xref: /openbmc/linux/drivers/edac/altera_edac.c (revision 9726bfcd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 2017-2018, Intel Corporation. All rights reserved
4  *  Copyright Altera Corporation (C) 2014-2016. All rights reserved.
5  *  Copyright 2011-2012 Calxeda, Inc.
6  */
7 
8 #include <asm/cacheflush.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/edac.h>
12 #include <linux/firmware/intel/stratix10-smc.h>
13 #include <linux/genalloc.h>
14 #include <linux/interrupt.h>
15 #include <linux/irqchip/chained_irq.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/notifier.h>
19 #include <linux/of_address.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/regmap.h>
24 #include <linux/types.h>
25 #include <linux/uaccess.h>
26 
27 #include "altera_edac.h"
28 #include "edac_module.h"
29 
30 #define EDAC_MOD_STR		"altera_edac"
31 #define EDAC_DEVICE		"Altera"
32 
33 #ifdef CONFIG_EDAC_ALTERA_SDRAM
34 static const struct altr_sdram_prv_data c5_data = {
35 	.ecc_ctrl_offset    = CV_CTLCFG_OFST,
36 	.ecc_ctl_en_mask    = CV_CTLCFG_ECC_AUTO_EN,
37 	.ecc_stat_offset    = CV_DRAMSTS_OFST,
38 	.ecc_stat_ce_mask   = CV_DRAMSTS_SBEERR,
39 	.ecc_stat_ue_mask   = CV_DRAMSTS_DBEERR,
40 	.ecc_saddr_offset   = CV_ERRADDR_OFST,
41 	.ecc_daddr_offset   = CV_ERRADDR_OFST,
42 	.ecc_cecnt_offset   = CV_SBECOUNT_OFST,
43 	.ecc_uecnt_offset   = CV_DBECOUNT_OFST,
44 	.ecc_irq_en_offset  = CV_DRAMINTR_OFST,
45 	.ecc_irq_en_mask    = CV_DRAMINTR_INTREN,
46 	.ecc_irq_clr_offset = CV_DRAMINTR_OFST,
47 	.ecc_irq_clr_mask   = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
48 	.ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
49 	.ecc_cnt_rst_mask   = CV_DRAMINTR_INTRCLR,
50 	.ce_ue_trgr_offset  = CV_CTLCFG_OFST,
51 	.ce_set_mask        = CV_CTLCFG_GEN_SB_ERR,
52 	.ue_set_mask        = CV_CTLCFG_GEN_DB_ERR,
53 };
54 
55 static const struct altr_sdram_prv_data a10_data = {
56 	.ecc_ctrl_offset    = A10_ECCCTRL1_OFST,
57 	.ecc_ctl_en_mask    = A10_ECCCTRL1_ECC_EN,
58 	.ecc_stat_offset    = A10_INTSTAT_OFST,
59 	.ecc_stat_ce_mask   = A10_INTSTAT_SBEERR,
60 	.ecc_stat_ue_mask   = A10_INTSTAT_DBEERR,
61 	.ecc_saddr_offset   = A10_SERRADDR_OFST,
62 	.ecc_daddr_offset   = A10_DERRADDR_OFST,
63 	.ecc_irq_en_offset  = A10_ERRINTEN_OFST,
64 	.ecc_irq_en_mask    = A10_ECC_IRQ_EN_MASK,
65 	.ecc_irq_clr_offset = A10_INTSTAT_OFST,
66 	.ecc_irq_clr_mask   = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
67 	.ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
68 	.ecc_cnt_rst_mask   = A10_ECC_CNT_RESET_MASK,
69 	.ce_ue_trgr_offset  = A10_DIAGINTTEST_OFST,
70 	.ce_set_mask        = A10_DIAGINT_TSERRA_MASK,
71 	.ue_set_mask        = A10_DIAGINT_TDERRA_MASK,
72 };
73 
74 /*********************** EDAC Memory Controller Functions ****************/
75 
76 /* The SDRAM controller uses the EDAC Memory Controller framework.       */
77 
78 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
79 {
80 	struct mem_ctl_info *mci = dev_id;
81 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
82 	const struct altr_sdram_prv_data *priv = drvdata->data;
83 	u32 status, err_count = 1, err_addr;
84 
85 	regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
86 
87 	if (status & priv->ecc_stat_ue_mask) {
88 		regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
89 			    &err_addr);
90 		if (priv->ecc_uecnt_offset)
91 			regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
92 				    &err_count);
93 		panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
94 		      err_count, err_addr);
95 	}
96 	if (status & priv->ecc_stat_ce_mask) {
97 		regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
98 			    &err_addr);
99 		if (priv->ecc_uecnt_offset)
100 			regmap_read(drvdata->mc_vbase,  priv->ecc_cecnt_offset,
101 				    &err_count);
102 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
103 				     err_addr >> PAGE_SHIFT,
104 				     err_addr & ~PAGE_MASK, 0,
105 				     0, 0, -1, mci->ctl_name, "");
106 		/* Clear IRQ to resume */
107 		regmap_write(drvdata->mc_vbase,	priv->ecc_irq_clr_offset,
108 			     priv->ecc_irq_clr_mask);
109 
110 		return IRQ_HANDLED;
111 	}
112 	return IRQ_NONE;
113 }
114 
115 static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
116 					    const char __user *data,
117 					    size_t count, loff_t *ppos)
118 {
119 	struct mem_ctl_info *mci = file->private_data;
120 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
121 	const struct altr_sdram_prv_data *priv = drvdata->data;
122 	u32 *ptemp;
123 	dma_addr_t dma_handle;
124 	u32 reg, read_reg;
125 
126 	ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
127 	if (!ptemp) {
128 		dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
129 		edac_printk(KERN_ERR, EDAC_MC,
130 			    "Inject: Buffer Allocation error\n");
131 		return -ENOMEM;
132 	}
133 
134 	regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
135 		    &read_reg);
136 	read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
137 
138 	/* Error are injected by writing a word while the SBE or DBE
139 	 * bit in the CTLCFG register is set. Reading the word will
140 	 * trigger the SBE or DBE error and the corresponding IRQ.
141 	 */
142 	if (count == 3) {
143 		edac_printk(KERN_ALERT, EDAC_MC,
144 			    "Inject Double bit error\n");
145 		local_irq_disable();
146 		regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
147 			     (read_reg | priv->ue_set_mask));
148 		local_irq_enable();
149 	} else {
150 		edac_printk(KERN_ALERT, EDAC_MC,
151 			    "Inject Single bit error\n");
152 		local_irq_disable();
153 		regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset,
154 			     (read_reg | priv->ce_set_mask));
155 		local_irq_enable();
156 	}
157 
158 	ptemp[0] = 0x5A5A5A5A;
159 	ptemp[1] = 0xA5A5A5A5;
160 
161 	/* Clear the error injection bits */
162 	regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset, read_reg);
163 	/* Ensure it has been written out */
164 	wmb();
165 
166 	/*
167 	 * To trigger the error, we need to read the data back
168 	 * (the data was written with errors above).
169 	 * The READ_ONCE macros and printk are used to prevent the
170 	 * the compiler optimizing these reads out.
171 	 */
172 	reg = READ_ONCE(ptemp[0]);
173 	read_reg = READ_ONCE(ptemp[1]);
174 	/* Force Read */
175 	rmb();
176 
177 	edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
178 		    reg, read_reg);
179 
180 	dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
181 
182 	return count;
183 }
184 
185 static const struct file_operations altr_sdr_mc_debug_inject_fops = {
186 	.open = simple_open,
187 	.write = altr_sdr_mc_err_inject_write,
188 	.llseek = generic_file_llseek,
189 };
190 
191 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
192 {
193 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
194 		return;
195 
196 	if (!mci->debugfs)
197 		return;
198 
199 	edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
200 				 &altr_sdr_mc_debug_inject_fops);
201 }
202 
203 /* Get total memory size from Open Firmware DTB */
204 static unsigned long get_total_mem(void)
205 {
206 	struct device_node *np = NULL;
207 	struct resource res;
208 	int ret;
209 	unsigned long total_mem = 0;
210 
211 	for_each_node_by_type(np, "memory") {
212 		ret = of_address_to_resource(np, 0, &res);
213 		if (ret)
214 			continue;
215 
216 		total_mem += resource_size(&res);
217 	}
218 	edac_dbg(0, "total_mem 0x%lx\n", total_mem);
219 	return total_mem;
220 }
221 
222 static const struct of_device_id altr_sdram_ctrl_of_match[] = {
223 	{ .compatible = "altr,sdram-edac", .data = &c5_data},
224 	{ .compatible = "altr,sdram-edac-a10", .data = &a10_data},
225 	{ .compatible = "altr,sdram-edac-s10", .data = &a10_data},
226 	{},
227 };
228 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
229 
230 static int a10_init(struct regmap *mc_vbase)
231 {
232 	if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
233 			       A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
234 		edac_printk(KERN_ERR, EDAC_MC,
235 			    "Error setting SB IRQ mode\n");
236 		return -ENODEV;
237 	}
238 
239 	if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
240 		edac_printk(KERN_ERR, EDAC_MC,
241 			    "Error setting trigger count\n");
242 		return -ENODEV;
243 	}
244 
245 	return 0;
246 }
247 
248 static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
249 {
250 	void __iomem  *sm_base;
251 	int  ret = 0;
252 
253 	if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
254 				dev_name(&pdev->dev))) {
255 		edac_printk(KERN_ERR, EDAC_MC,
256 			    "Unable to request mem region\n");
257 		return -EBUSY;
258 	}
259 
260 	sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
261 	if (!sm_base) {
262 		edac_printk(KERN_ERR, EDAC_MC,
263 			    "Unable to ioremap device\n");
264 
265 		ret = -ENOMEM;
266 		goto release;
267 	}
268 
269 	iowrite32(mask, sm_base);
270 
271 	iounmap(sm_base);
272 
273 release:
274 	release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
275 
276 	return ret;
277 }
278 
279 static int socfpga_is_a10(void);
280 static int altr_sdram_probe(struct platform_device *pdev)
281 {
282 	const struct of_device_id *id;
283 	struct edac_mc_layer layers[2];
284 	struct mem_ctl_info *mci;
285 	struct altr_sdram_mc_data *drvdata;
286 	const struct altr_sdram_prv_data *priv;
287 	struct regmap *mc_vbase;
288 	struct dimm_info *dimm;
289 	u32 read_reg;
290 	int irq, irq2, res = 0;
291 	unsigned long mem_size, irqflags = 0;
292 
293 	id = of_match_device(altr_sdram_ctrl_of_match, &pdev->dev);
294 	if (!id)
295 		return -ENODEV;
296 
297 	/* Grab the register range from the sdr controller in device tree */
298 	mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
299 						   "altr,sdr-syscon");
300 	if (IS_ERR(mc_vbase)) {
301 		edac_printk(KERN_ERR, EDAC_MC,
302 			    "regmap for altr,sdr-syscon lookup failed.\n");
303 		return -ENODEV;
304 	}
305 
306 	/* Check specific dependencies for the module */
307 	priv = of_match_node(altr_sdram_ctrl_of_match,
308 			     pdev->dev.of_node)->data;
309 
310 	/* Validate the SDRAM controller has ECC enabled */
311 	if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
312 	    ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
313 		edac_printk(KERN_ERR, EDAC_MC,
314 			    "No ECC/ECC disabled [0x%08X]\n", read_reg);
315 		return -ENODEV;
316 	}
317 
318 	/* Grab memory size from device tree. */
319 	mem_size = get_total_mem();
320 	if (!mem_size) {
321 		edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
322 		return -ENODEV;
323 	}
324 
325 	/* Ensure the SDRAM Interrupt is disabled */
326 	if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
327 			       priv->ecc_irq_en_mask, 0)) {
328 		edac_printk(KERN_ERR, EDAC_MC,
329 			    "Error disabling SDRAM ECC IRQ\n");
330 		return -ENODEV;
331 	}
332 
333 	/* Toggle to clear the SDRAM Error count */
334 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
335 			       priv->ecc_cnt_rst_mask,
336 			       priv->ecc_cnt_rst_mask)) {
337 		edac_printk(KERN_ERR, EDAC_MC,
338 			    "Error clearing SDRAM ECC count\n");
339 		return -ENODEV;
340 	}
341 
342 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
343 			       priv->ecc_cnt_rst_mask, 0)) {
344 		edac_printk(KERN_ERR, EDAC_MC,
345 			    "Error clearing SDRAM ECC count\n");
346 		return -ENODEV;
347 	}
348 
349 	irq = platform_get_irq(pdev, 0);
350 	if (irq < 0) {
351 		edac_printk(KERN_ERR, EDAC_MC,
352 			    "No irq %d in DT\n", irq);
353 		return -ENODEV;
354 	}
355 
356 	/* Arria10 has a 2nd IRQ */
357 	irq2 = platform_get_irq(pdev, 1);
358 
359 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
360 	layers[0].size = 1;
361 	layers[0].is_virt_csrow = true;
362 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
363 	layers[1].size = 1;
364 	layers[1].is_virt_csrow = false;
365 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
366 			    sizeof(struct altr_sdram_mc_data));
367 	if (!mci)
368 		return -ENOMEM;
369 
370 	mci->pdev = &pdev->dev;
371 	drvdata = mci->pvt_info;
372 	drvdata->mc_vbase = mc_vbase;
373 	drvdata->data = priv;
374 	platform_set_drvdata(pdev, mci);
375 
376 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
377 		edac_printk(KERN_ERR, EDAC_MC,
378 			    "Unable to get managed device resource\n");
379 		res = -ENOMEM;
380 		goto free;
381 	}
382 
383 	mci->mtype_cap = MEM_FLAG_DDR3;
384 	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
385 	mci->edac_cap = EDAC_FLAG_SECDED;
386 	mci->mod_name = EDAC_MOD_STR;
387 	mci->ctl_name = dev_name(&pdev->dev);
388 	mci->scrub_mode = SCRUB_SW_SRC;
389 	mci->dev_name = dev_name(&pdev->dev);
390 
391 	dimm = *mci->dimms;
392 	dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
393 	dimm->grain = 8;
394 	dimm->dtype = DEV_X8;
395 	dimm->mtype = MEM_DDR3;
396 	dimm->edac_mode = EDAC_SECDED;
397 
398 	res = edac_mc_add_mc(mci);
399 	if (res < 0)
400 		goto err;
401 
402 	/* Only the Arria10 has separate IRQs */
403 	if (socfpga_is_a10()) {
404 		/* Arria10 specific initialization */
405 		res = a10_init(mc_vbase);
406 		if (res < 0)
407 			goto err2;
408 
409 		res = devm_request_irq(&pdev->dev, irq2,
410 				       altr_sdram_mc_err_handler,
411 				       IRQF_SHARED, dev_name(&pdev->dev), mci);
412 		if (res < 0) {
413 			edac_mc_printk(mci, KERN_ERR,
414 				       "Unable to request irq %d\n", irq2);
415 			res = -ENODEV;
416 			goto err2;
417 		}
418 
419 		res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
420 		if (res < 0)
421 			goto err2;
422 
423 		irqflags = IRQF_SHARED;
424 	}
425 
426 	res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
427 			       irqflags, dev_name(&pdev->dev), mci);
428 	if (res < 0) {
429 		edac_mc_printk(mci, KERN_ERR,
430 			       "Unable to request irq %d\n", irq);
431 		res = -ENODEV;
432 		goto err2;
433 	}
434 
435 	/* Infrastructure ready - enable the IRQ */
436 	if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
437 			       priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
438 		edac_mc_printk(mci, KERN_ERR,
439 			       "Error enabling SDRAM ECC IRQ\n");
440 		res = -ENODEV;
441 		goto err2;
442 	}
443 
444 	altr_sdr_mc_create_debugfs_nodes(mci);
445 
446 	devres_close_group(&pdev->dev, NULL);
447 
448 	return 0;
449 
450 err2:
451 	edac_mc_del_mc(&pdev->dev);
452 err:
453 	devres_release_group(&pdev->dev, NULL);
454 free:
455 	edac_mc_free(mci);
456 	edac_printk(KERN_ERR, EDAC_MC,
457 		    "EDAC Probe Failed; Error %d\n", res);
458 
459 	return res;
460 }
461 
462 static int altr_sdram_remove(struct platform_device *pdev)
463 {
464 	struct mem_ctl_info *mci = platform_get_drvdata(pdev);
465 
466 	edac_mc_del_mc(&pdev->dev);
467 	edac_mc_free(mci);
468 	platform_set_drvdata(pdev, NULL);
469 
470 	return 0;
471 }
472 
473 /*
474  * If you want to suspend, need to disable EDAC by removing it
475  * from the device tree or defconfig.
476  */
477 #ifdef CONFIG_PM
478 static int altr_sdram_prepare(struct device *dev)
479 {
480 	pr_err("Suspend not allowed when EDAC is enabled.\n");
481 
482 	return -EPERM;
483 }
484 
485 static const struct dev_pm_ops altr_sdram_pm_ops = {
486 	.prepare = altr_sdram_prepare,
487 };
488 #endif
489 
490 static struct platform_driver altr_sdram_edac_driver = {
491 	.probe = altr_sdram_probe,
492 	.remove = altr_sdram_remove,
493 	.driver = {
494 		.name = "altr_sdram_edac",
495 #ifdef CONFIG_PM
496 		.pm = &altr_sdram_pm_ops,
497 #endif
498 		.of_match_table = altr_sdram_ctrl_of_match,
499 	},
500 };
501 
502 module_platform_driver(altr_sdram_edac_driver);
503 
504 #endif	/* CONFIG_EDAC_ALTERA_SDRAM */
505 
506 /**************** Stratix 10 EDAC Memory Controller Functions ************/
507 
508 /**
509  * s10_protected_reg_write
510  * Write to a protected SMC register.
511  * @context: Not used.
512  * @reg: Address of register
513  * @value: Value to write
514  * Return: INTEL_SIP_SMC_STATUS_OK (0) on success
515  *	   INTEL_SIP_SMC_REG_ERROR on error
516  *	   INTEL_SIP_SMC_RETURN_UNKNOWN_FUNCTION if not supported
517  */
518 static int s10_protected_reg_write(void *context, unsigned int reg,
519 				   unsigned int val)
520 {
521 	struct arm_smccc_res result;
522 	unsigned long offset = (unsigned long)context;
523 
524 	arm_smccc_smc(INTEL_SIP_SMC_REG_WRITE, offset + reg, val, 0, 0,
525 		      0, 0, 0, &result);
526 
527 	return (int)result.a0;
528 }
529 
530 /**
531  * s10_protected_reg_read
532  * Read the status of a protected SMC register
533  * @context: Not used.
534  * @reg: Address of register
535  * @value: Value read.
536  * Return: INTEL_SIP_SMC_STATUS_OK (0) on success
537  *	   INTEL_SIP_SMC_REG_ERROR on error
538  *	   INTEL_SIP_SMC_RETURN_UNKNOWN_FUNCTION if not supported
539  */
540 static int s10_protected_reg_read(void *context, unsigned int reg,
541 				  unsigned int *val)
542 {
543 	struct arm_smccc_res result;
544 	unsigned long offset = (unsigned long)context;
545 
546 	arm_smccc_smc(INTEL_SIP_SMC_REG_READ, offset + reg, 0, 0, 0,
547 		      0, 0, 0, &result);
548 
549 	*val = (unsigned int)result.a1;
550 
551 	return (int)result.a0;
552 }
553 
554 static const struct regmap_config s10_sdram_regmap_cfg = {
555 	.name = "s10_ddr",
556 	.reg_bits = 32,
557 	.reg_stride = 4,
558 	.val_bits = 32,
559 	.max_register = 0xffd12228,
560 	.reg_read = s10_protected_reg_read,
561 	.reg_write = s10_protected_reg_write,
562 	.use_single_read = true,
563 	.use_single_write = true,
564 };
565 
566 /************** </Stratix10 EDAC Memory Controller Functions> ***********/
567 
568 /************************* EDAC Parent Probe *************************/
569 
570 static const struct of_device_id altr_edac_device_of_match[];
571 
572 static const struct of_device_id altr_edac_of_match[] = {
573 	{ .compatible = "altr,socfpga-ecc-manager" },
574 	{},
575 };
576 MODULE_DEVICE_TABLE(of, altr_edac_of_match);
577 
578 static int altr_edac_probe(struct platform_device *pdev)
579 {
580 	of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
581 			     NULL, &pdev->dev);
582 	return 0;
583 }
584 
585 static struct platform_driver altr_edac_driver = {
586 	.probe =  altr_edac_probe,
587 	.driver = {
588 		.name = "socfpga_ecc_manager",
589 		.of_match_table = altr_edac_of_match,
590 	},
591 };
592 module_platform_driver(altr_edac_driver);
593 
594 /************************* EDAC Device Functions *************************/
595 
596 /*
597  * EDAC Device Functions (shared between various IPs).
598  * The discrete memories use the EDAC Device framework. The probe
599  * and error handling functions are very similar between memories
600  * so they are shared. The memory allocation and freeing for EDAC
601  * trigger testing are different for each memory.
602  */
603 
604 static const struct edac_device_prv_data ocramecc_data;
605 static const struct edac_device_prv_data l2ecc_data;
606 static const struct edac_device_prv_data a10_ocramecc_data;
607 static const struct edac_device_prv_data a10_l2ecc_data;
608 
609 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
610 {
611 	irqreturn_t ret_value = IRQ_NONE;
612 	struct edac_device_ctl_info *dci = dev_id;
613 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
614 	const struct edac_device_prv_data *priv = drvdata->data;
615 
616 	if (irq == drvdata->sb_irq) {
617 		if (priv->ce_clear_mask)
618 			writel(priv->ce_clear_mask, drvdata->base);
619 		edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
620 		ret_value = IRQ_HANDLED;
621 	} else if (irq == drvdata->db_irq) {
622 		if (priv->ue_clear_mask)
623 			writel(priv->ue_clear_mask, drvdata->base);
624 		edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
625 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
626 		ret_value = IRQ_HANDLED;
627 	} else {
628 		WARN_ON(1);
629 	}
630 
631 	return ret_value;
632 }
633 
634 static ssize_t altr_edac_device_trig(struct file *file,
635 				     const char __user *user_buf,
636 				     size_t count, loff_t *ppos)
637 
638 {
639 	u32 *ptemp, i, error_mask;
640 	int result = 0;
641 	u8 trig_type;
642 	unsigned long flags;
643 	struct edac_device_ctl_info *edac_dci = file->private_data;
644 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
645 	const struct edac_device_prv_data *priv = drvdata->data;
646 	void *generic_ptr = edac_dci->dev;
647 
648 	if (!user_buf || get_user(trig_type, user_buf))
649 		return -EFAULT;
650 
651 	if (!priv->alloc_mem)
652 		return -ENOMEM;
653 
654 	/*
655 	 * Note that generic_ptr is initialized to the device * but in
656 	 * some alloc_functions, this is overridden and returns data.
657 	 */
658 	ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
659 	if (!ptemp) {
660 		edac_printk(KERN_ERR, EDAC_DEVICE,
661 			    "Inject: Buffer Allocation error\n");
662 		return -ENOMEM;
663 	}
664 
665 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
666 		error_mask = priv->ue_set_mask;
667 	else
668 		error_mask = priv->ce_set_mask;
669 
670 	edac_printk(KERN_ALERT, EDAC_DEVICE,
671 		    "Trigger Error Mask (0x%X)\n", error_mask);
672 
673 	local_irq_save(flags);
674 	/* write ECC corrupted data out. */
675 	for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
676 		/* Read data so we're in the correct state */
677 		rmb();
678 		if (READ_ONCE(ptemp[i]))
679 			result = -1;
680 		/* Toggle Error bit (it is latched), leave ECC enabled */
681 		writel(error_mask, (drvdata->base + priv->set_err_ofst));
682 		writel(priv->ecc_enable_mask, (drvdata->base +
683 					       priv->set_err_ofst));
684 		ptemp[i] = i;
685 	}
686 	/* Ensure it has been written out */
687 	wmb();
688 	local_irq_restore(flags);
689 
690 	if (result)
691 		edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
692 
693 	/* Read out written data. ECC error caused here */
694 	for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
695 		if (READ_ONCE(ptemp[i]) != i)
696 			edac_printk(KERN_ERR, EDAC_DEVICE,
697 				    "Read doesn't match written data\n");
698 
699 	if (priv->free_mem)
700 		priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
701 
702 	return count;
703 }
704 
705 static const struct file_operations altr_edac_device_inject_fops = {
706 	.open = simple_open,
707 	.write = altr_edac_device_trig,
708 	.llseek = generic_file_llseek,
709 };
710 
711 static ssize_t altr_edac_a10_device_trig(struct file *file,
712 					 const char __user *user_buf,
713 					 size_t count, loff_t *ppos);
714 
715 static const struct file_operations altr_edac_a10_device_inject_fops = {
716 	.open = simple_open,
717 	.write = altr_edac_a10_device_trig,
718 	.llseek = generic_file_llseek,
719 };
720 
721 static ssize_t altr_edac_a10_device_trig2(struct file *file,
722 					  const char __user *user_buf,
723 					  size_t count, loff_t *ppos);
724 
725 static const struct file_operations altr_edac_a10_device_inject2_fops = {
726 	.open = simple_open,
727 	.write = altr_edac_a10_device_trig2,
728 	.llseek = generic_file_llseek,
729 };
730 
731 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
732 				      const struct edac_device_prv_data *priv)
733 {
734 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
735 
736 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
737 		return;
738 
739 	drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
740 	if (!drvdata->debugfs_dir)
741 		return;
742 
743 	if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
744 				      drvdata->debugfs_dir, edac_dci,
745 				      priv->inject_fops))
746 		debugfs_remove_recursive(drvdata->debugfs_dir);
747 }
748 
749 static const struct of_device_id altr_edac_device_of_match[] = {
750 #ifdef CONFIG_EDAC_ALTERA_L2C
751 	{ .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
752 #endif
753 #ifdef CONFIG_EDAC_ALTERA_OCRAM
754 	{ .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
755 #endif
756 	{},
757 };
758 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
759 
760 /*
761  * altr_edac_device_probe()
762  *	This is a generic EDAC device driver that will support
763  *	various Altera memory devices such as the L2 cache ECC and
764  *	OCRAM ECC as well as the memories for other peripherals.
765  *	Module specific initialization is done by passing the
766  *	function index in the device tree.
767  */
768 static int altr_edac_device_probe(struct platform_device *pdev)
769 {
770 	struct edac_device_ctl_info *dci;
771 	struct altr_edac_device_dev *drvdata;
772 	struct resource *r;
773 	int res = 0;
774 	struct device_node *np = pdev->dev.of_node;
775 	char *ecc_name = (char *)np->name;
776 	static int dev_instance;
777 
778 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
779 		edac_printk(KERN_ERR, EDAC_DEVICE,
780 			    "Unable to open devm\n");
781 		return -ENOMEM;
782 	}
783 
784 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
785 	if (!r) {
786 		edac_printk(KERN_ERR, EDAC_DEVICE,
787 			    "Unable to get mem resource\n");
788 		res = -ENODEV;
789 		goto fail;
790 	}
791 
792 	if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
793 				     dev_name(&pdev->dev))) {
794 		edac_printk(KERN_ERR, EDAC_DEVICE,
795 			    "%s:Error requesting mem region\n", ecc_name);
796 		res = -EBUSY;
797 		goto fail;
798 	}
799 
800 	dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
801 					 1, ecc_name, 1, 0, NULL, 0,
802 					 dev_instance++);
803 
804 	if (!dci) {
805 		edac_printk(KERN_ERR, EDAC_DEVICE,
806 			    "%s: Unable to allocate EDAC device\n", ecc_name);
807 		res = -ENOMEM;
808 		goto fail;
809 	}
810 
811 	drvdata = dci->pvt_info;
812 	dci->dev = &pdev->dev;
813 	platform_set_drvdata(pdev, dci);
814 	drvdata->edac_dev_name = ecc_name;
815 
816 	drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
817 	if (!drvdata->base) {
818 		res = -ENOMEM;
819 		goto fail1;
820 	}
821 
822 	/* Get driver specific data for this EDAC device */
823 	drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
824 
825 	/* Check specific dependencies for the module */
826 	if (drvdata->data->setup) {
827 		res = drvdata->data->setup(drvdata);
828 		if (res)
829 			goto fail1;
830 	}
831 
832 	drvdata->sb_irq = platform_get_irq(pdev, 0);
833 	res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
834 			       altr_edac_device_handler,
835 			       0, dev_name(&pdev->dev), dci);
836 	if (res)
837 		goto fail1;
838 
839 	drvdata->db_irq = platform_get_irq(pdev, 1);
840 	res = devm_request_irq(&pdev->dev, drvdata->db_irq,
841 			       altr_edac_device_handler,
842 			       0, dev_name(&pdev->dev), dci);
843 	if (res)
844 		goto fail1;
845 
846 	dci->mod_name = "Altera ECC Manager";
847 	dci->dev_name = drvdata->edac_dev_name;
848 
849 	res = edac_device_add_device(dci);
850 	if (res)
851 		goto fail1;
852 
853 	altr_create_edacdev_dbgfs(dci, drvdata->data);
854 
855 	devres_close_group(&pdev->dev, NULL);
856 
857 	return 0;
858 
859 fail1:
860 	edac_device_free_ctl_info(dci);
861 fail:
862 	devres_release_group(&pdev->dev, NULL);
863 	edac_printk(KERN_ERR, EDAC_DEVICE,
864 		    "%s:Error setting up EDAC device: %d\n", ecc_name, res);
865 
866 	return res;
867 }
868 
869 static int altr_edac_device_remove(struct platform_device *pdev)
870 {
871 	struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
872 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
873 
874 	debugfs_remove_recursive(drvdata->debugfs_dir);
875 	edac_device_del_device(&pdev->dev);
876 	edac_device_free_ctl_info(dci);
877 
878 	return 0;
879 }
880 
881 static struct platform_driver altr_edac_device_driver = {
882 	.probe =  altr_edac_device_probe,
883 	.remove = altr_edac_device_remove,
884 	.driver = {
885 		.name = "altr_edac_device",
886 		.of_match_table = altr_edac_device_of_match,
887 	},
888 };
889 module_platform_driver(altr_edac_device_driver);
890 
891 /******************* Arria10 Device ECC Shared Functions *****************/
892 
893 /*
894  *  Test for memory's ECC dependencies upon entry because platform specific
895  *  startup should have initialized the memory and enabled the ECC.
896  *  Can't turn on ECC here because accessing un-initialized memory will
897  *  cause CE/UE errors possibly causing an ABORT.
898  */
899 static int __maybe_unused
900 altr_check_ecc_deps(struct altr_edac_device_dev *device)
901 {
902 	void __iomem  *base = device->base;
903 	const struct edac_device_prv_data *prv = device->data;
904 
905 	if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
906 		return 0;
907 
908 	edac_printk(KERN_ERR, EDAC_DEVICE,
909 		    "%s: No ECC present or ECC disabled.\n",
910 		    device->edac_dev_name);
911 	return -ENODEV;
912 }
913 
914 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
915 {
916 	struct altr_edac_device_dev *dci = dev_id;
917 	void __iomem  *base = dci->base;
918 
919 	if (irq == dci->sb_irq) {
920 		writel(ALTR_A10_ECC_SERRPENA,
921 		       base + ALTR_A10_ECC_INTSTAT_OFST);
922 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
923 
924 		return IRQ_HANDLED;
925 	} else if (irq == dci->db_irq) {
926 		writel(ALTR_A10_ECC_DERRPENA,
927 		       base + ALTR_A10_ECC_INTSTAT_OFST);
928 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
929 		if (dci->data->panic)
930 			panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
931 
932 		return IRQ_HANDLED;
933 	}
934 
935 	WARN_ON(1);
936 
937 	return IRQ_NONE;
938 }
939 
940 /******************* Arria10 Memory Buffer Functions *********************/
941 
942 static inline int a10_get_irq_mask(struct device_node *np)
943 {
944 	int irq;
945 	const u32 *handle = of_get_property(np, "interrupts", NULL);
946 
947 	if (!handle)
948 		return -ENODEV;
949 	irq = be32_to_cpup(handle);
950 	return irq;
951 }
952 
953 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
954 {
955 	u32 value = readl(ioaddr);
956 
957 	value |= bit_mask;
958 	writel(value, ioaddr);
959 }
960 
961 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
962 {
963 	u32 value = readl(ioaddr);
964 
965 	value &= ~bit_mask;
966 	writel(value, ioaddr);
967 }
968 
969 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
970 {
971 	u32 value = readl(ioaddr);
972 
973 	return (value & bit_mask) ? 1 : 0;
974 }
975 
976 /*
977  * This function uses the memory initialization block in the Arria10 ECC
978  * controller to initialize/clear the entire memory data and ECC data.
979  */
980 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
981 {
982 	int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
983 	u32 init_mask, stat_mask, clear_mask;
984 	int ret = 0;
985 
986 	if (port) {
987 		init_mask = ALTR_A10_ECC_INITB;
988 		stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
989 		clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
990 	} else {
991 		init_mask = ALTR_A10_ECC_INITA;
992 		stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
993 		clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
994 	}
995 
996 	ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
997 	while (limit--) {
998 		if (ecc_test_bits(stat_mask,
999 				  (ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
1000 			break;
1001 		udelay(1);
1002 	}
1003 	if (limit < 0)
1004 		ret = -EBUSY;
1005 
1006 	/* Clear any pending ECC interrupts */
1007 	writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
1008 
1009 	return ret;
1010 }
1011 
1012 static int socfpga_is_a10(void)
1013 {
1014 	return of_machine_is_compatible("altr,socfpga-arria10");
1015 }
1016 
1017 static int socfpga_is_s10(void)
1018 {
1019 	return of_machine_is_compatible("altr,socfpga-stratix10");
1020 }
1021 
1022 static __init int __maybe_unused
1023 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
1024 			u32 ecc_ctrl_en_mask, bool dual_port)
1025 {
1026 	int ret = 0;
1027 	void __iomem *ecc_block_base;
1028 	struct regmap *ecc_mgr_map;
1029 	char *ecc_name;
1030 	struct device_node *np_eccmgr;
1031 
1032 	ecc_name = (char *)np->name;
1033 
1034 	/* Get the ECC Manager - parent of the device EDACs */
1035 	np_eccmgr = of_get_parent(np);
1036 
1037 	if (socfpga_is_a10()) {
1038 		ecc_mgr_map = syscon_regmap_lookup_by_phandle(np_eccmgr,
1039 							      "altr,sysmgr-syscon");
1040 	} else {
1041 		struct device_node *sysmgr_np;
1042 		struct resource res;
1043 		uintptr_t base;
1044 
1045 		sysmgr_np = of_parse_phandle(np_eccmgr,
1046 					     "altr,sysmgr-syscon", 0);
1047 		if (!sysmgr_np) {
1048 			edac_printk(KERN_ERR, EDAC_DEVICE,
1049 				    "Unable to find altr,sysmgr-syscon\n");
1050 			return -ENODEV;
1051 		}
1052 
1053 		if (of_address_to_resource(sysmgr_np, 0, &res)) {
1054 			of_node_put(sysmgr_np);
1055 			return -ENOMEM;
1056 		}
1057 
1058 		/* Need physical address for SMCC call */
1059 		base = res.start;
1060 
1061 		ecc_mgr_map = regmap_init(NULL, NULL, (void *)base,
1062 					  &s10_sdram_regmap_cfg);
1063 		of_node_put(sysmgr_np);
1064 	}
1065 	of_node_put(np_eccmgr);
1066 	if (IS_ERR(ecc_mgr_map)) {
1067 		edac_printk(KERN_ERR, EDAC_DEVICE,
1068 			    "Unable to get syscon altr,sysmgr-syscon\n");
1069 		return -ENODEV;
1070 	}
1071 
1072 	/* Map the ECC Block */
1073 	ecc_block_base = of_iomap(np, 0);
1074 	if (!ecc_block_base) {
1075 		edac_printk(KERN_ERR, EDAC_DEVICE,
1076 			    "Unable to map %s ECC block\n", ecc_name);
1077 		return -ENODEV;
1078 	}
1079 
1080 	/* Disable ECC */
1081 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
1082 	writel(ALTR_A10_ECC_SERRINTEN,
1083 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
1084 	ecc_clear_bits(ecc_ctrl_en_mask,
1085 		       (ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
1086 	/* Ensure all writes complete */
1087 	wmb();
1088 	/* Use HW initialization block to initialize memory for ECC */
1089 	ret = altr_init_memory_port(ecc_block_base, 0);
1090 	if (ret) {
1091 		edac_printk(KERN_ERR, EDAC_DEVICE,
1092 			    "ECC: cannot init %s PORTA memory\n", ecc_name);
1093 		goto out;
1094 	}
1095 
1096 	if (dual_port) {
1097 		ret = altr_init_memory_port(ecc_block_base, 1);
1098 		if (ret) {
1099 			edac_printk(KERN_ERR, EDAC_DEVICE,
1100 				    "ECC: cannot init %s PORTB memory\n",
1101 				    ecc_name);
1102 			goto out;
1103 		}
1104 	}
1105 
1106 	/* Interrupt mode set to every SBERR */
1107 	regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST,
1108 		     ALTR_A10_ECC_INTMODE);
1109 	/* Enable ECC */
1110 	ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
1111 					ALTR_A10_ECC_CTRL_OFST));
1112 	writel(ALTR_A10_ECC_SERRINTEN,
1113 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
1114 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
1115 	/* Ensure all writes complete */
1116 	wmb();
1117 out:
1118 	iounmap(ecc_block_base);
1119 	return ret;
1120 }
1121 
1122 static int validate_parent_available(struct device_node *np);
1123 static const struct of_device_id altr_edac_a10_device_of_match[];
1124 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
1125 {
1126 	int irq;
1127 	struct device_node *child, *np;
1128 
1129 	if (!socfpga_is_a10() && !socfpga_is_s10())
1130 		return -ENODEV;
1131 
1132 	np = of_find_compatible_node(NULL, NULL,
1133 				     "altr,socfpga-a10-ecc-manager");
1134 	if (!np) {
1135 		edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
1136 		return -ENODEV;
1137 	}
1138 
1139 	for_each_child_of_node(np, child) {
1140 		const struct of_device_id *pdev_id;
1141 		const struct edac_device_prv_data *prv;
1142 
1143 		if (!of_device_is_available(child))
1144 			continue;
1145 		if (!of_device_is_compatible(child, compat))
1146 			continue;
1147 
1148 		if (validate_parent_available(child))
1149 			continue;
1150 
1151 		irq = a10_get_irq_mask(child);
1152 		if (irq < 0)
1153 			continue;
1154 
1155 		/* Get matching node and check for valid result */
1156 		pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
1157 		if (IS_ERR_OR_NULL(pdev_id))
1158 			continue;
1159 
1160 		/* Validate private data pointer before dereferencing */
1161 		prv = pdev_id->data;
1162 		if (!prv)
1163 			continue;
1164 
1165 		altr_init_a10_ecc_block(child, BIT(irq),
1166 					prv->ecc_enable_mask, 0);
1167 	}
1168 
1169 	of_node_put(np);
1170 	return 0;
1171 }
1172 
1173 /*********************** OCRAM EDAC Device Functions *********************/
1174 
1175 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1176 
1177 static void *ocram_alloc_mem(size_t size, void **other)
1178 {
1179 	struct device_node *np;
1180 	struct gen_pool *gp;
1181 	void *sram_addr;
1182 
1183 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
1184 	if (!np)
1185 		return NULL;
1186 
1187 	gp = of_gen_pool_get(np, "iram", 0);
1188 	of_node_put(np);
1189 	if (!gp)
1190 		return NULL;
1191 
1192 	sram_addr = (void *)gen_pool_alloc(gp, size);
1193 	if (!sram_addr)
1194 		return NULL;
1195 
1196 	memset(sram_addr, 0, size);
1197 	/* Ensure data is written out */
1198 	wmb();
1199 
1200 	/* Remember this handle for freeing  later */
1201 	*other = gp;
1202 
1203 	return sram_addr;
1204 }
1205 
1206 static void ocram_free_mem(void *p, size_t size, void *other)
1207 {
1208 	gen_pool_free((struct gen_pool *)other, (unsigned long)p, size);
1209 }
1210 
1211 static const struct edac_device_prv_data ocramecc_data = {
1212 	.setup = altr_check_ecc_deps,
1213 	.ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
1214 	.ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
1215 	.alloc_mem = ocram_alloc_mem,
1216 	.free_mem = ocram_free_mem,
1217 	.ecc_enable_mask = ALTR_OCR_ECC_EN,
1218 	.ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
1219 	.ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
1220 	.ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
1221 	.set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
1222 	.trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
1223 	.inject_fops = &altr_edac_device_inject_fops,
1224 };
1225 
1226 static int __maybe_unused
1227 altr_check_ocram_deps_init(struct altr_edac_device_dev *device)
1228 {
1229 	void __iomem  *base = device->base;
1230 	int ret;
1231 
1232 	ret = altr_check_ecc_deps(device);
1233 	if (ret)
1234 		return ret;
1235 
1236 	/* Verify OCRAM has been initialized */
1237 	if (!ecc_test_bits(ALTR_A10_ECC_INITCOMPLETEA,
1238 			   (base + ALTR_A10_ECC_INITSTAT_OFST)))
1239 		return -ENODEV;
1240 
1241 	/* Enable IRQ on Single Bit Error */
1242 	writel(ALTR_A10_ECC_SERRINTEN, (base + ALTR_A10_ECC_ERRINTENS_OFST));
1243 	/* Ensure all writes complete */
1244 	wmb();
1245 
1246 	return 0;
1247 }
1248 
1249 static const struct edac_device_prv_data a10_ocramecc_data = {
1250 	.setup = altr_check_ocram_deps_init,
1251 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1252 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1253 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
1254 	.ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
1255 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1256 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1257 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1258 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1259 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1260 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1261 	/*
1262 	 * OCRAM panic on uncorrectable error because sleep/resume
1263 	 * functions and FPGA contents are stored in OCRAM. Prefer
1264 	 * a kernel panic over executing/loading corrupted data.
1265 	 */
1266 	.panic = true,
1267 };
1268 
1269 #endif	/* CONFIG_EDAC_ALTERA_OCRAM */
1270 
1271 /********************* L2 Cache EDAC Device Functions ********************/
1272 
1273 #ifdef CONFIG_EDAC_ALTERA_L2C
1274 
1275 static void *l2_alloc_mem(size_t size, void **other)
1276 {
1277 	struct device *dev = *other;
1278 	void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
1279 
1280 	if (!ptemp)
1281 		return NULL;
1282 
1283 	/* Make sure everything is written out */
1284 	wmb();
1285 
1286 	/*
1287 	 * Clean all cache levels up to LoC (includes L2)
1288 	 * This ensures the corrupted data is written into
1289 	 * L2 cache for readback test (which causes ECC error).
1290 	 */
1291 	flush_cache_all();
1292 
1293 	return ptemp;
1294 }
1295 
1296 static void l2_free_mem(void *p, size_t size, void *other)
1297 {
1298 	struct device *dev = other;
1299 
1300 	if (dev && p)
1301 		devm_kfree(dev, p);
1302 }
1303 
1304 /*
1305  * altr_l2_check_deps()
1306  *	Test for L2 cache ECC dependencies upon entry because
1307  *	platform specific startup should have initialized the L2
1308  *	memory and enabled the ECC.
1309  *	Bail if ECC is not enabled.
1310  *	Note that L2 Cache Enable is forced at build time.
1311  */
1312 static int altr_l2_check_deps(struct altr_edac_device_dev *device)
1313 {
1314 	void __iomem *base = device->base;
1315 	const struct edac_device_prv_data *prv = device->data;
1316 
1317 	if ((readl(base) & prv->ecc_enable_mask) ==
1318 	     prv->ecc_enable_mask)
1319 		return 0;
1320 
1321 	edac_printk(KERN_ERR, EDAC_DEVICE,
1322 		    "L2: No ECC present, or ECC disabled\n");
1323 	return -ENODEV;
1324 }
1325 
1326 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
1327 {
1328 	struct altr_edac_device_dev *dci = dev_id;
1329 
1330 	if (irq == dci->sb_irq) {
1331 		regmap_write(dci->edac->ecc_mgr_map,
1332 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1333 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
1334 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1335 
1336 		return IRQ_HANDLED;
1337 	} else if (irq == dci->db_irq) {
1338 		regmap_write(dci->edac->ecc_mgr_map,
1339 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1340 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
1341 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1342 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1343 
1344 		return IRQ_HANDLED;
1345 	}
1346 
1347 	WARN_ON(1);
1348 
1349 	return IRQ_NONE;
1350 }
1351 
1352 static const struct edac_device_prv_data l2ecc_data = {
1353 	.setup = altr_l2_check_deps,
1354 	.ce_clear_mask = 0,
1355 	.ue_clear_mask = 0,
1356 	.alloc_mem = l2_alloc_mem,
1357 	.free_mem = l2_free_mem,
1358 	.ecc_enable_mask = ALTR_L2_ECC_EN,
1359 	.ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
1360 	.ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
1361 	.set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
1362 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1363 	.inject_fops = &altr_edac_device_inject_fops,
1364 };
1365 
1366 static const struct edac_device_prv_data a10_l2ecc_data = {
1367 	.setup = altr_l2_check_deps,
1368 	.ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
1369 	.ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
1370 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
1371 	.alloc_mem = l2_alloc_mem,
1372 	.free_mem = l2_free_mem,
1373 	.ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
1374 	.ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
1375 	.ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
1376 	.set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
1377 	.ecc_irq_handler = altr_edac_a10_l2_irq,
1378 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1379 	.inject_fops = &altr_edac_device_inject_fops,
1380 };
1381 
1382 #endif	/* CONFIG_EDAC_ALTERA_L2C */
1383 
1384 /********************* Ethernet Device Functions ********************/
1385 
1386 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1387 
1388 static int __init socfpga_init_ethernet_ecc(struct altr_edac_device_dev *dev)
1389 {
1390 	int ret;
1391 
1392 	ret = altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
1393 	if (ret)
1394 		return ret;
1395 
1396 	return altr_check_ecc_deps(dev);
1397 }
1398 
1399 static const struct edac_device_prv_data a10_enetecc_data = {
1400 	.setup = socfpga_init_ethernet_ecc,
1401 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1402 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1403 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1404 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1405 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1406 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1407 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1408 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1409 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1410 };
1411 
1412 #endif	/* CONFIG_EDAC_ALTERA_ETHERNET */
1413 
1414 /********************** NAND Device Functions **********************/
1415 
1416 #ifdef CONFIG_EDAC_ALTERA_NAND
1417 
1418 static int __init socfpga_init_nand_ecc(struct altr_edac_device_dev *device)
1419 {
1420 	int ret;
1421 
1422 	ret = altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
1423 	if (ret)
1424 		return ret;
1425 
1426 	return altr_check_ecc_deps(device);
1427 }
1428 
1429 static const struct edac_device_prv_data a10_nandecc_data = {
1430 	.setup = socfpga_init_nand_ecc,
1431 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1432 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1433 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1434 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1435 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1436 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1437 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1438 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1439 	.inject_fops = &altr_edac_a10_device_inject_fops,
1440 };
1441 
1442 #endif	/* CONFIG_EDAC_ALTERA_NAND */
1443 
1444 /********************** DMA Device Functions **********************/
1445 
1446 #ifdef CONFIG_EDAC_ALTERA_DMA
1447 
1448 static int __init socfpga_init_dma_ecc(struct altr_edac_device_dev *device)
1449 {
1450 	int ret;
1451 
1452 	ret = altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
1453 	if (ret)
1454 		return ret;
1455 
1456 	return altr_check_ecc_deps(device);
1457 }
1458 
1459 static const struct edac_device_prv_data a10_dmaecc_data = {
1460 	.setup = socfpga_init_dma_ecc,
1461 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1462 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1463 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1464 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1465 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1466 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1467 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1468 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1469 	.inject_fops = &altr_edac_a10_device_inject_fops,
1470 };
1471 
1472 #endif	/* CONFIG_EDAC_ALTERA_DMA */
1473 
1474 /********************** USB Device Functions **********************/
1475 
1476 #ifdef CONFIG_EDAC_ALTERA_USB
1477 
1478 static int __init socfpga_init_usb_ecc(struct altr_edac_device_dev *device)
1479 {
1480 	int ret;
1481 
1482 	ret = altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
1483 	if (ret)
1484 		return ret;
1485 
1486 	return altr_check_ecc_deps(device);
1487 }
1488 
1489 static const struct edac_device_prv_data a10_usbecc_data = {
1490 	.setup = socfpga_init_usb_ecc,
1491 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1492 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1493 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1494 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1495 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1496 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1497 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1498 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1499 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1500 };
1501 
1502 #endif	/* CONFIG_EDAC_ALTERA_USB */
1503 
1504 /********************** QSPI Device Functions **********************/
1505 
1506 #ifdef CONFIG_EDAC_ALTERA_QSPI
1507 
1508 static int __init socfpga_init_qspi_ecc(struct altr_edac_device_dev *device)
1509 {
1510 	int ret;
1511 
1512 	ret = altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
1513 	if (ret)
1514 		return ret;
1515 
1516 	return altr_check_ecc_deps(device);
1517 }
1518 
1519 static const struct edac_device_prv_data a10_qspiecc_data = {
1520 	.setup = socfpga_init_qspi_ecc,
1521 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1522 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1523 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1524 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1525 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1526 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1527 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1528 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1529 	.inject_fops = &altr_edac_a10_device_inject_fops,
1530 };
1531 
1532 #endif	/* CONFIG_EDAC_ALTERA_QSPI */
1533 
1534 /********************* SDMMC Device Functions **********************/
1535 
1536 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1537 
1538 static const struct edac_device_prv_data a10_sdmmceccb_data;
1539 static int altr_portb_setup(struct altr_edac_device_dev *device)
1540 {
1541 	struct edac_device_ctl_info *dci;
1542 	struct altr_edac_device_dev *altdev;
1543 	char *ecc_name = "sdmmcb-ecc";
1544 	int edac_idx, rc;
1545 	struct device_node *np;
1546 	const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
1547 
1548 	rc = altr_check_ecc_deps(device);
1549 	if (rc)
1550 		return rc;
1551 
1552 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1553 	if (!np) {
1554 		edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1555 		return -ENODEV;
1556 	}
1557 
1558 	/* Create the PortB EDAC device */
1559 	edac_idx = edac_device_alloc_index();
1560 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
1561 					 ecc_name, 1, 0, NULL, 0, edac_idx);
1562 	if (!dci) {
1563 		edac_printk(KERN_ERR, EDAC_DEVICE,
1564 			    "%s: Unable to allocate PortB EDAC device\n",
1565 			    ecc_name);
1566 		return -ENOMEM;
1567 	}
1568 
1569 	/* Initialize the PortB EDAC device structure from PortA structure */
1570 	altdev = dci->pvt_info;
1571 	*altdev = *device;
1572 
1573 	if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
1574 		return -ENOMEM;
1575 
1576 	/* Update PortB specific values */
1577 	altdev->edac_dev_name = ecc_name;
1578 	altdev->edac_idx = edac_idx;
1579 	altdev->edac_dev = dci;
1580 	altdev->data = prv;
1581 	dci->dev = &altdev->ddev;
1582 	dci->ctl_name = "Altera ECC Manager";
1583 	dci->mod_name = ecc_name;
1584 	dci->dev_name = ecc_name;
1585 
1586 	/* Update the PortB IRQs - A10 has 4, S10 has 2, Index accordingly */
1587 #ifdef CONFIG_ARCH_STRATIX10
1588 	altdev->sb_irq = irq_of_parse_and_map(np, 1);
1589 #else
1590 	altdev->sb_irq = irq_of_parse_and_map(np, 2);
1591 #endif
1592 	if (!altdev->sb_irq) {
1593 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
1594 		rc = -ENODEV;
1595 		goto err_release_group_1;
1596 	}
1597 	rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
1598 			      prv->ecc_irq_handler,
1599 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1600 			      ecc_name, altdev);
1601 	if (rc) {
1602 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
1603 		goto err_release_group_1;
1604 	}
1605 
1606 #ifdef CONFIG_ARCH_STRATIX10
1607 	/* Use IRQ to determine SError origin instead of assigning IRQ */
1608 	rc = of_property_read_u32_index(np, "interrupts", 1, &altdev->db_irq);
1609 	if (rc) {
1610 		edac_printk(KERN_ERR, EDAC_DEVICE,
1611 			    "Error PortB DBIRQ alloc\n");
1612 		goto err_release_group_1;
1613 	}
1614 #else
1615 	altdev->db_irq = irq_of_parse_and_map(np, 3);
1616 	if (!altdev->db_irq) {
1617 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
1618 		rc = -ENODEV;
1619 		goto err_release_group_1;
1620 	}
1621 	rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
1622 			      prv->ecc_irq_handler,
1623 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1624 			      ecc_name, altdev);
1625 	if (rc) {
1626 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
1627 		goto err_release_group_1;
1628 	}
1629 #endif
1630 
1631 	rc = edac_device_add_device(dci);
1632 	if (rc) {
1633 		edac_printk(KERN_ERR, EDAC_DEVICE,
1634 			    "edac_device_add_device portB failed\n");
1635 		rc = -ENOMEM;
1636 		goto err_release_group_1;
1637 	}
1638 	altr_create_edacdev_dbgfs(dci, prv);
1639 
1640 	list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
1641 
1642 	devres_remove_group(&altdev->ddev, altr_portb_setup);
1643 
1644 	return 0;
1645 
1646 err_release_group_1:
1647 	edac_device_free_ctl_info(dci);
1648 	devres_release_group(&altdev->ddev, altr_portb_setup);
1649 	edac_printk(KERN_ERR, EDAC_DEVICE,
1650 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1651 	return rc;
1652 }
1653 
1654 static int __init socfpga_init_sdmmc_ecc(struct altr_edac_device_dev *device)
1655 {
1656 	int rc = -ENODEV;
1657 	struct device_node *child;
1658 
1659 	child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1660 	if (!child)
1661 		return -ENODEV;
1662 
1663 	if (!of_device_is_available(child))
1664 		goto exit;
1665 
1666 	if (validate_parent_available(child))
1667 		goto exit;
1668 
1669 	/* Init portB */
1670 	rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
1671 				     a10_sdmmceccb_data.ecc_enable_mask, 1);
1672 	if (rc)
1673 		goto exit;
1674 
1675 	/* Setup portB */
1676 	return altr_portb_setup(device);
1677 
1678 exit:
1679 	of_node_put(child);
1680 	return rc;
1681 }
1682 
1683 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
1684 {
1685 	struct altr_edac_device_dev *ad = dev_id;
1686 	void __iomem  *base = ad->base;
1687 	const struct edac_device_prv_data *priv = ad->data;
1688 
1689 	if (irq == ad->sb_irq) {
1690 		writel(priv->ce_clear_mask,
1691 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1692 		edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
1693 		return IRQ_HANDLED;
1694 	} else if (irq == ad->db_irq) {
1695 		writel(priv->ue_clear_mask,
1696 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1697 		edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
1698 		return IRQ_HANDLED;
1699 	}
1700 
1701 	WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
1702 
1703 	return IRQ_NONE;
1704 }
1705 
1706 static const struct edac_device_prv_data a10_sdmmcecca_data = {
1707 	.setup = socfpga_init_sdmmc_ecc,
1708 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1709 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1710 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1711 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1712 	.ce_set_mask = ALTR_A10_ECC_SERRPENA,
1713 	.ue_set_mask = ALTR_A10_ECC_DERRPENA,
1714 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1715 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1716 	.inject_fops = &altr_edac_a10_device_inject_fops,
1717 };
1718 
1719 static const struct edac_device_prv_data a10_sdmmceccb_data = {
1720 	.setup = socfpga_init_sdmmc_ecc,
1721 	.ce_clear_mask = ALTR_A10_ECC_SERRPENB,
1722 	.ue_clear_mask = ALTR_A10_ECC_DERRPENB,
1723 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1724 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1725 	.ce_set_mask = ALTR_A10_ECC_TSERRB,
1726 	.ue_set_mask = ALTR_A10_ECC_TDERRB,
1727 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1728 	.ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
1729 	.inject_fops = &altr_edac_a10_device_inject_fops,
1730 };
1731 
1732 #endif	/* CONFIG_EDAC_ALTERA_SDMMC */
1733 
1734 /********************* Arria10 EDAC Device Functions *************************/
1735 static const struct of_device_id altr_edac_a10_device_of_match[] = {
1736 #ifdef CONFIG_EDAC_ALTERA_L2C
1737 	{ .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
1738 #endif
1739 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1740 	{ .compatible = "altr,socfpga-a10-ocram-ecc",
1741 	  .data = &a10_ocramecc_data },
1742 #endif
1743 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1744 	{ .compatible = "altr,socfpga-eth-mac-ecc",
1745 	  .data = &a10_enetecc_data },
1746 #endif
1747 #ifdef CONFIG_EDAC_ALTERA_NAND
1748 	{ .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
1749 #endif
1750 #ifdef CONFIG_EDAC_ALTERA_DMA
1751 	{ .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
1752 #endif
1753 #ifdef CONFIG_EDAC_ALTERA_USB
1754 	{ .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
1755 #endif
1756 #ifdef CONFIG_EDAC_ALTERA_QSPI
1757 	{ .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
1758 #endif
1759 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1760 	{ .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
1761 #endif
1762 	{},
1763 };
1764 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
1765 
1766 /*
1767  * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
1768  * because 2 IRQs are shared among the all ECC peripherals. The ECC
1769  * manager manages the IRQs and the children.
1770  * Based on xgene_edac.c peripheral code.
1771  */
1772 
1773 static ssize_t altr_edac_a10_device_trig(struct file *file,
1774 					 const char __user *user_buf,
1775 					 size_t count, loff_t *ppos)
1776 {
1777 	struct edac_device_ctl_info *edac_dci = file->private_data;
1778 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1779 	const struct edac_device_prv_data *priv = drvdata->data;
1780 	void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1781 	unsigned long flags;
1782 	u8 trig_type;
1783 
1784 	if (!user_buf || get_user(trig_type, user_buf))
1785 		return -EFAULT;
1786 
1787 	local_irq_save(flags);
1788 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
1789 		writel(priv->ue_set_mask, set_addr);
1790 	else
1791 		writel(priv->ce_set_mask, set_addr);
1792 
1793 	/* Ensure the interrupt test bits are set */
1794 	wmb();
1795 	local_irq_restore(flags);
1796 
1797 	return count;
1798 }
1799 
1800 /*
1801  * The Stratix10 EDAC Error Injection Functions differ from Arria10
1802  * slightly. A few Arria10 peripherals can use this injection function.
1803  * Inject the error into the memory and then readback to trigger the IRQ.
1804  */
1805 static ssize_t altr_edac_a10_device_trig2(struct file *file,
1806 					  const char __user *user_buf,
1807 					  size_t count, loff_t *ppos)
1808 {
1809 	struct edac_device_ctl_info *edac_dci = file->private_data;
1810 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1811 	const struct edac_device_prv_data *priv = drvdata->data;
1812 	void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1813 	unsigned long flags;
1814 	u8 trig_type;
1815 
1816 	if (!user_buf || get_user(trig_type, user_buf))
1817 		return -EFAULT;
1818 
1819 	local_irq_save(flags);
1820 	if (trig_type == ALTR_UE_TRIGGER_CHAR) {
1821 		writel(priv->ue_set_mask, set_addr);
1822 	} else {
1823 		/* Setup read/write of 4 bytes */
1824 		writel(ECC_WORD_WRITE, drvdata->base + ECC_BLK_DBYTECTRL_OFST);
1825 		/* Setup Address to 0 */
1826 		writel(0, drvdata->base + ECC_BLK_ADDRESS_OFST);
1827 		/* Setup accctrl to read & ecc & data override */
1828 		writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1829 		/* Kick it. */
1830 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1831 		/* Setup write for single bit change */
1832 		writel(readl(drvdata->base + ECC_BLK_RDATA0_OFST) ^ 0x1,
1833 		       drvdata->base + ECC_BLK_WDATA0_OFST);
1834 		writel(readl(drvdata->base + ECC_BLK_RDATA1_OFST),
1835 		       drvdata->base + ECC_BLK_WDATA1_OFST);
1836 		writel(readl(drvdata->base + ECC_BLK_RDATA2_OFST),
1837 		       drvdata->base + ECC_BLK_WDATA2_OFST);
1838 		writel(readl(drvdata->base + ECC_BLK_RDATA3_OFST),
1839 		       drvdata->base + ECC_BLK_WDATA3_OFST);
1840 
1841 		/* Copy Read ECC to Write ECC */
1842 		writel(readl(drvdata->base + ECC_BLK_RECC0_OFST),
1843 		       drvdata->base + ECC_BLK_WECC0_OFST);
1844 		writel(readl(drvdata->base + ECC_BLK_RECC1_OFST),
1845 		       drvdata->base + ECC_BLK_WECC1_OFST);
1846 		/* Setup accctrl to write & ecc override & data override */
1847 		writel(ECC_WRITE_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1848 		/* Kick it. */
1849 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1850 		/* Setup accctrl to read & ecc overwrite & data overwrite */
1851 		writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1852 		/* Kick it. */
1853 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1854 	}
1855 
1856 	/* Ensure the interrupt test bits are set */
1857 	wmb();
1858 	local_irq_restore(flags);
1859 
1860 	return count;
1861 }
1862 
1863 static void altr_edac_a10_irq_handler(struct irq_desc *desc)
1864 {
1865 	int dberr, bit, sm_offset, irq_status;
1866 	struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
1867 	struct irq_chip *chip = irq_desc_get_chip(desc);
1868 	int irq = irq_desc_get_irq(desc);
1869 
1870 	dberr = (irq == edac->db_irq) ? 1 : 0;
1871 	sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
1872 			    A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
1873 
1874 	chained_irq_enter(chip, desc);
1875 
1876 	regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
1877 
1878 	for_each_set_bit(bit, (unsigned long *)&irq_status, 32) {
1879 		irq = irq_linear_revmap(edac->domain, dberr * 32 + bit);
1880 		if (irq)
1881 			generic_handle_irq(irq);
1882 	}
1883 
1884 	chained_irq_exit(chip, desc);
1885 }
1886 
1887 static int validate_parent_available(struct device_node *np)
1888 {
1889 	struct device_node *parent;
1890 	int ret = 0;
1891 
1892 	/* Ensure parent device is enabled if parent node exists */
1893 	parent = of_parse_phandle(np, "altr,ecc-parent", 0);
1894 	if (parent && !of_device_is_available(parent))
1895 		ret = -ENODEV;
1896 
1897 	of_node_put(parent);
1898 	return ret;
1899 }
1900 
1901 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
1902 				    struct device_node *np)
1903 {
1904 	struct edac_device_ctl_info *dci;
1905 	struct altr_edac_device_dev *altdev;
1906 	char *ecc_name = (char *)np->name;
1907 	struct resource res;
1908 	int edac_idx;
1909 	int rc = 0;
1910 	const struct edac_device_prv_data *prv;
1911 	/* Get matching node and check for valid result */
1912 	const struct of_device_id *pdev_id =
1913 		of_match_node(altr_edac_a10_device_of_match, np);
1914 	if (IS_ERR_OR_NULL(pdev_id))
1915 		return -ENODEV;
1916 
1917 	/* Get driver specific data for this EDAC device */
1918 	prv = pdev_id->data;
1919 	if (IS_ERR_OR_NULL(prv))
1920 		return -ENODEV;
1921 
1922 	if (validate_parent_available(np))
1923 		return -ENODEV;
1924 
1925 	if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
1926 		return -ENOMEM;
1927 
1928 	rc = of_address_to_resource(np, 0, &res);
1929 	if (rc < 0) {
1930 		edac_printk(KERN_ERR, EDAC_DEVICE,
1931 			    "%s: no resource address\n", ecc_name);
1932 		goto err_release_group;
1933 	}
1934 
1935 	edac_idx = edac_device_alloc_index();
1936 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
1937 					 1, ecc_name, 1, 0, NULL, 0,
1938 					 edac_idx);
1939 
1940 	if (!dci) {
1941 		edac_printk(KERN_ERR, EDAC_DEVICE,
1942 			    "%s: Unable to allocate EDAC device\n", ecc_name);
1943 		rc = -ENOMEM;
1944 		goto err_release_group;
1945 	}
1946 
1947 	altdev = dci->pvt_info;
1948 	dci->dev = edac->dev;
1949 	altdev->edac_dev_name = ecc_name;
1950 	altdev->edac_idx = edac_idx;
1951 	altdev->edac = edac;
1952 	altdev->edac_dev = dci;
1953 	altdev->data = prv;
1954 	altdev->ddev = *edac->dev;
1955 	dci->dev = &altdev->ddev;
1956 	dci->ctl_name = "Altera ECC Manager";
1957 	dci->mod_name = ecc_name;
1958 	dci->dev_name = ecc_name;
1959 
1960 	altdev->base = devm_ioremap_resource(edac->dev, &res);
1961 	if (IS_ERR(altdev->base)) {
1962 		rc = PTR_ERR(altdev->base);
1963 		goto err_release_group1;
1964 	}
1965 
1966 	/* Check specific dependencies for the module */
1967 	if (altdev->data->setup) {
1968 		rc = altdev->data->setup(altdev);
1969 		if (rc)
1970 			goto err_release_group1;
1971 	}
1972 
1973 	altdev->sb_irq = irq_of_parse_and_map(np, 0);
1974 	if (!altdev->sb_irq) {
1975 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
1976 		rc = -ENODEV;
1977 		goto err_release_group1;
1978 	}
1979 	rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
1980 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1981 			      ecc_name, altdev);
1982 	if (rc) {
1983 		edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
1984 		goto err_release_group1;
1985 	}
1986 
1987 #ifdef CONFIG_ARCH_STRATIX10
1988 	/* Use IRQ to determine SError origin instead of assigning IRQ */
1989 	rc = of_property_read_u32_index(np, "interrupts", 0, &altdev->db_irq);
1990 	if (rc) {
1991 		edac_printk(KERN_ERR, EDAC_DEVICE,
1992 			    "Unable to parse DB IRQ index\n");
1993 		goto err_release_group1;
1994 	}
1995 #else
1996 	altdev->db_irq = irq_of_parse_and_map(np, 1);
1997 	if (!altdev->db_irq) {
1998 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
1999 		rc = -ENODEV;
2000 		goto err_release_group1;
2001 	}
2002 	rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
2003 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
2004 			      ecc_name, altdev);
2005 	if (rc) {
2006 		edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
2007 		goto err_release_group1;
2008 	}
2009 #endif
2010 
2011 	rc = edac_device_add_device(dci);
2012 	if (rc) {
2013 		dev_err(edac->dev, "edac_device_add_device failed\n");
2014 		rc = -ENOMEM;
2015 		goto err_release_group1;
2016 	}
2017 
2018 	altr_create_edacdev_dbgfs(dci, prv);
2019 
2020 	list_add(&altdev->next, &edac->a10_ecc_devices);
2021 
2022 	devres_remove_group(edac->dev, altr_edac_a10_device_add);
2023 
2024 	return 0;
2025 
2026 err_release_group1:
2027 	edac_device_free_ctl_info(dci);
2028 err_release_group:
2029 	devres_release_group(edac->dev, NULL);
2030 	edac_printk(KERN_ERR, EDAC_DEVICE,
2031 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
2032 
2033 	return rc;
2034 }
2035 
2036 static void a10_eccmgr_irq_mask(struct irq_data *d)
2037 {
2038 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2039 
2040 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_SET_OFST,
2041 		     BIT(d->hwirq));
2042 }
2043 
2044 static void a10_eccmgr_irq_unmask(struct irq_data *d)
2045 {
2046 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2047 
2048 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_CLR_OFST,
2049 		     BIT(d->hwirq));
2050 }
2051 
2052 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
2053 				    irq_hw_number_t hwirq)
2054 {
2055 	struct altr_arria10_edac *edac = d->host_data;
2056 
2057 	irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
2058 	irq_set_chip_data(irq, edac);
2059 	irq_set_noprobe(irq);
2060 
2061 	return 0;
2062 }
2063 
2064 static const struct irq_domain_ops a10_eccmgr_ic_ops = {
2065 	.map = a10_eccmgr_irqdomain_map,
2066 	.xlate = irq_domain_xlate_twocell,
2067 };
2068 
2069 /************** Stratix 10 EDAC Double Bit Error Handler ************/
2070 #define to_a10edac(p, m) container_of(p, struct altr_arria10_edac, m)
2071 
2072 #ifdef CONFIG_ARCH_STRATIX10
2073 /* panic routine issues reboot on non-zero panic_timeout */
2074 extern int panic_timeout;
2075 
2076 /*
2077  * The double bit error is handled through SError which is fatal. This is
2078  * called as a panic notifier to printout ECC error info as part of the panic.
2079  */
2080 static int s10_edac_dberr_handler(struct notifier_block *this,
2081 				  unsigned long event, void *ptr)
2082 {
2083 	struct altr_arria10_edac *edac = to_a10edac(this, panic_notifier);
2084 	int err_addr, dberror;
2085 
2086 	regmap_read(edac->ecc_mgr_map, S10_SYSMGR_ECC_INTSTAT_DERR_OFST,
2087 		    &dberror);
2088 	regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, dberror);
2089 	if (dberror & S10_DBE_IRQ_MASK) {
2090 		struct list_head *position;
2091 		struct altr_edac_device_dev *ed;
2092 		struct arm_smccc_res result;
2093 
2094 		/* Find the matching DBE in the list of devices */
2095 		list_for_each(position, &edac->a10_ecc_devices) {
2096 			ed = list_entry(position, struct altr_edac_device_dev,
2097 					next);
2098 			if (!(BIT(ed->db_irq) & dberror))
2099 				continue;
2100 
2101 			writel(ALTR_A10_ECC_DERRPENA,
2102 			       ed->base + ALTR_A10_ECC_INTSTAT_OFST);
2103 			err_addr = readl(ed->base + ALTR_S10_DERR_ADDRA_OFST);
2104 			regmap_write(edac->ecc_mgr_map,
2105 				     S10_SYSMGR_UE_ADDR_OFST, err_addr);
2106 			edac_printk(KERN_ERR, EDAC_DEVICE,
2107 				    "EDAC: [Fatal DBE on %s @ 0x%08X]\n",
2108 				    ed->edac_dev_name, err_addr);
2109 			break;
2110 		}
2111 		/* Notify the System through SMC. Reboot delay = 1 second */
2112 		panic_timeout = 1;
2113 		arm_smccc_smc(INTEL_SIP_SMC_ECC_DBE, dberror, 0, 0, 0, 0,
2114 			      0, 0, &result);
2115 	}
2116 
2117 	return NOTIFY_DONE;
2118 }
2119 #endif
2120 
2121 /****************** Arria 10 EDAC Probe Function *********************/
2122 static int altr_edac_a10_probe(struct platform_device *pdev)
2123 {
2124 	struct altr_arria10_edac *edac;
2125 	struct device_node *child;
2126 
2127 	edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
2128 	if (!edac)
2129 		return -ENOMEM;
2130 
2131 	edac->dev = &pdev->dev;
2132 	platform_set_drvdata(pdev, edac);
2133 	INIT_LIST_HEAD(&edac->a10_ecc_devices);
2134 
2135 	if (socfpga_is_a10()) {
2136 		edac->ecc_mgr_map =
2137 			syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
2138 							"altr,sysmgr-syscon");
2139 	} else {
2140 		struct device_node *sysmgr_np;
2141 		struct resource res;
2142 		uintptr_t base;
2143 
2144 		sysmgr_np = of_parse_phandle(pdev->dev.of_node,
2145 					     "altr,sysmgr-syscon", 0);
2146 		if (!sysmgr_np) {
2147 			edac_printk(KERN_ERR, EDAC_DEVICE,
2148 				    "Unable to find altr,sysmgr-syscon\n");
2149 			return -ENODEV;
2150 		}
2151 
2152 		if (of_address_to_resource(sysmgr_np, 0, &res))
2153 			return -ENOMEM;
2154 
2155 		/* Need physical address for SMCC call */
2156 		base = res.start;
2157 
2158 		edac->ecc_mgr_map = devm_regmap_init(&pdev->dev, NULL,
2159 						     (void *)base,
2160 						     &s10_sdram_regmap_cfg);
2161 	}
2162 
2163 	if (IS_ERR(edac->ecc_mgr_map)) {
2164 		edac_printk(KERN_ERR, EDAC_DEVICE,
2165 			    "Unable to get syscon altr,sysmgr-syscon\n");
2166 		return PTR_ERR(edac->ecc_mgr_map);
2167 	}
2168 
2169 	edac->irq_chip.name = pdev->dev.of_node->name;
2170 	edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
2171 	edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
2172 	edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64,
2173 					     &a10_eccmgr_ic_ops, edac);
2174 	if (!edac->domain) {
2175 		dev_err(&pdev->dev, "Error adding IRQ domain\n");
2176 		return -ENOMEM;
2177 	}
2178 
2179 	edac->sb_irq = platform_get_irq(pdev, 0);
2180 	if (edac->sb_irq < 0) {
2181 		dev_err(&pdev->dev, "No SBERR IRQ resource\n");
2182 		return edac->sb_irq;
2183 	}
2184 
2185 	irq_set_chained_handler_and_data(edac->sb_irq,
2186 					 altr_edac_a10_irq_handler,
2187 					 edac);
2188 
2189 #ifdef CONFIG_ARCH_STRATIX10
2190 	{
2191 		int dberror, err_addr;
2192 
2193 		edac->panic_notifier.notifier_call = s10_edac_dberr_handler;
2194 		atomic_notifier_chain_register(&panic_notifier_list,
2195 					       &edac->panic_notifier);
2196 
2197 		/* Printout a message if uncorrectable error previously. */
2198 		regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST,
2199 			    &dberror);
2200 		if (dberror) {
2201 			regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST,
2202 				    &err_addr);
2203 			edac_printk(KERN_ERR, EDAC_DEVICE,
2204 				    "Previous Boot UE detected[0x%X] @ 0x%X\n",
2205 				    dberror, err_addr);
2206 			/* Reset the sticky registers */
2207 			regmap_write(edac->ecc_mgr_map,
2208 				     S10_SYSMGR_UE_VAL_OFST, 0);
2209 			regmap_write(edac->ecc_mgr_map,
2210 				     S10_SYSMGR_UE_ADDR_OFST, 0);
2211 		}
2212 	}
2213 #else
2214 	edac->db_irq = platform_get_irq(pdev, 1);
2215 	if (edac->db_irq < 0) {
2216 		dev_err(&pdev->dev, "No DBERR IRQ resource\n");
2217 		return edac->db_irq;
2218 	}
2219 	irq_set_chained_handler_and_data(edac->db_irq,
2220 					 altr_edac_a10_irq_handler, edac);
2221 #endif
2222 
2223 	for_each_child_of_node(pdev->dev.of_node, child) {
2224 		if (!of_device_is_available(child))
2225 			continue;
2226 
2227 		if (of_device_is_compatible(child, "altr,socfpga-a10-l2-ecc") ||
2228 		    of_device_is_compatible(child, "altr,socfpga-a10-ocram-ecc") ||
2229 		    of_device_is_compatible(child, "altr,socfpga-eth-mac-ecc") ||
2230 		    of_device_is_compatible(child, "altr,socfpga-nand-ecc") ||
2231 		    of_device_is_compatible(child, "altr,socfpga-dma-ecc") ||
2232 		    of_device_is_compatible(child, "altr,socfpga-usb-ecc") ||
2233 		    of_device_is_compatible(child, "altr,socfpga-qspi-ecc") ||
2234 		    of_device_is_compatible(child, "altr,socfpga-sdmmc-ecc"))
2235 
2236 			altr_edac_a10_device_add(edac, child);
2237 
2238 #ifdef CONFIG_EDAC_ALTERA_SDRAM
2239 		else if ((of_device_is_compatible(child, "altr,sdram-edac-a10")) ||
2240 			 (of_device_is_compatible(child, "altr,sdram-edac-s10")))
2241 			of_platform_populate(pdev->dev.of_node,
2242 					     altr_sdram_ctrl_of_match,
2243 					     NULL, &pdev->dev);
2244 #endif
2245 	}
2246 
2247 	return 0;
2248 }
2249 
2250 static const struct of_device_id altr_edac_a10_of_match[] = {
2251 	{ .compatible = "altr,socfpga-a10-ecc-manager" },
2252 	{ .compatible = "altr,socfpga-s10-ecc-manager" },
2253 	{},
2254 };
2255 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
2256 
2257 static struct platform_driver altr_edac_a10_driver = {
2258 	.probe =  altr_edac_a10_probe,
2259 	.driver = {
2260 		.name = "socfpga_a10_ecc_manager",
2261 		.of_match_table = altr_edac_a10_of_match,
2262 	},
2263 };
2264 module_platform_driver(altr_edac_a10_driver);
2265 
2266 MODULE_LICENSE("GPL v2");
2267 MODULE_AUTHOR("Thor Thayer");
2268 MODULE_DESCRIPTION("EDAC Driver for Altera Memories");
2269