1 #include "amd64_edac.h" 2 #include <asm/amd_nb.h> 3 4 static struct edac_pci_ctl_info *amd64_ctl_pci; 5 6 static int report_gart_errors; 7 module_param(report_gart_errors, int, 0644); 8 9 /* 10 * Set by command line parameter. If BIOS has enabled the ECC, this override is 11 * cleared to prevent re-enabling the hardware by this driver. 12 */ 13 static int ecc_enable_override; 14 module_param(ecc_enable_override, int, 0644); 15 16 static struct msr __percpu *msrs; 17 18 /* 19 * count successfully initialized driver instances for setup_pci_device() 20 */ 21 static atomic_t drv_instances = ATOMIC_INIT(0); 22 23 /* Per-node driver instances */ 24 static struct mem_ctl_info **mcis; 25 static struct ecc_settings **ecc_stngs; 26 27 /* 28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing 29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching- 30 * or higher value'. 31 * 32 *FIXME: Produce a better mapping/linearisation. 33 */ 34 static const struct scrubrate { 35 u32 scrubval; /* bit pattern for scrub rate */ 36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */ 37 } scrubrates[] = { 38 { 0x01, 1600000000UL}, 39 { 0x02, 800000000UL}, 40 { 0x03, 400000000UL}, 41 { 0x04, 200000000UL}, 42 { 0x05, 100000000UL}, 43 { 0x06, 50000000UL}, 44 { 0x07, 25000000UL}, 45 { 0x08, 12284069UL}, 46 { 0x09, 6274509UL}, 47 { 0x0A, 3121951UL}, 48 { 0x0B, 1560975UL}, 49 { 0x0C, 781440UL}, 50 { 0x0D, 390720UL}, 51 { 0x0E, 195300UL}, 52 { 0x0F, 97650UL}, 53 { 0x10, 48854UL}, 54 { 0x11, 24427UL}, 55 { 0x12, 12213UL}, 56 { 0x13, 6101UL}, 57 { 0x14, 3051UL}, 58 { 0x15, 1523UL}, 59 { 0x16, 761UL}, 60 { 0x00, 0UL}, /* scrubbing off */ 61 }; 62 63 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset, 64 u32 *val, const char *func) 65 { 66 int err = 0; 67 68 err = pci_read_config_dword(pdev, offset, val); 69 if (err) 70 amd64_warn("%s: error reading F%dx%03x.\n", 71 func, PCI_FUNC(pdev->devfn), offset); 72 73 return err; 74 } 75 76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset, 77 u32 val, const char *func) 78 { 79 int err = 0; 80 81 err = pci_write_config_dword(pdev, offset, val); 82 if (err) 83 amd64_warn("%s: error writing to F%dx%03x.\n", 84 func, PCI_FUNC(pdev->devfn), offset); 85 86 return err; 87 } 88 89 /* 90 * 91 * Depending on the family, F2 DCT reads need special handling: 92 * 93 * K8: has a single DCT only 94 * 95 * F10h: each DCT has its own set of regs 96 * DCT0 -> F2x040.. 97 * DCT1 -> F2x140.. 98 * 99 * F15h: we select which DCT we access using F1x10C[DctCfgSel] 100 * 101 * F16h: has only 1 DCT 102 */ 103 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, 104 const char *func) 105 { 106 if (addr >= 0x100) 107 return -EINVAL; 108 109 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); 110 } 111 112 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, 113 const char *func) 114 { 115 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); 116 } 117 118 /* 119 * Select DCT to which PCI cfg accesses are routed 120 */ 121 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct) 122 { 123 u32 reg = 0; 124 125 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®); 126 reg &= (pvt->model >= 0x30) ? ~3 : ~1; 127 reg |= dct; 128 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg); 129 } 130 131 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, 132 const char *func) 133 { 134 u8 dct = 0; 135 136 /* For F15 M30h, the second dct is DCT 3, refer to BKDG Section 2.10 */ 137 if (addr >= 0x140 && addr <= 0x1a0) { 138 dct = (pvt->model >= 0x30) ? 3 : 1; 139 addr -= 0x100; 140 } 141 142 f15h_select_dct(pvt, dct); 143 144 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); 145 } 146 147 /* 148 * Memory scrubber control interface. For K8, memory scrubbing is handled by 149 * hardware and can involve L2 cache, dcache as well as the main memory. With 150 * F10, this is extended to L3 cache scrubbing on CPU models sporting that 151 * functionality. 152 * 153 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks 154 * (dram) over to cache lines. This is nasty, so we will use bandwidth in 155 * bytes/sec for the setting. 156 * 157 * Currently, we only do dram scrubbing. If the scrubbing is done in software on 158 * other archs, we might not have access to the caches directly. 159 */ 160 161 /* 162 * scan the scrub rate mapping table for a close or matching bandwidth value to 163 * issue. If requested is too big, then use last maximum value found. 164 */ 165 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate) 166 { 167 u32 scrubval; 168 int i; 169 170 /* 171 * map the configured rate (new_bw) to a value specific to the AMD64 172 * memory controller and apply to register. Search for the first 173 * bandwidth entry that is greater or equal than the setting requested 174 * and program that. If at last entry, turn off DRAM scrubbing. 175 * 176 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely 177 * by falling back to the last element in scrubrates[]. 178 */ 179 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) { 180 /* 181 * skip scrub rates which aren't recommended 182 * (see F10 BKDG, F3x58) 183 */ 184 if (scrubrates[i].scrubval < min_rate) 185 continue; 186 187 if (scrubrates[i].bandwidth <= new_bw) 188 break; 189 } 190 191 scrubval = scrubrates[i].scrubval; 192 193 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F); 194 195 if (scrubval) 196 return scrubrates[i].bandwidth; 197 198 return 0; 199 } 200 201 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw) 202 { 203 struct amd64_pvt *pvt = mci->pvt_info; 204 u32 min_scrubrate = 0x5; 205 206 if (pvt->fam == 0xf) 207 min_scrubrate = 0x0; 208 209 /* Erratum #505 */ 210 if (pvt->fam == 0x15 && pvt->model < 0x10) 211 f15h_select_dct(pvt, 0); 212 213 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate); 214 } 215 216 static int amd64_get_scrub_rate(struct mem_ctl_info *mci) 217 { 218 struct amd64_pvt *pvt = mci->pvt_info; 219 u32 scrubval = 0; 220 int i, retval = -EINVAL; 221 222 /* Erratum #505 */ 223 if (pvt->fam == 0x15 && pvt->model < 0x10) 224 f15h_select_dct(pvt, 0); 225 226 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval); 227 228 scrubval = scrubval & 0x001F; 229 230 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { 231 if (scrubrates[i].scrubval == scrubval) { 232 retval = scrubrates[i].bandwidth; 233 break; 234 } 235 } 236 return retval; 237 } 238 239 /* 240 * returns true if the SysAddr given by sys_addr matches the 241 * DRAM base/limit associated with node_id 242 */ 243 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, 244 u8 nid) 245 { 246 u64 addr; 247 248 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be 249 * all ones if the most significant implemented address bit is 1. 250 * Here we discard bits 63-40. See section 3.4.2 of AMD publication 251 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 252 * Application Programming. 253 */ 254 addr = sys_addr & 0x000000ffffffffffull; 255 256 return ((addr >= get_dram_base(pvt, nid)) && 257 (addr <= get_dram_limit(pvt, nid))); 258 } 259 260 /* 261 * Attempt to map a SysAddr to a node. On success, return a pointer to the 262 * mem_ctl_info structure for the node that the SysAddr maps to. 263 * 264 * On failure, return NULL. 265 */ 266 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, 267 u64 sys_addr) 268 { 269 struct amd64_pvt *pvt; 270 u8 node_id; 271 u32 intlv_en, bits; 272 273 /* 274 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section 275 * 3.4.4.2) registers to map the SysAddr to a node ID. 276 */ 277 pvt = mci->pvt_info; 278 279 /* 280 * The value of this field should be the same for all DRAM Base 281 * registers. Therefore we arbitrarily choose to read it from the 282 * register for node 0. 283 */ 284 intlv_en = dram_intlv_en(pvt, 0); 285 286 if (intlv_en == 0) { 287 for (node_id = 0; node_id < DRAM_RANGES; node_id++) { 288 if (amd64_base_limit_match(pvt, sys_addr, node_id)) 289 goto found; 290 } 291 goto err_no_match; 292 } 293 294 if (unlikely((intlv_en != 0x01) && 295 (intlv_en != 0x03) && 296 (intlv_en != 0x07))) { 297 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en); 298 return NULL; 299 } 300 301 bits = (((u32) sys_addr) >> 12) & intlv_en; 302 303 for (node_id = 0; ; ) { 304 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits) 305 break; /* intlv_sel field matches */ 306 307 if (++node_id >= DRAM_RANGES) 308 goto err_no_match; 309 } 310 311 /* sanity test for sys_addr */ 312 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) { 313 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address" 314 "range for node %d with node interleaving enabled.\n", 315 __func__, sys_addr, node_id); 316 return NULL; 317 } 318 319 found: 320 return edac_mc_find((int)node_id); 321 322 err_no_match: 323 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n", 324 (unsigned long)sys_addr); 325 326 return NULL; 327 } 328 329 /* 330 * compute the CS base address of the @csrow on the DRAM controller @dct. 331 * For details see F2x[5C:40] in the processor's BKDG 332 */ 333 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct, 334 u64 *base, u64 *mask) 335 { 336 u64 csbase, csmask, base_bits, mask_bits; 337 u8 addr_shift; 338 339 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) { 340 csbase = pvt->csels[dct].csbases[csrow]; 341 csmask = pvt->csels[dct].csmasks[csrow]; 342 base_bits = GENMASK(21, 31) | GENMASK(9, 15); 343 mask_bits = GENMASK(21, 29) | GENMASK(9, 15); 344 addr_shift = 4; 345 346 /* 347 * F16h and F15h, models 30h and later need two addr_shift values: 348 * 8 for high and 6 for low (cf. F16h BKDG). 349 */ 350 } else if (pvt->fam == 0x16 || 351 (pvt->fam == 0x15 && pvt->model >= 0x30)) { 352 csbase = pvt->csels[dct].csbases[csrow]; 353 csmask = pvt->csels[dct].csmasks[csrow >> 1]; 354 355 *base = (csbase & GENMASK(5, 15)) << 6; 356 *base |= (csbase & GENMASK(19, 30)) << 8; 357 358 *mask = ~0ULL; 359 /* poke holes for the csmask */ 360 *mask &= ~((GENMASK(5, 15) << 6) | 361 (GENMASK(19, 30) << 8)); 362 363 *mask |= (csmask & GENMASK(5, 15)) << 6; 364 *mask |= (csmask & GENMASK(19, 30)) << 8; 365 366 return; 367 } else { 368 csbase = pvt->csels[dct].csbases[csrow]; 369 csmask = pvt->csels[dct].csmasks[csrow >> 1]; 370 addr_shift = 8; 371 372 if (pvt->fam == 0x15) 373 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13); 374 else 375 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13); 376 } 377 378 *base = (csbase & base_bits) << addr_shift; 379 380 *mask = ~0ULL; 381 /* poke holes for the csmask */ 382 *mask &= ~(mask_bits << addr_shift); 383 /* OR them in */ 384 *mask |= (csmask & mask_bits) << addr_shift; 385 } 386 387 #define for_each_chip_select(i, dct, pvt) \ 388 for (i = 0; i < pvt->csels[dct].b_cnt; i++) 389 390 #define chip_select_base(i, dct, pvt) \ 391 pvt->csels[dct].csbases[i] 392 393 #define for_each_chip_select_mask(i, dct, pvt) \ 394 for (i = 0; i < pvt->csels[dct].m_cnt; i++) 395 396 /* 397 * @input_addr is an InputAddr associated with the node given by mci. Return the 398 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). 399 */ 400 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) 401 { 402 struct amd64_pvt *pvt; 403 int csrow; 404 u64 base, mask; 405 406 pvt = mci->pvt_info; 407 408 for_each_chip_select(csrow, 0, pvt) { 409 if (!csrow_enabled(csrow, 0, pvt)) 410 continue; 411 412 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask); 413 414 mask = ~mask; 415 416 if ((input_addr & mask) == (base & mask)) { 417 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n", 418 (unsigned long)input_addr, csrow, 419 pvt->mc_node_id); 420 421 return csrow; 422 } 423 } 424 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n", 425 (unsigned long)input_addr, pvt->mc_node_id); 426 427 return -1; 428 } 429 430 /* 431 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) 432 * for the node represented by mci. Info is passed back in *hole_base, 433 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if 434 * info is invalid. Info may be invalid for either of the following reasons: 435 * 436 * - The revision of the node is not E or greater. In this case, the DRAM Hole 437 * Address Register does not exist. 438 * 439 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, 440 * indicating that its contents are not valid. 441 * 442 * The values passed back in *hole_base, *hole_offset, and *hole_size are 443 * complete 32-bit values despite the fact that the bitfields in the DHAR 444 * only represent bits 31-24 of the base and offset values. 445 */ 446 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, 447 u64 *hole_offset, u64 *hole_size) 448 { 449 struct amd64_pvt *pvt = mci->pvt_info; 450 451 /* only revE and later have the DRAM Hole Address Register */ 452 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) { 453 edac_dbg(1, " revision %d for node %d does not support DHAR\n", 454 pvt->ext_model, pvt->mc_node_id); 455 return 1; 456 } 457 458 /* valid for Fam10h and above */ 459 if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) { 460 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n"); 461 return 1; 462 } 463 464 if (!dhar_valid(pvt)) { 465 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n", 466 pvt->mc_node_id); 467 return 1; 468 } 469 470 /* This node has Memory Hoisting */ 471 472 /* +------------------+--------------------+--------------------+----- 473 * | memory | DRAM hole | relocated | 474 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from | 475 * | | | DRAM hole | 476 * | | | [0x100000000, | 477 * | | | (0x100000000+ | 478 * | | | (0xffffffff-x))] | 479 * +------------------+--------------------+--------------------+----- 480 * 481 * Above is a diagram of physical memory showing the DRAM hole and the 482 * relocated addresses from the DRAM hole. As shown, the DRAM hole 483 * starts at address x (the base address) and extends through address 484 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the 485 * addresses in the hole so that they start at 0x100000000. 486 */ 487 488 *hole_base = dhar_base(pvt); 489 *hole_size = (1ULL << 32) - *hole_base; 490 491 *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt) 492 : k8_dhar_offset(pvt); 493 494 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", 495 pvt->mc_node_id, (unsigned long)*hole_base, 496 (unsigned long)*hole_offset, (unsigned long)*hole_size); 497 498 return 0; 499 } 500 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info); 501 502 /* 503 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is 504 * assumed that sys_addr maps to the node given by mci. 505 * 506 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section 507 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a 508 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, 509 * then it is also involved in translating a SysAddr to a DramAddr. Sections 510 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. 511 * These parts of the documentation are unclear. I interpret them as follows: 512 * 513 * When node n receives a SysAddr, it processes the SysAddr as follows: 514 * 515 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM 516 * Limit registers for node n. If the SysAddr is not within the range 517 * specified by the base and limit values, then node n ignores the Sysaddr 518 * (since it does not map to node n). Otherwise continue to step 2 below. 519 * 520 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is 521 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within 522 * the range of relocated addresses (starting at 0x100000000) from the DRAM 523 * hole. If not, skip to step 3 below. Else get the value of the 524 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the 525 * offset defined by this value from the SysAddr. 526 * 527 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM 528 * Base register for node n. To obtain the DramAddr, subtract the base 529 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70). 530 */ 531 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) 532 { 533 struct amd64_pvt *pvt = mci->pvt_info; 534 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; 535 int ret; 536 537 dram_base = get_dram_base(pvt, pvt->mc_node_id); 538 539 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, 540 &hole_size); 541 if (!ret) { 542 if ((sys_addr >= (1ULL << 32)) && 543 (sys_addr < ((1ULL << 32) + hole_size))) { 544 /* use DHAR to translate SysAddr to DramAddr */ 545 dram_addr = sys_addr - hole_offset; 546 547 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n", 548 (unsigned long)sys_addr, 549 (unsigned long)dram_addr); 550 551 return dram_addr; 552 } 553 } 554 555 /* 556 * Translate the SysAddr to a DramAddr as shown near the start of 557 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8 558 * only deals with 40-bit values. Therefore we discard bits 63-40 of 559 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we 560 * discard are all 1s. Otherwise the bits we discard are all 0s. See 561 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture 562 * Programmer's Manual Volume 1 Application Programming. 563 */ 564 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base; 565 566 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n", 567 (unsigned long)sys_addr, (unsigned long)dram_addr); 568 return dram_addr; 569 } 570 571 /* 572 * @intlv_en is the value of the IntlvEn field from a DRAM Base register 573 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used 574 * for node interleaving. 575 */ 576 static int num_node_interleave_bits(unsigned intlv_en) 577 { 578 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; 579 int n; 580 581 BUG_ON(intlv_en > 7); 582 n = intlv_shift_table[intlv_en]; 583 return n; 584 } 585 586 /* Translate the DramAddr given by @dram_addr to an InputAddr. */ 587 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) 588 { 589 struct amd64_pvt *pvt; 590 int intlv_shift; 591 u64 input_addr; 592 593 pvt = mci->pvt_info; 594 595 /* 596 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) 597 * concerning translating a DramAddr to an InputAddr. 598 */ 599 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); 600 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) + 601 (dram_addr & 0xfff); 602 603 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", 604 intlv_shift, (unsigned long)dram_addr, 605 (unsigned long)input_addr); 606 607 return input_addr; 608 } 609 610 /* 611 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is 612 * assumed that @sys_addr maps to the node given by mci. 613 */ 614 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) 615 { 616 u64 input_addr; 617 618 input_addr = 619 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); 620 621 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n", 622 (unsigned long)sys_addr, (unsigned long)input_addr); 623 624 return input_addr; 625 } 626 627 /* Map the Error address to a PAGE and PAGE OFFSET. */ 628 static inline void error_address_to_page_and_offset(u64 error_address, 629 struct err_info *err) 630 { 631 err->page = (u32) (error_address >> PAGE_SHIFT); 632 err->offset = ((u32) error_address) & ~PAGE_MASK; 633 } 634 635 /* 636 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address 637 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers 638 * of a node that detected an ECC memory error. mci represents the node that 639 * the error address maps to (possibly different from the node that detected 640 * the error). Return the number of the csrow that sys_addr maps to, or -1 on 641 * error. 642 */ 643 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) 644 { 645 int csrow; 646 647 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); 648 649 if (csrow == -1) 650 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for " 651 "address 0x%lx\n", (unsigned long)sys_addr); 652 return csrow; 653 } 654 655 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); 656 657 /* 658 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs 659 * are ECC capable. 660 */ 661 static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt) 662 { 663 u8 bit; 664 unsigned long edac_cap = EDAC_FLAG_NONE; 665 666 bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F) 667 ? 19 668 : 17; 669 670 if (pvt->dclr0 & BIT(bit)) 671 edac_cap = EDAC_FLAG_SECDED; 672 673 return edac_cap; 674 } 675 676 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8); 677 678 static void amd64_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan) 679 { 680 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr); 681 682 edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n", 683 (dclr & BIT(16)) ? "un" : "", 684 (dclr & BIT(19)) ? "yes" : "no"); 685 686 edac_dbg(1, " PAR/ERR parity: %s\n", 687 (dclr & BIT(8)) ? "enabled" : "disabled"); 688 689 if (pvt->fam == 0x10) 690 edac_dbg(1, " DCT 128bit mode width: %s\n", 691 (dclr & BIT(11)) ? "128b" : "64b"); 692 693 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n", 694 (dclr & BIT(12)) ? "yes" : "no", 695 (dclr & BIT(13)) ? "yes" : "no", 696 (dclr & BIT(14)) ? "yes" : "no", 697 (dclr & BIT(15)) ? "yes" : "no"); 698 } 699 700 /* Display and decode various NB registers for debug purposes. */ 701 static void dump_misc_regs(struct amd64_pvt *pvt) 702 { 703 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap); 704 705 edac_dbg(1, " NB two channel DRAM capable: %s\n", 706 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no"); 707 708 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n", 709 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no", 710 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no"); 711 712 amd64_dump_dramcfg_low(pvt, pvt->dclr0, 0); 713 714 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare); 715 716 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n", 717 pvt->dhar, dhar_base(pvt), 718 (pvt->fam == 0xf) ? k8_dhar_offset(pvt) 719 : f10_dhar_offset(pvt)); 720 721 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no"); 722 723 amd64_debug_display_dimm_sizes(pvt, 0); 724 725 /* everything below this point is Fam10h and above */ 726 if (pvt->fam == 0xf) 727 return; 728 729 amd64_debug_display_dimm_sizes(pvt, 1); 730 731 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4")); 732 733 /* Only if NOT ganged does dclr1 have valid info */ 734 if (!dct_ganging_enabled(pvt)) 735 amd64_dump_dramcfg_low(pvt, pvt->dclr1, 1); 736 } 737 738 /* 739 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60] 740 */ 741 static void prep_chip_selects(struct amd64_pvt *pvt) 742 { 743 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) { 744 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; 745 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8; 746 } else if (pvt->fam == 0x15 && pvt->model >= 0x30) { 747 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4; 748 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2; 749 } else { 750 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; 751 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4; 752 } 753 } 754 755 /* 756 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers 757 */ 758 static void read_dct_base_mask(struct amd64_pvt *pvt) 759 { 760 int cs; 761 762 prep_chip_selects(pvt); 763 764 for_each_chip_select(cs, 0, pvt) { 765 int reg0 = DCSB0 + (cs * 4); 766 int reg1 = DCSB1 + (cs * 4); 767 u32 *base0 = &pvt->csels[0].csbases[cs]; 768 u32 *base1 = &pvt->csels[1].csbases[cs]; 769 770 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0)) 771 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n", 772 cs, *base0, reg0); 773 774 if (pvt->fam == 0xf || dct_ganging_enabled(pvt)) 775 continue; 776 777 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1)) 778 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n", 779 cs, *base1, reg1); 780 } 781 782 for_each_chip_select_mask(cs, 0, pvt) { 783 int reg0 = DCSM0 + (cs * 4); 784 int reg1 = DCSM1 + (cs * 4); 785 u32 *mask0 = &pvt->csels[0].csmasks[cs]; 786 u32 *mask1 = &pvt->csels[1].csmasks[cs]; 787 788 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0)) 789 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n", 790 cs, *mask0, reg0); 791 792 if (pvt->fam == 0xf || dct_ganging_enabled(pvt)) 793 continue; 794 795 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1)) 796 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n", 797 cs, *mask1, reg1); 798 } 799 } 800 801 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs) 802 { 803 enum mem_type type; 804 805 /* F15h supports only DDR3 */ 806 if (pvt->fam >= 0x15) 807 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; 808 else if (pvt->fam == 0x10 || pvt->ext_model >= K8_REV_F) { 809 if (pvt->dchr0 & DDR3_MODE) 810 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; 811 else 812 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; 813 } else { 814 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; 815 } 816 817 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]); 818 819 return type; 820 } 821 822 /* Get the number of DCT channels the memory controller is using. */ 823 static int k8_early_channel_count(struct amd64_pvt *pvt) 824 { 825 int flag; 826 827 if (pvt->ext_model >= K8_REV_F) 828 /* RevF (NPT) and later */ 829 flag = pvt->dclr0 & WIDTH_128; 830 else 831 /* RevE and earlier */ 832 flag = pvt->dclr0 & REVE_WIDTH_128; 833 834 /* not used */ 835 pvt->dclr1 = 0; 836 837 return (flag) ? 2 : 1; 838 } 839 840 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */ 841 static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m) 842 { 843 u64 addr; 844 u8 start_bit = 1; 845 u8 end_bit = 47; 846 847 if (pvt->fam == 0xf) { 848 start_bit = 3; 849 end_bit = 39; 850 } 851 852 addr = m->addr & GENMASK(start_bit, end_bit); 853 854 /* 855 * Erratum 637 workaround 856 */ 857 if (pvt->fam == 0x15) { 858 struct amd64_pvt *pvt; 859 u64 cc6_base, tmp_addr; 860 u32 tmp; 861 u16 mce_nid; 862 u8 intlv_en; 863 864 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7) 865 return addr; 866 867 mce_nid = amd_get_nb_id(m->extcpu); 868 pvt = mcis[mce_nid]->pvt_info; 869 870 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp); 871 intlv_en = tmp >> 21 & 0x7; 872 873 /* add [47:27] + 3 trailing bits */ 874 cc6_base = (tmp & GENMASK(0, 20)) << 3; 875 876 /* reverse and add DramIntlvEn */ 877 cc6_base |= intlv_en ^ 0x7; 878 879 /* pin at [47:24] */ 880 cc6_base <<= 24; 881 882 if (!intlv_en) 883 return cc6_base | (addr & GENMASK(0, 23)); 884 885 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp); 886 887 /* faster log2 */ 888 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1); 889 890 /* OR DramIntlvSel into bits [14:12] */ 891 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9; 892 893 /* add remaining [11:0] bits from original MC4_ADDR */ 894 tmp_addr |= addr & GENMASK(0, 11); 895 896 return cc6_base | tmp_addr; 897 } 898 899 return addr; 900 } 901 902 static struct pci_dev *pci_get_related_function(unsigned int vendor, 903 unsigned int device, 904 struct pci_dev *related) 905 { 906 struct pci_dev *dev = NULL; 907 908 while ((dev = pci_get_device(vendor, device, dev))) { 909 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) && 910 (dev->bus->number == related->bus->number) && 911 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) 912 break; 913 } 914 915 return dev; 916 } 917 918 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range) 919 { 920 struct amd_northbridge *nb; 921 struct pci_dev *f1 = NULL; 922 unsigned int pci_func; 923 int off = range << 3; 924 u32 llim; 925 926 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo); 927 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo); 928 929 if (pvt->fam == 0xf) 930 return; 931 932 if (!dram_rw(pvt, range)) 933 return; 934 935 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi); 936 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi); 937 938 /* F15h: factor in CC6 save area by reading dst node's limit reg */ 939 if (pvt->fam != 0x15) 940 return; 941 942 nb = node_to_amd_nb(dram_dst_node(pvt, range)); 943 if (WARN_ON(!nb)) 944 return; 945 946 pci_func = (pvt->model == 0x30) ? PCI_DEVICE_ID_AMD_15H_M30H_NB_F1 947 : PCI_DEVICE_ID_AMD_15H_NB_F1; 948 949 f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc); 950 if (WARN_ON(!f1)) 951 return; 952 953 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim); 954 955 pvt->ranges[range].lim.lo &= GENMASK(0, 15); 956 957 /* {[39:27],111b} */ 958 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16; 959 960 pvt->ranges[range].lim.hi &= GENMASK(0, 7); 961 962 /* [47:40] */ 963 pvt->ranges[range].lim.hi |= llim >> 13; 964 965 pci_dev_put(f1); 966 } 967 968 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, 969 struct err_info *err) 970 { 971 struct amd64_pvt *pvt = mci->pvt_info; 972 973 error_address_to_page_and_offset(sys_addr, err); 974 975 /* 976 * Find out which node the error address belongs to. This may be 977 * different from the node that detected the error. 978 */ 979 err->src_mci = find_mc_by_sys_addr(mci, sys_addr); 980 if (!err->src_mci) { 981 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n", 982 (unsigned long)sys_addr); 983 err->err_code = ERR_NODE; 984 return; 985 } 986 987 /* Now map the sys_addr to a CSROW */ 988 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr); 989 if (err->csrow < 0) { 990 err->err_code = ERR_CSROW; 991 return; 992 } 993 994 /* CHIPKILL enabled */ 995 if (pvt->nbcfg & NBCFG_CHIPKILL) { 996 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); 997 if (err->channel < 0) { 998 /* 999 * Syndrome didn't map, so we don't know which of the 1000 * 2 DIMMs is in error. So we need to ID 'both' of them 1001 * as suspect. 1002 */ 1003 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - " 1004 "possible error reporting race\n", 1005 err->syndrome); 1006 err->err_code = ERR_CHANNEL; 1007 return; 1008 } 1009 } else { 1010 /* 1011 * non-chipkill ecc mode 1012 * 1013 * The k8 documentation is unclear about how to determine the 1014 * channel number when using non-chipkill memory. This method 1015 * was obtained from email communication with someone at AMD. 1016 * (Wish the email was placed in this comment - norsk) 1017 */ 1018 err->channel = ((sys_addr & BIT(3)) != 0); 1019 } 1020 } 1021 1022 static int ddr2_cs_size(unsigned i, bool dct_width) 1023 { 1024 unsigned shift = 0; 1025 1026 if (i <= 2) 1027 shift = i; 1028 else if (!(i & 0x1)) 1029 shift = i >> 1; 1030 else 1031 shift = (i + 1) >> 1; 1032 1033 return 128 << (shift + !!dct_width); 1034 } 1035 1036 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1037 unsigned cs_mode) 1038 { 1039 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; 1040 1041 if (pvt->ext_model >= K8_REV_F) { 1042 WARN_ON(cs_mode > 11); 1043 return ddr2_cs_size(cs_mode, dclr & WIDTH_128); 1044 } 1045 else if (pvt->ext_model >= K8_REV_D) { 1046 unsigned diff; 1047 WARN_ON(cs_mode > 10); 1048 1049 /* 1050 * the below calculation, besides trying to win an obfuscated C 1051 * contest, maps cs_mode values to DIMM chip select sizes. The 1052 * mappings are: 1053 * 1054 * cs_mode CS size (mb) 1055 * ======= ============ 1056 * 0 32 1057 * 1 64 1058 * 2 128 1059 * 3 128 1060 * 4 256 1061 * 5 512 1062 * 6 256 1063 * 7 512 1064 * 8 1024 1065 * 9 1024 1066 * 10 2048 1067 * 1068 * Basically, it calculates a value with which to shift the 1069 * smallest CS size of 32MB. 1070 * 1071 * ddr[23]_cs_size have a similar purpose. 1072 */ 1073 diff = cs_mode/3 + (unsigned)(cs_mode > 5); 1074 1075 return 32 << (cs_mode - diff); 1076 } 1077 else { 1078 WARN_ON(cs_mode > 6); 1079 return 32 << cs_mode; 1080 } 1081 } 1082 1083 /* 1084 * Get the number of DCT channels in use. 1085 * 1086 * Return: 1087 * number of Memory Channels in operation 1088 * Pass back: 1089 * contents of the DCL0_LOW register 1090 */ 1091 static int f1x_early_channel_count(struct amd64_pvt *pvt) 1092 { 1093 int i, j, channels = 0; 1094 1095 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */ 1096 if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128)) 1097 return 2; 1098 1099 /* 1100 * Need to check if in unganged mode: In such, there are 2 channels, 1101 * but they are not in 128 bit mode and thus the above 'dclr0' status 1102 * bit will be OFF. 1103 * 1104 * Need to check DCT0[0] and DCT1[0] to see if only one of them has 1105 * their CSEnable bit on. If so, then SINGLE DIMM case. 1106 */ 1107 edac_dbg(0, "Data width is not 128 bits - need more decoding\n"); 1108 1109 /* 1110 * Check DRAM Bank Address Mapping values for each DIMM to see if there 1111 * is more than just one DIMM present in unganged mode. Need to check 1112 * both controllers since DIMMs can be placed in either one. 1113 */ 1114 for (i = 0; i < 2; i++) { 1115 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0); 1116 1117 for (j = 0; j < 4; j++) { 1118 if (DBAM_DIMM(j, dbam) > 0) { 1119 channels++; 1120 break; 1121 } 1122 } 1123 } 1124 1125 if (channels > 2) 1126 channels = 2; 1127 1128 amd64_info("MCT channel count: %d\n", channels); 1129 1130 return channels; 1131 } 1132 1133 static int ddr3_cs_size(unsigned i, bool dct_width) 1134 { 1135 unsigned shift = 0; 1136 int cs_size = 0; 1137 1138 if (i == 0 || i == 3 || i == 4) 1139 cs_size = -1; 1140 else if (i <= 2) 1141 shift = i; 1142 else if (i == 12) 1143 shift = 7; 1144 else if (!(i & 0x1)) 1145 shift = i >> 1; 1146 else 1147 shift = (i + 1) >> 1; 1148 1149 if (cs_size != -1) 1150 cs_size = (128 * (1 << !!dct_width)) << shift; 1151 1152 return cs_size; 1153 } 1154 1155 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1156 unsigned cs_mode) 1157 { 1158 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; 1159 1160 WARN_ON(cs_mode > 11); 1161 1162 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE) 1163 return ddr3_cs_size(cs_mode, dclr & WIDTH_128); 1164 else 1165 return ddr2_cs_size(cs_mode, dclr & WIDTH_128); 1166 } 1167 1168 /* 1169 * F15h supports only 64bit DCT interfaces 1170 */ 1171 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1172 unsigned cs_mode) 1173 { 1174 WARN_ON(cs_mode > 12); 1175 1176 return ddr3_cs_size(cs_mode, false); 1177 } 1178 1179 /* 1180 * F16h and F15h model 30h have only limited cs_modes. 1181 */ 1182 static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1183 unsigned cs_mode) 1184 { 1185 WARN_ON(cs_mode > 12); 1186 1187 if (cs_mode == 6 || cs_mode == 8 || 1188 cs_mode == 9 || cs_mode == 12) 1189 return -1; 1190 else 1191 return ddr3_cs_size(cs_mode, false); 1192 } 1193 1194 static void read_dram_ctl_register(struct amd64_pvt *pvt) 1195 { 1196 1197 if (pvt->fam == 0xf) 1198 return; 1199 1200 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) { 1201 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n", 1202 pvt->dct_sel_lo, dct_sel_baseaddr(pvt)); 1203 1204 edac_dbg(0, " DCTs operate in %s mode\n", 1205 (dct_ganging_enabled(pvt) ? "ganged" : "unganged")); 1206 1207 if (!dct_ganging_enabled(pvt)) 1208 edac_dbg(0, " Address range split per DCT: %s\n", 1209 (dct_high_range_enabled(pvt) ? "yes" : "no")); 1210 1211 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n", 1212 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"), 1213 (dct_memory_cleared(pvt) ? "yes" : "no")); 1214 1215 edac_dbg(0, " channel interleave: %s, " 1216 "interleave bits selector: 0x%x\n", 1217 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"), 1218 dct_sel_interleave_addr(pvt)); 1219 } 1220 1221 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi); 1222 } 1223 1224 /* 1225 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG, 1226 * 2.10.12 Memory Interleaving Modes). 1227 */ 1228 static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, 1229 u8 intlv_en, int num_dcts_intlv, 1230 u32 dct_sel) 1231 { 1232 u8 channel = 0; 1233 u8 select; 1234 1235 if (!(intlv_en)) 1236 return (u8)(dct_sel); 1237 1238 if (num_dcts_intlv == 2) { 1239 select = (sys_addr >> 8) & 0x3; 1240 channel = select ? 0x3 : 0; 1241 } else if (num_dcts_intlv == 4) 1242 channel = (sys_addr >> 8) & 0x7; 1243 1244 return channel; 1245 } 1246 1247 /* 1248 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory 1249 * Interleaving Modes. 1250 */ 1251 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, 1252 bool hi_range_sel, u8 intlv_en) 1253 { 1254 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1; 1255 1256 if (dct_ganging_enabled(pvt)) 1257 return 0; 1258 1259 if (hi_range_sel) 1260 return dct_sel_high; 1261 1262 /* 1263 * see F2x110[DctSelIntLvAddr] - channel interleave mode 1264 */ 1265 if (dct_interleave_enabled(pvt)) { 1266 u8 intlv_addr = dct_sel_interleave_addr(pvt); 1267 1268 /* return DCT select function: 0=DCT0, 1=DCT1 */ 1269 if (!intlv_addr) 1270 return sys_addr >> 6 & 1; 1271 1272 if (intlv_addr & 0x2) { 1273 u8 shift = intlv_addr & 0x1 ? 9 : 6; 1274 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2; 1275 1276 return ((sys_addr >> shift) & 1) ^ temp; 1277 } 1278 1279 return (sys_addr >> (12 + hweight8(intlv_en))) & 1; 1280 } 1281 1282 if (dct_high_range_enabled(pvt)) 1283 return ~dct_sel_high & 1; 1284 1285 return 0; 1286 } 1287 1288 /* Convert the sys_addr to the normalized DCT address */ 1289 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range, 1290 u64 sys_addr, bool hi_rng, 1291 u32 dct_sel_base_addr) 1292 { 1293 u64 chan_off; 1294 u64 dram_base = get_dram_base(pvt, range); 1295 u64 hole_off = f10_dhar_offset(pvt); 1296 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16; 1297 1298 if (hi_rng) { 1299 /* 1300 * if 1301 * base address of high range is below 4Gb 1302 * (bits [47:27] at [31:11]) 1303 * DRAM address space on this DCT is hoisted above 4Gb && 1304 * sys_addr > 4Gb 1305 * 1306 * remove hole offset from sys_addr 1307 * else 1308 * remove high range offset from sys_addr 1309 */ 1310 if ((!(dct_sel_base_addr >> 16) || 1311 dct_sel_base_addr < dhar_base(pvt)) && 1312 dhar_valid(pvt) && 1313 (sys_addr >= BIT_64(32))) 1314 chan_off = hole_off; 1315 else 1316 chan_off = dct_sel_base_off; 1317 } else { 1318 /* 1319 * if 1320 * we have a valid hole && 1321 * sys_addr > 4Gb 1322 * 1323 * remove hole 1324 * else 1325 * remove dram base to normalize to DCT address 1326 */ 1327 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32))) 1328 chan_off = hole_off; 1329 else 1330 chan_off = dram_base; 1331 } 1332 1333 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47)); 1334 } 1335 1336 /* 1337 * checks if the csrow passed in is marked as SPARED, if so returns the new 1338 * spare row 1339 */ 1340 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow) 1341 { 1342 int tmp_cs; 1343 1344 if (online_spare_swap_done(pvt, dct) && 1345 csrow == online_spare_bad_dramcs(pvt, dct)) { 1346 1347 for_each_chip_select(tmp_cs, dct, pvt) { 1348 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) { 1349 csrow = tmp_cs; 1350 break; 1351 } 1352 } 1353 } 1354 return csrow; 1355 } 1356 1357 /* 1358 * Iterate over the DRAM DCT "base" and "mask" registers looking for a 1359 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' 1360 * 1361 * Return: 1362 * -EINVAL: NOT FOUND 1363 * 0..csrow = Chip-Select Row 1364 */ 1365 static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct) 1366 { 1367 struct mem_ctl_info *mci; 1368 struct amd64_pvt *pvt; 1369 u64 cs_base, cs_mask; 1370 int cs_found = -EINVAL; 1371 int csrow; 1372 1373 mci = mcis[nid]; 1374 if (!mci) 1375 return cs_found; 1376 1377 pvt = mci->pvt_info; 1378 1379 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct); 1380 1381 for_each_chip_select(csrow, dct, pvt) { 1382 if (!csrow_enabled(csrow, dct, pvt)) 1383 continue; 1384 1385 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask); 1386 1387 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n", 1388 csrow, cs_base, cs_mask); 1389 1390 cs_mask = ~cs_mask; 1391 1392 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n", 1393 (in_addr & cs_mask), (cs_base & cs_mask)); 1394 1395 if ((in_addr & cs_mask) == (cs_base & cs_mask)) { 1396 if (pvt->fam == 0x15 && pvt->model >= 0x30) { 1397 cs_found = csrow; 1398 break; 1399 } 1400 cs_found = f10_process_possible_spare(pvt, dct, csrow); 1401 1402 edac_dbg(1, " MATCH csrow=%d\n", cs_found); 1403 break; 1404 } 1405 } 1406 return cs_found; 1407 } 1408 1409 /* 1410 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is 1411 * swapped with a region located at the bottom of memory so that the GPU can use 1412 * the interleaved region and thus two channels. 1413 */ 1414 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr) 1415 { 1416 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr; 1417 1418 if (pvt->fam == 0x10) { 1419 /* only revC3 and revE have that feature */ 1420 if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3)) 1421 return sys_addr; 1422 } 1423 1424 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg); 1425 1426 if (!(swap_reg & 0x1)) 1427 return sys_addr; 1428 1429 swap_base = (swap_reg >> 3) & 0x7f; 1430 swap_limit = (swap_reg >> 11) & 0x7f; 1431 rgn_size = (swap_reg >> 20) & 0x7f; 1432 tmp_addr = sys_addr >> 27; 1433 1434 if (!(sys_addr >> 34) && 1435 (((tmp_addr >= swap_base) && 1436 (tmp_addr <= swap_limit)) || 1437 (tmp_addr < rgn_size))) 1438 return sys_addr ^ (u64)swap_base << 27; 1439 1440 return sys_addr; 1441 } 1442 1443 /* For a given @dram_range, check if @sys_addr falls within it. */ 1444 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range, 1445 u64 sys_addr, int *chan_sel) 1446 { 1447 int cs_found = -EINVAL; 1448 u64 chan_addr; 1449 u32 dct_sel_base; 1450 u8 channel; 1451 bool high_range = false; 1452 1453 u8 node_id = dram_dst_node(pvt, range); 1454 u8 intlv_en = dram_intlv_en(pvt, range); 1455 u32 intlv_sel = dram_intlv_sel(pvt, range); 1456 1457 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", 1458 range, sys_addr, get_dram_limit(pvt, range)); 1459 1460 if (dhar_valid(pvt) && 1461 dhar_base(pvt) <= sys_addr && 1462 sys_addr < BIT_64(32)) { 1463 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", 1464 sys_addr); 1465 return -EINVAL; 1466 } 1467 1468 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en))) 1469 return -EINVAL; 1470 1471 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr); 1472 1473 dct_sel_base = dct_sel_baseaddr(pvt); 1474 1475 /* 1476 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to 1477 * select between DCT0 and DCT1. 1478 */ 1479 if (dct_high_range_enabled(pvt) && 1480 !dct_ganging_enabled(pvt) && 1481 ((sys_addr >> 27) >= (dct_sel_base >> 11))) 1482 high_range = true; 1483 1484 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en); 1485 1486 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr, 1487 high_range, dct_sel_base); 1488 1489 /* Remove node interleaving, see F1x120 */ 1490 if (intlv_en) 1491 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) | 1492 (chan_addr & 0xfff); 1493 1494 /* remove channel interleave */ 1495 if (dct_interleave_enabled(pvt) && 1496 !dct_high_range_enabled(pvt) && 1497 !dct_ganging_enabled(pvt)) { 1498 1499 if (dct_sel_interleave_addr(pvt) != 1) { 1500 if (dct_sel_interleave_addr(pvt) == 0x3) 1501 /* hash 9 */ 1502 chan_addr = ((chan_addr >> 10) << 9) | 1503 (chan_addr & 0x1ff); 1504 else 1505 /* A[6] or hash 6 */ 1506 chan_addr = ((chan_addr >> 7) << 6) | 1507 (chan_addr & 0x3f); 1508 } else 1509 /* A[12] */ 1510 chan_addr = ((chan_addr >> 13) << 12) | 1511 (chan_addr & 0xfff); 1512 } 1513 1514 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr); 1515 1516 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel); 1517 1518 if (cs_found >= 0) 1519 *chan_sel = channel; 1520 1521 return cs_found; 1522 } 1523 1524 static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range, 1525 u64 sys_addr, int *chan_sel) 1526 { 1527 int cs_found = -EINVAL; 1528 int num_dcts_intlv = 0; 1529 u64 chan_addr, chan_offset; 1530 u64 dct_base, dct_limit; 1531 u32 dct_cont_base_reg, dct_cont_limit_reg, tmp; 1532 u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en; 1533 1534 u64 dhar_offset = f10_dhar_offset(pvt); 1535 u8 intlv_addr = dct_sel_interleave_addr(pvt); 1536 u8 node_id = dram_dst_node(pvt, range); 1537 u8 intlv_en = dram_intlv_en(pvt, range); 1538 1539 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg); 1540 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg); 1541 1542 dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0)); 1543 dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7); 1544 1545 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", 1546 range, sys_addr, get_dram_limit(pvt, range)); 1547 1548 if (!(get_dram_base(pvt, range) <= sys_addr) && 1549 !(get_dram_limit(pvt, range) >= sys_addr)) 1550 return -EINVAL; 1551 1552 if (dhar_valid(pvt) && 1553 dhar_base(pvt) <= sys_addr && 1554 sys_addr < BIT_64(32)) { 1555 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", 1556 sys_addr); 1557 return -EINVAL; 1558 } 1559 1560 /* Verify sys_addr is within DCT Range. */ 1561 dct_base = (u64) dct_sel_baseaddr(pvt); 1562 dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF; 1563 1564 if (!(dct_cont_base_reg & BIT(0)) && 1565 !(dct_base <= (sys_addr >> 27) && 1566 dct_limit >= (sys_addr >> 27))) 1567 return -EINVAL; 1568 1569 /* Verify number of dct's that participate in channel interleaving. */ 1570 num_dcts_intlv = (int) hweight8(intlv_en); 1571 1572 if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4)) 1573 return -EINVAL; 1574 1575 channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en, 1576 num_dcts_intlv, dct_sel); 1577 1578 /* Verify we stay within the MAX number of channels allowed */ 1579 if (channel > 4 || channel < 0) 1580 return -EINVAL; 1581 1582 leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0)); 1583 1584 /* Get normalized DCT addr */ 1585 if (leg_mmio_hole && (sys_addr >= BIT_64(32))) 1586 chan_offset = dhar_offset; 1587 else 1588 chan_offset = dct_base << 27; 1589 1590 chan_addr = sys_addr - chan_offset; 1591 1592 /* remove channel interleave */ 1593 if (num_dcts_intlv == 2) { 1594 if (intlv_addr == 0x4) 1595 chan_addr = ((chan_addr >> 9) << 8) | 1596 (chan_addr & 0xff); 1597 else if (intlv_addr == 0x5) 1598 chan_addr = ((chan_addr >> 10) << 9) | 1599 (chan_addr & 0x1ff); 1600 else 1601 return -EINVAL; 1602 1603 } else if (num_dcts_intlv == 4) { 1604 if (intlv_addr == 0x4) 1605 chan_addr = ((chan_addr >> 10) << 8) | 1606 (chan_addr & 0xff); 1607 else if (intlv_addr == 0x5) 1608 chan_addr = ((chan_addr >> 11) << 9) | 1609 (chan_addr & 0x1ff); 1610 else 1611 return -EINVAL; 1612 } 1613 1614 if (dct_offset_en) { 1615 amd64_read_pci_cfg(pvt->F1, 1616 DRAM_CONT_HIGH_OFF + (int) channel * 4, 1617 &tmp); 1618 chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27; 1619 } 1620 1621 f15h_select_dct(pvt, channel); 1622 1623 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr); 1624 1625 /* 1626 * Find Chip select: 1627 * if channel = 3, then alias it to 1. This is because, in F15 M30h, 1628 * there is support for 4 DCT's, but only 2 are currently functional. 1629 * They are DCT0 and DCT3. But we have read all registers of DCT3 into 1630 * pvt->csels[1]. So we need to use '1' here to get correct info. 1631 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications. 1632 */ 1633 alias_channel = (channel == 3) ? 1 : channel; 1634 1635 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel); 1636 1637 if (cs_found >= 0) 1638 *chan_sel = alias_channel; 1639 1640 return cs_found; 1641 } 1642 1643 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, 1644 u64 sys_addr, 1645 int *chan_sel) 1646 { 1647 int cs_found = -EINVAL; 1648 unsigned range; 1649 1650 for (range = 0; range < DRAM_RANGES; range++) { 1651 if (!dram_rw(pvt, range)) 1652 continue; 1653 1654 if (pvt->fam == 0x15 && pvt->model >= 0x30) 1655 cs_found = f15_m30h_match_to_this_node(pvt, range, 1656 sys_addr, 1657 chan_sel); 1658 1659 else if ((get_dram_base(pvt, range) <= sys_addr) && 1660 (get_dram_limit(pvt, range) >= sys_addr)) { 1661 cs_found = f1x_match_to_this_node(pvt, range, 1662 sys_addr, chan_sel); 1663 if (cs_found >= 0) 1664 break; 1665 } 1666 } 1667 return cs_found; 1668 } 1669 1670 /* 1671 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps 1672 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW). 1673 * 1674 * The @sys_addr is usually an error address received from the hardware 1675 * (MCX_ADDR). 1676 */ 1677 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, 1678 struct err_info *err) 1679 { 1680 struct amd64_pvt *pvt = mci->pvt_info; 1681 1682 error_address_to_page_and_offset(sys_addr, err); 1683 1684 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel); 1685 if (err->csrow < 0) { 1686 err->err_code = ERR_CSROW; 1687 return; 1688 } 1689 1690 /* 1691 * We need the syndromes for channel detection only when we're 1692 * ganged. Otherwise @chan should already contain the channel at 1693 * this point. 1694 */ 1695 if (dct_ganging_enabled(pvt)) 1696 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); 1697 } 1698 1699 /* 1700 * debug routine to display the memory sizes of all logical DIMMs and its 1701 * CSROWs 1702 */ 1703 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl) 1704 { 1705 int dimm, size0, size1; 1706 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases; 1707 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0; 1708 1709 if (pvt->fam == 0xf) { 1710 /* K8 families < revF not supported yet */ 1711 if (pvt->ext_model < K8_REV_F) 1712 return; 1713 else 1714 WARN_ON(ctrl != 0); 1715 } 1716 1717 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0; 1718 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases 1719 : pvt->csels[0].csbases; 1720 1721 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", 1722 ctrl, dbam); 1723 1724 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl); 1725 1726 /* Dump memory sizes for DIMM and its CSROWs */ 1727 for (dimm = 0; dimm < 4; dimm++) { 1728 1729 size0 = 0; 1730 if (dcsb[dimm*2] & DCSB_CS_ENABLE) 1731 size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 1732 DBAM_DIMM(dimm, dbam)); 1733 1734 size1 = 0; 1735 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE) 1736 size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 1737 DBAM_DIMM(dimm, dbam)); 1738 1739 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", 1740 dimm * 2, size0, 1741 dimm * 2 + 1, size1); 1742 } 1743 } 1744 1745 static struct amd64_family_type amd64_family_types[] = { 1746 [K8_CPUS] = { 1747 .ctl_name = "K8", 1748 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP, 1749 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC, 1750 .ops = { 1751 .early_channel_count = k8_early_channel_count, 1752 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow, 1753 .dbam_to_cs = k8_dbam_to_chip_select, 1754 .read_dct_pci_cfg = k8_read_dct_pci_cfg, 1755 } 1756 }, 1757 [F10_CPUS] = { 1758 .ctl_name = "F10h", 1759 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP, 1760 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC, 1761 .ops = { 1762 .early_channel_count = f1x_early_channel_count, 1763 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1764 .dbam_to_cs = f10_dbam_to_chip_select, 1765 .read_dct_pci_cfg = f10_read_dct_pci_cfg, 1766 } 1767 }, 1768 [F15_CPUS] = { 1769 .ctl_name = "F15h", 1770 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1, 1771 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3, 1772 .ops = { 1773 .early_channel_count = f1x_early_channel_count, 1774 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1775 .dbam_to_cs = f15_dbam_to_chip_select, 1776 .read_dct_pci_cfg = f15_read_dct_pci_cfg, 1777 } 1778 }, 1779 [F15_M30H_CPUS] = { 1780 .ctl_name = "F15h_M30h", 1781 .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1, 1782 .f3_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F3, 1783 .ops = { 1784 .early_channel_count = f1x_early_channel_count, 1785 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1786 .dbam_to_cs = f16_dbam_to_chip_select, 1787 .read_dct_pci_cfg = f15_read_dct_pci_cfg, 1788 } 1789 }, 1790 [F16_CPUS] = { 1791 .ctl_name = "F16h", 1792 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1, 1793 .f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3, 1794 .ops = { 1795 .early_channel_count = f1x_early_channel_count, 1796 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1797 .dbam_to_cs = f16_dbam_to_chip_select, 1798 .read_dct_pci_cfg = f10_read_dct_pci_cfg, 1799 } 1800 }, 1801 }; 1802 1803 /* 1804 * These are tables of eigenvectors (one per line) which can be used for the 1805 * construction of the syndrome tables. The modified syndrome search algorithm 1806 * uses those to find the symbol in error and thus the DIMM. 1807 * 1808 * Algorithm courtesy of Ross LaFetra from AMD. 1809 */ 1810 static const u16 x4_vectors[] = { 1811 0x2f57, 0x1afe, 0x66cc, 0xdd88, 1812 0x11eb, 0x3396, 0x7f4c, 0xeac8, 1813 0x0001, 0x0002, 0x0004, 0x0008, 1814 0x1013, 0x3032, 0x4044, 0x8088, 1815 0x106b, 0x30d6, 0x70fc, 0xe0a8, 1816 0x4857, 0xc4fe, 0x13cc, 0x3288, 1817 0x1ac5, 0x2f4a, 0x5394, 0xa1e8, 1818 0x1f39, 0x251e, 0xbd6c, 0x6bd8, 1819 0x15c1, 0x2a42, 0x89ac, 0x4758, 1820 0x2b03, 0x1602, 0x4f0c, 0xca08, 1821 0x1f07, 0x3a0e, 0x6b04, 0xbd08, 1822 0x8ba7, 0x465e, 0x244c, 0x1cc8, 1823 0x2b87, 0x164e, 0x642c, 0xdc18, 1824 0x40b9, 0x80de, 0x1094, 0x20e8, 1825 0x27db, 0x1eb6, 0x9dac, 0x7b58, 1826 0x11c1, 0x2242, 0x84ac, 0x4c58, 1827 0x1be5, 0x2d7a, 0x5e34, 0xa718, 1828 0x4b39, 0x8d1e, 0x14b4, 0x28d8, 1829 0x4c97, 0xc87e, 0x11fc, 0x33a8, 1830 0x8e97, 0x497e, 0x2ffc, 0x1aa8, 1831 0x16b3, 0x3d62, 0x4f34, 0x8518, 1832 0x1e2f, 0x391a, 0x5cac, 0xf858, 1833 0x1d9f, 0x3b7a, 0x572c, 0xfe18, 1834 0x15f5, 0x2a5a, 0x5264, 0xa3b8, 1835 0x1dbb, 0x3b66, 0x715c, 0xe3f8, 1836 0x4397, 0xc27e, 0x17fc, 0x3ea8, 1837 0x1617, 0x3d3e, 0x6464, 0xb8b8, 1838 0x23ff, 0x12aa, 0xab6c, 0x56d8, 1839 0x2dfb, 0x1ba6, 0x913c, 0x7328, 1840 0x185d, 0x2ca6, 0x7914, 0x9e28, 1841 0x171b, 0x3e36, 0x7d7c, 0xebe8, 1842 0x4199, 0x82ee, 0x19f4, 0x2e58, 1843 0x4807, 0xc40e, 0x130c, 0x3208, 1844 0x1905, 0x2e0a, 0x5804, 0xac08, 1845 0x213f, 0x132a, 0xadfc, 0x5ba8, 1846 0x19a9, 0x2efe, 0xb5cc, 0x6f88, 1847 }; 1848 1849 static const u16 x8_vectors[] = { 1850 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480, 1851 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80, 1852 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80, 1853 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80, 1854 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780, 1855 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080, 1856 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080, 1857 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080, 1858 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80, 1859 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580, 1860 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880, 1861 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280, 1862 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180, 1863 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580, 1864 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280, 1865 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180, 1866 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080, 1867 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 1868 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000, 1869 }; 1870 1871 static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs, 1872 unsigned v_dim) 1873 { 1874 unsigned int i, err_sym; 1875 1876 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) { 1877 u16 s = syndrome; 1878 unsigned v_idx = err_sym * v_dim; 1879 unsigned v_end = (err_sym + 1) * v_dim; 1880 1881 /* walk over all 16 bits of the syndrome */ 1882 for (i = 1; i < (1U << 16); i <<= 1) { 1883 1884 /* if bit is set in that eigenvector... */ 1885 if (v_idx < v_end && vectors[v_idx] & i) { 1886 u16 ev_comp = vectors[v_idx++]; 1887 1888 /* ... and bit set in the modified syndrome, */ 1889 if (s & i) { 1890 /* remove it. */ 1891 s ^= ev_comp; 1892 1893 if (!s) 1894 return err_sym; 1895 } 1896 1897 } else if (s & i) 1898 /* can't get to zero, move to next symbol */ 1899 break; 1900 } 1901 } 1902 1903 edac_dbg(0, "syndrome(%x) not found\n", syndrome); 1904 return -1; 1905 } 1906 1907 static int map_err_sym_to_channel(int err_sym, int sym_size) 1908 { 1909 if (sym_size == 4) 1910 switch (err_sym) { 1911 case 0x20: 1912 case 0x21: 1913 return 0; 1914 break; 1915 case 0x22: 1916 case 0x23: 1917 return 1; 1918 break; 1919 default: 1920 return err_sym >> 4; 1921 break; 1922 } 1923 /* x8 symbols */ 1924 else 1925 switch (err_sym) { 1926 /* imaginary bits not in a DIMM */ 1927 case 0x10: 1928 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n", 1929 err_sym); 1930 return -1; 1931 break; 1932 1933 case 0x11: 1934 return 0; 1935 break; 1936 case 0x12: 1937 return 1; 1938 break; 1939 default: 1940 return err_sym >> 3; 1941 break; 1942 } 1943 return -1; 1944 } 1945 1946 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome) 1947 { 1948 struct amd64_pvt *pvt = mci->pvt_info; 1949 int err_sym = -1; 1950 1951 if (pvt->ecc_sym_sz == 8) 1952 err_sym = decode_syndrome(syndrome, x8_vectors, 1953 ARRAY_SIZE(x8_vectors), 1954 pvt->ecc_sym_sz); 1955 else if (pvt->ecc_sym_sz == 4) 1956 err_sym = decode_syndrome(syndrome, x4_vectors, 1957 ARRAY_SIZE(x4_vectors), 1958 pvt->ecc_sym_sz); 1959 else { 1960 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz); 1961 return err_sym; 1962 } 1963 1964 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz); 1965 } 1966 1967 static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err, 1968 u8 ecc_type) 1969 { 1970 enum hw_event_mc_err_type err_type; 1971 const char *string; 1972 1973 if (ecc_type == 2) 1974 err_type = HW_EVENT_ERR_CORRECTED; 1975 else if (ecc_type == 1) 1976 err_type = HW_EVENT_ERR_UNCORRECTED; 1977 else { 1978 WARN(1, "Something is rotten in the state of Denmark.\n"); 1979 return; 1980 } 1981 1982 switch (err->err_code) { 1983 case DECODE_OK: 1984 string = ""; 1985 break; 1986 case ERR_NODE: 1987 string = "Failed to map error addr to a node"; 1988 break; 1989 case ERR_CSROW: 1990 string = "Failed to map error addr to a csrow"; 1991 break; 1992 case ERR_CHANNEL: 1993 string = "unknown syndrome - possible error reporting race"; 1994 break; 1995 default: 1996 string = "WTF error"; 1997 break; 1998 } 1999 2000 edac_mc_handle_error(err_type, mci, 1, 2001 err->page, err->offset, err->syndrome, 2002 err->csrow, err->channel, -1, 2003 string, ""); 2004 } 2005 2006 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci, 2007 struct mce *m) 2008 { 2009 struct amd64_pvt *pvt = mci->pvt_info; 2010 u8 ecc_type = (m->status >> 45) & 0x3; 2011 u8 xec = XEC(m->status, 0x1f); 2012 u16 ec = EC(m->status); 2013 u64 sys_addr; 2014 struct err_info err; 2015 2016 /* Bail out early if this was an 'observed' error */ 2017 if (PP(ec) == NBSL_PP_OBS) 2018 return; 2019 2020 /* Do only ECC errors */ 2021 if (xec && xec != F10_NBSL_EXT_ERR_ECC) 2022 return; 2023 2024 memset(&err, 0, sizeof(err)); 2025 2026 sys_addr = get_error_address(pvt, m); 2027 2028 if (ecc_type == 2) 2029 err.syndrome = extract_syndrome(m->status); 2030 2031 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err); 2032 2033 __log_bus_error(mci, &err, ecc_type); 2034 } 2035 2036 void amd64_decode_bus_error(int node_id, struct mce *m) 2037 { 2038 __amd64_decode_bus_error(mcis[node_id], m); 2039 } 2040 2041 /* 2042 * Use pvt->F2 which contains the F2 CPU PCI device to get the related 2043 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error. 2044 */ 2045 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id) 2046 { 2047 /* Reserve the ADDRESS MAP Device */ 2048 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2); 2049 if (!pvt->F1) { 2050 amd64_err("error address map device not found: " 2051 "vendor %x device 0x%x (broken BIOS?)\n", 2052 PCI_VENDOR_ID_AMD, f1_id); 2053 return -ENODEV; 2054 } 2055 2056 /* Reserve the MISC Device */ 2057 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2); 2058 if (!pvt->F3) { 2059 pci_dev_put(pvt->F1); 2060 pvt->F1 = NULL; 2061 2062 amd64_err("error F3 device not found: " 2063 "vendor %x device 0x%x (broken BIOS?)\n", 2064 PCI_VENDOR_ID_AMD, f3_id); 2065 2066 return -ENODEV; 2067 } 2068 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1)); 2069 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2)); 2070 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3)); 2071 2072 return 0; 2073 } 2074 2075 static void free_mc_sibling_devs(struct amd64_pvt *pvt) 2076 { 2077 pci_dev_put(pvt->F1); 2078 pci_dev_put(pvt->F3); 2079 } 2080 2081 /* 2082 * Retrieve the hardware registers of the memory controller (this includes the 2083 * 'Address Map' and 'Misc' device regs) 2084 */ 2085 static void read_mc_regs(struct amd64_pvt *pvt) 2086 { 2087 unsigned range; 2088 u64 msr_val; 2089 u32 tmp; 2090 2091 /* 2092 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since 2093 * those are Read-As-Zero 2094 */ 2095 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem); 2096 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem); 2097 2098 /* check first whether TOP_MEM2 is enabled */ 2099 rdmsrl(MSR_K8_SYSCFG, msr_val); 2100 if (msr_val & (1U << 21)) { 2101 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2); 2102 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2); 2103 } else 2104 edac_dbg(0, " TOP_MEM2 disabled\n"); 2105 2106 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap); 2107 2108 read_dram_ctl_register(pvt); 2109 2110 for (range = 0; range < DRAM_RANGES; range++) { 2111 u8 rw; 2112 2113 /* read settings for this DRAM range */ 2114 read_dram_base_limit_regs(pvt, range); 2115 2116 rw = dram_rw(pvt, range); 2117 if (!rw) 2118 continue; 2119 2120 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n", 2121 range, 2122 get_dram_base(pvt, range), 2123 get_dram_limit(pvt, range)); 2124 2125 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n", 2126 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled", 2127 (rw & 0x1) ? "R" : "-", 2128 (rw & 0x2) ? "W" : "-", 2129 dram_intlv_sel(pvt, range), 2130 dram_dst_node(pvt, range)); 2131 } 2132 2133 read_dct_base_mask(pvt); 2134 2135 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar); 2136 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0); 2137 2138 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare); 2139 2140 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0); 2141 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0); 2142 2143 if (!dct_ganging_enabled(pvt)) { 2144 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1); 2145 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1); 2146 } 2147 2148 pvt->ecc_sym_sz = 4; 2149 2150 if (pvt->fam >= 0x10) { 2151 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp); 2152 if (pvt->fam != 0x16) 2153 /* F16h has only DCT0 */ 2154 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1); 2155 2156 /* F10h, revD and later can do x8 ECC too */ 2157 if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25)) 2158 pvt->ecc_sym_sz = 8; 2159 } 2160 dump_misc_regs(pvt); 2161 } 2162 2163 /* 2164 * NOTE: CPU Revision Dependent code 2165 * 2166 * Input: 2167 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1) 2168 * k8 private pointer to --> 2169 * DRAM Bank Address mapping register 2170 * node_id 2171 * DCL register where dual_channel_active is 2172 * 2173 * The DBAM register consists of 4 sets of 4 bits each definitions: 2174 * 2175 * Bits: CSROWs 2176 * 0-3 CSROWs 0 and 1 2177 * 4-7 CSROWs 2 and 3 2178 * 8-11 CSROWs 4 and 5 2179 * 12-15 CSROWs 6 and 7 2180 * 2181 * Values range from: 0 to 15 2182 * The meaning of the values depends on CPU revision and dual-channel state, 2183 * see relevant BKDG more info. 2184 * 2185 * The memory controller provides for total of only 8 CSROWs in its current 2186 * architecture. Each "pair" of CSROWs normally represents just one DIMM in 2187 * single channel or two (2) DIMMs in dual channel mode. 2188 * 2189 * The following code logic collapses the various tables for CSROW based on CPU 2190 * revision. 2191 * 2192 * Returns: 2193 * The number of PAGE_SIZE pages on the specified CSROW number it 2194 * encompasses 2195 * 2196 */ 2197 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr) 2198 { 2199 u32 cs_mode, nr_pages; 2200 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0; 2201 2202 2203 /* 2204 * The math on this doesn't look right on the surface because x/2*4 can 2205 * be simplified to x*2 but this expression makes use of the fact that 2206 * it is integral math where 1/2=0. This intermediate value becomes the 2207 * number of bits to shift the DBAM register to extract the proper CSROW 2208 * field. 2209 */ 2210 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam); 2211 2212 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT); 2213 2214 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n", 2215 csrow_nr, dct, cs_mode); 2216 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages); 2217 2218 return nr_pages; 2219 } 2220 2221 /* 2222 * Initialize the array of csrow attribute instances, based on the values 2223 * from pci config hardware registers. 2224 */ 2225 static int init_csrows(struct mem_ctl_info *mci) 2226 { 2227 struct amd64_pvt *pvt = mci->pvt_info; 2228 struct csrow_info *csrow; 2229 struct dimm_info *dimm; 2230 enum edac_type edac_mode; 2231 enum mem_type mtype; 2232 int i, j, empty = 1; 2233 int nr_pages = 0; 2234 u32 val; 2235 2236 amd64_read_pci_cfg(pvt->F3, NBCFG, &val); 2237 2238 pvt->nbcfg = val; 2239 2240 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n", 2241 pvt->mc_node_id, val, 2242 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE)); 2243 2244 /* 2245 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed. 2246 */ 2247 for_each_chip_select(i, 0, pvt) { 2248 bool row_dct0 = !!csrow_enabled(i, 0, pvt); 2249 bool row_dct1 = false; 2250 2251 if (pvt->fam != 0xf) 2252 row_dct1 = !!csrow_enabled(i, 1, pvt); 2253 2254 if (!row_dct0 && !row_dct1) 2255 continue; 2256 2257 csrow = mci->csrows[i]; 2258 empty = 0; 2259 2260 edac_dbg(1, "MC node: %d, csrow: %d\n", 2261 pvt->mc_node_id, i); 2262 2263 if (row_dct0) { 2264 nr_pages = amd64_csrow_nr_pages(pvt, 0, i); 2265 csrow->channels[0]->dimm->nr_pages = nr_pages; 2266 } 2267 2268 /* K8 has only one DCT */ 2269 if (pvt->fam != 0xf && row_dct1) { 2270 int row_dct1_pages = amd64_csrow_nr_pages(pvt, 1, i); 2271 2272 csrow->channels[1]->dimm->nr_pages = row_dct1_pages; 2273 nr_pages += row_dct1_pages; 2274 } 2275 2276 mtype = amd64_determine_memory_type(pvt, i); 2277 2278 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages); 2279 2280 /* 2281 * determine whether CHIPKILL or JUST ECC or NO ECC is operating 2282 */ 2283 if (pvt->nbcfg & NBCFG_ECC_ENABLE) 2284 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ? 2285 EDAC_S4ECD4ED : EDAC_SECDED; 2286 else 2287 edac_mode = EDAC_NONE; 2288 2289 for (j = 0; j < pvt->channel_count; j++) { 2290 dimm = csrow->channels[j]->dimm; 2291 dimm->mtype = mtype; 2292 dimm->edac_mode = edac_mode; 2293 } 2294 } 2295 2296 return empty; 2297 } 2298 2299 /* get all cores on this DCT */ 2300 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid) 2301 { 2302 int cpu; 2303 2304 for_each_online_cpu(cpu) 2305 if (amd_get_nb_id(cpu) == nid) 2306 cpumask_set_cpu(cpu, mask); 2307 } 2308 2309 /* check MCG_CTL on all the cpus on this node */ 2310 static bool amd64_nb_mce_bank_enabled_on_node(u16 nid) 2311 { 2312 cpumask_var_t mask; 2313 int cpu, nbe; 2314 bool ret = false; 2315 2316 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { 2317 amd64_warn("%s: Error allocating mask\n", __func__); 2318 return false; 2319 } 2320 2321 get_cpus_on_this_dct_cpumask(mask, nid); 2322 2323 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs); 2324 2325 for_each_cpu(cpu, mask) { 2326 struct msr *reg = per_cpu_ptr(msrs, cpu); 2327 nbe = reg->l & MSR_MCGCTL_NBE; 2328 2329 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n", 2330 cpu, reg->q, 2331 (nbe ? "enabled" : "disabled")); 2332 2333 if (!nbe) 2334 goto out; 2335 } 2336 ret = true; 2337 2338 out: 2339 free_cpumask_var(mask); 2340 return ret; 2341 } 2342 2343 static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on) 2344 { 2345 cpumask_var_t cmask; 2346 int cpu; 2347 2348 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) { 2349 amd64_warn("%s: error allocating mask\n", __func__); 2350 return false; 2351 } 2352 2353 get_cpus_on_this_dct_cpumask(cmask, nid); 2354 2355 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 2356 2357 for_each_cpu(cpu, cmask) { 2358 2359 struct msr *reg = per_cpu_ptr(msrs, cpu); 2360 2361 if (on) { 2362 if (reg->l & MSR_MCGCTL_NBE) 2363 s->flags.nb_mce_enable = 1; 2364 2365 reg->l |= MSR_MCGCTL_NBE; 2366 } else { 2367 /* 2368 * Turn off NB MCE reporting only when it was off before 2369 */ 2370 if (!s->flags.nb_mce_enable) 2371 reg->l &= ~MSR_MCGCTL_NBE; 2372 } 2373 } 2374 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 2375 2376 free_cpumask_var(cmask); 2377 2378 return 0; 2379 } 2380 2381 static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid, 2382 struct pci_dev *F3) 2383 { 2384 bool ret = true; 2385 u32 value, mask = 0x3; /* UECC/CECC enable */ 2386 2387 if (toggle_ecc_err_reporting(s, nid, ON)) { 2388 amd64_warn("Error enabling ECC reporting over MCGCTL!\n"); 2389 return false; 2390 } 2391 2392 amd64_read_pci_cfg(F3, NBCTL, &value); 2393 2394 s->old_nbctl = value & mask; 2395 s->nbctl_valid = true; 2396 2397 value |= mask; 2398 amd64_write_pci_cfg(F3, NBCTL, value); 2399 2400 amd64_read_pci_cfg(F3, NBCFG, &value); 2401 2402 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", 2403 nid, value, !!(value & NBCFG_ECC_ENABLE)); 2404 2405 if (!(value & NBCFG_ECC_ENABLE)) { 2406 amd64_warn("DRAM ECC disabled on this node, enabling...\n"); 2407 2408 s->flags.nb_ecc_prev = 0; 2409 2410 /* Attempt to turn on DRAM ECC Enable */ 2411 value |= NBCFG_ECC_ENABLE; 2412 amd64_write_pci_cfg(F3, NBCFG, value); 2413 2414 amd64_read_pci_cfg(F3, NBCFG, &value); 2415 2416 if (!(value & NBCFG_ECC_ENABLE)) { 2417 amd64_warn("Hardware rejected DRAM ECC enable," 2418 "check memory DIMM configuration.\n"); 2419 ret = false; 2420 } else { 2421 amd64_info("Hardware accepted DRAM ECC Enable\n"); 2422 } 2423 } else { 2424 s->flags.nb_ecc_prev = 1; 2425 } 2426 2427 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", 2428 nid, value, !!(value & NBCFG_ECC_ENABLE)); 2429 2430 return ret; 2431 } 2432 2433 static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid, 2434 struct pci_dev *F3) 2435 { 2436 u32 value, mask = 0x3; /* UECC/CECC enable */ 2437 2438 2439 if (!s->nbctl_valid) 2440 return; 2441 2442 amd64_read_pci_cfg(F3, NBCTL, &value); 2443 value &= ~mask; 2444 value |= s->old_nbctl; 2445 2446 amd64_write_pci_cfg(F3, NBCTL, value); 2447 2448 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */ 2449 if (!s->flags.nb_ecc_prev) { 2450 amd64_read_pci_cfg(F3, NBCFG, &value); 2451 value &= ~NBCFG_ECC_ENABLE; 2452 amd64_write_pci_cfg(F3, NBCFG, value); 2453 } 2454 2455 /* restore the NB Enable MCGCTL bit */ 2456 if (toggle_ecc_err_reporting(s, nid, OFF)) 2457 amd64_warn("Error restoring NB MCGCTL settings!\n"); 2458 } 2459 2460 /* 2461 * EDAC requires that the BIOS have ECC enabled before 2462 * taking over the processing of ECC errors. A command line 2463 * option allows to force-enable hardware ECC later in 2464 * enable_ecc_error_reporting(). 2465 */ 2466 static const char *ecc_msg = 2467 "ECC disabled in the BIOS or no ECC capability, module will not load.\n" 2468 " Either enable ECC checking or force module loading by setting " 2469 "'ecc_enable_override'.\n" 2470 " (Note that use of the override may cause unknown side effects.)\n"; 2471 2472 static bool ecc_enabled(struct pci_dev *F3, u16 nid) 2473 { 2474 u32 value; 2475 u8 ecc_en = 0; 2476 bool nb_mce_en = false; 2477 2478 amd64_read_pci_cfg(F3, NBCFG, &value); 2479 2480 ecc_en = !!(value & NBCFG_ECC_ENABLE); 2481 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled")); 2482 2483 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid); 2484 if (!nb_mce_en) 2485 amd64_notice("NB MCE bank disabled, set MSR " 2486 "0x%08x[4] on node %d to enable.\n", 2487 MSR_IA32_MCG_CTL, nid); 2488 2489 if (!ecc_en || !nb_mce_en) { 2490 amd64_notice("%s", ecc_msg); 2491 return false; 2492 } 2493 return true; 2494 } 2495 2496 static int set_mc_sysfs_attrs(struct mem_ctl_info *mci) 2497 { 2498 struct amd64_pvt *pvt = mci->pvt_info; 2499 int rc; 2500 2501 rc = amd64_create_sysfs_dbg_files(mci); 2502 if (rc < 0) 2503 return rc; 2504 2505 if (pvt->fam >= 0x10) { 2506 rc = amd64_create_sysfs_inject_files(mci); 2507 if (rc < 0) 2508 return rc; 2509 } 2510 2511 return 0; 2512 } 2513 2514 static void del_mc_sysfs_attrs(struct mem_ctl_info *mci) 2515 { 2516 struct amd64_pvt *pvt = mci->pvt_info; 2517 2518 amd64_remove_sysfs_dbg_files(mci); 2519 2520 if (pvt->fam >= 0x10) 2521 amd64_remove_sysfs_inject_files(mci); 2522 } 2523 2524 static void setup_mci_misc_attrs(struct mem_ctl_info *mci, 2525 struct amd64_family_type *fam) 2526 { 2527 struct amd64_pvt *pvt = mci->pvt_info; 2528 2529 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2; 2530 mci->edac_ctl_cap = EDAC_FLAG_NONE; 2531 2532 if (pvt->nbcap & NBCAP_SECDED) 2533 mci->edac_ctl_cap |= EDAC_FLAG_SECDED; 2534 2535 if (pvt->nbcap & NBCAP_CHIPKILL) 2536 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; 2537 2538 mci->edac_cap = amd64_determine_edac_cap(pvt); 2539 mci->mod_name = EDAC_MOD_STR; 2540 mci->mod_ver = EDAC_AMD64_VERSION; 2541 mci->ctl_name = fam->ctl_name; 2542 mci->dev_name = pci_name(pvt->F2); 2543 mci->ctl_page_to_phys = NULL; 2544 2545 /* memory scrubber interface */ 2546 mci->set_sdram_scrub_rate = amd64_set_scrub_rate; 2547 mci->get_sdram_scrub_rate = amd64_get_scrub_rate; 2548 } 2549 2550 /* 2551 * returns a pointer to the family descriptor on success, NULL otherwise. 2552 */ 2553 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt) 2554 { 2555 struct amd64_family_type *fam_type = NULL; 2556 2557 pvt->ext_model = boot_cpu_data.x86_model >> 4; 2558 pvt->stepping = boot_cpu_data.x86_mask; 2559 pvt->model = boot_cpu_data.x86_model; 2560 pvt->fam = boot_cpu_data.x86; 2561 2562 switch (pvt->fam) { 2563 case 0xf: 2564 fam_type = &amd64_family_types[K8_CPUS]; 2565 pvt->ops = &amd64_family_types[K8_CPUS].ops; 2566 break; 2567 2568 case 0x10: 2569 fam_type = &amd64_family_types[F10_CPUS]; 2570 pvt->ops = &amd64_family_types[F10_CPUS].ops; 2571 break; 2572 2573 case 0x15: 2574 if (pvt->model == 0x30) { 2575 fam_type = &amd64_family_types[F15_M30H_CPUS]; 2576 pvt->ops = &amd64_family_types[F15_M30H_CPUS].ops; 2577 break; 2578 } 2579 2580 fam_type = &amd64_family_types[F15_CPUS]; 2581 pvt->ops = &amd64_family_types[F15_CPUS].ops; 2582 break; 2583 2584 case 0x16: 2585 fam_type = &amd64_family_types[F16_CPUS]; 2586 pvt->ops = &amd64_family_types[F16_CPUS].ops; 2587 break; 2588 2589 default: 2590 amd64_err("Unsupported family!\n"); 2591 return NULL; 2592 } 2593 2594 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name, 2595 (pvt->fam == 0xf ? 2596 (pvt->ext_model >= K8_REV_F ? "revF or later " 2597 : "revE or earlier ") 2598 : ""), pvt->mc_node_id); 2599 return fam_type; 2600 } 2601 2602 static int amd64_init_one_instance(struct pci_dev *F2) 2603 { 2604 struct amd64_pvt *pvt = NULL; 2605 struct amd64_family_type *fam_type = NULL; 2606 struct mem_ctl_info *mci = NULL; 2607 struct edac_mc_layer layers[2]; 2608 int err = 0, ret; 2609 u16 nid = amd_get_node_id(F2); 2610 2611 ret = -ENOMEM; 2612 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL); 2613 if (!pvt) 2614 goto err_ret; 2615 2616 pvt->mc_node_id = nid; 2617 pvt->F2 = F2; 2618 2619 ret = -EINVAL; 2620 fam_type = amd64_per_family_init(pvt); 2621 if (!fam_type) 2622 goto err_free; 2623 2624 ret = -ENODEV; 2625 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id); 2626 if (err) 2627 goto err_free; 2628 2629 read_mc_regs(pvt); 2630 2631 /* 2632 * We need to determine how many memory channels there are. Then use 2633 * that information for calculating the size of the dynamic instance 2634 * tables in the 'mci' structure. 2635 */ 2636 ret = -EINVAL; 2637 pvt->channel_count = pvt->ops->early_channel_count(pvt); 2638 if (pvt->channel_count < 0) 2639 goto err_siblings; 2640 2641 ret = -ENOMEM; 2642 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; 2643 layers[0].size = pvt->csels[0].b_cnt; 2644 layers[0].is_virt_csrow = true; 2645 layers[1].type = EDAC_MC_LAYER_CHANNEL; 2646 2647 /* 2648 * Always allocate two channels since we can have setups with DIMMs on 2649 * only one channel. Also, this simplifies handling later for the price 2650 * of a couple of KBs tops. 2651 */ 2652 layers[1].size = 2; 2653 layers[1].is_virt_csrow = false; 2654 2655 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0); 2656 if (!mci) 2657 goto err_siblings; 2658 2659 mci->pvt_info = pvt; 2660 mci->pdev = &pvt->F2->dev; 2661 2662 setup_mci_misc_attrs(mci, fam_type); 2663 2664 if (init_csrows(mci)) 2665 mci->edac_cap = EDAC_FLAG_NONE; 2666 2667 ret = -ENODEV; 2668 if (edac_mc_add_mc(mci)) { 2669 edac_dbg(1, "failed edac_mc_add_mc()\n"); 2670 goto err_add_mc; 2671 } 2672 if (set_mc_sysfs_attrs(mci)) { 2673 edac_dbg(1, "failed edac_mc_add_mc()\n"); 2674 goto err_add_sysfs; 2675 } 2676 2677 /* register stuff with EDAC MCE */ 2678 if (report_gart_errors) 2679 amd_report_gart_errors(true); 2680 2681 amd_register_ecc_decoder(amd64_decode_bus_error); 2682 2683 mcis[nid] = mci; 2684 2685 atomic_inc(&drv_instances); 2686 2687 return 0; 2688 2689 err_add_sysfs: 2690 edac_mc_del_mc(mci->pdev); 2691 err_add_mc: 2692 edac_mc_free(mci); 2693 2694 err_siblings: 2695 free_mc_sibling_devs(pvt); 2696 2697 err_free: 2698 kfree(pvt); 2699 2700 err_ret: 2701 return ret; 2702 } 2703 2704 static int amd64_probe_one_instance(struct pci_dev *pdev, 2705 const struct pci_device_id *mc_type) 2706 { 2707 u16 nid = amd_get_node_id(pdev); 2708 struct pci_dev *F3 = node_to_amd_nb(nid)->misc; 2709 struct ecc_settings *s; 2710 int ret = 0; 2711 2712 ret = pci_enable_device(pdev); 2713 if (ret < 0) { 2714 edac_dbg(0, "ret=%d\n", ret); 2715 return -EIO; 2716 } 2717 2718 ret = -ENOMEM; 2719 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL); 2720 if (!s) 2721 goto err_out; 2722 2723 ecc_stngs[nid] = s; 2724 2725 if (!ecc_enabled(F3, nid)) { 2726 ret = -ENODEV; 2727 2728 if (!ecc_enable_override) 2729 goto err_enable; 2730 2731 amd64_warn("Forcing ECC on!\n"); 2732 2733 if (!enable_ecc_error_reporting(s, nid, F3)) 2734 goto err_enable; 2735 } 2736 2737 ret = amd64_init_one_instance(pdev); 2738 if (ret < 0) { 2739 amd64_err("Error probing instance: %d\n", nid); 2740 restore_ecc_error_reporting(s, nid, F3); 2741 } 2742 2743 return ret; 2744 2745 err_enable: 2746 kfree(s); 2747 ecc_stngs[nid] = NULL; 2748 2749 err_out: 2750 return ret; 2751 } 2752 2753 static void amd64_remove_one_instance(struct pci_dev *pdev) 2754 { 2755 struct mem_ctl_info *mci; 2756 struct amd64_pvt *pvt; 2757 u16 nid = amd_get_node_id(pdev); 2758 struct pci_dev *F3 = node_to_amd_nb(nid)->misc; 2759 struct ecc_settings *s = ecc_stngs[nid]; 2760 2761 mci = find_mci_by_dev(&pdev->dev); 2762 WARN_ON(!mci); 2763 2764 del_mc_sysfs_attrs(mci); 2765 /* Remove from EDAC CORE tracking list */ 2766 mci = edac_mc_del_mc(&pdev->dev); 2767 if (!mci) 2768 return; 2769 2770 pvt = mci->pvt_info; 2771 2772 restore_ecc_error_reporting(s, nid, F3); 2773 2774 free_mc_sibling_devs(pvt); 2775 2776 /* unregister from EDAC MCE */ 2777 amd_report_gart_errors(false); 2778 amd_unregister_ecc_decoder(amd64_decode_bus_error); 2779 2780 kfree(ecc_stngs[nid]); 2781 ecc_stngs[nid] = NULL; 2782 2783 /* Free the EDAC CORE resources */ 2784 mci->pvt_info = NULL; 2785 mcis[nid] = NULL; 2786 2787 kfree(pvt); 2788 edac_mc_free(mci); 2789 } 2790 2791 /* 2792 * This table is part of the interface for loading drivers for PCI devices. The 2793 * PCI core identifies what devices are on a system during boot, and then 2794 * inquiry this table to see if this driver is for a given device found. 2795 */ 2796 static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = { 2797 { 2798 .vendor = PCI_VENDOR_ID_AMD, 2799 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL, 2800 .subvendor = PCI_ANY_ID, 2801 .subdevice = PCI_ANY_ID, 2802 .class = 0, 2803 .class_mask = 0, 2804 }, 2805 { 2806 .vendor = PCI_VENDOR_ID_AMD, 2807 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM, 2808 .subvendor = PCI_ANY_ID, 2809 .subdevice = PCI_ANY_ID, 2810 .class = 0, 2811 .class_mask = 0, 2812 }, 2813 { 2814 .vendor = PCI_VENDOR_ID_AMD, 2815 .device = PCI_DEVICE_ID_AMD_15H_NB_F2, 2816 .subvendor = PCI_ANY_ID, 2817 .subdevice = PCI_ANY_ID, 2818 .class = 0, 2819 .class_mask = 0, 2820 }, 2821 { 2822 .vendor = PCI_VENDOR_ID_AMD, 2823 .device = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2, 2824 .subvendor = PCI_ANY_ID, 2825 .subdevice = PCI_ANY_ID, 2826 .class = 0, 2827 .class_mask = 0, 2828 }, 2829 { 2830 .vendor = PCI_VENDOR_ID_AMD, 2831 .device = PCI_DEVICE_ID_AMD_16H_NB_F2, 2832 .subvendor = PCI_ANY_ID, 2833 .subdevice = PCI_ANY_ID, 2834 .class = 0, 2835 .class_mask = 0, 2836 }, 2837 2838 {0, } 2839 }; 2840 MODULE_DEVICE_TABLE(pci, amd64_pci_table); 2841 2842 static struct pci_driver amd64_pci_driver = { 2843 .name = EDAC_MOD_STR, 2844 .probe = amd64_probe_one_instance, 2845 .remove = amd64_remove_one_instance, 2846 .id_table = amd64_pci_table, 2847 }; 2848 2849 static void setup_pci_device(void) 2850 { 2851 struct mem_ctl_info *mci; 2852 struct amd64_pvt *pvt; 2853 2854 if (amd64_ctl_pci) 2855 return; 2856 2857 mci = mcis[0]; 2858 if (mci) { 2859 2860 pvt = mci->pvt_info; 2861 amd64_ctl_pci = 2862 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR); 2863 2864 if (!amd64_ctl_pci) { 2865 pr_warning("%s(): Unable to create PCI control\n", 2866 __func__); 2867 2868 pr_warning("%s(): PCI error report via EDAC not set\n", 2869 __func__); 2870 } 2871 } 2872 } 2873 2874 static int __init amd64_edac_init(void) 2875 { 2876 int err = -ENODEV; 2877 2878 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION); 2879 2880 opstate_init(); 2881 2882 if (amd_cache_northbridges() < 0) 2883 goto err_ret; 2884 2885 err = -ENOMEM; 2886 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL); 2887 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL); 2888 if (!(mcis && ecc_stngs)) 2889 goto err_free; 2890 2891 msrs = msrs_alloc(); 2892 if (!msrs) 2893 goto err_free; 2894 2895 err = pci_register_driver(&amd64_pci_driver); 2896 if (err) 2897 goto err_pci; 2898 2899 err = -ENODEV; 2900 if (!atomic_read(&drv_instances)) 2901 goto err_no_instances; 2902 2903 setup_pci_device(); 2904 return 0; 2905 2906 err_no_instances: 2907 pci_unregister_driver(&amd64_pci_driver); 2908 2909 err_pci: 2910 msrs_free(msrs); 2911 msrs = NULL; 2912 2913 err_free: 2914 kfree(mcis); 2915 mcis = NULL; 2916 2917 kfree(ecc_stngs); 2918 ecc_stngs = NULL; 2919 2920 err_ret: 2921 return err; 2922 } 2923 2924 static void __exit amd64_edac_exit(void) 2925 { 2926 if (amd64_ctl_pci) 2927 edac_pci_release_generic_ctl(amd64_ctl_pci); 2928 2929 pci_unregister_driver(&amd64_pci_driver); 2930 2931 kfree(ecc_stngs); 2932 ecc_stngs = NULL; 2933 2934 kfree(mcis); 2935 mcis = NULL; 2936 2937 msrs_free(msrs); 2938 msrs = NULL; 2939 } 2940 2941 module_init(amd64_edac_init); 2942 module_exit(amd64_edac_exit); 2943 2944 MODULE_LICENSE("GPL"); 2945 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, " 2946 "Dave Peterson, Thayne Harbaugh"); 2947 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - " 2948 EDAC_AMD64_VERSION); 2949 2950 module_param(edac_op_state, int, 0444); 2951 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 2952