addr < dhar_base(pvt)) && 1321 dhar_valid(pvt) && 1322 (sys_addr >= BIT_64(32))) 1323 chan_off = hole_off; 1324 else 1325 chan_off = dct_sel_base_off; 1326 } else { 1327 /* 1328 * if 1329 * we have a valid hole && 1330 * sys_addr > 4Gb 1331 * 1332 * remove hole 1333 * else 1334 * remove dram base to normalize to DCT address 1335 */ 1336 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32))) 1337 chan_off = hole_off; 1338 else 1339 chan_off = dram_base; 1340 } 1341 1342 return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23)); 1343 } 1344 1345 /* 1346 * checks if the csrow passed in is marked as SPARED, if so returns the new 1347 * spare row 1348 */ 1349 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow) 1350 { 1351 int tmp_cs; 1352 1353 if (online_spare_swap_done(pvt, dct) && 1354 csrow == online_spare_bad_dramcs(pvt, dct)) { 1355 1356 for_each_chip_select(tmp_cs, dct, pvt) { 1357 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) { 1358 csrow = tmp_cs; 1359 break; 1360 } 1361 } 1362 } 1363 return csrow; 1364 } 1365 1366 /* 1367 * Iterate over the DRAM DCT "base" and "mask" registers looking for a 1368 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' 1369 * 1370 * Return: 1371 * -EINVAL: NOT FOUND 1372 * 0..csrow = Chip-Select Row 1373 */ 1374 static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct) 1375 { 1376 struct mem_ctl_info *mci; 1377 struct amd64_pvt *pvt; 1378 u64 cs_base, cs_mask; 1379 int cs_found = -EINVAL; 1380 int csrow; 1381 1382 mci = mcis[nid]; 1383 if (!mci) 1384 return cs_found; 1385 1386 pvt = mci->pvt_info; 1387 1388 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct); 1389 1390 for_each_chip_select(csrow, dct, pvt) { 1391 if (!csrow_enabled(csrow, dct, pvt)) 1392 continue; 1393 1394 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask); 1395 1396 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n", 1397 csrow, cs_base, cs_mask); 1398 1399 cs_mask = ~cs_mask; 1400 1401 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n", 1402 (in_addr & cs_mask), (cs_base & cs_mask)); 1403 1404 if ((in_addr & cs_mask) == (cs_base & cs_mask)) { 1405 if (pvt->fam == 0x15 && pvt->model >= 0x30) { 1406 cs_found = csrow; 1407 break; 1408 } 1409 cs_found = f10_process_possible_spare(pvt, dct, csrow); 1410 1411 edac_dbg(1, " MATCH csrow=%d\n", cs_found); 1412 break; 1413 } 1414 } 1415 return cs_found; 1416 } 1417 1418 /* 1419 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is 1420 * swapped with a region located at the bottom of memory so that the GPU can use 1421 * the interleaved region and thus two channels. 1422 */ 1423 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr) 1424 { 1425 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr; 1426 1427 if (pvt->fam == 0x10) { 1428 /* only revC3 and revE have that feature */ 1429 if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3)) 1430 return sys_addr; 1431 } 1432 1433 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg); 1434 1435 if (!(swap_reg & 0x1)) 1436 return sys_addr; 1437 1438 swap_base = (swap_reg >> 3) & 0x7f; 1439 swap_limit = (swap_reg >> 11) & 0x7f; 1440 rgn_size = (swap_reg >> 20) & 0x7f; 1441 tmp_addr = sys_addr >> 27; 1442 1443 if (!(sys_addr >> 34) && 1444 (((tmp_addr >= swap_base) && 1445 (tmp_addr <= swap_limit)) || 1446 (tmp_addr < rgn_size))) 1447 return sys_addr ^ (u64)swap_base << 27; 1448 1449 return sys_addr; 1450 } 1451 1452 /* For a given @dram_range, check if @sys_addr falls within it. */ 1453 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range, 1454 u64 sys_addr, int *chan_sel) 1455 { 1456 int cs_found = -EINVAL; 1457 u64 chan_addr; 1458 u32 dct_sel_base; 1459 u8 channel; 1460 bool high_range = false; 1461 1462 u8 node_id = dram_dst_node(pvt, range); 1463 u8 intlv_en = dram_intlv_en(pvt, range); 1464 u32 intlv_sel = dram_intlv_sel(pvt, range); 1465 1466 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", 1467 range, sys_addr, get_dram_limit(pvt, range)); 1468 1469 if (dhar_valid(pvt) && 1470 dhar_base(pvt) <= sys_addr && 1471 sys_addr < BIT_64(32)) { 1472 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", 1473 sys_addr); 1474 return -EINVAL; 1475 } 1476 1477 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en))) 1478 return -EINVAL; 1479 1480 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr); 1481 1482 dct_sel_base = dct_sel_baseaddr(pvt); 1483 1484 /* 1485 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to 1486 * select between DCT0 and DCT1. 1487 */ 1488 if (dct_high_range_enabled(pvt) && 1489 !dct_ganging_enabled(pvt) && 1490 ((sys_addr >> 27) >= (dct_sel_base >> 11))) 1491 high_range = true; 1492 1493 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en); 1494 1495 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr, 1496 high_range, dct_sel_base); 1497 1498 /* Remove node interleaving, see F1x120 */ 1499 if (intlv_en) 1500 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) | 1501 (chan_addr & 0xfff); 1502 1503 /* remove channel interleave */ 1504 if (dct_interleave_enabled(pvt) && 1505 !dct_high_range_enabled(pvt) && 1506 !dct_ganging_enabled(pvt)) { 1507 1508 if (dct_sel_interleave_addr(pvt) != 1) { 1509 if (dct_sel_interleave_addr(pvt) == 0x3) 1510 /* hash 9 */ 1511 chan_addr = ((chan_addr >> 10) << 9) | 1512 (chan_addr & 0x1ff); 1513 else 1514 /* A[6] or hash 6 */ 1515 chan_addr = ((chan_addr >> 7) << 6) | 1516 (chan_addr & 0x3f); 1517 } else 1518 /* A[12] */ 1519 chan_addr = ((chan_addr >> 13) << 12) | 1520 (chan_addr & 0xfff); 1521 } 1522 1523 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr); 1524 1525 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel); 1526 1527 if (cs_found >= 0) 1528 *chan_sel = channel; 1529 1530 return cs_found; 1531 } 1532 1533 static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range, 1534 u64 sys_addr, int *chan_sel) 1535 { 1536 int cs_found = -EINVAL; 1537 int num_dcts_intlv = 0; 1538 u64 chan_addr, chan_offset; 1539 u64 dct_base, dct_limit; 1540 u32 dct_cont_base_reg, dct_cont_limit_reg, tmp; 1541 u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en; 1542 1543 u64 dhar_offset = f10_dhar_offset(pvt); 1544 u8 intlv_addr = dct_sel_interleave_addr(pvt); 1545 u8 node_id = dram_dst_node(pvt, range); 1546 u8 intlv_en = dram_intlv_en(pvt, range); 1547 1548 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg); 1549 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg); 1550 1551 dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0)); 1552 dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7); 1553 1554 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", 1555 range, sys_addr, get_dram_limit(pvt, range)); 1556 1557 if (!(get_dram_base(pvt, range) <= sys_addr) && 1558 !(get_dram_limit(pvt, range) >= sys_addr)) 1559 return -EINVAL; 1560 1561 if (dhar_valid(pvt) && 1562 dhar_base(pvt) <= sys_addr && 1563 sys_addr < BIT_64(32)) { 1564 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", 1565 sys_addr); 1566 return -EINVAL; 1567 } 1568 1569 /* Verify sys_addr is within DCT Range. */ 1570 dct_base = (u64) dct_sel_baseaddr(pvt); 1571 dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF; 1572 1573 if (!(dct_cont_base_reg & BIT(0)) && 1574 !(dct_base <= (sys_addr >> 27) && 1575 dct_limit >= (sys_addr >> 27))) 1576 return -EINVAL; 1577 1578 /* Verify number of dct's that participate in channel interleaving. */ 1579 num_dcts_intlv = (int) hweight8(intlv_en); 1580 1581 if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4)) 1582 return -EINVAL; 1583 1584 channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en, 1585 num_dcts_intlv, dct_sel); 1586 1587 /* Verify we stay within the MAX number of channels allowed */ 1588 if (channel > 3) 1589 return -EINVAL; 1590 1591 leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0)); 1592 1593 /* Get normalized DCT addr */ 1594 if (leg_mmio_hole && (sys_addr >= BIT_64(32))) 1595 chan_offset = dhar_offset; 1596 else 1597 chan_offset = dct_base << 27; 1598 1599 chan_addr = sys_addr - chan_offset; 1600 1601 /* remove channel interleave */ 1602 if (num_dcts_intlv == 2) { 1603 if (intlv_addr == 0x4) 1604 chan_addr = ((chan_addr >> 9) << 8) | 1605 (chan_addr & 0xff); 1606 else if (intlv_addr == 0x5) 1607 chan_addr = ((chan_addr >> 10) << 9) | 1608 (chan_addr & 0x1ff); 1609 else 1610 return -EINVAL; 1611 1612 } else if (num_dcts_intlv == 4) { 1613 if (intlv_addr == 0x4) 1614 chan_addr = ((chan_addr >> 10) << 8) | 1615 (chan_addr & 0xff); 1616 else if (intlv_addr == 0x5) 1617 chan_addr = ((chan_addr >> 11) << 9) | 1618 (chan_addr & 0x1ff); 1619 else 1620 return -EINVAL; 1621 } 1622 1623 if (dct_offset_en) { 1624 amd64_read_pci_cfg(pvt->F1, 1625 DRAM_CONT_HIGH_OFF + (int) channel * 4, 1626 &tmp); 1627 chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27; 1628 } 1629 1630 f15h_select_dct(pvt, channel); 1631 1632 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr); 1633 1634 /* 1635 * Find Chip select: 1636 * if channel = 3, then alias it to 1. This is because, in F15 M30h, 1637 * there is support for 4 DCT's, but only 2 are currently functional. 1638 * They are DCT0 and DCT3. But we have read all registers of DCT3 into 1639 * pvt->csels[1]. So we need to use '1' here to get correct info. 1640 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications. 1641 */ 1642 alias_channel = (channel == 3) ? 1 : channel; 1643 1644 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel); 1645 1646 if (cs_found >= 0) 1647 *chan_sel = alias_channel; 1648 1649 return cs_found; 1650 } 1651 1652 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, 1653 u64 sys_addr, 1654 int *chan_sel) 1655 { 1656 int cs_found = -EINVAL; 1657 unsigned range; 1658 1659 for (range = 0; range < DRAM_RANGES; range++) { 1660 if (!dram_rw(pvt, range)) 1661 continue; 1662 1663 if (pvt->fam == 0x15 && pvt->model >= 0x30) 1664 cs_found = f15_m30h_match_to_this_node(pvt, range, 1665 sys_addr, 1666 chan_sel); 1667 1668 else if ((get_dram_base(pvt, range) <= sys_addr) && 1669 (get_dram_limit(pvt, range) >= sys_addr)) { 1670 cs_found = f1x_match_to_this_node(pvt, range, 1671 sys_addr, chan_sel); 1672 if (cs_found >= 0) 1673 break; 1674 } 1675 } 1676 return cs_found; 1677 } 1678 1679 /* 1680 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps 1681 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW). 1682 * 1683 * The @sys_addr is usually an error address received from the hardware 1684 * (MCX_ADDR). 1685 */ 1686 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, 1687 struct err_info *err) 1688 { 1689 struct amd64_pvt *pvt = mci->pvt_info; 1690 1691 error_address_to_page_and_offset(sys_addr, err); 1692 1693 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel); 1694 if (err->csrow < 0) { 1695 err->err_code = ERR_CSROW; 1696 return; 1697 } 1698 1699 /* 1700 * We need the syndromes for channel detection only when we're 1701 * ganged. Otherwise @chan should already contain the channel at 1702 * this point. 1703 */ 1704 if (dct_ganging_enabled(pvt)) 1705 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); 1706 } 1707 1708 /* 1709 * debug routine to display the memory sizes of all logical DIMMs and its 1710 * CSROWs 1711 */ 1712 static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl) 1713 { 1714 int dimm, size0, size1; 1715 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases; 1716 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0; 1717 1718 if (pvt->fam == 0xf) { 1719 /* K8 families < revF not supported yet */ 1720 if (pvt->ext_model < K8_REV_F) 1721 return; 1722 else 1723 WARN_ON(ctrl != 0); 1724 } 1725 1726 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0; 1727 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases 1728 : pvt->csels[0].csbases; 1729 1730 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", 1731 ctrl, dbam); 1732 1733 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl); 1734 1735 /* Dump memory sizes for DIMM and its CSROWs */ 1736 for (dimm = 0; dimm < 4; dimm++) { 1737 1738 size0 = 0; 1739 if (dcsb[dimm*2] & DCSB_CS_ENABLE) 1740 size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 1741 DBAM_DIMM(dimm, dbam)); 1742 1743 size1 = 0; 1744 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE) 1745 size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 1746 DBAM_DIMM(dimm, dbam)); 1747 1748 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", 1749 dimm * 2, size0, 1750 dimm * 2 + 1, size1); 1751 } 1752 } 1753 1754 static struct amd64_family_type family_types[] = { 1755 [K8_CPUS] = { 1756 .ctl_name = "K8", 1757 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP, 1758 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC, 1759 .ops = { 1760 .early_channel_count = k8_early_channel_count, 1761 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow, 1762 .dbam_to_cs = k8_dbam_to_chip_select, 1763 .read_dct_pci_cfg = k8_read_dct_pci_cfg, 1764 } 1765 }, 1766 [F10_CPUS] = { 1767 .ctl_name = "F10h", 1768 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP, 1769 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC, 1770 .ops = { 1771 .early_channel_count = f1x_early_channel_count, 1772 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1773 .dbam_to_cs = f10_dbam_to_chip_select, 1774 .read_dct_pci_cfg = f10_read_dct_pci_cfg, 1775 } 1776 }, 1777 [F15_CPUS] = { 1778 .ctl_name = "F15h", 1779 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1, 1780 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3, 1781 .ops = { 1782 .early_channel_count = f1x_early_channel_count, 1783 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1784 .dbam_to_cs = f15_dbam_to_chip_select, 1785 .read_dct_pci_cfg = f15_read_dct_pci_cfg, 1786 } 1787 }, 1788 [F15_M30H_CPUS] = { 1789 .ctl_name = "F15h_M30h", 1790 .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1, 1791 .f3_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F3, 1792 .ops = { 1793 .early_channel_count = f1x_early_channel_count, 1794 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1795 .dbam_to_cs = f16_dbam_to_chip_select, 1796 .read_dct_pci_cfg = f15_read_dct_pci_cfg, 1797 } 1798 }, 1799 [F16_CPUS] = { 1800 .ctl_name = "F16h", 1801 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1, 1802 .f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3, 1803 .ops = { 1804 .early_channel_count = f1x_early_channel_count, 1805 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1806 .dbam_to_cs = f16_dbam_to_chip_select, 1807 .read_dct_pci_cfg = f10_read_dct_pci_cfg, 1808 } 1809 }, 1810 [F16_M30H_CPUS] = { 1811 .ctl_name = "F16h_M30h", 1812 .f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1, 1813 .f3_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F3, 1814 .ops = { 1815 .early_channel_count = f1x_early_channel_count, 1816 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1817 .dbam_to_cs = f16_dbam_to_chip_select, 1818 .read_dct_pci_cfg = f10_read_dct_pci_cfg, 1819 } 1820 }, 1821 }; 1822 1823 /* 1824 * These are tables of eigenvectors (one per line) which can be used for the 1825 * construction of the syndrome tables. The modified syndrome search algorithm 1826 * uses those to find the symbol in error and thus the DIMM. 1827 * 1828 * Algorithm courtesy of Ross LaFetra from AMD. 1829 */ 1830 static const u16 x4_vectors[] = { 1831 0x2f57, 0x1afe, 0x66cc, 0xdd88, 1832 0x11eb, 0x3396, 0x7f4c, 0xeac8, 1833 0x0001, 0x0002, 0x0004, 0x0008, 1834 0x1013, 0x3032, 0x4044, 0x8088, 1835 0x106b, 0x30d6, 0x70fc, 0xe0a8, 1836 0x4857, 0xc4fe, 0x13cc, 0x3288, 1837 0x1ac5, 0x2f4a, 0x5394, 0xa1e8, 1838 0x1f39, 0x251e, 0xbd6c, 0x6bd8, 1839 0x15c1, 0x2a42, 0x89ac, 0x4758, 1840 0x2b03, 0x1602, 0x4f0c, 0xca08, 1841 0x1f07, 0x3a0e, 0x6b04, 0xbd08, 1842 0x8ba7, 0x465e, 0x244c, 0x1cc8, 1843 0x2b87, 0x164e, 0x642c, 0xdc18, 1844 0x40b9, 0x80de, 0x1094, 0x20e8, 1845 0x27db, 0x1eb6, 0x9dac, 0x7b58, 1846 0x11c1, 0x2242, 0x84ac, 0x4c58, 1847 0x1be5, 0x2d7a, 0x5e34, 0xa718, 1848 0x4b39, 0x8d1e, 0x14b4, 0x28d8, 1849 0x4c97, 0xc87e, 0x11fc, 0x33a8, 1850 0x8e97, 0x497e, 0x2ffc, 0x1aa8, 1851 0x16b3, 0x3d62, 0x4f34, 0x8518, 1852 0x1e2f, 0x391a, 0x5cac, 0xf858, 1853 0x1d9f, 0x3b7a, 0x572c, 0xfe18, 1854 0x15f5, 0x2a5a, 0x5264, 0xa3b8, 1855 0x1dbb, 0x3b66, 0x715c, 0xe3f8, 1856 0x4397, 0xc27e, 0x17fc, 0x3ea8, 1857 0x1617, 0x3d3e, 0x6464, 0xb8b8, 1858 0x23ff, 0x12aa, 0xab6c, 0x56d8, 1859 0x2dfb, 0x1ba6, 0x913c, 0x7328, 1860 0x185d, 0x2ca6, 0x7914, 0x9e28, 1861 0x171b, 0x3e36, 0x7d7c, 0xebe8, 1862 0x4199, 0x82ee, 0x19f4, 0x2e58, 1863 0x4807, 0xc40e, 0x130c, 0x3208, 1864 0x1905, 0x2e0a, 0x5804, 0xac08, 1865 0x213f, 0x132a, 0xadfc, 0x5ba8, 1866 0x19a9, 0x2efe, 0xb5cc, 0x6f88, 1867 }; 1868 1869 static const u16 x8_vectors[] = { 1870 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480, 1871 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80, 1872 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80, 1873 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80, 1874 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780, 1875 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080, 1876 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080, 1877 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080, 1878 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80, 1879 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580, 1880 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880, 1881 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280, 1882 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180, 1883 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580, 1884 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280, 1885 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180, 1886 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080, 1887 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 1888 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000, 1889 }; 1890 1891 static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs, 1892 unsigned v_dim) 1893 { 1894 unsigned int i, err_sym; 1895 1896 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) { 1897 u16 s = syndrome; 1898 unsigned v_idx = err_sym * v_dim; 1899 unsigned v_end = (err_sym + 1) * v_dim; 1900 1901 /* walk over all 16 bits of the syndrome */ 1902 for (i = 1; i < (1U << 16); i <<= 1) { 1903 1904 /* if bit is set in that eigenvector... */ 1905 if (v_idx < v_end && vectors[v_idx] & i) { 1906 u16 ev_comp = vectors[v_idx++]; 1907 1908 /* ... and bit set in the modified syndrome, */ 1909 if (s & i) { 1910 /* remove it. */ 1911 s ^= ev_comp; 1912 1913 if (!s) 1914 return err_sym; 1915 } 1916 1917 } else if (s & i) 1918 /* can't get to zero, move to next symbol */ 1919 break; 1920 } 1921 } 1922 1923 edac_dbg(0, "syndrome(%x) not found\n", syndrome); 1924 return -1; 1925 } 1926 1927 static int map_err_sym_to_channel(int err_sym, int sym_size) 1928 { 1929 if (sym_size == 4) 1930 switch (err_sym) { 1931 case 0x20: 1932 case 0x21: 1933 return 0; 1934 break; 1935 case 0x22: 1936 case 0x23: 1937 return 1; 1938 break; 1939 default: 1940 return err_sym >> 4; 1941 break; 1942 } 1943 /* x8 symbols */ 1944 else 1945 switch (err_sym) { 1946 /* imaginary bits not in a DIMM */ 1947 case 0x10: 1948 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n", 1949 err_sym); 1950 return -1; 1951 break; 1952 1953 case 0x11: 1954 return 0; 1955 break; 1956 case 0x12: 1957 return 1; 1958 break; 1959 default: 1960 return err_sym >> 3; 1961 break; 1962 } 1963 return -1; 1964 } 1965 1966 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome) 1967 { 1968 struct amd64_pvt *pvt = mci->pvt_info; 1969 int err_sym = -1; 1970 1971 if (pvt->ecc_sym_sz == 8) 1972 err_sym = decode_syndrome(syndrome, x8_vectors, 1973 ARRAY_SIZE(x8_vectors), 1974 pvt->ecc_sym_sz); 1975 else if (pvt->ecc_sym_sz == 4) 1976 err_sym = decode_syndrome(syndrome, x4_vectors, 1977 ARRAY_SIZE(x4_vectors), 1978 pvt->ecc_sym_sz); 1979 else { 1980 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz); 1981 return err_sym; 1982 } 1983 1984 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz); 1985 } 1986 1987 static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err, 1988 u8 ecc_type) 1989 { 1990 enum hw_event_mc_err_type err_type; 1991 const char *string; 1992 1993 if (ecc_type == 2) 1994 err_type = HW_EVENT_ERR_CORRECTED; 1995 else if (ecc_type == 1) 1996 err_type = HW_EVENT_ERR_UNCORRECTED; 1997 else { 1998 WARN(1, "Something is rotten in the state of Denmark.\n"); 1999 return; 2000 } 2001 2002 switch (err->err_code) { 2003 case DECODE_OK: 2004 string = ""; 2005 break; 2006 case ERR_NODE: 2007 string = "Failed to map error addr to a node"; 2008 break; 2009 case ERR_CSROW: 2010 string = "Failed to map error addr to a csrow"; 2011 break; 2012 case ERR_CHANNEL: 2013 string = "unknown syndrome - possible error reporting race"; 2014 break; 2015 default: 2016 string = "WTF error"; 2017 break; 2018 } 2019 2020 edac_mc_handle_error(err_type, mci, 1, 2021 err->page, err->offset, err->syndrome, 2022 err->csrow, err->channel, -1, 2023 string, ""); 2024 } 2025 2026 static inline void decode_bus_error(int node_id, struct mce *m) 2027 { 2028 struct mem_ctl_info *mci = mcis[node_id]; 2029 struct amd64_pvt *pvt = mci->pvt_info; 2030 u8 ecc_type = (m->status >> 45) & 0x3; 2031 u8 xec = XEC(m->status, 0x1f); 2032 u16 ec = EC(m->status); 2033 u64 sys_addr; 2034 struct err_info err; 2035 2036 /* Bail out early if this was an 'observed' error */ 2037 if (PP(ec) == NBSL_PP_OBS) 2038 return; 2039 2040 /* Do only ECC errors */ 2041 if (xec && xec != F10_NBSL_EXT_ERR_ECC) 2042 return; 2043 2044 memset(&err, 0, sizeof(err)); 2045 2046 sys_addr = get_error_address(pvt, m); 2047 2048 if (ecc_type == 2) 2049 err.syndrome = extract_syndrome(m->status); 2050 2051 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err); 2052 2053 __log_bus_error(mci, &err, ecc_type); 2054 } 2055 2056 /* 2057 * Use pvt->F2 which contains the F2 CPU PCI device to get the related 2058 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error. 2059 */ 2060 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id) 2061 { 2062 /* Reserve the ADDRESS MAP Device */ 2063 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2); 2064 if (!pvt->F1) { 2065 amd64_err("error address map device not found: " 2066 "vendor %x device 0x%x (broken BIOS?)\n", 2067 PCI_VENDOR_ID_AMD, f1_id); 2068 return -ENODEV; 2069 } 2070 2071 /* Reserve the MISC Device */ 2072 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2); 2073 if (!pvt->F3) { 2074 pci_dev_put(pvt->F1); 2075 pvt->F1 = NULL; 2076 2077 amd64_err("error F3 device not found: " 2078 "vendor %x device 0x%x (broken BIOS?)\n", 2079 PCI_VENDOR_ID_AMD, f3_id); 2080 2081 return -ENODEV; 2082 } 2083 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1)); 2084 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2)); 2085 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3)); 2086 2087 return 0; 2088 } 2089 2090 static void free_mc_sibling_devs(struct amd64_pvt *pvt) 2091 { 2092 pci_dev_put(pvt->F1); 2093 pci_dev_put(pvt->F3); 2094 } 2095 2096 /* 2097 * Retrieve the hardware registers of the memory controller (this includes the 2098 * 'Address Map' and 'Misc' device regs) 2099 */ 2100 static void read_mc_regs(struct amd64_pvt *pvt) 2101 { 2102 unsigned range; 2103 u64 msr_val; 2104 u32 tmp; 2105 2106 /* 2107 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since 2108 * those are Read-As-Zero 2109 */ 2110 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem); 2111 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem); 2112 2113 /* check first whether TOP_MEM2 is enabled */ 2114 rdmsrl(MSR_K8_SYSCFG, msr_val); 2115 if (msr_val & (1U << 21)) { 2116 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2); 2117 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2); 2118 } else 2119 edac_dbg(0, " TOP_MEM2 disabled\n"); 2120 2121 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap); 2122 2123 read_dram_ctl_register(pvt); 2124 2125 for (range = 0; range < DRAM_RANGES; range++) { 2126 u8 rw; 2127 2128 /* read settings for this DRAM range */ 2129 read_dram_base_limit_regs(pvt, range); 2130 2131 rw = dram_rw(pvt, range); 2132 if (!rw) 2133 continue; 2134 2135 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n", 2136 range, 2137 get_dram_base(pvt, range), 2138 get_dram_limit(pvt, range)); 2139 2140 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n", 2141 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled", 2142 (rw & 0x1) ? "R" : "-", 2143 (rw & 0x2) ? "W" : "-", 2144 dram_intlv_sel(pvt, range), 2145 dram_dst_node(pvt, range)); 2146 } 2147 2148 read_dct_base_mask(pvt); 2149 2150 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar); 2151 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0); 2152 2153 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare); 2154 2155 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0); 2156 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0); 2157 2158 if (!dct_ganging_enabled(pvt)) { 2159 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1); 2160 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1); 2161 } 2162 2163 pvt->ecc_sym_sz = 4; 2164 2165 if (pvt->fam >= 0x10) { 2166 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp); 2167 if (pvt->fam != 0x16) 2168 /* F16h has only DCT0 */ 2169 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1); 2170 2171 /* F10h, revD and later can do x8 ECC too */ 2172 if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25)) 2173 pvt->ecc_sym_sz = 8; 2174 } 2175 dump_misc_regs(pvt); 2176 } 2177 2178 /* 2179 * NOTE: CPU Revision Dependent code 2180 * 2181 * Input: 2182 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1) 2183 * k8 private pointer to --> 2184 * DRAM Bank Address mapping register 2185 * node_id 2186 * DCL register where dual_channel_active is 2187 * 2188 * The DBAM register consists of 4 sets of 4 bits each definitions: 2189 * 2190 * Bits: CSROWs 2191 * 0-3 CSROWs 0 and 1 2192 * 4-7 CSROWs 2 and 3 2193 * 8-11 CSROWs 4 and 5 2194 * 12-15 CSROWs 6 and 7 2195 * 2196 * Values range from: 0 to 15 2197 * The meaning of the values depends on CPU revision and dual-channel state, 2198 * see relevant BKDG more info. 2199 * 2200 * The memory controller provides for total of only 8 CSROWs in its current 2201 * architecture. Each "pair" of CSROWs normally represents just one DIMM in 2202 * single channel or two (2) DIMMs in dual channel mode. 2203 * 2204 * The following code logic collapses the various tables for CSROW based on CPU 2205 * revision. 2206 * 2207 * Returns: 2208 * The number of PAGE_SIZE pages on the specified CSROW number it 2209 * encompasses 2210 * 2211 */ 2212 static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr) 2213 { 2214 u32 cs_mode, nr_pages; 2215 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0; 2216 2217 2218 /* 2219 * The math on this doesn't look right on the surface because x/2*4 can 2220 * be simplified to x*2 but this expression makes use of the fact that 2221 * it is integral math where 1/2=0. This intermediate value becomes the 2222 * number of bits to shift the DBAM register to extract the proper CSROW 2223 * field. 2224 */ 2225 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam); 2226 2227 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT); 2228 2229 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n", 2230 csrow_nr, dct, cs_mode); 2231 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages); 2232 2233 return nr_pages; 2234 } 2235 2236 /* 2237 * Initialize the array of csrow attribute instances, based on the values 2238 * from pci config hardware registers. 2239 */ 2240 static int init_csrows(struct mem_ctl_info *mci) 2241 { 2242 struct amd64_pvt *pvt = mci->pvt_info; 2243 struct csrow_info *csrow; 2244 struct dimm_info *dimm; 2245 enum edac_type edac_mode; 2246 enum mem_type mtype; 2247 int i, j, empty = 1; 2248 int nr_pages = 0; 2249 u32 val; 2250 2251 amd64_read_pci_cfg(pvt->F3, NBCFG, &val); 2252 2253 pvt->nbcfg = val; 2254 2255 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n", 2256 pvt->mc_node_id, val, 2257 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE)); 2258 2259 /* 2260 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed. 2261 */ 2262 for_each_chip_select(i, 0, pvt) { 2263 bool row_dct0 = !!csrow_enabled(i, 0, pvt); 2264 bool row_dct1 = false; 2265 2266 if (pvt->fam != 0xf) 2267 row_dct1 = !!csrow_enabled(i, 1, pvt); 2268 2269 if (!row_dct0 && !row_dct1) 2270 continue; 2271 2272 csrow = mci->csrows[i]; 2273 empty = 0; 2274 2275 edac_dbg(1, "MC node: %d, csrow: %d\n", 2276 pvt->mc_node_id, i); 2277 2278 if (row_dct0) { 2279 nr_pages = get_csrow_nr_pages(pvt, 0, i); 2280 csrow->channels[0]->dimm->nr_pages = nr_pages; 2281 } 2282 2283 /* K8 has only one DCT */ 2284 if (pvt->fam != 0xf && row_dct1) { 2285 int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i); 2286 2287 csrow->channels[1]->dimm->nr_pages = row_dct1_pages; 2288 nr_pages += row_dct1_pages; 2289 } 2290 2291 mtype = determine_memory_type(pvt, i); 2292 2293 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages); 2294 2295 /* 2296 * determine whether CHIPKILL or JUST ECC or NO ECC is operating 2297 */ 2298 if (pvt->nbcfg & NBCFG_ECC_ENABLE) 2299 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ? 2300 EDAC_S4ECD4ED : EDAC_SECDED; 2301 else 2302 edac_mode = EDAC_NONE; 2303 2304 for (j = 0; j < pvt->channel_count; j++) { 2305 dimm = csrow->channels[j]->dimm; 2306 dimm->mtype = mtype; 2307 dimm->edac_mode = edac_mode; 2308 } 2309 } 2310 2311 return empty; 2312 } 2313 2314 /* get all cores on this DCT */ 2315 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid) 2316 { 2317 int cpu; 2318 2319 for_each_online_cpu(cpu) 2320 if (amd_get_nb_id(cpu) == nid) 2321 cpumask_set_cpu(cpu, mask); 2322 } 2323 2324 /* check MCG_CTL on all the cpus on this node */ 2325 static bool nb_mce_bank_enabled_on_node(u16 nid) 2326 { 2327 cpumask_var_t mask; 2328 int cpu, nbe; 2329 bool ret = false; 2330 2331 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { 2332 amd64_warn("%s: Error allocating mask\n", __func__); 2333 return false; 2334 } 2335 2336 get_cpus_on_this_dct_cpumask(mask, nid); 2337 2338 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs); 2339 2340 for_each_cpu(cpu, mask) { 2341 struct msr *reg = per_cpu_ptr(msrs, cpu); 2342 nbe = reg->l & MSR_MCGCTL_NBE; 2343 2344 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n", 2345 cpu, reg->q, 2346 (nbe ? "enabled" : "disabled")); 2347 2348 if (!nbe) 2349 goto out; 2350 } 2351 ret = true; 2352 2353 out: 2354 free_cpumask_var(mask); 2355 return ret; 2356 } 2357 2358 static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on) 2359 { 2360 cpumask_var_t cmask; 2361 int cpu; 2362 2363 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) { 2364 amd64_warn("%s: error allocating mask\n", __func__); 2365 return false; 2366 } 2367 2368 get_cpus_on_this_dct_cpumask(cmask, nid); 2369 2370 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 2371 2372 for_each_cpu(cpu, cmask) { 2373 2374 struct msr *reg = per_cpu_ptr(msrs, cpu); 2375 2376 if (on) { 2377 if (reg->l & MSR_MCGCTL_NBE) 2378 s->flags.nb_mce_enable = 1; 2379 2380 reg->l |= MSR_MCGCTL_NBE; 2381 } else { 2382 /* 2383 * Turn off NB MCE reporting only when it was off before 2384 */ 2385 if (!s->flags.nb_mce_enable) 2386 reg->l &= ~MSR_MCGCTL_NBE; 2387 } 2388 } 2389 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 2390 2391 free_cpumask_var(cmask); 2392 2393 return 0; 2394 } 2395 2396 static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid, 2397 struct pci_dev *F3) 2398 { 2399 bool ret = true; 2400 u32 value, mask = 0x3; /* UECC/CECC enable */ 2401 2402 if (toggle_ecc_err_reporting(s, nid, ON)) { 2403 amd64_warn("Error enabling ECC reporting over MCGCTL!\n"); 2404 return false; 2405 } 2406 2407 amd64_read_pci_cfg(F3, NBCTL, &value); 2408 2409 s->old_nbctl = value & mask; 2410 s->nbctl_valid = true; 2411 2412 value |= mask; 2413 amd64_write_pci_cfg(F3, NBCTL, value); 2414 2415 amd64_read_pci_cfg(F3, NBCFG, &value); 2416 2417 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", 2418 nid, value, !!(value & NBCFG_ECC_ENABLE)); 2419 2420 if (!(value & NBCFG_ECC_ENABLE)) { 2421 amd64_warn("DRAM ECC disabled on this node, enabling...\n"); 2422 2423 s->flags.nb_ecc_prev = 0; 2424 2425 /* Attempt to turn on DRAM ECC Enable */ 2426 value |= NBCFG_ECC_ENABLE; 2427 amd64_write_pci_cfg(F3, NBCFG, value); 2428 2429 amd64_read_pci_cfg(F3, NBCFG, &value); 2430 2431 if (!(value & NBCFG_ECC_ENABLE)) { 2432 amd64_warn("Hardware rejected DRAM ECC enable," 2433 "check memory DIMM configuration.\n"); 2434 ret = false; 2435 } else { 2436 amd64_info("Hardware accepted DRAM ECC Enable\n"); 2437 } 2438 } else { 2439 s->flags.nb_ecc_prev = 1; 2440 } 2441 2442 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", 2443 nid, value, !!(value & NBCFG_ECC_ENABLE)); 2444 2445 return ret; 2446 } 2447 2448 static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid, 2449 struct pci_dev *F3) 2450 { 2451 u32 value, mask = 0x3; /* UECC/CECC enable */ 2452 2453 2454 if (!s->nbctl_valid) 2455 return; 2456 2457 amd64_read_pci_cfg(F3, NBCTL, &value); 2458 value &= ~mask; 2459 value |= s->old_nbctl; 2460 2461 amd64_write_pci_cfg(F3, NBCTL, value); 2462 2463 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */ 2464 if (!s->flags.nb_ecc_prev) { 2465 amd64_read_pci_cfg(F3, NBCFG, &value); 2466 value &= ~NBCFG_ECC_ENABLE; 2467 amd64_write_pci_cfg(F3, NBCFG, value); 2468 } 2469 2470 /* restore the NB Enable MCGCTL bit */ 2471 if (toggle_ecc_err_reporting(s, nid, OFF)) 2472 amd64_warn("Error restoring NB MCGCTL settings!\n"); 2473 } 2474 2475 /* 2476 * EDAC requires that the BIOS have ECC enabled before 2477 * taking over the processing of ECC errors. A command line 2478 * option allows to force-enable hardware ECC later in 2479 * enable_ecc_error_reporting(). 2480 */ 2481 static const char *ecc_msg = 2482 "ECC disabled in the BIOS or no ECC capability, module will not load.\n" 2483 " Either enable ECC checking or force module loading by setting " 2484 "'ecc_enable_override'.\n" 2485 " (Note that use of the override may cause unknown side effects.)\n"; 2486 2487 static bool ecc_enabled(struct pci_dev *F3, u16 nid) 2488 { 2489 u32 value; 2490 u8 ecc_en = 0; 2491 bool nb_mce_en = false; 2492 2493 amd64_read_pci_cfg(F3, NBCFG, &value); 2494 2495 ecc_en = !!(value & NBCFG_ECC_ENABLE); 2496 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled")); 2497 2498 nb_mce_en = nb_mce_bank_enabled_on_node(nid); 2499 if (!nb_mce_en) 2500 amd64_notice("NB MCE bank disabled, set MSR " 2501 "0x%08x[4] on node %d to enable.\n", 2502 MSR_IA32_MCG_CTL, nid); 2503 2504 if (!ecc_en || !nb_mce_en) { 2505 amd64_notice("%s", ecc_msg); 2506 return false; 2507 } 2508 return true; 2509 } 2510 2511 static int set_mc_sysfs_attrs(struct mem_ctl_info *mci) 2512 { 2513 struct amd64_pvt *pvt = mci->pvt_info; 2514 int rc; 2515 2516 rc = amd64_create_sysfs_dbg_files(mci); 2517 if (rc < 0) 2518 return rc; 2519 2520 if (pvt->fam >= 0x10) { 2521 rc = amd64_create_sysfs_inject_files(mci); 2522 if (rc < 0) 2523 return rc; 2524 } 2525 2526 return 0; 2527 } 2528 2529 static void del_mc_sysfs_attrs(struct mem_ctl_info *mci) 2530 { 2531 struct amd64_pvt *pvt = mci->pvt_info; 2532 2533 amd64_remove_sysfs_dbg_files(mci); 2534 2535 if (pvt->fam >= 0x10) 2536 amd64_remove_sysfs_inject_files(mci); 2537 } 2538 2539 static void setup_mci_misc_attrs(struct mem_ctl_info *mci, 2540 struct amd64_family_type *fam) 2541 { 2542 struct amd64_pvt *pvt = mci->pvt_info; 2543 2544 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2; 2545 mci->edac_ctl_cap = EDAC_FLAG_NONE; 2546 2547 if (pvt->nbcap & NBCAP_SECDED) 2548 mci->edac_ctl_cap |= EDAC_FLAG_SECDED; 2549 2550 if (pvt->nbcap & NBCAP_CHIPKILL) 2551 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; 2552 2553 mci->edac_cap = determine_edac_cap(pvt); 2554 mci->mod_name = EDAC_MOD_STR; 2555 mci->mod_ver = EDAC_AMD64_VERSION; 2556 mci->ctl_name = fam->ctl_name; 2557 mci->dev_name = pci_name(pvt->F2); 2558 mci->ctl_page_to_phys = NULL; 2559 2560 /* memory scrubber interface */ 2561 mci->set_sdram_scrub_rate = set_scrub_rate; 2562 mci->get_sdram_scrub_rate = get_scrub_rate; 2563 } 2564 2565 /* 2566 * returns a pointer to the family descriptor on success, NULL otherwise. 2567 */ 2568 static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt) 2569 { 2570 struct amd64_family_type *fam_type = NULL; 2571 2572 pvt->ext_model = boot_cpu_data.x86_model >> 4; 2573 pvt->stepping = boot_cpu_data.x86_mask; 2574 pvt->model = boot_cpu_data.x86_model; 2575 pvt->fam = boot_cpu_data.x86; 2576 2577 switch (pvt->fam) { 2578 case 0xf: 2579 fam_type = &family_types[K8_CPUS]; 2580 pvt->ops = &family_types[K8_CPUS].ops; 2581 break; 2582 2583 case 0x10: 2584 fam_type = &family_types[F10_CPUS]; 2585 pvt->ops = &family_types[F10_CPUS].ops; 2586 break; 2587 2588 case 0x15: 2589 if (pvt->model == 0x30) { 2590 fam_type = &family_types[F15_M30H_CPUS]; 2591 pvt->ops = &family_types[F15_M30H_CPUS].ops; 2592 break; 2593 } 2594 2595 fam_type = &family_types[F15_CPUS]; 2596 pvt->ops = &family_types[F15_CPUS].ops; 2597 break; 2598 2599 case 0x16: 2600 if (pvt->model == 0x30) { 2601 fam_type = &family_types[F16_M30H_CPUS]; 2602 pvt->ops = &family_types[F16_M30H_CPUS].ops; 2603 break; 2604 } 2605 fam_type = &family_types[F16_CPUS]; 2606 pvt->ops = &family_types[F16_CPUS].ops; 2607 break; 2608 2609 default: 2610 amd64_err("Unsupported family!\n"); 2611 return NULL; 2612 } 2613 2614 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name, 2615 (pvt->fam == 0xf ? 2616 (pvt->ext_model >= K8_REV_F ? "revF or later " 2617 : "revE or earlier ") 2618 : ""), pvt->mc_node_id); 2619 return fam_type; 2620 } 2621 2622 static int init_one_instance(struct pci_dev *F2) 2623 { 2624 struct amd64_pvt *pvt = NULL; 2625 struct amd64_family_type *fam_type = NULL; 2626 struct mem_ctl_info *mci = NULL; 2627 struct edac_mc_layer layers[2]; 2628 int err = 0, ret; 2629 u16 nid = amd_get_node_id(F2); 2630 2631 ret = -ENOMEM; 2632 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL); 2633 if (!pvt) 2634 goto err_ret; 2635 2636 pvt->mc_node_id = nid; 2637 pvt->F2 = F2; 2638 2639 ret = -EINVAL; 2640 fam_type = per_family_init(pvt); 2641 if (!fam_type) 2642 goto err_free; 2643 2644 ret = -ENODEV; 2645 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id); 2646 if (err) 2647 goto err_free; 2648 2649 read_mc_regs(pvt); 2650 2651 /* 2652 * We need to determine how many memory channels there are. Then use 2653 * that information for calculating the size of the dynamic instance 2654 * tables in the 'mci' structure. 2655 */ 2656 ret = -EINVAL; 2657 pvt->channel_count = pvt->ops->early_channel_count(pvt); 2658 if (pvt->channel_count < 0) 2659 goto err_siblings; 2660 2661 ret = -ENOMEM; 2662 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; 2663 layers[0].size = pvt->csels[0].b_cnt; 2664 layers[0].is_virt_csrow = true; 2665 layers[1].type = EDAC_MC_LAYER_CHANNEL; 2666 2667 /* 2668 * Always allocate two channels since we can have setups with DIMMs on 2669 * only one channel. Also, this simplifies handling later for the price 2670 * of a couple of KBs tops. 2671 */ 2672 layers[1].size = 2; 2673 layers[1].is_virt_csrow = false; 2674 2675 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0); 2676 if (!mci) 2677 goto err_siblings; 2678 2679 mci->pvt_info = pvt; 2680 mci->pdev = &pvt->F2->dev; 2681 2682 setup_mci_misc_attrs(mci, fam_type); 2683 2684 if (init_csrows(mci)) 2685 mci->edac_cap = EDAC_FLAG_NONE; 2686 2687 ret = -ENODEV; 2688 if (edac_mc_add_mc(mci)) { 2689 edac_dbg(1, "failed edac_mc_add_mc()\n"); 2690 goto err_add_mc; 2691 } 2692 if (set_mc_sysfs_attrs(mci)) { 2693 edac_dbg(1, "failed edac_mc_add_mc()\n"); 2694 goto err_add_sysfs; 2695 } 2696 2697 /* register stuff with EDAC MCE */ 2698 if (report_gart_errors) 2699 amd_report_gart_errors(true); 2700 2701 amd_register_ecc_decoder(decode_bus_error); 2702 2703 mcis[nid] = mci; 2704 2705 atomic_inc(&drv_instances); 2706 2707 return 0; 2708 2709 err_add_sysfs: 2710 edac_mc_del_mc(mci->pdev); 2711 err_add_mc: 2712 edac_mc_free(mci); 2713 2714 err_siblings: 2715 free_mc_sibling_devs(pvt); 2716 2717 err_free: 2718 kfree(pvt); 2719 2720 err_ret: 2721 return ret; 2722 } 2723 2724 static int probe_one_instance(struct pci_dev *pdev, 2725 const struct pci_device_id *mc_type) 2726 { 2727 u16 nid = amd_get_node_id(pdev); 2728 struct pci_dev *F3 = node_to_amd_nb(nid)->misc; 2729 struct ecc_settings *s; 2730 int ret = 0; 2731 2732 ret = pci_enable_device(pdev); 2733 if (ret < 0) { 2734 edac_dbg(0, "ret=%d\n", ret); 2735 return -EIO; 2736 } 2737 2738 ret = -ENOMEM; 2739 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL); 2740 if (!s) 2741 goto err_out; 2742 2743 ecc_stngs[nid] = s; 2744 2745 if (!ecc_enabled(F3, nid)) { 2746 ret = -ENODEV; 2747 2748 if (!ecc_enable_override) 2749 goto err_enable; 2750 2751 amd64_warn("Forcing ECC on!\n"); 2752 2753 if (!enable_ecc_error_reporting(s, nid, F3)) 2754 goto err_enable; 2755 } 2756 2757 ret = init_one_instance(pdev); 2758 if (ret < 0) { 2759 amd64_err("Error probing instance: %d\n", nid); 2760 restore_ecc_error_reporting(s, nid, F3); 2761 } 2762 2763 return ret; 2764 2765 err_enable: 2766 kfree(s); 2767 ecc_stngs[nid] = NULL; 2768 2769 err_out: 2770 return ret; 2771 } 2772 2773 static void remove_one_instance(struct pci_dev *pdev) 2774 { 2775 struct mem_ctl_info *mci; 2776 struct amd64_pvt *pvt; 2777 u16 nid = amd_get_node_id(pdev); 2778 struct pci_dev *F3 = node_to_amd_nb(nid)->misc; 2779 struct ecc_settings *s = ecc_stngs[nid]; 2780 2781 mci = find_mci_by_dev(&pdev->dev); 2782 WARN_ON(!mci); 2783 2784 del_mc_sysfs_attrs(mci); 2785 /* Remove from EDAC CORE tracking list */ 2786 mci = edac_mc_del_mc(&pdev->dev); 2787 if (!mci) 2788 return; 2789 2790 pvt = mci->pvt_info; 2791 2792 restore_ecc_error_reporting(s, nid, F3); 2793 2794 free_mc_sibling_devs(pvt); 2795 2796 /* unregister from EDAC MCE */ 2797 amd_report_gart_errors(false); 2798 amd_unregister_ecc_decoder(decode_bus_error); 2799 2800 kfree(ecc_stngs[nid]); 2801 ecc_stngs[nid] = NULL; 2802 2803 /* Free the EDAC CORE resources */ 2804 mci->pvt_info = NULL; 2805 mcis[nid] = NULL; 2806 2807 kfree(pvt); 2808 edac_mc_free(mci); 2809 } 2810 2811 /* 2812 * This table is part of the interface for loading drivers for PCI devices. The 2813 * PCI core identifies what devices are on a system during boot, and then 2814 * inquiry this table to see if this driver is for a given device found. 2815 */ 2816 static const struct pci_device_id amd64_pci_table[] = { 2817 { 2818 .vendor = PCI_VENDOR_ID_AMD, 2819 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL, 2820 .subvendor = PCI_ANY_ID, 2821 .subdevice = PCI_ANY_ID, 2822 .class = 0, 2823 .class_mask = 0, 2824 }, 2825 { 2826 .vendor = PCI_VENDOR_ID_AMD, 2827 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM, 2828 .subvendor = PCI_ANY_ID, 2829 .subdevice = PCI_ANY_ID, 2830 .class = 0, 2831 .class_mask = 0, 2832 }, 2833 { 2834 .vendor = PCI_VENDOR_ID_AMD, 2835 .device = PCI_DEVICE_ID_AMD_15H_NB_F2, 2836 .subvendor = PCI_ANY_ID, 2837 .subdevice = PCI_ANY_ID, 2838 .class = 0, 2839 .class_mask = 0, 2840 }, 2841 { 2842 .vendor = PCI_VENDOR_ID_AMD, 2843 .device = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2, 2844 .subvendor = PCI_ANY_ID, 2845 .subdevice = PCI_ANY_ID, 2846 .class = 0, 2847 .class_mask = 0, 2848 }, 2849 { 2850 .vendor = PCI_VENDOR_ID_AMD, 2851 .device = PCI_DEVICE_ID_AMD_16H_NB_F2, 2852 .subvendor = PCI_ANY_ID, 2853 .subdevice = PCI_ANY_ID, 2854 .class = 0, 2855 .class_mask = 0, 2856 }, 2857 { 2858 .vendor = PCI_VENDOR_ID_AMD, 2859 .device = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2, 2860 .subvendor = PCI_ANY_ID, 2861 .subdevice = PCI_ANY_ID, 2862 .class = 0, 2863 .class_mask = 0, 2864 }, 2865 2866 {0, } 2867 }; 2868 MODULE_DEVICE_TABLE(pci, amd64_pci_table); 2869 2870 static struct pci_driver amd64_pci_driver = { 2871 .name = EDAC_MOD_STR, 2872 .probe = probe_one_instance, 2873 .remove = remove_one_instance, 2874 .id_table = amd64_pci_table, 2875 }; 2876 2877 static void setup_pci_device(void) 2878 { 2879 struct mem_ctl_info *mci; 2880 struct amd64_pvt *pvt; 2881 2882 if (pci_ctl) 2883 return; 2884 2885 mci = mcis[0]; 2886 if (!mci) 2887 return; 2888 2889 pvt = mci->pvt_info; 2890 pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR); 2891 if (!pci_ctl) { 2892 pr_warn("%s(): Unable to create PCI control\n", __func__); 2893 pr_warn("%s(): PCI error report via EDAC not set\n", __func__); 2894 } 2895 } 2896 2897 static int __init amd64_edac_init(void) 2898 { 2899 int err = -ENODEV; 2900 2901 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION); 2902 2903 opstate_init(); 2904 2905 if (amd_cache_northbridges() < 0) 2906 goto err_ret; 2907 2908 err = -ENOMEM; 2909 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL); 2910 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL); 2911 if (!(mcis && ecc_stngs)) 2912 goto err_free; 2913 2914 msrs = msrs_alloc(); 2915 if (!msrs) 2916 goto err_free; 2917 2918 err = pci_register_driver(&amd64_pci_driver); 2919 if (err) 2920 goto err_pci; 2921 2922 err = -ENODEV; 2923 if (!atomic_read(&drv_instances)) 2924 goto err_no_instances; 2925 2926 setup_pci_device(); 2927 return 0; 2928 2929 err_no_instances: 2930 pci_unregister_driver(&amd64_pci_driver); 2931 2932 err_pci: 2933 msrs_free(msrs); 2934 msrs = NULL; 2935 2936 err_free: 2937 kfree(mcis); 2938 mcis = NULL; 2939 2940 kfree(ecc_stngs); 2941 ecc_stngs = NULL; 2942 2943 err_ret: 2944 return err; 2945 } 2946 2947 static void __exit amd64_edac_exit(void) 2948 { 2949 if (pci_ctl) 2950 edac_pci_release_generic_ctl(pci_ctl); 2951 2952 pci_unregister_driver(&amd64_pci_driver); 2953 2954 kfree(ecc_stngs); 2955 ecc_stngs = NULL; 2956 2957 kfree(mcis); 2958 mcis = NULL; 2959 2960 msrs_free(msrs); 2961 msrs = NULL; 2962 } 2963 2964 module_init(amd64_edac_init); 2965 module_exit(amd64_edac_exit); 2966 2967 MODULE_LICENSE("GPL"); 2968 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, " 2969 "Dave Peterson, Thayne Harbaugh"); 2970 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - " 2971 EDAC_AMD64_VERSION); 2972 2973 module_param(edac_op_state, int, 0444); 2974 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 2975