1 // SPDX-License-Identifier: GPL-2.0-only 2 #include "amd64_edac.h" 3 #include <asm/amd_nb.h> 4 5 static struct edac_pci_ctl_info *pci_ctl; 6 7 static int report_gart_errors; 8 module_param(report_gart_errors, int, 0644); 9 10 /* 11 * Set by command line parameter. If BIOS has enabled the ECC, this override is 12 * cleared to prevent re-enabling the hardware by this driver. 13 */ 14 static int ecc_enable_override; 15 module_param(ecc_enable_override, int, 0644); 16 17 static struct msr __percpu *msrs; 18 19 static struct amd64_family_type *fam_type; 20 21 /* Per-node stuff */ 22 static struct ecc_settings **ecc_stngs; 23 24 /* 25 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing 26 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching- 27 * or higher value'. 28 * 29 *FIXME: Produce a better mapping/linearisation. 30 */ 31 static const struct scrubrate { 32 u32 scrubval; /* bit pattern for scrub rate */ 33 u32 bandwidth; /* bandwidth consumed (bytes/sec) */ 34 } scrubrates[] = { 35 { 0x01, 1600000000UL}, 36 { 0x02, 800000000UL}, 37 { 0x03, 400000000UL}, 38 { 0x04, 200000000UL}, 39 { 0x05, 100000000UL}, 40 { 0x06, 50000000UL}, 41 { 0x07, 25000000UL}, 42 { 0x08, 12284069UL}, 43 { 0x09, 6274509UL}, 44 { 0x0A, 3121951UL}, 45 { 0x0B, 1560975UL}, 46 { 0x0C, 781440UL}, 47 { 0x0D, 390720UL}, 48 { 0x0E, 195300UL}, 49 { 0x0F, 97650UL}, 50 { 0x10, 48854UL}, 51 { 0x11, 24427UL}, 52 { 0x12, 12213UL}, 53 { 0x13, 6101UL}, 54 { 0x14, 3051UL}, 55 { 0x15, 1523UL}, 56 { 0x16, 761UL}, 57 { 0x00, 0UL}, /* scrubbing off */ 58 }; 59 60 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset, 61 u32 *val, const char *func) 62 { 63 int err = 0; 64 65 err = pci_read_config_dword(pdev, offset, val); 66 if (err) 67 amd64_warn("%s: error reading F%dx%03x.\n", 68 func, PCI_FUNC(pdev->devfn), offset); 69 70 return err; 71 } 72 73 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset, 74 u32 val, const char *func) 75 { 76 int err = 0; 77 78 err = pci_write_config_dword(pdev, offset, val); 79 if (err) 80 amd64_warn("%s: error writing to F%dx%03x.\n", 81 func, PCI_FUNC(pdev->devfn), offset); 82 83 return err; 84 } 85 86 /* 87 * Select DCT to which PCI cfg accesses are routed 88 */ 89 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct) 90 { 91 u32 reg = 0; 92 93 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®); 94 reg &= (pvt->model == 0x30) ? ~3 : ~1; 95 reg |= dct; 96 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg); 97 } 98 99 /* 100 * 101 * Depending on the family, F2 DCT reads need special handling: 102 * 103 * K8: has a single DCT only and no address offsets >= 0x100 104 * 105 * F10h: each DCT has its own set of regs 106 * DCT0 -> F2x040.. 107 * DCT1 -> F2x140.. 108 * 109 * F16h: has only 1 DCT 110 * 111 * F15h: we select which DCT we access using F1x10C[DctCfgSel] 112 */ 113 static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct, 114 int offset, u32 *val) 115 { 116 switch (pvt->fam) { 117 case 0xf: 118 if (dct || offset >= 0x100) 119 return -EINVAL; 120 break; 121 122 case 0x10: 123 if (dct) { 124 /* 125 * Note: If ganging is enabled, barring the regs 126 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx 127 * return 0. (cf. Section 2.8.1 F10h BKDG) 128 */ 129 if (dct_ganging_enabled(pvt)) 130 return 0; 131 132 offset += 0x100; 133 } 134 break; 135 136 case 0x15: 137 /* 138 * F15h: F2x1xx addresses do not map explicitly to DCT1. 139 * We should select which DCT we access using F1x10C[DctCfgSel] 140 */ 141 dct = (dct && pvt->model == 0x30) ? 3 : dct; 142 f15h_select_dct(pvt, dct); 143 break; 144 145 case 0x16: 146 if (dct) 147 return -EINVAL; 148 break; 149 150 default: 151 break; 152 } 153 return amd64_read_pci_cfg(pvt->F2, offset, val); 154 } 155 156 /* 157 * Memory scrubber control interface. For K8, memory scrubbing is handled by 158 * hardware and can involve L2 cache, dcache as well as the main memory. With 159 * F10, this is extended to L3 cache scrubbing on CPU models sporting that 160 * functionality. 161 * 162 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks 163 * (dram) over to cache lines. This is nasty, so we will use bandwidth in 164 * bytes/sec for the setting. 165 * 166 * Currently, we only do dram scrubbing. If the scrubbing is done in software on 167 * other archs, we might not have access to the caches directly. 168 */ 169 170 static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval) 171 { 172 /* 173 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values 174 * are shifted down by 0x5, so scrubval 0x5 is written to the register 175 * as 0x0, scrubval 0x6 as 0x1, etc. 176 */ 177 if (scrubval >= 0x5 && scrubval <= 0x14) { 178 scrubval -= 0x5; 179 pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF); 180 pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1); 181 } else { 182 pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1); 183 } 184 } 185 /* 186 * Scan the scrub rate mapping table for a close or matching bandwidth value to 187 * issue. If requested is too big, then use last maximum value found. 188 */ 189 static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate) 190 { 191 u32 scrubval; 192 int i; 193 194 /* 195 * map the configured rate (new_bw) to a value specific to the AMD64 196 * memory controller and apply to register. Search for the first 197 * bandwidth entry that is greater or equal than the setting requested 198 * and program that. If at last entry, turn off DRAM scrubbing. 199 * 200 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely 201 * by falling back to the last element in scrubrates[]. 202 */ 203 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) { 204 /* 205 * skip scrub rates which aren't recommended 206 * (see F10 BKDG, F3x58) 207 */ 208 if (scrubrates[i].scrubval < min_rate) 209 continue; 210 211 if (scrubrates[i].bandwidth <= new_bw) 212 break; 213 } 214 215 scrubval = scrubrates[i].scrubval; 216 217 if (pvt->fam == 0x17 || pvt->fam == 0x18) { 218 __f17h_set_scrubval(pvt, scrubval); 219 } else if (pvt->fam == 0x15 && pvt->model == 0x60) { 220 f15h_select_dct(pvt, 0); 221 pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F); 222 f15h_select_dct(pvt, 1); 223 pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F); 224 } else { 225 pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F); 226 } 227 228 if (scrubval) 229 return scrubrates[i].bandwidth; 230 231 return 0; 232 } 233 234 static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw) 235 { 236 struct amd64_pvt *pvt = mci->pvt_info; 237 u32 min_scrubrate = 0x5; 238 239 if (pvt->fam == 0xf) 240 min_scrubrate = 0x0; 241 242 if (pvt->fam == 0x15) { 243 /* Erratum #505 */ 244 if (pvt->model < 0x10) 245 f15h_select_dct(pvt, 0); 246 247 if (pvt->model == 0x60) 248 min_scrubrate = 0x6; 249 } 250 return __set_scrub_rate(pvt, bw, min_scrubrate); 251 } 252 253 static int get_scrub_rate(struct mem_ctl_info *mci) 254 { 255 struct amd64_pvt *pvt = mci->pvt_info; 256 int i, retval = -EINVAL; 257 u32 scrubval = 0; 258 259 switch (pvt->fam) { 260 case 0x15: 261 /* Erratum #505 */ 262 if (pvt->model < 0x10) 263 f15h_select_dct(pvt, 0); 264 265 if (pvt->model == 0x60) 266 amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval); 267 break; 268 269 case 0x17: 270 case 0x18: 271 amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval); 272 if (scrubval & BIT(0)) { 273 amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval); 274 scrubval &= 0xF; 275 scrubval += 0x5; 276 } else { 277 scrubval = 0; 278 } 279 break; 280 281 default: 282 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval); 283 break; 284 } 285 286 scrubval = scrubval & 0x001F; 287 288 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { 289 if (scrubrates[i].scrubval == scrubval) { 290 retval = scrubrates[i].bandwidth; 291 break; 292 } 293 } 294 return retval; 295 } 296 297 /* 298 * returns true if the SysAddr given by sys_addr matches the 299 * DRAM base/limit associated with node_id 300 */ 301 static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid) 302 { 303 u64 addr; 304 305 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be 306 * all ones if the most significant implemented address bit is 1. 307 * Here we discard bits 63-40. See section 3.4.2 of AMD publication 308 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 309 * Application Programming. 310 */ 311 addr = sys_addr & 0x000000ffffffffffull; 312 313 return ((addr >= get_dram_base(pvt, nid)) && 314 (addr <= get_dram_limit(pvt, nid))); 315 } 316 317 /* 318 * Attempt to map a SysAddr to a node. On success, return a pointer to the 319 * mem_ctl_info structure for the node that the SysAddr maps to. 320 * 321 * On failure, return NULL. 322 */ 323 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, 324 u64 sys_addr) 325 { 326 struct amd64_pvt *pvt; 327 u8 node_id; 328 u32 intlv_en, bits; 329 330 /* 331 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section 332 * 3.4.4.2) registers to map the SysAddr to a node ID. 333 */ 334 pvt = mci->pvt_info; 335 336 /* 337 * The value of this field should be the same for all DRAM Base 338 * registers. Therefore we arbitrarily choose to read it from the 339 * register for node 0. 340 */ 341 intlv_en = dram_intlv_en(pvt, 0); 342 343 if (intlv_en == 0) { 344 for (node_id = 0; node_id < DRAM_RANGES; node_id++) { 345 if (base_limit_match(pvt, sys_addr, node_id)) 346 goto found; 347 } 348 goto err_no_match; 349 } 350 351 if (unlikely((intlv_en != 0x01) && 352 (intlv_en != 0x03) && 353 (intlv_en != 0x07))) { 354 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en); 355 return NULL; 356 } 357 358 bits = (((u32) sys_addr) >> 12) & intlv_en; 359 360 for (node_id = 0; ; ) { 361 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits) 362 break; /* intlv_sel field matches */ 363 364 if (++node_id >= DRAM_RANGES) 365 goto err_no_match; 366 } 367 368 /* sanity test for sys_addr */ 369 if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) { 370 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address" 371 "range for node %d with node interleaving enabled.\n", 372 __func__, sys_addr, node_id); 373 return NULL; 374 } 375 376 found: 377 return edac_mc_find((int)node_id); 378 379 err_no_match: 380 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n", 381 (unsigned long)sys_addr); 382 383 return NULL; 384 } 385 386 /* 387 * compute the CS base address of the @csrow on the DRAM controller @dct. 388 * For details see F2x[5C:40] in the processor's BKDG 389 */ 390 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct, 391 u64 *base, u64 *mask) 392 { 393 u64 csbase, csmask, base_bits, mask_bits; 394 u8 addr_shift; 395 396 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) { 397 csbase = pvt->csels[dct].csbases[csrow]; 398 csmask = pvt->csels[dct].csmasks[csrow]; 399 base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9); 400 mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9); 401 addr_shift = 4; 402 403 /* 404 * F16h and F15h, models 30h and later need two addr_shift values: 405 * 8 for high and 6 for low (cf. F16h BKDG). 406 */ 407 } else if (pvt->fam == 0x16 || 408 (pvt->fam == 0x15 && pvt->model >= 0x30)) { 409 csbase = pvt->csels[dct].csbases[csrow]; 410 csmask = pvt->csels[dct].csmasks[csrow >> 1]; 411 412 *base = (csbase & GENMASK_ULL(15, 5)) << 6; 413 *base |= (csbase & GENMASK_ULL(30, 19)) << 8; 414 415 *mask = ~0ULL; 416 /* poke holes for the csmask */ 417 *mask &= ~((GENMASK_ULL(15, 5) << 6) | 418 (GENMASK_ULL(30, 19) << 8)); 419 420 *mask |= (csmask & GENMASK_ULL(15, 5)) << 6; 421 *mask |= (csmask & GENMASK_ULL(30, 19)) << 8; 422 423 return; 424 } else { 425 csbase = pvt->csels[dct].csbases[csrow]; 426 csmask = pvt->csels[dct].csmasks[csrow >> 1]; 427 addr_shift = 8; 428 429 if (pvt->fam == 0x15) 430 base_bits = mask_bits = 431 GENMASK_ULL(30,19) | GENMASK_ULL(13,5); 432 else 433 base_bits = mask_bits = 434 GENMASK_ULL(28,19) | GENMASK_ULL(13,5); 435 } 436 437 *base = (csbase & base_bits) << addr_shift; 438 439 *mask = ~0ULL; 440 /* poke holes for the csmask */ 441 *mask &= ~(mask_bits << addr_shift); 442 /* OR them in */ 443 *mask |= (csmask & mask_bits) << addr_shift; 444 } 445 446 #define for_each_chip_select(i, dct, pvt) \ 447 for (i = 0; i < pvt->csels[dct].b_cnt; i++) 448 449 #define chip_select_base(i, dct, pvt) \ 450 pvt->csels[dct].csbases[i] 451 452 #define for_each_chip_select_mask(i, dct, pvt) \ 453 for (i = 0; i < pvt->csels[dct].m_cnt; i++) 454 455 #define for_each_umc(i) \ 456 for (i = 0; i < fam_type->max_mcs; i++) 457 458 /* 459 * @input_addr is an InputAddr associated with the node given by mci. Return the 460 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). 461 */ 462 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) 463 { 464 struct amd64_pvt *pvt; 465 int csrow; 466 u64 base, mask; 467 468 pvt = mci->pvt_info; 469 470 for_each_chip_select(csrow, 0, pvt) { 471 if (!csrow_enabled(csrow, 0, pvt)) 472 continue; 473 474 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask); 475 476 mask = ~mask; 477 478 if ((input_addr & mask) == (base & mask)) { 479 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n", 480 (unsigned long)input_addr, csrow, 481 pvt->mc_node_id); 482 483 return csrow; 484 } 485 } 486 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n", 487 (unsigned long)input_addr, pvt->mc_node_id); 488 489 return -1; 490 } 491 492 /* 493 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) 494 * for the node represented by mci. Info is passed back in *hole_base, 495 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if 496 * info is invalid. Info may be invalid for either of the following reasons: 497 * 498 * - The revision of the node is not E or greater. In this case, the DRAM Hole 499 * Address Register does not exist. 500 * 501 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, 502 * indicating that its contents are not valid. 503 * 504 * The values passed back in *hole_base, *hole_offset, and *hole_size are 505 * complete 32-bit values despite the fact that the bitfields in the DHAR 506 * only represent bits 31-24 of the base and offset values. 507 */ 508 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, 509 u64 *hole_offset, u64 *hole_size) 510 { 511 struct amd64_pvt *pvt = mci->pvt_info; 512 513 /* only revE and later have the DRAM Hole Address Register */ 514 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) { 515 edac_dbg(1, " revision %d for node %d does not support DHAR\n", 516 pvt->ext_model, pvt->mc_node_id); 517 return 1; 518 } 519 520 /* valid for Fam10h and above */ 521 if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) { 522 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n"); 523 return 1; 524 } 525 526 if (!dhar_valid(pvt)) { 527 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n", 528 pvt->mc_node_id); 529 return 1; 530 } 531 532 /* This node has Memory Hoisting */ 533 534 /* +------------------+--------------------+--------------------+----- 535 * | memory | DRAM hole | relocated | 536 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from | 537 * | | | DRAM hole | 538 * | | | [0x100000000, | 539 * | | | (0x100000000+ | 540 * | | | (0xffffffff-x))] | 541 * +------------------+--------------------+--------------------+----- 542 * 543 * Above is a diagram of physical memory showing the DRAM hole and the 544 * relocated addresses from the DRAM hole. As shown, the DRAM hole 545 * starts at address x (the base address) and extends through address 546 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the 547 * addresses in the hole so that they start at 0x100000000. 548 */ 549 550 *hole_base = dhar_base(pvt); 551 *hole_size = (1ULL << 32) - *hole_base; 552 553 *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt) 554 : k8_dhar_offset(pvt); 555 556 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", 557 pvt->mc_node_id, (unsigned long)*hole_base, 558 (unsigned long)*hole_offset, (unsigned long)*hole_size); 559 560 return 0; 561 } 562 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info); 563 564 /* 565 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is 566 * assumed that sys_addr maps to the node given by mci. 567 * 568 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section 569 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a 570 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, 571 * then it is also involved in translating a SysAddr to a DramAddr. Sections 572 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. 573 * These parts of the documentation are unclear. I interpret them as follows: 574 * 575 * When node n receives a SysAddr, it processes the SysAddr as follows: 576 * 577 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM 578 * Limit registers for node n. If the SysAddr is not within the range 579 * specified by the base and limit values, then node n ignores the Sysaddr 580 * (since it does not map to node n). Otherwise continue to step 2 below. 581 * 582 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is 583 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within 584 * the range of relocated addresses (starting at 0x100000000) from the DRAM 585 * hole. If not, skip to step 3 below. Else get the value of the 586 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the 587 * offset defined by this value from the SysAddr. 588 * 589 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM 590 * Base register for node n. To obtain the DramAddr, subtract the base 591 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70). 592 */ 593 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) 594 { 595 struct amd64_pvt *pvt = mci->pvt_info; 596 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; 597 int ret; 598 599 dram_base = get_dram_base(pvt, pvt->mc_node_id); 600 601 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, 602 &hole_size); 603 if (!ret) { 604 if ((sys_addr >= (1ULL << 32)) && 605 (sys_addr < ((1ULL << 32) + hole_size))) { 606 /* use DHAR to translate SysAddr to DramAddr */ 607 dram_addr = sys_addr - hole_offset; 608 609 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n", 610 (unsigned long)sys_addr, 611 (unsigned long)dram_addr); 612 613 return dram_addr; 614 } 615 } 616 617 /* 618 * Translate the SysAddr to a DramAddr as shown near the start of 619 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8 620 * only deals with 40-bit values. Therefore we discard bits 63-40 of 621 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we 622 * discard are all 1s. Otherwise the bits we discard are all 0s. See 623 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture 624 * Programmer's Manual Volume 1 Application Programming. 625 */ 626 dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base; 627 628 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n", 629 (unsigned long)sys_addr, (unsigned long)dram_addr); 630 return dram_addr; 631 } 632 633 /* 634 * @intlv_en is the value of the IntlvEn field from a DRAM Base register 635 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used 636 * for node interleaving. 637 */ 638 static int num_node_interleave_bits(unsigned intlv_en) 639 { 640 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; 641 int n; 642 643 BUG_ON(intlv_en > 7); 644 n = intlv_shift_table[intlv_en]; 645 return n; 646 } 647 648 /* Translate the DramAddr given by @dram_addr to an InputAddr. */ 649 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) 650 { 651 struct amd64_pvt *pvt; 652 int intlv_shift; 653 u64 input_addr; 654 655 pvt = mci->pvt_info; 656 657 /* 658 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) 659 * concerning translating a DramAddr to an InputAddr. 660 */ 661 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); 662 input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) + 663 (dram_addr & 0xfff); 664 665 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", 666 intlv_shift, (unsigned long)dram_addr, 667 (unsigned long)input_addr); 668 669 return input_addr; 670 } 671 672 /* 673 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is 674 * assumed that @sys_addr maps to the node given by mci. 675 */ 676 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) 677 { 678 u64 input_addr; 679 680 input_addr = 681 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); 682 683 edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n", 684 (unsigned long)sys_addr, (unsigned long)input_addr); 685 686 return input_addr; 687 } 688 689 /* Map the Error address to a PAGE and PAGE OFFSET. */ 690 static inline void error_address_to_page_and_offset(u64 error_address, 691 struct err_info *err) 692 { 693 err->page = (u32) (error_address >> PAGE_SHIFT); 694 err->offset = ((u32) error_address) & ~PAGE_MASK; 695 } 696 697 /* 698 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address 699 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers 700 * of a node that detected an ECC memory error. mci represents the node that 701 * the error address maps to (possibly different from the node that detected 702 * the error). Return the number of the csrow that sys_addr maps to, or -1 on 703 * error. 704 */ 705 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) 706 { 707 int csrow; 708 709 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); 710 711 if (csrow == -1) 712 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for " 713 "address 0x%lx\n", (unsigned long)sys_addr); 714 return csrow; 715 } 716 717 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); 718 719 /* 720 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs 721 * are ECC capable. 722 */ 723 static unsigned long determine_edac_cap(struct amd64_pvt *pvt) 724 { 725 unsigned long edac_cap = EDAC_FLAG_NONE; 726 u8 bit; 727 728 if (pvt->umc) { 729 u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0; 730 731 for_each_umc(i) { 732 if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT)) 733 continue; 734 735 umc_en_mask |= BIT(i); 736 737 /* UMC Configuration bit 12 (DimmEccEn) */ 738 if (pvt->umc[i].umc_cfg & BIT(12)) 739 dimm_ecc_en_mask |= BIT(i); 740 } 741 742 if (umc_en_mask == dimm_ecc_en_mask) 743 edac_cap = EDAC_FLAG_SECDED; 744 } else { 745 bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F) 746 ? 19 747 : 17; 748 749 if (pvt->dclr0 & BIT(bit)) 750 edac_cap = EDAC_FLAG_SECDED; 751 } 752 753 return edac_cap; 754 } 755 756 static void debug_display_dimm_sizes(struct amd64_pvt *, u8); 757 758 static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan) 759 { 760 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr); 761 762 if (pvt->dram_type == MEM_LRDDR3) { 763 u32 dcsm = pvt->csels[chan].csmasks[0]; 764 /* 765 * It's assumed all LRDIMMs in a DCT are going to be of 766 * same 'type' until proven otherwise. So, use a cs 767 * value of '0' here to get dcsm value. 768 */ 769 edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3)); 770 } 771 772 edac_dbg(1, "All DIMMs support ECC:%s\n", 773 (dclr & BIT(19)) ? "yes" : "no"); 774 775 776 edac_dbg(1, " PAR/ERR parity: %s\n", 777 (dclr & BIT(8)) ? "enabled" : "disabled"); 778 779 if (pvt->fam == 0x10) 780 edac_dbg(1, " DCT 128bit mode width: %s\n", 781 (dclr & BIT(11)) ? "128b" : "64b"); 782 783 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n", 784 (dclr & BIT(12)) ? "yes" : "no", 785 (dclr & BIT(13)) ? "yes" : "no", 786 (dclr & BIT(14)) ? "yes" : "no", 787 (dclr & BIT(15)) ? "yes" : "no"); 788 } 789 790 #define CS_EVEN_PRIMARY BIT(0) 791 #define CS_ODD_PRIMARY BIT(1) 792 #define CS_EVEN_SECONDARY BIT(2) 793 #define CS_ODD_SECONDARY BIT(3) 794 795 #define CS_EVEN (CS_EVEN_PRIMARY | CS_EVEN_SECONDARY) 796 #define CS_ODD (CS_ODD_PRIMARY | CS_ODD_SECONDARY) 797 798 static int f17_get_cs_mode(int dimm, u8 ctrl, struct amd64_pvt *pvt) 799 { 800 int cs_mode = 0; 801 802 if (csrow_enabled(2 * dimm, ctrl, pvt)) 803 cs_mode |= CS_EVEN_PRIMARY; 804 805 if (csrow_enabled(2 * dimm + 1, ctrl, pvt)) 806 cs_mode |= CS_ODD_PRIMARY; 807 808 /* Asymmetric dual-rank DIMM support. */ 809 if (csrow_sec_enabled(2 * dimm + 1, ctrl, pvt)) 810 cs_mode |= CS_ODD_SECONDARY; 811 812 return cs_mode; 813 } 814 815 static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl) 816 { 817 int dimm, size0, size1, cs0, cs1, cs_mode; 818 819 edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl); 820 821 for (dimm = 0; dimm < 2; dimm++) { 822 cs0 = dimm * 2; 823 cs1 = dimm * 2 + 1; 824 825 cs_mode = f17_get_cs_mode(dimm, ctrl, pvt); 826 827 size0 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs0); 828 size1 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs1); 829 830 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", 831 cs0, size0, 832 cs1, size1); 833 } 834 } 835 836 static void __dump_misc_regs_df(struct amd64_pvt *pvt) 837 { 838 struct amd64_umc *umc; 839 u32 i, tmp, umc_base; 840 841 for_each_umc(i) { 842 umc_base = get_umc_base(i); 843 umc = &pvt->umc[i]; 844 845 edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg); 846 edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg); 847 edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl); 848 edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl); 849 850 amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp); 851 edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp); 852 853 amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp); 854 edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp); 855 edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi); 856 857 edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n", 858 i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no", 859 (umc->umc_cap_hi & BIT(31)) ? "yes" : "no"); 860 edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n", 861 i, (umc->umc_cfg & BIT(12)) ? "yes" : "no"); 862 edac_dbg(1, "UMC%d x4 DIMMs present: %s\n", 863 i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no"); 864 edac_dbg(1, "UMC%d x16 DIMMs present: %s\n", 865 i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no"); 866 867 if (pvt->dram_type == MEM_LRDDR4) { 868 amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp); 869 edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n", 870 i, 1 << ((tmp >> 4) & 0x3)); 871 } 872 873 debug_display_dimm_sizes_df(pvt, i); 874 } 875 876 edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n", 877 pvt->dhar, dhar_base(pvt)); 878 } 879 880 /* Display and decode various NB registers for debug purposes. */ 881 static void __dump_misc_regs(struct amd64_pvt *pvt) 882 { 883 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap); 884 885 edac_dbg(1, " NB two channel DRAM capable: %s\n", 886 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no"); 887 888 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n", 889 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no", 890 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no"); 891 892 debug_dump_dramcfg_low(pvt, pvt->dclr0, 0); 893 894 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare); 895 896 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n", 897 pvt->dhar, dhar_base(pvt), 898 (pvt->fam == 0xf) ? k8_dhar_offset(pvt) 899 : f10_dhar_offset(pvt)); 900 901 debug_display_dimm_sizes(pvt, 0); 902 903 /* everything below this point is Fam10h and above */ 904 if (pvt->fam == 0xf) 905 return; 906 907 debug_display_dimm_sizes(pvt, 1); 908 909 /* Only if NOT ganged does dclr1 have valid info */ 910 if (!dct_ganging_enabled(pvt)) 911 debug_dump_dramcfg_low(pvt, pvt->dclr1, 1); 912 } 913 914 /* Display and decode various NB registers for debug purposes. */ 915 static void dump_misc_regs(struct amd64_pvt *pvt) 916 { 917 if (pvt->umc) 918 __dump_misc_regs_df(pvt); 919 else 920 __dump_misc_regs(pvt); 921 922 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no"); 923 924 amd64_info("using x%u syndromes.\n", pvt->ecc_sym_sz); 925 } 926 927 /* 928 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60] 929 */ 930 static void prep_chip_selects(struct amd64_pvt *pvt) 931 { 932 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) { 933 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; 934 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8; 935 } else if (pvt->fam == 0x15 && pvt->model == 0x30) { 936 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4; 937 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2; 938 } else if (pvt->fam >= 0x17) { 939 int umc; 940 941 for_each_umc(umc) { 942 pvt->csels[umc].b_cnt = 4; 943 pvt->csels[umc].m_cnt = 2; 944 } 945 946 } else { 947 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; 948 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4; 949 } 950 } 951 952 static void read_umc_base_mask(struct amd64_pvt *pvt) 953 { 954 u32 umc_base_reg, umc_base_reg_sec; 955 u32 umc_mask_reg, umc_mask_reg_sec; 956 u32 base_reg, base_reg_sec; 957 u32 mask_reg, mask_reg_sec; 958 u32 *base, *base_sec; 959 u32 *mask, *mask_sec; 960 int cs, umc; 961 962 for_each_umc(umc) { 963 umc_base_reg = get_umc_base(umc) + UMCCH_BASE_ADDR; 964 umc_base_reg_sec = get_umc_base(umc) + UMCCH_BASE_ADDR_SEC; 965 966 for_each_chip_select(cs, umc, pvt) { 967 base = &pvt->csels[umc].csbases[cs]; 968 base_sec = &pvt->csels[umc].csbases_sec[cs]; 969 970 base_reg = umc_base_reg + (cs * 4); 971 base_reg_sec = umc_base_reg_sec + (cs * 4); 972 973 if (!amd_smn_read(pvt->mc_node_id, base_reg, base)) 974 edac_dbg(0, " DCSB%d[%d]=0x%08x reg: 0x%x\n", 975 umc, cs, *base, base_reg); 976 977 if (!amd_smn_read(pvt->mc_node_id, base_reg_sec, base_sec)) 978 edac_dbg(0, " DCSB_SEC%d[%d]=0x%08x reg: 0x%x\n", 979 umc, cs, *base_sec, base_reg_sec); 980 } 981 982 umc_mask_reg = get_umc_base(umc) + UMCCH_ADDR_MASK; 983 umc_mask_reg_sec = get_umc_base(umc) + UMCCH_ADDR_MASK_SEC; 984 985 for_each_chip_select_mask(cs, umc, pvt) { 986 mask = &pvt->csels[umc].csmasks[cs]; 987 mask_sec = &pvt->csels[umc].csmasks_sec[cs]; 988 989 mask_reg = umc_mask_reg + (cs * 4); 990 mask_reg_sec = umc_mask_reg_sec + (cs * 4); 991 992 if (!amd_smn_read(pvt->mc_node_id, mask_reg, mask)) 993 edac_dbg(0, " DCSM%d[%d]=0x%08x reg: 0x%x\n", 994 umc, cs, *mask, mask_reg); 995 996 if (!amd_smn_read(pvt->mc_node_id, mask_reg_sec, mask_sec)) 997 edac_dbg(0, " DCSM_SEC%d[%d]=0x%08x reg: 0x%x\n", 998 umc, cs, *mask_sec, mask_reg_sec); 999 } 1000 } 1001 } 1002 1003 /* 1004 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers 1005 */ 1006 static void read_dct_base_mask(struct amd64_pvt *pvt) 1007 { 1008 int cs; 1009 1010 prep_chip_selects(pvt); 1011 1012 if (pvt->umc) 1013 return read_umc_base_mask(pvt); 1014 1015 for_each_chip_select(cs, 0, pvt) { 1016 int reg0 = DCSB0 + (cs * 4); 1017 int reg1 = DCSB1 + (cs * 4); 1018 u32 *base0 = &pvt->csels[0].csbases[cs]; 1019 u32 *base1 = &pvt->csels[1].csbases[cs]; 1020 1021 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0)) 1022 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n", 1023 cs, *base0, reg0); 1024 1025 if (pvt->fam == 0xf) 1026 continue; 1027 1028 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1)) 1029 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n", 1030 cs, *base1, (pvt->fam == 0x10) ? reg1 1031 : reg0); 1032 } 1033 1034 for_each_chip_select_mask(cs, 0, pvt) { 1035 int reg0 = DCSM0 + (cs * 4); 1036 int reg1 = DCSM1 + (cs * 4); 1037 u32 *mask0 = &pvt->csels[0].csmasks[cs]; 1038 u32 *mask1 = &pvt->csels[1].csmasks[cs]; 1039 1040 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0)) 1041 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n", 1042 cs, *mask0, reg0); 1043 1044 if (pvt->fam == 0xf) 1045 continue; 1046 1047 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1)) 1048 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n", 1049 cs, *mask1, (pvt->fam == 0x10) ? reg1 1050 : reg0); 1051 } 1052 } 1053 1054 static void determine_memory_type(struct amd64_pvt *pvt) 1055 { 1056 u32 dram_ctrl, dcsm; 1057 1058 switch (pvt->fam) { 1059 case 0xf: 1060 if (pvt->ext_model >= K8_REV_F) 1061 goto ddr3; 1062 1063 pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; 1064 return; 1065 1066 case 0x10: 1067 if (pvt->dchr0 & DDR3_MODE) 1068 goto ddr3; 1069 1070 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; 1071 return; 1072 1073 case 0x15: 1074 if (pvt->model < 0x60) 1075 goto ddr3; 1076 1077 /* 1078 * Model 0x60h needs special handling: 1079 * 1080 * We use a Chip Select value of '0' to obtain dcsm. 1081 * Theoretically, it is possible to populate LRDIMMs of different 1082 * 'Rank' value on a DCT. But this is not the common case. So, 1083 * it's reasonable to assume all DIMMs are going to be of same 1084 * 'type' until proven otherwise. 1085 */ 1086 amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl); 1087 dcsm = pvt->csels[0].csmasks[0]; 1088 1089 if (((dram_ctrl >> 8) & 0x7) == 0x2) 1090 pvt->dram_type = MEM_DDR4; 1091 else if (pvt->dclr0 & BIT(16)) 1092 pvt->dram_type = MEM_DDR3; 1093 else if (dcsm & 0x3) 1094 pvt->dram_type = MEM_LRDDR3; 1095 else 1096 pvt->dram_type = MEM_RDDR3; 1097 1098 return; 1099 1100 case 0x16: 1101 goto ddr3; 1102 1103 case 0x17: 1104 case 0x18: 1105 if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5)) 1106 pvt->dram_type = MEM_LRDDR4; 1107 else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4)) 1108 pvt->dram_type = MEM_RDDR4; 1109 else 1110 pvt->dram_type = MEM_DDR4; 1111 return; 1112 1113 default: 1114 WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam); 1115 pvt->dram_type = MEM_EMPTY; 1116 } 1117 return; 1118 1119 ddr3: 1120 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; 1121 } 1122 1123 /* Get the number of DCT channels the memory controller is using. */ 1124 static int k8_early_channel_count(struct amd64_pvt *pvt) 1125 { 1126 int flag; 1127 1128 if (pvt->ext_model >= K8_REV_F) 1129 /* RevF (NPT) and later */ 1130 flag = pvt->dclr0 & WIDTH_128; 1131 else 1132 /* RevE and earlier */ 1133 flag = pvt->dclr0 & REVE_WIDTH_128; 1134 1135 /* not used */ 1136 pvt->dclr1 = 0; 1137 1138 return (flag) ? 2 : 1; 1139 } 1140 1141 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */ 1142 static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m) 1143 { 1144 u16 mce_nid = amd_get_nb_id(m->extcpu); 1145 struct mem_ctl_info *mci; 1146 u8 start_bit = 1; 1147 u8 end_bit = 47; 1148 u64 addr; 1149 1150 mci = edac_mc_find(mce_nid); 1151 if (!mci) 1152 return 0; 1153 1154 pvt = mci->pvt_info; 1155 1156 if (pvt->fam == 0xf) { 1157 start_bit = 3; 1158 end_bit = 39; 1159 } 1160 1161 addr = m->addr & GENMASK_ULL(end_bit, start_bit); 1162 1163 /* 1164 * Erratum 637 workaround 1165 */ 1166 if (pvt->fam == 0x15) { 1167 u64 cc6_base, tmp_addr; 1168 u32 tmp; 1169 u8 intlv_en; 1170 1171 if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7) 1172 return addr; 1173 1174 1175 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp); 1176 intlv_en = tmp >> 21 & 0x7; 1177 1178 /* add [47:27] + 3 trailing bits */ 1179 cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3; 1180 1181 /* reverse and add DramIntlvEn */ 1182 cc6_base |= intlv_en ^ 0x7; 1183 1184 /* pin at [47:24] */ 1185 cc6_base <<= 24; 1186 1187 if (!intlv_en) 1188 return cc6_base | (addr & GENMASK_ULL(23, 0)); 1189 1190 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp); 1191 1192 /* faster log2 */ 1193 tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1); 1194 1195 /* OR DramIntlvSel into bits [14:12] */ 1196 tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9; 1197 1198 /* add remaining [11:0] bits from original MC4_ADDR */ 1199 tmp_addr |= addr & GENMASK_ULL(11, 0); 1200 1201 return cc6_base | tmp_addr; 1202 } 1203 1204 return addr; 1205 } 1206 1207 static struct pci_dev *pci_get_related_function(unsigned int vendor, 1208 unsigned int device, 1209 struct pci_dev *related) 1210 { 1211 struct pci_dev *dev = NULL; 1212 1213 while ((dev = pci_get_device(vendor, device, dev))) { 1214 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) && 1215 (dev->bus->number == related->bus->number) && 1216 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) 1217 break; 1218 } 1219 1220 return dev; 1221 } 1222 1223 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range) 1224 { 1225 struct amd_northbridge *nb; 1226 struct pci_dev *f1 = NULL; 1227 unsigned int pci_func; 1228 int off = range << 3; 1229 u32 llim; 1230 1231 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo); 1232 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo); 1233 1234 if (pvt->fam == 0xf) 1235 return; 1236 1237 if (!dram_rw(pvt, range)) 1238 return; 1239 1240 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi); 1241 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi); 1242 1243 /* F15h: factor in CC6 save area by reading dst node's limit reg */ 1244 if (pvt->fam != 0x15) 1245 return; 1246 1247 nb = node_to_amd_nb(dram_dst_node(pvt, range)); 1248 if (WARN_ON(!nb)) 1249 return; 1250 1251 if (pvt->model == 0x60) 1252 pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1; 1253 else if (pvt->model == 0x30) 1254 pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1; 1255 else 1256 pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1; 1257 1258 f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc); 1259 if (WARN_ON(!f1)) 1260 return; 1261 1262 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim); 1263 1264 pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0); 1265 1266 /* {[39:27],111b} */ 1267 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16; 1268 1269 pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0); 1270 1271 /* [47:40] */ 1272 pvt->ranges[range].lim.hi |= llim >> 13; 1273 1274 pci_dev_put(f1); 1275 } 1276 1277 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, 1278 struct err_info *err) 1279 { 1280 struct amd64_pvt *pvt = mci->pvt_info; 1281 1282 error_address_to_page_and_offset(sys_addr, err); 1283 1284 /* 1285 * Find out which node the error address belongs to. This may be 1286 * different from the node that detected the error. 1287 */ 1288 err->src_mci = find_mc_by_sys_addr(mci, sys_addr); 1289 if (!err->src_mci) { 1290 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n", 1291 (unsigned long)sys_addr); 1292 err->err_code = ERR_NODE; 1293 return; 1294 } 1295 1296 /* Now map the sys_addr to a CSROW */ 1297 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr); 1298 if (err->csrow < 0) { 1299 err->err_code = ERR_CSROW; 1300 return; 1301 } 1302 1303 /* CHIPKILL enabled */ 1304 if (pvt->nbcfg & NBCFG_CHIPKILL) { 1305 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); 1306 if (err->channel < 0) { 1307 /* 1308 * Syndrome didn't map, so we don't know which of the 1309 * 2 DIMMs is in error. So we need to ID 'both' of them 1310 * as suspect. 1311 */ 1312 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - " 1313 "possible error reporting race\n", 1314 err->syndrome); 1315 err->err_code = ERR_CHANNEL; 1316 return; 1317 } 1318 } else { 1319 /* 1320 * non-chipkill ecc mode 1321 * 1322 * The k8 documentation is unclear about how to determine the 1323 * channel number when using non-chipkill memory. This method 1324 * was obtained from email communication with someone at AMD. 1325 * (Wish the email was placed in this comment - norsk) 1326 */ 1327 err->channel = ((sys_addr & BIT(3)) != 0); 1328 } 1329 } 1330 1331 static int ddr2_cs_size(unsigned i, bool dct_width) 1332 { 1333 unsigned shift = 0; 1334 1335 if (i <= 2) 1336 shift = i; 1337 else if (!(i & 0x1)) 1338 shift = i >> 1; 1339 else 1340 shift = (i + 1) >> 1; 1341 1342 return 128 << (shift + !!dct_width); 1343 } 1344 1345 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1346 unsigned cs_mode, int cs_mask_nr) 1347 { 1348 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; 1349 1350 if (pvt->ext_model >= K8_REV_F) { 1351 WARN_ON(cs_mode > 11); 1352 return ddr2_cs_size(cs_mode, dclr & WIDTH_128); 1353 } 1354 else if (pvt->ext_model >= K8_REV_D) { 1355 unsigned diff; 1356 WARN_ON(cs_mode > 10); 1357 1358 /* 1359 * the below calculation, besides trying to win an obfuscated C 1360 * contest, maps cs_mode values to DIMM chip select sizes. The 1361 * mappings are: 1362 * 1363 * cs_mode CS size (mb) 1364 * ======= ============ 1365 * 0 32 1366 * 1 64 1367 * 2 128 1368 * 3 128 1369 * 4 256 1370 * 5 512 1371 * 6 256 1372 * 7 512 1373 * 8 1024 1374 * 9 1024 1375 * 10 2048 1376 * 1377 * Basically, it calculates a value with which to shift the 1378 * smallest CS size of 32MB. 1379 * 1380 * ddr[23]_cs_size have a similar purpose. 1381 */ 1382 diff = cs_mode/3 + (unsigned)(cs_mode > 5); 1383 1384 return 32 << (cs_mode - diff); 1385 } 1386 else { 1387 WARN_ON(cs_mode > 6); 1388 return 32 << cs_mode; 1389 } 1390 } 1391 1392 /* 1393 * Get the number of DCT channels in use. 1394 * 1395 * Return: 1396 * number of Memory Channels in operation 1397 * Pass back: 1398 * contents of the DCL0_LOW register 1399 */ 1400 static int f1x_early_channel_count(struct amd64_pvt *pvt) 1401 { 1402 int i, j, channels = 0; 1403 1404 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */ 1405 if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128)) 1406 return 2; 1407 1408 /* 1409 * Need to check if in unganged mode: In such, there are 2 channels, 1410 * but they are not in 128 bit mode and thus the above 'dclr0' status 1411 * bit will be OFF. 1412 * 1413 * Need to check DCT0[0] and DCT1[0] to see if only one of them has 1414 * their CSEnable bit on. If so, then SINGLE DIMM case. 1415 */ 1416 edac_dbg(0, "Data width is not 128 bits - need more decoding\n"); 1417 1418 /* 1419 * Check DRAM Bank Address Mapping values for each DIMM to see if there 1420 * is more than just one DIMM present in unganged mode. Need to check 1421 * both controllers since DIMMs can be placed in either one. 1422 */ 1423 for (i = 0; i < 2; i++) { 1424 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0); 1425 1426 for (j = 0; j < 4; j++) { 1427 if (DBAM_DIMM(j, dbam) > 0) { 1428 channels++; 1429 break; 1430 } 1431 } 1432 } 1433 1434 if (channels > 2) 1435 channels = 2; 1436 1437 amd64_info("MCT channel count: %d\n", channels); 1438 1439 return channels; 1440 } 1441 1442 static int f17_early_channel_count(struct amd64_pvt *pvt) 1443 { 1444 int i, channels = 0; 1445 1446 /* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */ 1447 for_each_umc(i) 1448 channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT); 1449 1450 amd64_info("MCT channel count: %d\n", channels); 1451 1452 return channels; 1453 } 1454 1455 static int ddr3_cs_size(unsigned i, bool dct_width) 1456 { 1457 unsigned shift = 0; 1458 int cs_size = 0; 1459 1460 if (i == 0 || i == 3 || i == 4) 1461 cs_size = -1; 1462 else if (i <= 2) 1463 shift = i; 1464 else if (i == 12) 1465 shift = 7; 1466 else if (!(i & 0x1)) 1467 shift = i >> 1; 1468 else 1469 shift = (i + 1) >> 1; 1470 1471 if (cs_size != -1) 1472 cs_size = (128 * (1 << !!dct_width)) << shift; 1473 1474 return cs_size; 1475 } 1476 1477 static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply) 1478 { 1479 unsigned shift = 0; 1480 int cs_size = 0; 1481 1482 if (i < 4 || i == 6) 1483 cs_size = -1; 1484 else if (i == 12) 1485 shift = 7; 1486 else if (!(i & 0x1)) 1487 shift = i >> 1; 1488 else 1489 shift = (i + 1) >> 1; 1490 1491 if (cs_size != -1) 1492 cs_size = rank_multiply * (128 << shift); 1493 1494 return cs_size; 1495 } 1496 1497 static int ddr4_cs_size(unsigned i) 1498 { 1499 int cs_size = 0; 1500 1501 if (i == 0) 1502 cs_size = -1; 1503 else if (i == 1) 1504 cs_size = 1024; 1505 else 1506 /* Min cs_size = 1G */ 1507 cs_size = 1024 * (1 << (i >> 1)); 1508 1509 return cs_size; 1510 } 1511 1512 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1513 unsigned cs_mode, int cs_mask_nr) 1514 { 1515 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; 1516 1517 WARN_ON(cs_mode > 11); 1518 1519 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE) 1520 return ddr3_cs_size(cs_mode, dclr & WIDTH_128); 1521 else 1522 return ddr2_cs_size(cs_mode, dclr & WIDTH_128); 1523 } 1524 1525 /* 1526 * F15h supports only 64bit DCT interfaces 1527 */ 1528 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1529 unsigned cs_mode, int cs_mask_nr) 1530 { 1531 WARN_ON(cs_mode > 12); 1532 1533 return ddr3_cs_size(cs_mode, false); 1534 } 1535 1536 /* F15h M60h supports DDR4 mapping as well.. */ 1537 static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1538 unsigned cs_mode, int cs_mask_nr) 1539 { 1540 int cs_size; 1541 u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr]; 1542 1543 WARN_ON(cs_mode > 12); 1544 1545 if (pvt->dram_type == MEM_DDR4) { 1546 if (cs_mode > 9) 1547 return -1; 1548 1549 cs_size = ddr4_cs_size(cs_mode); 1550 } else if (pvt->dram_type == MEM_LRDDR3) { 1551 unsigned rank_multiply = dcsm & 0xf; 1552 1553 if (rank_multiply == 3) 1554 rank_multiply = 4; 1555 cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply); 1556 } else { 1557 /* Minimum cs size is 512mb for F15hM60h*/ 1558 if (cs_mode == 0x1) 1559 return -1; 1560 1561 cs_size = ddr3_cs_size(cs_mode, false); 1562 } 1563 1564 return cs_size; 1565 } 1566 1567 /* 1568 * F16h and F15h model 30h have only limited cs_modes. 1569 */ 1570 static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1571 unsigned cs_mode, int cs_mask_nr) 1572 { 1573 WARN_ON(cs_mode > 12); 1574 1575 if (cs_mode == 6 || cs_mode == 8 || 1576 cs_mode == 9 || cs_mode == 12) 1577 return -1; 1578 else 1579 return ddr3_cs_size(cs_mode, false); 1580 } 1581 1582 static int f17_addr_mask_to_cs_size(struct amd64_pvt *pvt, u8 umc, 1583 unsigned int cs_mode, int csrow_nr) 1584 { 1585 u32 addr_mask_orig, addr_mask_deinterleaved; 1586 u32 msb, weight, num_zero_bits; 1587 int dimm, size = 0; 1588 1589 /* No Chip Selects are enabled. */ 1590 if (!cs_mode) 1591 return size; 1592 1593 /* Requested size of an even CS but none are enabled. */ 1594 if (!(cs_mode & CS_EVEN) && !(csrow_nr & 1)) 1595 return size; 1596 1597 /* Requested size of an odd CS but none are enabled. */ 1598 if (!(cs_mode & CS_ODD) && (csrow_nr & 1)) 1599 return size; 1600 1601 /* 1602 * There is one mask per DIMM, and two Chip Selects per DIMM. 1603 * CS0 and CS1 -> DIMM0 1604 * CS2 and CS3 -> DIMM1 1605 */ 1606 dimm = csrow_nr >> 1; 1607 1608 /* Asymmetric dual-rank DIMM support. */ 1609 if ((csrow_nr & 1) && (cs_mode & CS_ODD_SECONDARY)) 1610 addr_mask_orig = pvt->csels[umc].csmasks_sec[dimm]; 1611 else 1612 addr_mask_orig = pvt->csels[umc].csmasks[dimm]; 1613 1614 /* 1615 * The number of zero bits in the mask is equal to the number of bits 1616 * in a full mask minus the number of bits in the current mask. 1617 * 1618 * The MSB is the number of bits in the full mask because BIT[0] is 1619 * always 0. 1620 */ 1621 msb = fls(addr_mask_orig) - 1; 1622 weight = hweight_long(addr_mask_orig); 1623 num_zero_bits = msb - weight; 1624 1625 /* Take the number of zero bits off from the top of the mask. */ 1626 addr_mask_deinterleaved = GENMASK_ULL(msb - num_zero_bits, 1); 1627 1628 edac_dbg(1, "CS%d DIMM%d AddrMasks:\n", csrow_nr, dimm); 1629 edac_dbg(1, " Original AddrMask: 0x%x\n", addr_mask_orig); 1630 edac_dbg(1, " Deinterleaved AddrMask: 0x%x\n", addr_mask_deinterleaved); 1631 1632 /* Register [31:1] = Address [39:9]. Size is in kBs here. */ 1633 size = (addr_mask_deinterleaved >> 2) + 1; 1634 1635 /* Return size in MBs. */ 1636 return size >> 10; 1637 } 1638 1639 static void read_dram_ctl_register(struct amd64_pvt *pvt) 1640 { 1641 1642 if (pvt->fam == 0xf) 1643 return; 1644 1645 if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) { 1646 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n", 1647 pvt->dct_sel_lo, dct_sel_baseaddr(pvt)); 1648 1649 edac_dbg(0, " DCTs operate in %s mode\n", 1650 (dct_ganging_enabled(pvt) ? "ganged" : "unganged")); 1651 1652 if (!dct_ganging_enabled(pvt)) 1653 edac_dbg(0, " Address range split per DCT: %s\n", 1654 (dct_high_range_enabled(pvt) ? "yes" : "no")); 1655 1656 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n", 1657 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"), 1658 (dct_memory_cleared(pvt) ? "yes" : "no")); 1659 1660 edac_dbg(0, " channel interleave: %s, " 1661 "interleave bits selector: 0x%x\n", 1662 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"), 1663 dct_sel_interleave_addr(pvt)); 1664 } 1665 1666 amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi); 1667 } 1668 1669 /* 1670 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG, 1671 * 2.10.12 Memory Interleaving Modes). 1672 */ 1673 static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, 1674 u8 intlv_en, int num_dcts_intlv, 1675 u32 dct_sel) 1676 { 1677 u8 channel = 0; 1678 u8 select; 1679 1680 if (!(intlv_en)) 1681 return (u8)(dct_sel); 1682 1683 if (num_dcts_intlv == 2) { 1684 select = (sys_addr >> 8) & 0x3; 1685 channel = select ? 0x3 : 0; 1686 } else if (num_dcts_intlv == 4) { 1687 u8 intlv_addr = dct_sel_interleave_addr(pvt); 1688 switch (intlv_addr) { 1689 case 0x4: 1690 channel = (sys_addr >> 8) & 0x3; 1691 break; 1692 case 0x5: 1693 channel = (sys_addr >> 9) & 0x3; 1694 break; 1695 } 1696 } 1697 return channel; 1698 } 1699 1700 /* 1701 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory 1702 * Interleaving Modes. 1703 */ 1704 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, 1705 bool hi_range_sel, u8 intlv_en) 1706 { 1707 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1; 1708 1709 if (dct_ganging_enabled(pvt)) 1710 return 0; 1711 1712 if (hi_range_sel) 1713 return dct_sel_high; 1714 1715 /* 1716 * see F2x110[DctSelIntLvAddr] - channel interleave mode 1717 */ 1718 if (dct_interleave_enabled(pvt)) { 1719 u8 intlv_addr = dct_sel_interleave_addr(pvt); 1720 1721 /* return DCT select function: 0=DCT0, 1=DCT1 */ 1722 if (!intlv_addr) 1723 return sys_addr >> 6 & 1; 1724 1725 if (intlv_addr & 0x2) { 1726 u8 shift = intlv_addr & 0x1 ? 9 : 6; 1727 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1; 1728 1729 return ((sys_addr >> shift) & 1) ^ temp; 1730 } 1731 1732 if (intlv_addr & 0x4) { 1733 u8 shift = intlv_addr & 0x1 ? 9 : 8; 1734 1735 return (sys_addr >> shift) & 1; 1736 } 1737 1738 return (sys_addr >> (12 + hweight8(intlv_en))) & 1; 1739 } 1740 1741 if (dct_high_range_enabled(pvt)) 1742 return ~dct_sel_high & 1; 1743 1744 return 0; 1745 } 1746 1747 /* Convert the sys_addr to the normalized DCT address */ 1748 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range, 1749 u64 sys_addr, bool hi_rng, 1750 u32 dct_sel_base_addr) 1751 { 1752 u64 chan_off; 1753 u64 dram_base = get_dram_base(pvt, range); 1754 u64 hole_off = f10_dhar_offset(pvt); 1755 u64 dct_sel_base_off = (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16; 1756 1757 if (hi_rng) { 1758 /* 1759 * if 1760 * base address of high range is below 4Gb 1761 * (bits [47:27] at [31:11]) 1762 * DRAM address space on this DCT is hoisted above 4Gb && 1763 * sys_addr > 4Gb 1764 * 1765 * remove hole offset from sys_addr 1766 * else 1767 * remove high range offset from sys_addr 1768 */ 1769 if ((!(dct_sel_base_addr >> 16) || 1770 dct_sel_base_addr < dhar_base(pvt)) && 1771 dhar_valid(pvt) && 1772 (sys_addr >= BIT_64(32))) 1773 chan_off = hole_off; 1774 else 1775 chan_off = dct_sel_base_off; 1776 } else { 1777 /* 1778 * if 1779 * we have a valid hole && 1780 * sys_addr > 4Gb 1781 * 1782 * remove hole 1783 * else 1784 * remove dram base to normalize to DCT address 1785 */ 1786 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32))) 1787 chan_off = hole_off; 1788 else 1789 chan_off = dram_base; 1790 } 1791 1792 return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23)); 1793 } 1794 1795 /* 1796 * checks if the csrow passed in is marked as SPARED, if so returns the new 1797 * spare row 1798 */ 1799 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow) 1800 { 1801 int tmp_cs; 1802 1803 if (online_spare_swap_done(pvt, dct) && 1804 csrow == online_spare_bad_dramcs(pvt, dct)) { 1805 1806 for_each_chip_select(tmp_cs, dct, pvt) { 1807 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) { 1808 csrow = tmp_cs; 1809 break; 1810 } 1811 } 1812 } 1813 return csrow; 1814 } 1815 1816 /* 1817 * Iterate over the DRAM DCT "base" and "mask" registers looking for a 1818 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' 1819 * 1820 * Return: 1821 * -EINVAL: NOT FOUND 1822 * 0..csrow = Chip-Select Row 1823 */ 1824 static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct) 1825 { 1826 struct mem_ctl_info *mci; 1827 struct amd64_pvt *pvt; 1828 u64 cs_base, cs_mask; 1829 int cs_found = -EINVAL; 1830 int csrow; 1831 1832 mci = edac_mc_find(nid); 1833 if (!mci) 1834 return cs_found; 1835 1836 pvt = mci->pvt_info; 1837 1838 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct); 1839 1840 for_each_chip_select(csrow, dct, pvt) { 1841 if (!csrow_enabled(csrow, dct, pvt)) 1842 continue; 1843 1844 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask); 1845 1846 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n", 1847 csrow, cs_base, cs_mask); 1848 1849 cs_mask = ~cs_mask; 1850 1851 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n", 1852 (in_addr & cs_mask), (cs_base & cs_mask)); 1853 1854 if ((in_addr & cs_mask) == (cs_base & cs_mask)) { 1855 if (pvt->fam == 0x15 && pvt->model >= 0x30) { 1856 cs_found = csrow; 1857 break; 1858 } 1859 cs_found = f10_process_possible_spare(pvt, dct, csrow); 1860 1861 edac_dbg(1, " MATCH csrow=%d\n", cs_found); 1862 break; 1863 } 1864 } 1865 return cs_found; 1866 } 1867 1868 /* 1869 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is 1870 * swapped with a region located at the bottom of memory so that the GPU can use 1871 * the interleaved region and thus two channels. 1872 */ 1873 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr) 1874 { 1875 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr; 1876 1877 if (pvt->fam == 0x10) { 1878 /* only revC3 and revE have that feature */ 1879 if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3)) 1880 return sys_addr; 1881 } 1882 1883 amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg); 1884 1885 if (!(swap_reg & 0x1)) 1886 return sys_addr; 1887 1888 swap_base = (swap_reg >> 3) & 0x7f; 1889 swap_limit = (swap_reg >> 11) & 0x7f; 1890 rgn_size = (swap_reg >> 20) & 0x7f; 1891 tmp_addr = sys_addr >> 27; 1892 1893 if (!(sys_addr >> 34) && 1894 (((tmp_addr >= swap_base) && 1895 (tmp_addr <= swap_limit)) || 1896 (tmp_addr < rgn_size))) 1897 return sys_addr ^ (u64)swap_base << 27; 1898 1899 return sys_addr; 1900 } 1901 1902 /* For a given @dram_range, check if @sys_addr falls within it. */ 1903 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range, 1904 u64 sys_addr, int *chan_sel) 1905 { 1906 int cs_found = -EINVAL; 1907 u64 chan_addr; 1908 u32 dct_sel_base; 1909 u8 channel; 1910 bool high_range = false; 1911 1912 u8 node_id = dram_dst_node(pvt, range); 1913 u8 intlv_en = dram_intlv_en(pvt, range); 1914 u32 intlv_sel = dram_intlv_sel(pvt, range); 1915 1916 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", 1917 range, sys_addr, get_dram_limit(pvt, range)); 1918 1919 if (dhar_valid(pvt) && 1920 dhar_base(pvt) <= sys_addr && 1921 sys_addr < BIT_64(32)) { 1922 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", 1923 sys_addr); 1924 return -EINVAL; 1925 } 1926 1927 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en))) 1928 return -EINVAL; 1929 1930 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr); 1931 1932 dct_sel_base = dct_sel_baseaddr(pvt); 1933 1934 /* 1935 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to 1936 * select between DCT0 and DCT1. 1937 */ 1938 if (dct_high_range_enabled(pvt) && 1939 !dct_ganging_enabled(pvt) && 1940 ((sys_addr >> 27) >= (dct_sel_base >> 11))) 1941 high_range = true; 1942 1943 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en); 1944 1945 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr, 1946 high_range, dct_sel_base); 1947 1948 /* Remove node interleaving, see F1x120 */ 1949 if (intlv_en) 1950 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) | 1951 (chan_addr & 0xfff); 1952 1953 /* remove channel interleave */ 1954 if (dct_interleave_enabled(pvt) && 1955 !dct_high_range_enabled(pvt) && 1956 !dct_ganging_enabled(pvt)) { 1957 1958 if (dct_sel_interleave_addr(pvt) != 1) { 1959 if (dct_sel_interleave_addr(pvt) == 0x3) 1960 /* hash 9 */ 1961 chan_addr = ((chan_addr >> 10) << 9) | 1962 (chan_addr & 0x1ff); 1963 else 1964 /* A[6] or hash 6 */ 1965 chan_addr = ((chan_addr >> 7) << 6) | 1966 (chan_addr & 0x3f); 1967 } else 1968 /* A[12] */ 1969 chan_addr = ((chan_addr >> 13) << 12) | 1970 (chan_addr & 0xfff); 1971 } 1972 1973 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr); 1974 1975 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel); 1976 1977 if (cs_found >= 0) 1978 *chan_sel = channel; 1979 1980 return cs_found; 1981 } 1982 1983 static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range, 1984 u64 sys_addr, int *chan_sel) 1985 { 1986 int cs_found = -EINVAL; 1987 int num_dcts_intlv = 0; 1988 u64 chan_addr, chan_offset; 1989 u64 dct_base, dct_limit; 1990 u32 dct_cont_base_reg, dct_cont_limit_reg, tmp; 1991 u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en; 1992 1993 u64 dhar_offset = f10_dhar_offset(pvt); 1994 u8 intlv_addr = dct_sel_interleave_addr(pvt); 1995 u8 node_id = dram_dst_node(pvt, range); 1996 u8 intlv_en = dram_intlv_en(pvt, range); 1997 1998 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg); 1999 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg); 2000 2001 dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0)); 2002 dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7); 2003 2004 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", 2005 range, sys_addr, get_dram_limit(pvt, range)); 2006 2007 if (!(get_dram_base(pvt, range) <= sys_addr) && 2008 !(get_dram_limit(pvt, range) >= sys_addr)) 2009 return -EINVAL; 2010 2011 if (dhar_valid(pvt) && 2012 dhar_base(pvt) <= sys_addr && 2013 sys_addr < BIT_64(32)) { 2014 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", 2015 sys_addr); 2016 return -EINVAL; 2017 } 2018 2019 /* Verify sys_addr is within DCT Range. */ 2020 dct_base = (u64) dct_sel_baseaddr(pvt); 2021 dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF; 2022 2023 if (!(dct_cont_base_reg & BIT(0)) && 2024 !(dct_base <= (sys_addr >> 27) && 2025 dct_limit >= (sys_addr >> 27))) 2026 return -EINVAL; 2027 2028 /* Verify number of dct's that participate in channel interleaving. */ 2029 num_dcts_intlv = (int) hweight8(intlv_en); 2030 2031 if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4)) 2032 return -EINVAL; 2033 2034 if (pvt->model >= 0x60) 2035 channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en); 2036 else 2037 channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en, 2038 num_dcts_intlv, dct_sel); 2039 2040 /* Verify we stay within the MAX number of channels allowed */ 2041 if (channel > 3) 2042 return -EINVAL; 2043 2044 leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0)); 2045 2046 /* Get normalized DCT addr */ 2047 if (leg_mmio_hole && (sys_addr >= BIT_64(32))) 2048 chan_offset = dhar_offset; 2049 else 2050 chan_offset = dct_base << 27; 2051 2052 chan_addr = sys_addr - chan_offset; 2053 2054 /* remove channel interleave */ 2055 if (num_dcts_intlv == 2) { 2056 if (intlv_addr == 0x4) 2057 chan_addr = ((chan_addr >> 9) << 8) | 2058 (chan_addr & 0xff); 2059 else if (intlv_addr == 0x5) 2060 chan_addr = ((chan_addr >> 10) << 9) | 2061 (chan_addr & 0x1ff); 2062 else 2063 return -EINVAL; 2064 2065 } else if (num_dcts_intlv == 4) { 2066 if (intlv_addr == 0x4) 2067 chan_addr = ((chan_addr >> 10) << 8) | 2068 (chan_addr & 0xff); 2069 else if (intlv_addr == 0x5) 2070 chan_addr = ((chan_addr >> 11) << 9) | 2071 (chan_addr & 0x1ff); 2072 else 2073 return -EINVAL; 2074 } 2075 2076 if (dct_offset_en) { 2077 amd64_read_pci_cfg(pvt->F1, 2078 DRAM_CONT_HIGH_OFF + (int) channel * 4, 2079 &tmp); 2080 chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27; 2081 } 2082 2083 f15h_select_dct(pvt, channel); 2084 2085 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr); 2086 2087 /* 2088 * Find Chip select: 2089 * if channel = 3, then alias it to 1. This is because, in F15 M30h, 2090 * there is support for 4 DCT's, but only 2 are currently functional. 2091 * They are DCT0 and DCT3. But we have read all registers of DCT3 into 2092 * pvt->csels[1]. So we need to use '1' here to get correct info. 2093 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications. 2094 */ 2095 alias_channel = (channel == 3) ? 1 : channel; 2096 2097 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel); 2098 2099 if (cs_found >= 0) 2100 *chan_sel = alias_channel; 2101 2102 return cs_found; 2103 } 2104 2105 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, 2106 u64 sys_addr, 2107 int *chan_sel) 2108 { 2109 int cs_found = -EINVAL; 2110 unsigned range; 2111 2112 for (range = 0; range < DRAM_RANGES; range++) { 2113 if (!dram_rw(pvt, range)) 2114 continue; 2115 2116 if (pvt->fam == 0x15 && pvt->model >= 0x30) 2117 cs_found = f15_m30h_match_to_this_node(pvt, range, 2118 sys_addr, 2119 chan_sel); 2120 2121 else if ((get_dram_base(pvt, range) <= sys_addr) && 2122 (get_dram_limit(pvt, range) >= sys_addr)) { 2123 cs_found = f1x_match_to_this_node(pvt, range, 2124 sys_addr, chan_sel); 2125 if (cs_found >= 0) 2126 break; 2127 } 2128 } 2129 return cs_found; 2130 } 2131 2132 /* 2133 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps 2134 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW). 2135 * 2136 * The @sys_addr is usually an error address received from the hardware 2137 * (MCX_ADDR). 2138 */ 2139 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, 2140 struct err_info *err) 2141 { 2142 struct amd64_pvt *pvt = mci->pvt_info; 2143 2144 error_address_to_page_and_offset(sys_addr, err); 2145 2146 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel); 2147 if (err->csrow < 0) { 2148 err->err_code = ERR_CSROW; 2149 return; 2150 } 2151 2152 /* 2153 * We need the syndromes for channel detection only when we're 2154 * ganged. Otherwise @chan should already contain the channel at 2155 * this point. 2156 */ 2157 if (dct_ganging_enabled(pvt)) 2158 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); 2159 } 2160 2161 /* 2162 * debug routine to display the memory sizes of all logical DIMMs and its 2163 * CSROWs 2164 */ 2165 static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl) 2166 { 2167 int dimm, size0, size1; 2168 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases; 2169 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0; 2170 2171 if (pvt->fam == 0xf) { 2172 /* K8 families < revF not supported yet */ 2173 if (pvt->ext_model < K8_REV_F) 2174 return; 2175 else 2176 WARN_ON(ctrl != 0); 2177 } 2178 2179 if (pvt->fam == 0x10) { 2180 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 2181 : pvt->dbam0; 2182 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? 2183 pvt->csels[1].csbases : 2184 pvt->csels[0].csbases; 2185 } else if (ctrl) { 2186 dbam = pvt->dbam0; 2187 dcsb = pvt->csels[1].csbases; 2188 } 2189 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", 2190 ctrl, dbam); 2191 2192 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl); 2193 2194 /* Dump memory sizes for DIMM and its CSROWs */ 2195 for (dimm = 0; dimm < 4; dimm++) { 2196 2197 size0 = 0; 2198 if (dcsb[dimm*2] & DCSB_CS_ENABLE) 2199 /* 2200 * For F15m60h, we need multiplier for LRDIMM cs_size 2201 * calculation. We pass dimm value to the dbam_to_cs 2202 * mapper so we can find the multiplier from the 2203 * corresponding DCSM. 2204 */ 2205 size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 2206 DBAM_DIMM(dimm, dbam), 2207 dimm); 2208 2209 size1 = 0; 2210 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE) 2211 size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 2212 DBAM_DIMM(dimm, dbam), 2213 dimm); 2214 2215 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", 2216 dimm * 2, size0, 2217 dimm * 2 + 1, size1); 2218 } 2219 } 2220 2221 static struct amd64_family_type family_types[] = { 2222 [K8_CPUS] = { 2223 .ctl_name = "K8", 2224 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP, 2225 .f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL, 2226 .max_mcs = 2, 2227 .ops = { 2228 .early_channel_count = k8_early_channel_count, 2229 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow, 2230 .dbam_to_cs = k8_dbam_to_chip_select, 2231 } 2232 }, 2233 [F10_CPUS] = { 2234 .ctl_name = "F10h", 2235 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP, 2236 .f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM, 2237 .max_mcs = 2, 2238 .ops = { 2239 .early_channel_count = f1x_early_channel_count, 2240 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 2241 .dbam_to_cs = f10_dbam_to_chip_select, 2242 } 2243 }, 2244 [F15_CPUS] = { 2245 .ctl_name = "F15h", 2246 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1, 2247 .f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2, 2248 .max_mcs = 2, 2249 .ops = { 2250 .early_channel_count = f1x_early_channel_count, 2251 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 2252 .dbam_to_cs = f15_dbam_to_chip_select, 2253 } 2254 }, 2255 [F15_M30H_CPUS] = { 2256 .ctl_name = "F15h_M30h", 2257 .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1, 2258 .f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2, 2259 .max_mcs = 2, 2260 .ops = { 2261 .early_channel_count = f1x_early_channel_count, 2262 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 2263 .dbam_to_cs = f16_dbam_to_chip_select, 2264 } 2265 }, 2266 [F15_M60H_CPUS] = { 2267 .ctl_name = "F15h_M60h", 2268 .f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1, 2269 .f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2, 2270 .max_mcs = 2, 2271 .ops = { 2272 .early_channel_count = f1x_early_channel_count, 2273 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 2274 .dbam_to_cs = f15_m60h_dbam_to_chip_select, 2275 } 2276 }, 2277 [F16_CPUS] = { 2278 .ctl_name = "F16h", 2279 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1, 2280 .f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2, 2281 .max_mcs = 2, 2282 .ops = { 2283 .early_channel_count = f1x_early_channel_count, 2284 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 2285 .dbam_to_cs = f16_dbam_to_chip_select, 2286 } 2287 }, 2288 [F16_M30H_CPUS] = { 2289 .ctl_name = "F16h_M30h", 2290 .f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1, 2291 .f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2, 2292 .max_mcs = 2, 2293 .ops = { 2294 .early_channel_count = f1x_early_channel_count, 2295 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 2296 .dbam_to_cs = f16_dbam_to_chip_select, 2297 } 2298 }, 2299 [F17_CPUS] = { 2300 .ctl_name = "F17h", 2301 .f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0, 2302 .f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6, 2303 .max_mcs = 2, 2304 .ops = { 2305 .early_channel_count = f17_early_channel_count, 2306 .dbam_to_cs = f17_addr_mask_to_cs_size, 2307 } 2308 }, 2309 [F17_M10H_CPUS] = { 2310 .ctl_name = "F17h_M10h", 2311 .f0_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F0, 2312 .f6_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F6, 2313 .max_mcs = 2, 2314 .ops = { 2315 .early_channel_count = f17_early_channel_count, 2316 .dbam_to_cs = f17_addr_mask_to_cs_size, 2317 } 2318 }, 2319 [F17_M30H_CPUS] = { 2320 .ctl_name = "F17h_M30h", 2321 .f0_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F0, 2322 .f6_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F6, 2323 .max_mcs = 8, 2324 .ops = { 2325 .early_channel_count = f17_early_channel_count, 2326 .dbam_to_cs = f17_addr_mask_to_cs_size, 2327 } 2328 }, 2329 [F17_M70H_CPUS] = { 2330 .ctl_name = "F17h_M70h", 2331 .f0_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F0, 2332 .f6_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F6, 2333 .max_mcs = 2, 2334 .ops = { 2335 .early_channel_count = f17_early_channel_count, 2336 .dbam_to_cs = f17_addr_mask_to_cs_size, 2337 } 2338 }, 2339 }; 2340 2341 /* 2342 * These are tables of eigenvectors (one per line) which can be used for the 2343 * construction of the syndrome tables. The modified syndrome search algorithm 2344 * uses those to find the symbol in error and thus the DIMM. 2345 * 2346 * Algorithm courtesy of Ross LaFetra from AMD. 2347 */ 2348 static const u16 x4_vectors[] = { 2349 0x2f57, 0x1afe, 0x66cc, 0xdd88, 2350 0x11eb, 0x3396, 0x7f4c, 0xeac8, 2351 0x0001, 0x0002, 0x0004, 0x0008, 2352 0x1013, 0x3032, 0x4044, 0x8088, 2353 0x106b, 0x30d6, 0x70fc, 0xe0a8, 2354 0x4857, 0xc4fe, 0x13cc, 0x3288, 2355 0x1ac5, 0x2f4a, 0x5394, 0xa1e8, 2356 0x1f39, 0x251e, 0xbd6c, 0x6bd8, 2357 0x15c1, 0x2a42, 0x89ac, 0x4758, 2358 0x2b03, 0x1602, 0x4f0c, 0xca08, 2359 0x1f07, 0x3a0e, 0x6b04, 0xbd08, 2360 0x8ba7, 0x465e, 0x244c, 0x1cc8, 2361 0x2b87, 0x164e, 0x642c, 0xdc18, 2362 0x40b9, 0x80de, 0x1094, 0x20e8, 2363 0x27db, 0x1eb6, 0x9dac, 0x7b58, 2364 0x11c1, 0x2242, 0x84ac, 0x4c58, 2365 0x1be5, 0x2d7a, 0x5e34, 0xa718, 2366 0x4b39, 0x8d1e, 0x14b4, 0x28d8, 2367 0x4c97, 0xc87e, 0x11fc, 0x33a8, 2368 0x8e97, 0x497e, 0x2ffc, 0x1aa8, 2369 0x16b3, 0x3d62, 0x4f34, 0x8518, 2370 0x1e2f, 0x391a, 0x5cac, 0xf858, 2371 0x1d9f, 0x3b7a, 0x572c, 0xfe18, 2372 0x15f5, 0x2a5a, 0x5264, 0xa3b8, 2373 0x1dbb, 0x3b66, 0x715c, 0xe3f8, 2374 0x4397, 0xc27e, 0x17fc, 0x3ea8, 2375 0x1617, 0x3d3e, 0x6464, 0xb8b8, 2376 0x23ff, 0x12aa, 0xab6c, 0x56d8, 2377 0x2dfb, 0x1ba6, 0x913c, 0x7328, 2378 0x185d, 0x2ca6, 0x7914, 0x9e28, 2379 0x171b, 0x3e36, 0x7d7c, 0xebe8, 2380 0x4199, 0x82ee, 0x19f4, 0x2e58, 2381 0x4807, 0xc40e, 0x130c, 0x3208, 2382 0x1905, 0x2e0a, 0x5804, 0xac08, 2383 0x213f, 0x132a, 0xadfc, 0x5ba8, 2384 0x19a9, 0x2efe, 0xb5cc, 0x6f88, 2385 }; 2386 2387 static const u16 x8_vectors[] = { 2388 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480, 2389 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80, 2390 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80, 2391 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80, 2392 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780, 2393 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080, 2394 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080, 2395 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080, 2396 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80, 2397 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580, 2398 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880, 2399 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280, 2400 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180, 2401 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580, 2402 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280, 2403 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180, 2404 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080, 2405 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 2406 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000, 2407 }; 2408 2409 static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs, 2410 unsigned v_dim) 2411 { 2412 unsigned int i, err_sym; 2413 2414 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) { 2415 u16 s = syndrome; 2416 unsigned v_idx = err_sym * v_dim; 2417 unsigned v_end = (err_sym + 1) * v_dim; 2418 2419 /* walk over all 16 bits of the syndrome */ 2420 for (i = 1; i < (1U << 16); i <<= 1) { 2421 2422 /* if bit is set in that eigenvector... */ 2423 if (v_idx < v_end && vectors[v_idx] & i) { 2424 u16 ev_comp = vectors[v_idx++]; 2425 2426 /* ... and bit set in the modified syndrome, */ 2427 if (s & i) { 2428 /* remove it. */ 2429 s ^= ev_comp; 2430 2431 if (!s) 2432 return err_sym; 2433 } 2434 2435 } else if (s & i) 2436 /* can't get to zero, move to next symbol */ 2437 break; 2438 } 2439 } 2440 2441 edac_dbg(0, "syndrome(%x) not found\n", syndrome); 2442 return -1; 2443 } 2444 2445 static int map_err_sym_to_channel(int err_sym, int sym_size) 2446 { 2447 if (sym_size == 4) 2448 switch (err_sym) { 2449 case 0x20: 2450 case 0x21: 2451 return 0; 2452 break; 2453 case 0x22: 2454 case 0x23: 2455 return 1; 2456 break; 2457 default: 2458 return err_sym >> 4; 2459 break; 2460 } 2461 /* x8 symbols */ 2462 else 2463 switch (err_sym) { 2464 /* imaginary bits not in a DIMM */ 2465 case 0x10: 2466 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n", 2467 err_sym); 2468 return -1; 2469 break; 2470 2471 case 0x11: 2472 return 0; 2473 break; 2474 case 0x12: 2475 return 1; 2476 break; 2477 default: 2478 return err_sym >> 3; 2479 break; 2480 } 2481 return -1; 2482 } 2483 2484 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome) 2485 { 2486 struct amd64_pvt *pvt = mci->pvt_info; 2487 int err_sym = -1; 2488 2489 if (pvt->ecc_sym_sz == 8) 2490 err_sym = decode_syndrome(syndrome, x8_vectors, 2491 ARRAY_SIZE(x8_vectors), 2492 pvt->ecc_sym_sz); 2493 else if (pvt->ecc_sym_sz == 4) 2494 err_sym = decode_syndrome(syndrome, x4_vectors, 2495 ARRAY_SIZE(x4_vectors), 2496 pvt->ecc_sym_sz); 2497 else { 2498 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz); 2499 return err_sym; 2500 } 2501 2502 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz); 2503 } 2504 2505 static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err, 2506 u8 ecc_type) 2507 { 2508 enum hw_event_mc_err_type err_type; 2509 const char *string; 2510 2511 if (ecc_type == 2) 2512 err_type = HW_EVENT_ERR_CORRECTED; 2513 else if (ecc_type == 1) 2514 err_type = HW_EVENT_ERR_UNCORRECTED; 2515 else if (ecc_type == 3) 2516 err_type = HW_EVENT_ERR_DEFERRED; 2517 else { 2518 WARN(1, "Something is rotten in the state of Denmark.\n"); 2519 return; 2520 } 2521 2522 switch (err->err_code) { 2523 case DECODE_OK: 2524 string = ""; 2525 break; 2526 case ERR_NODE: 2527 string = "Failed to map error addr to a node"; 2528 break; 2529 case ERR_CSROW: 2530 string = "Failed to map error addr to a csrow"; 2531 break; 2532 case ERR_CHANNEL: 2533 string = "Unknown syndrome - possible error reporting race"; 2534 break; 2535 case ERR_SYND: 2536 string = "MCA_SYND not valid - unknown syndrome and csrow"; 2537 break; 2538 case ERR_NORM_ADDR: 2539 string = "Cannot decode normalized address"; 2540 break; 2541 default: 2542 string = "WTF error"; 2543 break; 2544 } 2545 2546 edac_mc_handle_error(err_type, mci, 1, 2547 err->page, err->offset, err->syndrome, 2548 err->csrow, err->channel, -1, 2549 string, ""); 2550 } 2551 2552 static inline void decode_bus_error(int node_id, struct mce *m) 2553 { 2554 struct mem_ctl_info *mci; 2555 struct amd64_pvt *pvt; 2556 u8 ecc_type = (m->status >> 45) & 0x3; 2557 u8 xec = XEC(m->status, 0x1f); 2558 u16 ec = EC(m->status); 2559 u64 sys_addr; 2560 struct err_info err; 2561 2562 mci = edac_mc_find(node_id); 2563 if (!mci) 2564 return; 2565 2566 pvt = mci->pvt_info; 2567 2568 /* Bail out early if this was an 'observed' error */ 2569 if (PP(ec) == NBSL_PP_OBS) 2570 return; 2571 2572 /* Do only ECC errors */ 2573 if (xec && xec != F10_NBSL_EXT_ERR_ECC) 2574 return; 2575 2576 memset(&err, 0, sizeof(err)); 2577 2578 sys_addr = get_error_address(pvt, m); 2579 2580 if (ecc_type == 2) 2581 err.syndrome = extract_syndrome(m->status); 2582 2583 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err); 2584 2585 __log_ecc_error(mci, &err, ecc_type); 2586 } 2587 2588 /* 2589 * To find the UMC channel represented by this bank we need to match on its 2590 * instance_id. The instance_id of a bank is held in the lower 32 bits of its 2591 * IPID. 2592 * 2593 * Currently, we can derive the channel number by looking at the 6th nibble in 2594 * the instance_id. For example, instance_id=0xYXXXXX where Y is the channel 2595 * number. 2596 */ 2597 static int find_umc_channel(struct mce *m) 2598 { 2599 return (m->ipid & GENMASK(31, 0)) >> 20; 2600 } 2601 2602 static void decode_umc_error(int node_id, struct mce *m) 2603 { 2604 u8 ecc_type = (m->status >> 45) & 0x3; 2605 struct mem_ctl_info *mci; 2606 struct amd64_pvt *pvt; 2607 struct err_info err; 2608 u64 sys_addr; 2609 2610 mci = edac_mc_find(node_id); 2611 if (!mci) 2612 return; 2613 2614 pvt = mci->pvt_info; 2615 2616 memset(&err, 0, sizeof(err)); 2617 2618 if (m->status & MCI_STATUS_DEFERRED) 2619 ecc_type = 3; 2620 2621 err.channel = find_umc_channel(m); 2622 2623 if (!(m->status & MCI_STATUS_SYNDV)) { 2624 err.err_code = ERR_SYND; 2625 goto log_error; 2626 } 2627 2628 if (ecc_type == 2) { 2629 u8 length = (m->synd >> 18) & 0x3f; 2630 2631 if (length) 2632 err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0); 2633 else 2634 err.err_code = ERR_CHANNEL; 2635 } 2636 2637 err.csrow = m->synd & 0x7; 2638 2639 if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) { 2640 err.err_code = ERR_NORM_ADDR; 2641 goto log_error; 2642 } 2643 2644 error_address_to_page_and_offset(sys_addr, &err); 2645 2646 log_error: 2647 __log_ecc_error(mci, &err, ecc_type); 2648 } 2649 2650 /* 2651 * Use pvt->F3 which contains the F3 CPU PCI device to get the related 2652 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error. 2653 * Reserve F0 and F6 on systems with a UMC. 2654 */ 2655 static int 2656 reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2) 2657 { 2658 if (pvt->umc) { 2659 pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3); 2660 if (!pvt->F0) { 2661 amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1); 2662 return -ENODEV; 2663 } 2664 2665 pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3); 2666 if (!pvt->F6) { 2667 pci_dev_put(pvt->F0); 2668 pvt->F0 = NULL; 2669 2670 amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2); 2671 return -ENODEV; 2672 } 2673 2674 edac_dbg(1, "F0: %s\n", pci_name(pvt->F0)); 2675 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3)); 2676 edac_dbg(1, "F6: %s\n", pci_name(pvt->F6)); 2677 2678 return 0; 2679 } 2680 2681 /* Reserve the ADDRESS MAP Device */ 2682 pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3); 2683 if (!pvt->F1) { 2684 amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1); 2685 return -ENODEV; 2686 } 2687 2688 /* Reserve the DCT Device */ 2689 pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3); 2690 if (!pvt->F2) { 2691 pci_dev_put(pvt->F1); 2692 pvt->F1 = NULL; 2693 2694 amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2); 2695 return -ENODEV; 2696 } 2697 2698 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1)); 2699 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2)); 2700 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3)); 2701 2702 return 0; 2703 } 2704 2705 static void free_mc_sibling_devs(struct amd64_pvt *pvt) 2706 { 2707 if (pvt->umc) { 2708 pci_dev_put(pvt->F0); 2709 pci_dev_put(pvt->F6); 2710 } else { 2711 pci_dev_put(pvt->F1); 2712 pci_dev_put(pvt->F2); 2713 } 2714 } 2715 2716 static void determine_ecc_sym_sz(struct amd64_pvt *pvt) 2717 { 2718 pvt->ecc_sym_sz = 4; 2719 2720 if (pvt->umc) { 2721 u8 i; 2722 2723 for_each_umc(i) { 2724 /* Check enabled channels only: */ 2725 if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) { 2726 if (pvt->umc[i].ecc_ctrl & BIT(9)) { 2727 pvt->ecc_sym_sz = 16; 2728 return; 2729 } else if (pvt->umc[i].ecc_ctrl & BIT(7)) { 2730 pvt->ecc_sym_sz = 8; 2731 return; 2732 } 2733 } 2734 } 2735 } else if (pvt->fam >= 0x10) { 2736 u32 tmp; 2737 2738 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp); 2739 /* F16h has only DCT0, so no need to read dbam1. */ 2740 if (pvt->fam != 0x16) 2741 amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1); 2742 2743 /* F10h, revD and later can do x8 ECC too. */ 2744 if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25)) 2745 pvt->ecc_sym_sz = 8; 2746 } 2747 } 2748 2749 /* 2750 * Retrieve the hardware registers of the memory controller. 2751 */ 2752 static void __read_mc_regs_df(struct amd64_pvt *pvt) 2753 { 2754 u8 nid = pvt->mc_node_id; 2755 struct amd64_umc *umc; 2756 u32 i, umc_base; 2757 2758 /* Read registers from each UMC */ 2759 for_each_umc(i) { 2760 2761 umc_base = get_umc_base(i); 2762 umc = &pvt->umc[i]; 2763 2764 amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg); 2765 amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg); 2766 amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl); 2767 amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl); 2768 amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi); 2769 } 2770 } 2771 2772 /* 2773 * Retrieve the hardware registers of the memory controller (this includes the 2774 * 'Address Map' and 'Misc' device regs) 2775 */ 2776 static void read_mc_regs(struct amd64_pvt *pvt) 2777 { 2778 unsigned int range; 2779 u64 msr_val; 2780 2781 /* 2782 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since 2783 * those are Read-As-Zero. 2784 */ 2785 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem); 2786 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem); 2787 2788 /* Check first whether TOP_MEM2 is enabled: */ 2789 rdmsrl(MSR_K8_SYSCFG, msr_val); 2790 if (msr_val & BIT(21)) { 2791 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2); 2792 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2); 2793 } else { 2794 edac_dbg(0, " TOP_MEM2 disabled\n"); 2795 } 2796 2797 if (pvt->umc) { 2798 __read_mc_regs_df(pvt); 2799 amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar); 2800 2801 goto skip; 2802 } 2803 2804 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap); 2805 2806 read_dram_ctl_register(pvt); 2807 2808 for (range = 0; range < DRAM_RANGES; range++) { 2809 u8 rw; 2810 2811 /* read settings for this DRAM range */ 2812 read_dram_base_limit_regs(pvt, range); 2813 2814 rw = dram_rw(pvt, range); 2815 if (!rw) 2816 continue; 2817 2818 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n", 2819 range, 2820 get_dram_base(pvt, range), 2821 get_dram_limit(pvt, range)); 2822 2823 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n", 2824 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled", 2825 (rw & 0x1) ? "R" : "-", 2826 (rw & 0x2) ? "W" : "-", 2827 dram_intlv_sel(pvt, range), 2828 dram_dst_node(pvt, range)); 2829 } 2830 2831 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar); 2832 amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0); 2833 2834 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare); 2835 2836 amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0); 2837 amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0); 2838 2839 if (!dct_ganging_enabled(pvt)) { 2840 amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1); 2841 amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1); 2842 } 2843 2844 skip: 2845 read_dct_base_mask(pvt); 2846 2847 determine_memory_type(pvt); 2848 edac_dbg(1, " DIMM type: %s\n", edac_mem_types[pvt->dram_type]); 2849 2850 determine_ecc_sym_sz(pvt); 2851 } 2852 2853 /* 2854 * NOTE: CPU Revision Dependent code 2855 * 2856 * Input: 2857 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1) 2858 * k8 private pointer to --> 2859 * DRAM Bank Address mapping register 2860 * node_id 2861 * DCL register where dual_channel_active is 2862 * 2863 * The DBAM register consists of 4 sets of 4 bits each definitions: 2864 * 2865 * Bits: CSROWs 2866 * 0-3 CSROWs 0 and 1 2867 * 4-7 CSROWs 2 and 3 2868 * 8-11 CSROWs 4 and 5 2869 * 12-15 CSROWs 6 and 7 2870 * 2871 * Values range from: 0 to 15 2872 * The meaning of the values depends on CPU revision and dual-channel state, 2873 * see relevant BKDG more info. 2874 * 2875 * The memory controller provides for total of only 8 CSROWs in its current 2876 * architecture. Each "pair" of CSROWs normally represents just one DIMM in 2877 * single channel or two (2) DIMMs in dual channel mode. 2878 * 2879 * The following code logic collapses the various tables for CSROW based on CPU 2880 * revision. 2881 * 2882 * Returns: 2883 * The number of PAGE_SIZE pages on the specified CSROW number it 2884 * encompasses 2885 * 2886 */ 2887 static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig) 2888 { 2889 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0; 2890 int csrow_nr = csrow_nr_orig; 2891 u32 cs_mode, nr_pages; 2892 2893 if (!pvt->umc) { 2894 csrow_nr >>= 1; 2895 cs_mode = DBAM_DIMM(csrow_nr, dbam); 2896 } else { 2897 cs_mode = f17_get_cs_mode(csrow_nr >> 1, dct, pvt); 2898 } 2899 2900 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr); 2901 nr_pages <<= 20 - PAGE_SHIFT; 2902 2903 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n", 2904 csrow_nr_orig, dct, cs_mode); 2905 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages); 2906 2907 return nr_pages; 2908 } 2909 2910 static int init_csrows_df(struct mem_ctl_info *mci) 2911 { 2912 struct amd64_pvt *pvt = mci->pvt_info; 2913 enum edac_type edac_mode = EDAC_NONE; 2914 enum dev_type dev_type = DEV_UNKNOWN; 2915 struct dimm_info *dimm; 2916 int empty = 1; 2917 u8 umc, cs; 2918 2919 if (mci->edac_ctl_cap & EDAC_FLAG_S16ECD16ED) { 2920 edac_mode = EDAC_S16ECD16ED; 2921 dev_type = DEV_X16; 2922 } else if (mci->edac_ctl_cap & EDAC_FLAG_S8ECD8ED) { 2923 edac_mode = EDAC_S8ECD8ED; 2924 dev_type = DEV_X8; 2925 } else if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED) { 2926 edac_mode = EDAC_S4ECD4ED; 2927 dev_type = DEV_X4; 2928 } else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED) { 2929 edac_mode = EDAC_SECDED; 2930 } 2931 2932 for_each_umc(umc) { 2933 for_each_chip_select(cs, umc, pvt) { 2934 if (!csrow_enabled(cs, umc, pvt)) 2935 continue; 2936 2937 empty = 0; 2938 dimm = mci->csrows[cs]->channels[umc]->dimm; 2939 2940 edac_dbg(1, "MC node: %d, csrow: %d\n", 2941 pvt->mc_node_id, cs); 2942 2943 dimm->nr_pages = get_csrow_nr_pages(pvt, umc, cs); 2944 dimm->mtype = pvt->dram_type; 2945 dimm->edac_mode = edac_mode; 2946 dimm->dtype = dev_type; 2947 dimm->grain = 64; 2948 } 2949 } 2950 2951 return empty; 2952 } 2953 2954 /* 2955 * Initialize the array of csrow attribute instances, based on the values 2956 * from pci config hardware registers. 2957 */ 2958 static int init_csrows(struct mem_ctl_info *mci) 2959 { 2960 struct amd64_pvt *pvt = mci->pvt_info; 2961 enum edac_type edac_mode = EDAC_NONE; 2962 struct csrow_info *csrow; 2963 struct dimm_info *dimm; 2964 int i, j, empty = 1; 2965 int nr_pages = 0; 2966 u32 val; 2967 2968 if (pvt->umc) 2969 return init_csrows_df(mci); 2970 2971 amd64_read_pci_cfg(pvt->F3, NBCFG, &val); 2972 2973 pvt->nbcfg = val; 2974 2975 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n", 2976 pvt->mc_node_id, val, 2977 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE)); 2978 2979 /* 2980 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed. 2981 */ 2982 for_each_chip_select(i, 0, pvt) { 2983 bool row_dct0 = !!csrow_enabled(i, 0, pvt); 2984 bool row_dct1 = false; 2985 2986 if (pvt->fam != 0xf) 2987 row_dct1 = !!csrow_enabled(i, 1, pvt); 2988 2989 if (!row_dct0 && !row_dct1) 2990 continue; 2991 2992 csrow = mci->csrows[i]; 2993 empty = 0; 2994 2995 edac_dbg(1, "MC node: %d, csrow: %d\n", 2996 pvt->mc_node_id, i); 2997 2998 if (row_dct0) { 2999 nr_pages = get_csrow_nr_pages(pvt, 0, i); 3000 csrow->channels[0]->dimm->nr_pages = nr_pages; 3001 } 3002 3003 /* K8 has only one DCT */ 3004 if (pvt->fam != 0xf && row_dct1) { 3005 int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i); 3006 3007 csrow->channels[1]->dimm->nr_pages = row_dct1_pages; 3008 nr_pages += row_dct1_pages; 3009 } 3010 3011 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages); 3012 3013 /* Determine DIMM ECC mode: */ 3014 if (pvt->nbcfg & NBCFG_ECC_ENABLE) { 3015 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) 3016 ? EDAC_S4ECD4ED 3017 : EDAC_SECDED; 3018 } 3019 3020 for (j = 0; j < pvt->channel_count; j++) { 3021 dimm = csrow->channels[j]->dimm; 3022 dimm->mtype = pvt->dram_type; 3023 dimm->edac_mode = edac_mode; 3024 dimm->grain = 64; 3025 } 3026 } 3027 3028 return empty; 3029 } 3030 3031 /* get all cores on this DCT */ 3032 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid) 3033 { 3034 int cpu; 3035 3036 for_each_online_cpu(cpu) 3037 if (amd_get_nb_id(cpu) == nid) 3038 cpumask_set_cpu(cpu, mask); 3039 } 3040 3041 /* check MCG_CTL on all the cpus on this node */ 3042 static bool nb_mce_bank_enabled_on_node(u16 nid) 3043 { 3044 cpumask_var_t mask; 3045 int cpu, nbe; 3046 bool ret = false; 3047 3048 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { 3049 amd64_warn("%s: Error allocating mask\n", __func__); 3050 return false; 3051 } 3052 3053 get_cpus_on_this_dct_cpumask(mask, nid); 3054 3055 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs); 3056 3057 for_each_cpu(cpu, mask) { 3058 struct msr *reg = per_cpu_ptr(msrs, cpu); 3059 nbe = reg->l & MSR_MCGCTL_NBE; 3060 3061 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n", 3062 cpu, reg->q, 3063 (nbe ? "enabled" : "disabled")); 3064 3065 if (!nbe) 3066 goto out; 3067 } 3068 ret = true; 3069 3070 out: 3071 free_cpumask_var(mask); 3072 return ret; 3073 } 3074 3075 static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on) 3076 { 3077 cpumask_var_t cmask; 3078 int cpu; 3079 3080 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) { 3081 amd64_warn("%s: error allocating mask\n", __func__); 3082 return -ENOMEM; 3083 } 3084 3085 get_cpus_on_this_dct_cpumask(cmask, nid); 3086 3087 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 3088 3089 for_each_cpu(cpu, cmask) { 3090 3091 struct msr *reg = per_cpu_ptr(msrs, cpu); 3092 3093 if (on) { 3094 if (reg->l & MSR_MCGCTL_NBE) 3095 s->flags.nb_mce_enable = 1; 3096 3097 reg->l |= MSR_MCGCTL_NBE; 3098 } else { 3099 /* 3100 * Turn off NB MCE reporting only when it was off before 3101 */ 3102 if (!s->flags.nb_mce_enable) 3103 reg->l &= ~MSR_MCGCTL_NBE; 3104 } 3105 } 3106 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 3107 3108 free_cpumask_var(cmask); 3109 3110 return 0; 3111 } 3112 3113 static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid, 3114 struct pci_dev *F3) 3115 { 3116 bool ret = true; 3117 u32 value, mask = 0x3; /* UECC/CECC enable */ 3118 3119 if (toggle_ecc_err_reporting(s, nid, ON)) { 3120 amd64_warn("Error enabling ECC reporting over MCGCTL!\n"); 3121 return false; 3122 } 3123 3124 amd64_read_pci_cfg(F3, NBCTL, &value); 3125 3126 s->old_nbctl = value & mask; 3127 s->nbctl_valid = true; 3128 3129 value |= mask; 3130 amd64_write_pci_cfg(F3, NBCTL, value); 3131 3132 amd64_read_pci_cfg(F3, NBCFG, &value); 3133 3134 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", 3135 nid, value, !!(value & NBCFG_ECC_ENABLE)); 3136 3137 if (!(value & NBCFG_ECC_ENABLE)) { 3138 amd64_warn("DRAM ECC disabled on this node, enabling...\n"); 3139 3140 s->flags.nb_ecc_prev = 0; 3141 3142 /* Attempt to turn on DRAM ECC Enable */ 3143 value |= NBCFG_ECC_ENABLE; 3144 amd64_write_pci_cfg(F3, NBCFG, value); 3145 3146 amd64_read_pci_cfg(F3, NBCFG, &value); 3147 3148 if (!(value & NBCFG_ECC_ENABLE)) { 3149 amd64_warn("Hardware rejected DRAM ECC enable," 3150 "check memory DIMM configuration.\n"); 3151 ret = false; 3152 } else { 3153 amd64_info("Hardware accepted DRAM ECC Enable\n"); 3154 } 3155 } else { 3156 s->flags.nb_ecc_prev = 1; 3157 } 3158 3159 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", 3160 nid, value, !!(value & NBCFG_ECC_ENABLE)); 3161 3162 return ret; 3163 } 3164 3165 static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid, 3166 struct pci_dev *F3) 3167 { 3168 u32 value, mask = 0x3; /* UECC/CECC enable */ 3169 3170 if (!s->nbctl_valid) 3171 return; 3172 3173 amd64_read_pci_cfg(F3, NBCTL, &value); 3174 value &= ~mask; 3175 value |= s->old_nbctl; 3176 3177 amd64_write_pci_cfg(F3, NBCTL, value); 3178 3179 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */ 3180 if (!s->flags.nb_ecc_prev) { 3181 amd64_read_pci_cfg(F3, NBCFG, &value); 3182 value &= ~NBCFG_ECC_ENABLE; 3183 amd64_write_pci_cfg(F3, NBCFG, value); 3184 } 3185 3186 /* restore the NB Enable MCGCTL bit */ 3187 if (toggle_ecc_err_reporting(s, nid, OFF)) 3188 amd64_warn("Error restoring NB MCGCTL settings!\n"); 3189 } 3190 3191 static bool ecc_enabled(struct amd64_pvt *pvt) 3192 { 3193 u16 nid = pvt->mc_node_id; 3194 bool nb_mce_en = false; 3195 u8 ecc_en = 0, i; 3196 u32 value; 3197 3198 if (boot_cpu_data.x86 >= 0x17) { 3199 u8 umc_en_mask = 0, ecc_en_mask = 0; 3200 struct amd64_umc *umc; 3201 3202 for_each_umc(i) { 3203 umc = &pvt->umc[i]; 3204 3205 /* Only check enabled UMCs. */ 3206 if (!(umc->sdp_ctrl & UMC_SDP_INIT)) 3207 continue; 3208 3209 umc_en_mask |= BIT(i); 3210 3211 if (umc->umc_cap_hi & UMC_ECC_ENABLED) 3212 ecc_en_mask |= BIT(i); 3213 } 3214 3215 /* Check whether at least one UMC is enabled: */ 3216 if (umc_en_mask) 3217 ecc_en = umc_en_mask == ecc_en_mask; 3218 else 3219 edac_dbg(0, "Node %d: No enabled UMCs.\n", nid); 3220 3221 /* Assume UMC MCA banks are enabled. */ 3222 nb_mce_en = true; 3223 } else { 3224 amd64_read_pci_cfg(pvt->F3, NBCFG, &value); 3225 3226 ecc_en = !!(value & NBCFG_ECC_ENABLE); 3227 3228 nb_mce_en = nb_mce_bank_enabled_on_node(nid); 3229 if (!nb_mce_en) 3230 edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n", 3231 MSR_IA32_MCG_CTL, nid); 3232 } 3233 3234 amd64_info("Node %d: DRAM ECC %s.\n", 3235 nid, (ecc_en ? "enabled" : "disabled")); 3236 3237 if (!ecc_en || !nb_mce_en) 3238 return false; 3239 else 3240 return true; 3241 } 3242 3243 static inline void 3244 f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt) 3245 { 3246 u8 i, ecc_en = 1, cpk_en = 1, dev_x4 = 1, dev_x16 = 1; 3247 3248 for_each_umc(i) { 3249 if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) { 3250 ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED); 3251 cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP); 3252 3253 dev_x4 &= !!(pvt->umc[i].dimm_cfg & BIT(6)); 3254 dev_x16 &= !!(pvt->umc[i].dimm_cfg & BIT(7)); 3255 } 3256 } 3257 3258 /* Set chipkill only if ECC is enabled: */ 3259 if (ecc_en) { 3260 mci->edac_ctl_cap |= EDAC_FLAG_SECDED; 3261 3262 if (!cpk_en) 3263 return; 3264 3265 if (dev_x4) 3266 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; 3267 else if (dev_x16) 3268 mci->edac_ctl_cap |= EDAC_FLAG_S16ECD16ED; 3269 else 3270 mci->edac_ctl_cap |= EDAC_FLAG_S8ECD8ED; 3271 } 3272 } 3273 3274 static void setup_mci_misc_attrs(struct mem_ctl_info *mci) 3275 { 3276 struct amd64_pvt *pvt = mci->pvt_info; 3277 3278 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2; 3279 mci->edac_ctl_cap = EDAC_FLAG_NONE; 3280 3281 if (pvt->umc) { 3282 f17h_determine_edac_ctl_cap(mci, pvt); 3283 } else { 3284 if (pvt->nbcap & NBCAP_SECDED) 3285 mci->edac_ctl_cap |= EDAC_FLAG_SECDED; 3286 3287 if (pvt->nbcap & NBCAP_CHIPKILL) 3288 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; 3289 } 3290 3291 mci->edac_cap = determine_edac_cap(pvt); 3292 mci->mod_name = EDAC_MOD_STR; 3293 mci->ctl_name = fam_type->ctl_name; 3294 mci->dev_name = pci_name(pvt->F3); 3295 mci->ctl_page_to_phys = NULL; 3296 3297 /* memory scrubber interface */ 3298 mci->set_sdram_scrub_rate = set_scrub_rate; 3299 mci->get_sdram_scrub_rate = get_scrub_rate; 3300 } 3301 3302 /* 3303 * returns a pointer to the family descriptor on success, NULL otherwise. 3304 */ 3305 static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt) 3306 { 3307 pvt->ext_model = boot_cpu_data.x86_model >> 4; 3308 pvt->stepping = boot_cpu_data.x86_stepping; 3309 pvt->model = boot_cpu_data.x86_model; 3310 pvt->fam = boot_cpu_data.x86; 3311 3312 switch (pvt->fam) { 3313 case 0xf: 3314 fam_type = &family_types[K8_CPUS]; 3315 pvt->ops = &family_types[K8_CPUS].ops; 3316 break; 3317 3318 case 0x10: 3319 fam_type = &family_types[F10_CPUS]; 3320 pvt->ops = &family_types[F10_CPUS].ops; 3321 break; 3322 3323 case 0x15: 3324 if (pvt->model == 0x30) { 3325 fam_type = &family_types[F15_M30H_CPUS]; 3326 pvt->ops = &family_types[F15_M30H_CPUS].ops; 3327 break; 3328 } else if (pvt->model == 0x60) { 3329 fam_type = &family_types[F15_M60H_CPUS]; 3330 pvt->ops = &family_types[F15_M60H_CPUS].ops; 3331 break; 3332 } 3333 3334 fam_type = &family_types[F15_CPUS]; 3335 pvt->ops = &family_types[F15_CPUS].ops; 3336 break; 3337 3338 case 0x16: 3339 if (pvt->model == 0x30) { 3340 fam_type = &family_types[F16_M30H_CPUS]; 3341 pvt->ops = &family_types[F16_M30H_CPUS].ops; 3342 break; 3343 } 3344 fam_type = &family_types[F16_CPUS]; 3345 pvt->ops = &family_types[F16_CPUS].ops; 3346 break; 3347 3348 case 0x17: 3349 if (pvt->model >= 0x10 && pvt->model <= 0x2f) { 3350 fam_type = &family_types[F17_M10H_CPUS]; 3351 pvt->ops = &family_types[F17_M10H_CPUS].ops; 3352 break; 3353 } else if (pvt->model >= 0x30 && pvt->model <= 0x3f) { 3354 fam_type = &family_types[F17_M30H_CPUS]; 3355 pvt->ops = &family_types[F17_M30H_CPUS].ops; 3356 break; 3357 } else if (pvt->model >= 0x70 && pvt->model <= 0x7f) { 3358 fam_type = &family_types[F17_M70H_CPUS]; 3359 pvt->ops = &family_types[F17_M70H_CPUS].ops; 3360 break; 3361 } 3362 /* fall through */ 3363 case 0x18: 3364 fam_type = &family_types[F17_CPUS]; 3365 pvt->ops = &family_types[F17_CPUS].ops; 3366 3367 if (pvt->fam == 0x18) 3368 family_types[F17_CPUS].ctl_name = "F18h"; 3369 break; 3370 3371 default: 3372 amd64_err("Unsupported family!\n"); 3373 return NULL; 3374 } 3375 3376 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name, 3377 (pvt->fam == 0xf ? 3378 (pvt->ext_model >= K8_REV_F ? "revF or later " 3379 : "revE or earlier ") 3380 : ""), pvt->mc_node_id); 3381 return fam_type; 3382 } 3383 3384 static const struct attribute_group *amd64_edac_attr_groups[] = { 3385 #ifdef CONFIG_EDAC_DEBUG 3386 &amd64_edac_dbg_group, 3387 #endif 3388 #ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION 3389 &amd64_edac_inj_group, 3390 #endif 3391 NULL 3392 }; 3393 3394 static int hw_info_get(struct amd64_pvt *pvt) 3395 { 3396 u16 pci_id1, pci_id2; 3397 int ret = -EINVAL; 3398 3399 if (pvt->fam >= 0x17) { 3400 pvt->umc = kcalloc(fam_type->max_mcs, sizeof(struct amd64_umc), GFP_KERNEL); 3401 if (!pvt->umc) 3402 return -ENOMEM; 3403 3404 pci_id1 = fam_type->f0_id; 3405 pci_id2 = fam_type->f6_id; 3406 } else { 3407 pci_id1 = fam_type->f1_id; 3408 pci_id2 = fam_type->f2_id; 3409 } 3410 3411 ret = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2); 3412 if (ret) 3413 return ret; 3414 3415 read_mc_regs(pvt); 3416 3417 return 0; 3418 } 3419 3420 static void hw_info_put(struct amd64_pvt *pvt) 3421 { 3422 if (pvt->F0 || pvt->F1) 3423 free_mc_sibling_devs(pvt); 3424 3425 kfree(pvt->umc); 3426 } 3427 3428 static int init_one_instance(struct amd64_pvt *pvt) 3429 { 3430 struct mem_ctl_info *mci = NULL; 3431 struct edac_mc_layer layers[2]; 3432 int ret = -EINVAL; 3433 3434 /* 3435 * We need to determine how many memory channels there are. Then use 3436 * that information for calculating the size of the dynamic instance 3437 * tables in the 'mci' structure. 3438 */ 3439 pvt->channel_count = pvt->ops->early_channel_count(pvt); 3440 if (pvt->channel_count < 0) 3441 return ret; 3442 3443 ret = -ENOMEM; 3444 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; 3445 layers[0].size = pvt->csels[0].b_cnt; 3446 layers[0].is_virt_csrow = true; 3447 layers[1].type = EDAC_MC_LAYER_CHANNEL; 3448 3449 /* 3450 * Always allocate two channels since we can have setups with DIMMs on 3451 * only one channel. Also, this simplifies handling later for the price 3452 * of a couple of KBs tops. 3453 */ 3454 layers[1].size = fam_type->max_mcs; 3455 layers[1].is_virt_csrow = false; 3456 3457 mci = edac_mc_alloc(pvt->mc_node_id, ARRAY_SIZE(layers), layers, 0); 3458 if (!mci) 3459 return ret; 3460 3461 mci->pvt_info = pvt; 3462 mci->pdev = &pvt->F3->dev; 3463 3464 setup_mci_misc_attrs(mci); 3465 3466 if (init_csrows(mci)) 3467 mci->edac_cap = EDAC_FLAG_NONE; 3468 3469 ret = -ENODEV; 3470 if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) { 3471 edac_dbg(1, "failed edac_mc_add_mc()\n"); 3472 edac_mc_free(mci); 3473 return ret; 3474 } 3475 3476 return 0; 3477 } 3478 3479 static bool instance_has_memory(struct amd64_pvt *pvt) 3480 { 3481 bool cs_enabled = false; 3482 int cs = 0, dct = 0; 3483 3484 for (dct = 0; dct < fam_type->max_mcs; dct++) { 3485 for_each_chip_select(cs, dct, pvt) 3486 cs_enabled |= csrow_enabled(cs, dct, pvt); 3487 } 3488 3489 return cs_enabled; 3490 } 3491 3492 static int probe_one_instance(unsigned int nid) 3493 { 3494 struct pci_dev *F3 = node_to_amd_nb(nid)->misc; 3495 struct amd64_pvt *pvt = NULL; 3496 struct ecc_settings *s; 3497 int ret; 3498 3499 ret = -ENOMEM; 3500 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL); 3501 if (!s) 3502 goto err_out; 3503 3504 ecc_stngs[nid] = s; 3505 3506 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL); 3507 if (!pvt) 3508 goto err_settings; 3509 3510 pvt->mc_node_id = nid; 3511 pvt->F3 = F3; 3512 3513 fam_type = per_family_init(pvt); 3514 if (!fam_type) 3515 goto err_enable; 3516 3517 ret = hw_info_get(pvt); 3518 if (ret < 0) 3519 goto err_enable; 3520 3521 ret = 0; 3522 if (!instance_has_memory(pvt)) { 3523 amd64_info("Node %d: No DIMMs detected.\n", nid); 3524 goto err_enable; 3525 } 3526 3527 if (!ecc_enabled(pvt)) { 3528 ret = -ENODEV; 3529 3530 if (!ecc_enable_override) 3531 goto err_enable; 3532 3533 if (boot_cpu_data.x86 >= 0x17) { 3534 amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS."); 3535 goto err_enable; 3536 } else 3537 amd64_warn("Forcing ECC on!\n"); 3538 3539 if (!enable_ecc_error_reporting(s, nid, F3)) 3540 goto err_enable; 3541 } 3542 3543 ret = init_one_instance(pvt); 3544 if (ret < 0) { 3545 amd64_err("Error probing instance: %d\n", nid); 3546 3547 if (boot_cpu_data.x86 < 0x17) 3548 restore_ecc_error_reporting(s, nid, F3); 3549 3550 goto err_enable; 3551 } 3552 3553 dump_misc_regs(pvt); 3554 3555 return ret; 3556 3557 err_enable: 3558 hw_info_put(pvt); 3559 kfree(pvt); 3560 3561 err_settings: 3562 kfree(s); 3563 ecc_stngs[nid] = NULL; 3564 3565 err_out: 3566 return ret; 3567 } 3568 3569 static void remove_one_instance(unsigned int nid) 3570 { 3571 struct pci_dev *F3 = node_to_amd_nb(nid)->misc; 3572 struct ecc_settings *s = ecc_stngs[nid]; 3573 struct mem_ctl_info *mci; 3574 struct amd64_pvt *pvt; 3575 3576 mci = find_mci_by_dev(&F3->dev); 3577 WARN_ON(!mci); 3578 3579 /* Remove from EDAC CORE tracking list */ 3580 mci = edac_mc_del_mc(&F3->dev); 3581 if (!mci) 3582 return; 3583 3584 pvt = mci->pvt_info; 3585 3586 restore_ecc_error_reporting(s, nid, F3); 3587 3588 kfree(ecc_stngs[nid]); 3589 ecc_stngs[nid] = NULL; 3590 3591 /* Free the EDAC CORE resources */ 3592 mci->pvt_info = NULL; 3593 3594 hw_info_put(pvt); 3595 kfree(pvt); 3596 edac_mc_free(mci); 3597 } 3598 3599 static void setup_pci_device(void) 3600 { 3601 struct mem_ctl_info *mci; 3602 struct amd64_pvt *pvt; 3603 3604 if (pci_ctl) 3605 return; 3606 3607 mci = edac_mc_find(0); 3608 if (!mci) 3609 return; 3610 3611 pvt = mci->pvt_info; 3612 if (pvt->umc) 3613 pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR); 3614 else 3615 pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR); 3616 if (!pci_ctl) { 3617 pr_warn("%s(): Unable to create PCI control\n", __func__); 3618 pr_warn("%s(): PCI error report via EDAC not set\n", __func__); 3619 } 3620 } 3621 3622 static const struct x86_cpu_id amd64_cpuids[] = { 3623 { X86_VENDOR_AMD, 0xF, X86_MODEL_ANY, X86_FEATURE_ANY, 0 }, 3624 { X86_VENDOR_AMD, 0x10, X86_MODEL_ANY, X86_FEATURE_ANY, 0 }, 3625 { X86_VENDOR_AMD, 0x15, X86_MODEL_ANY, X86_FEATURE_ANY, 0 }, 3626 { X86_VENDOR_AMD, 0x16, X86_MODEL_ANY, X86_FEATURE_ANY, 0 }, 3627 { X86_VENDOR_AMD, 0x17, X86_MODEL_ANY, X86_FEATURE_ANY, 0 }, 3628 { X86_VENDOR_HYGON, 0x18, X86_MODEL_ANY, X86_FEATURE_ANY, 0 }, 3629 { } 3630 }; 3631 MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids); 3632 3633 static int __init amd64_edac_init(void) 3634 { 3635 const char *owner; 3636 int err = -ENODEV; 3637 int i; 3638 3639 owner = edac_get_owner(); 3640 if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) 3641 return -EBUSY; 3642 3643 if (!x86_match_cpu(amd64_cpuids)) 3644 return -ENODEV; 3645 3646 if (amd_cache_northbridges() < 0) 3647 return -ENODEV; 3648 3649 opstate_init(); 3650 3651 err = -ENOMEM; 3652 ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL); 3653 if (!ecc_stngs) 3654 goto err_free; 3655 3656 msrs = msrs_alloc(); 3657 if (!msrs) 3658 goto err_free; 3659 3660 for (i = 0; i < amd_nb_num(); i++) { 3661 err = probe_one_instance(i); 3662 if (err) { 3663 /* unwind properly */ 3664 while (--i >= 0) 3665 remove_one_instance(i); 3666 3667 goto err_pci; 3668 } 3669 } 3670 3671 if (!edac_has_mcs()) { 3672 err = -ENODEV; 3673 goto err_pci; 3674 } 3675 3676 /* register stuff with EDAC MCE */ 3677 if (report_gart_errors) 3678 amd_report_gart_errors(true); 3679 3680 if (boot_cpu_data.x86 >= 0x17) 3681 amd_register_ecc_decoder(decode_umc_error); 3682 else 3683 amd_register_ecc_decoder(decode_bus_error); 3684 3685 setup_pci_device(); 3686 3687 #ifdef CONFIG_X86_32 3688 amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR); 3689 #endif 3690 3691 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION); 3692 3693 return 0; 3694 3695 err_pci: 3696 msrs_free(msrs); 3697 msrs = NULL; 3698 3699 err_free: 3700 kfree(ecc_stngs); 3701 ecc_stngs = NULL; 3702 3703 return err; 3704 } 3705 3706 static void __exit amd64_edac_exit(void) 3707 { 3708 int i; 3709 3710 if (pci_ctl) 3711 edac_pci_release_generic_ctl(pci_ctl); 3712 3713 /* unregister from EDAC MCE */ 3714 amd_report_gart_errors(false); 3715 3716 if (boot_cpu_data.x86 >= 0x17) 3717 amd_unregister_ecc_decoder(decode_umc_error); 3718 else 3719 amd_unregister_ecc_decoder(decode_bus_error); 3720 3721 for (i = 0; i < amd_nb_num(); i++) 3722 remove_one_instance(i); 3723 3724 kfree(ecc_stngs); 3725 ecc_stngs = NULL; 3726 3727 msrs_free(msrs); 3728 msrs = NULL; 3729 } 3730 3731 module_init(amd64_edac_init); 3732 module_exit(amd64_edac_exit); 3733 3734 MODULE_LICENSE("GPL"); 3735 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, " 3736 "Dave Peterson, Thayne Harbaugh"); 3737 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - " 3738 EDAC_AMD64_VERSION); 3739 3740 module_param(edac_op_state, int, 0444); 3741 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 3742