xref: /openbmc/linux/drivers/edac/altera_edac.c (revision 93032e31)
1 /*
2  *  Copyright Altera Corporation (C) 2014-2016. All rights reserved.
3  *  Copyright 2011-2012 Calxeda, Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program.  If not, see <http://www.gnu.org/licenses/>.
16  *
17  * Adapted from the highbank_mc_edac driver.
18  */
19 
20 #include <asm/cacheflush.h>
21 #include <linux/ctype.h>
22 #include <linux/delay.h>
23 #include <linux/edac.h>
24 #include <linux/genalloc.h>
25 #include <linux/interrupt.h>
26 #include <linux/irqchip/chained_irq.h>
27 #include <linux/kernel.h>
28 #include <linux/mfd/syscon.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/regmap.h>
34 #include <linux/types.h>
35 #include <linux/uaccess.h>
36 
37 #include "altera_edac.h"
38 #include "edac_core.h"
39 #include "edac_module.h"
40 
41 #define EDAC_MOD_STR		"altera_edac"
42 #define EDAC_VERSION		"1"
43 #define EDAC_DEVICE		"Altera"
44 
45 static const struct altr_sdram_prv_data c5_data = {
46 	.ecc_ctrl_offset    = CV_CTLCFG_OFST,
47 	.ecc_ctl_en_mask    = CV_CTLCFG_ECC_AUTO_EN,
48 	.ecc_stat_offset    = CV_DRAMSTS_OFST,
49 	.ecc_stat_ce_mask   = CV_DRAMSTS_SBEERR,
50 	.ecc_stat_ue_mask   = CV_DRAMSTS_DBEERR,
51 	.ecc_saddr_offset   = CV_ERRADDR_OFST,
52 	.ecc_daddr_offset   = CV_ERRADDR_OFST,
53 	.ecc_cecnt_offset   = CV_SBECOUNT_OFST,
54 	.ecc_uecnt_offset   = CV_DBECOUNT_OFST,
55 	.ecc_irq_en_offset  = CV_DRAMINTR_OFST,
56 	.ecc_irq_en_mask    = CV_DRAMINTR_INTREN,
57 	.ecc_irq_clr_offset = CV_DRAMINTR_OFST,
58 	.ecc_irq_clr_mask   = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
59 	.ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
60 	.ecc_cnt_rst_mask   = CV_DRAMINTR_INTRCLR,
61 	.ce_ue_trgr_offset  = CV_CTLCFG_OFST,
62 	.ce_set_mask        = CV_CTLCFG_GEN_SB_ERR,
63 	.ue_set_mask        = CV_CTLCFG_GEN_DB_ERR,
64 };
65 
66 static const struct altr_sdram_prv_data a10_data = {
67 	.ecc_ctrl_offset    = A10_ECCCTRL1_OFST,
68 	.ecc_ctl_en_mask    = A10_ECCCTRL1_ECC_EN,
69 	.ecc_stat_offset    = A10_INTSTAT_OFST,
70 	.ecc_stat_ce_mask   = A10_INTSTAT_SBEERR,
71 	.ecc_stat_ue_mask   = A10_INTSTAT_DBEERR,
72 	.ecc_saddr_offset   = A10_SERRADDR_OFST,
73 	.ecc_daddr_offset   = A10_DERRADDR_OFST,
74 	.ecc_irq_en_offset  = A10_ERRINTEN_OFST,
75 	.ecc_irq_en_mask    = A10_ECC_IRQ_EN_MASK,
76 	.ecc_irq_clr_offset = A10_INTSTAT_OFST,
77 	.ecc_irq_clr_mask   = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
78 	.ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
79 	.ecc_cnt_rst_mask   = A10_ECC_CNT_RESET_MASK,
80 	.ce_ue_trgr_offset  = A10_DIAGINTTEST_OFST,
81 	.ce_set_mask        = A10_DIAGINT_TSERRA_MASK,
82 	.ue_set_mask        = A10_DIAGINT_TDERRA_MASK,
83 };
84 
85 /*********************** EDAC Memory Controller Functions ****************/
86 
87 /* The SDRAM controller uses the EDAC Memory Controller framework.       */
88 
89 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
90 {
91 	struct mem_ctl_info *mci = dev_id;
92 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
93 	const struct altr_sdram_prv_data *priv = drvdata->data;
94 	u32 status, err_count = 1, err_addr;
95 
96 	regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
97 
98 	if (status & priv->ecc_stat_ue_mask) {
99 		regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
100 			    &err_addr);
101 		if (priv->ecc_uecnt_offset)
102 			regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
103 				    &err_count);
104 		panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
105 		      err_count, err_addr);
106 	}
107 	if (status & priv->ecc_stat_ce_mask) {
108 		regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
109 			    &err_addr);
110 		if (priv->ecc_uecnt_offset)
111 			regmap_read(drvdata->mc_vbase,  priv->ecc_cecnt_offset,
112 				    &err_count);
113 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
114 				     err_addr >> PAGE_SHIFT,
115 				     err_addr & ~PAGE_MASK, 0,
116 				     0, 0, -1, mci->ctl_name, "");
117 		/* Clear IRQ to resume */
118 		regmap_write(drvdata->mc_vbase,	priv->ecc_irq_clr_offset,
119 			     priv->ecc_irq_clr_mask);
120 
121 		return IRQ_HANDLED;
122 	}
123 	return IRQ_NONE;
124 }
125 
126 static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
127 					    const char __user *data,
128 					    size_t count, loff_t *ppos)
129 {
130 	struct mem_ctl_info *mci = file->private_data;
131 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
132 	const struct altr_sdram_prv_data *priv = drvdata->data;
133 	u32 *ptemp;
134 	dma_addr_t dma_handle;
135 	u32 reg, read_reg;
136 
137 	ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
138 	if (!ptemp) {
139 		dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
140 		edac_printk(KERN_ERR, EDAC_MC,
141 			    "Inject: Buffer Allocation error\n");
142 		return -ENOMEM;
143 	}
144 
145 	regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
146 		    &read_reg);
147 	read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
148 
149 	/* Error are injected by writing a word while the SBE or DBE
150 	 * bit in the CTLCFG register is set. Reading the word will
151 	 * trigger the SBE or DBE error and the corresponding IRQ.
152 	 */
153 	if (count == 3) {
154 		edac_printk(KERN_ALERT, EDAC_MC,
155 			    "Inject Double bit error\n");
156 		regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
157 			     (read_reg | priv->ue_set_mask));
158 	} else {
159 		edac_printk(KERN_ALERT, EDAC_MC,
160 			    "Inject Single bit error\n");
161 		regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset,
162 			     (read_reg | priv->ce_set_mask));
163 	}
164 
165 	ptemp[0] = 0x5A5A5A5A;
166 	ptemp[1] = 0xA5A5A5A5;
167 
168 	/* Clear the error injection bits */
169 	regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset, read_reg);
170 	/* Ensure it has been written out */
171 	wmb();
172 
173 	/*
174 	 * To trigger the error, we need to read the data back
175 	 * (the data was written with errors above).
176 	 * The ACCESS_ONCE macros and printk are used to prevent the
177 	 * the compiler optimizing these reads out.
178 	 */
179 	reg = ACCESS_ONCE(ptemp[0]);
180 	read_reg = ACCESS_ONCE(ptemp[1]);
181 	/* Force Read */
182 	rmb();
183 
184 	edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
185 		    reg, read_reg);
186 
187 	dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
188 
189 	return count;
190 }
191 
192 static const struct file_operations altr_sdr_mc_debug_inject_fops = {
193 	.open = simple_open,
194 	.write = altr_sdr_mc_err_inject_write,
195 	.llseek = generic_file_llseek,
196 };
197 
198 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
199 {
200 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
201 		return;
202 
203 	if (!mci->debugfs)
204 		return;
205 
206 	edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
207 				 &altr_sdr_mc_debug_inject_fops);
208 }
209 
210 /* Get total memory size from Open Firmware DTB */
211 static unsigned long get_total_mem(void)
212 {
213 	struct device_node *np = NULL;
214 	const unsigned int *reg, *reg_end;
215 	int len, sw, aw;
216 	unsigned long start, size, total_mem = 0;
217 
218 	for_each_node_by_type(np, "memory") {
219 		aw = of_n_addr_cells(np);
220 		sw = of_n_size_cells(np);
221 		reg = (const unsigned int *)of_get_property(np, "reg", &len);
222 		reg_end = reg + (len / sizeof(u32));
223 
224 		total_mem = 0;
225 		do {
226 			start = of_read_number(reg, aw);
227 			reg += aw;
228 			size = of_read_number(reg, sw);
229 			reg += sw;
230 			total_mem += size;
231 		} while (reg < reg_end);
232 	}
233 	edac_dbg(0, "total_mem 0x%lx\n", total_mem);
234 	return total_mem;
235 }
236 
237 static const struct of_device_id altr_sdram_ctrl_of_match[] = {
238 	{ .compatible = "altr,sdram-edac", .data = &c5_data},
239 	{ .compatible = "altr,sdram-edac-a10", .data = &a10_data},
240 	{},
241 };
242 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
243 
244 static int a10_init(struct regmap *mc_vbase)
245 {
246 	if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
247 			       A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
248 		edac_printk(KERN_ERR, EDAC_MC,
249 			    "Error setting SB IRQ mode\n");
250 		return -ENODEV;
251 	}
252 
253 	if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
254 		edac_printk(KERN_ERR, EDAC_MC,
255 			    "Error setting trigger count\n");
256 		return -ENODEV;
257 	}
258 
259 	return 0;
260 }
261 
262 static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
263 {
264 	void __iomem  *sm_base;
265 	int  ret = 0;
266 
267 	if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
268 				dev_name(&pdev->dev))) {
269 		edac_printk(KERN_ERR, EDAC_MC,
270 			    "Unable to request mem region\n");
271 		return -EBUSY;
272 	}
273 
274 	sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
275 	if (!sm_base) {
276 		edac_printk(KERN_ERR, EDAC_MC,
277 			    "Unable to ioremap device\n");
278 
279 		ret = -ENOMEM;
280 		goto release;
281 	}
282 
283 	iowrite32(mask, sm_base);
284 
285 	iounmap(sm_base);
286 
287 release:
288 	release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
289 
290 	return ret;
291 }
292 
293 static int altr_sdram_probe(struct platform_device *pdev)
294 {
295 	const struct of_device_id *id;
296 	struct edac_mc_layer layers[2];
297 	struct mem_ctl_info *mci;
298 	struct altr_sdram_mc_data *drvdata;
299 	const struct altr_sdram_prv_data *priv;
300 	struct regmap *mc_vbase;
301 	struct dimm_info *dimm;
302 	u32 read_reg;
303 	int irq, irq2, res = 0;
304 	unsigned long mem_size, irqflags = 0;
305 
306 	id = of_match_device(altr_sdram_ctrl_of_match, &pdev->dev);
307 	if (!id)
308 		return -ENODEV;
309 
310 	/* Grab the register range from the sdr controller in device tree */
311 	mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
312 						   "altr,sdr-syscon");
313 	if (IS_ERR(mc_vbase)) {
314 		edac_printk(KERN_ERR, EDAC_MC,
315 			    "regmap for altr,sdr-syscon lookup failed.\n");
316 		return -ENODEV;
317 	}
318 
319 	/* Check specific dependencies for the module */
320 	priv = of_match_node(altr_sdram_ctrl_of_match,
321 			     pdev->dev.of_node)->data;
322 
323 	/* Validate the SDRAM controller has ECC enabled */
324 	if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
325 	    ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
326 		edac_printk(KERN_ERR, EDAC_MC,
327 			    "No ECC/ECC disabled [0x%08X]\n", read_reg);
328 		return -ENODEV;
329 	}
330 
331 	/* Grab memory size from device tree. */
332 	mem_size = get_total_mem();
333 	if (!mem_size) {
334 		edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
335 		return -ENODEV;
336 	}
337 
338 	/* Ensure the SDRAM Interrupt is disabled */
339 	if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
340 			       priv->ecc_irq_en_mask, 0)) {
341 		edac_printk(KERN_ERR, EDAC_MC,
342 			    "Error disabling SDRAM ECC IRQ\n");
343 		return -ENODEV;
344 	}
345 
346 	/* Toggle to clear the SDRAM Error count */
347 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
348 			       priv->ecc_cnt_rst_mask,
349 			       priv->ecc_cnt_rst_mask)) {
350 		edac_printk(KERN_ERR, EDAC_MC,
351 			    "Error clearing SDRAM ECC count\n");
352 		return -ENODEV;
353 	}
354 
355 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
356 			       priv->ecc_cnt_rst_mask, 0)) {
357 		edac_printk(KERN_ERR, EDAC_MC,
358 			    "Error clearing SDRAM ECC count\n");
359 		return -ENODEV;
360 	}
361 
362 	irq = platform_get_irq(pdev, 0);
363 	if (irq < 0) {
364 		edac_printk(KERN_ERR, EDAC_MC,
365 			    "No irq %d in DT\n", irq);
366 		return -ENODEV;
367 	}
368 
369 	/* Arria10 has a 2nd IRQ */
370 	irq2 = platform_get_irq(pdev, 1);
371 
372 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
373 	layers[0].size = 1;
374 	layers[0].is_virt_csrow = true;
375 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
376 	layers[1].size = 1;
377 	layers[1].is_virt_csrow = false;
378 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
379 			    sizeof(struct altr_sdram_mc_data));
380 	if (!mci)
381 		return -ENOMEM;
382 
383 	mci->pdev = &pdev->dev;
384 	drvdata = mci->pvt_info;
385 	drvdata->mc_vbase = mc_vbase;
386 	drvdata->data = priv;
387 	platform_set_drvdata(pdev, mci);
388 
389 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
390 		edac_printk(KERN_ERR, EDAC_MC,
391 			    "Unable to get managed device resource\n");
392 		res = -ENOMEM;
393 		goto free;
394 	}
395 
396 	mci->mtype_cap = MEM_FLAG_DDR3;
397 	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
398 	mci->edac_cap = EDAC_FLAG_SECDED;
399 	mci->mod_name = EDAC_MOD_STR;
400 	mci->mod_ver = EDAC_VERSION;
401 	mci->ctl_name = dev_name(&pdev->dev);
402 	mci->scrub_mode = SCRUB_SW_SRC;
403 	mci->dev_name = dev_name(&pdev->dev);
404 
405 	dimm = *mci->dimms;
406 	dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
407 	dimm->grain = 8;
408 	dimm->dtype = DEV_X8;
409 	dimm->mtype = MEM_DDR3;
410 	dimm->edac_mode = EDAC_SECDED;
411 
412 	res = edac_mc_add_mc(mci);
413 	if (res < 0)
414 		goto err;
415 
416 	/* Only the Arria10 has separate IRQs */
417 	if (irq2 > 0) {
418 		/* Arria10 specific initialization */
419 		res = a10_init(mc_vbase);
420 		if (res < 0)
421 			goto err2;
422 
423 		res = devm_request_irq(&pdev->dev, irq2,
424 				       altr_sdram_mc_err_handler,
425 				       IRQF_SHARED, dev_name(&pdev->dev), mci);
426 		if (res < 0) {
427 			edac_mc_printk(mci, KERN_ERR,
428 				       "Unable to request irq %d\n", irq2);
429 			res = -ENODEV;
430 			goto err2;
431 		}
432 
433 		res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
434 		if (res < 0)
435 			goto err2;
436 
437 		irqflags = IRQF_SHARED;
438 	}
439 
440 	res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
441 			       irqflags, dev_name(&pdev->dev), mci);
442 	if (res < 0) {
443 		edac_mc_printk(mci, KERN_ERR,
444 			       "Unable to request irq %d\n", irq);
445 		res = -ENODEV;
446 		goto err2;
447 	}
448 
449 	/* Infrastructure ready - enable the IRQ */
450 	if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
451 			       priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
452 		edac_mc_printk(mci, KERN_ERR,
453 			       "Error enabling SDRAM ECC IRQ\n");
454 		res = -ENODEV;
455 		goto err2;
456 	}
457 
458 	altr_sdr_mc_create_debugfs_nodes(mci);
459 
460 	devres_close_group(&pdev->dev, NULL);
461 
462 	return 0;
463 
464 err2:
465 	edac_mc_del_mc(&pdev->dev);
466 err:
467 	devres_release_group(&pdev->dev, NULL);
468 free:
469 	edac_mc_free(mci);
470 	edac_printk(KERN_ERR, EDAC_MC,
471 		    "EDAC Probe Failed; Error %d\n", res);
472 
473 	return res;
474 }
475 
476 static int altr_sdram_remove(struct platform_device *pdev)
477 {
478 	struct mem_ctl_info *mci = platform_get_drvdata(pdev);
479 
480 	edac_mc_del_mc(&pdev->dev);
481 	edac_mc_free(mci);
482 	platform_set_drvdata(pdev, NULL);
483 
484 	return 0;
485 }
486 
487 /*
488  * If you want to suspend, need to disable EDAC by removing it
489  * from the device tree or defconfig.
490  */
491 #ifdef CONFIG_PM
492 static int altr_sdram_prepare(struct device *dev)
493 {
494 	pr_err("Suspend not allowed when EDAC is enabled.\n");
495 
496 	return -EPERM;
497 }
498 
499 static const struct dev_pm_ops altr_sdram_pm_ops = {
500 	.prepare = altr_sdram_prepare,
501 };
502 #endif
503 
504 static struct platform_driver altr_sdram_edac_driver = {
505 	.probe = altr_sdram_probe,
506 	.remove = altr_sdram_remove,
507 	.driver = {
508 		.name = "altr_sdram_edac",
509 #ifdef CONFIG_PM
510 		.pm = &altr_sdram_pm_ops,
511 #endif
512 		.of_match_table = altr_sdram_ctrl_of_match,
513 	},
514 };
515 
516 module_platform_driver(altr_sdram_edac_driver);
517 
518 /************************* EDAC Parent Probe *************************/
519 
520 static const struct of_device_id altr_edac_device_of_match[];
521 
522 static const struct of_device_id altr_edac_of_match[] = {
523 	{ .compatible = "altr,socfpga-ecc-manager" },
524 	{},
525 };
526 MODULE_DEVICE_TABLE(of, altr_edac_of_match);
527 
528 static int altr_edac_probe(struct platform_device *pdev)
529 {
530 	of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
531 			     NULL, &pdev->dev);
532 	return 0;
533 }
534 
535 static struct platform_driver altr_edac_driver = {
536 	.probe =  altr_edac_probe,
537 	.driver = {
538 		.name = "socfpga_ecc_manager",
539 		.of_match_table = altr_edac_of_match,
540 	},
541 };
542 module_platform_driver(altr_edac_driver);
543 
544 /************************* EDAC Device Functions *************************/
545 
546 /*
547  * EDAC Device Functions (shared between various IPs).
548  * The discrete memories use the EDAC Device framework. The probe
549  * and error handling functions are very similar between memories
550  * so they are shared. The memory allocation and freeing for EDAC
551  * trigger testing are different for each memory.
552  */
553 
554 static const struct edac_device_prv_data ocramecc_data;
555 static const struct edac_device_prv_data l2ecc_data;
556 static const struct edac_device_prv_data a10_ocramecc_data;
557 static const struct edac_device_prv_data a10_l2ecc_data;
558 
559 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
560 {
561 	irqreturn_t ret_value = IRQ_NONE;
562 	struct edac_device_ctl_info *dci = dev_id;
563 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
564 	const struct edac_device_prv_data *priv = drvdata->data;
565 
566 	if (irq == drvdata->sb_irq) {
567 		if (priv->ce_clear_mask)
568 			writel(priv->ce_clear_mask, drvdata->base);
569 		edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
570 		ret_value = IRQ_HANDLED;
571 	} else if (irq == drvdata->db_irq) {
572 		if (priv->ue_clear_mask)
573 			writel(priv->ue_clear_mask, drvdata->base);
574 		edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
575 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
576 		ret_value = IRQ_HANDLED;
577 	} else {
578 		WARN_ON(1);
579 	}
580 
581 	return ret_value;
582 }
583 
584 static ssize_t altr_edac_device_trig(struct file *file,
585 				     const char __user *user_buf,
586 				     size_t count, loff_t *ppos)
587 
588 {
589 	u32 *ptemp, i, error_mask;
590 	int result = 0;
591 	u8 trig_type;
592 	unsigned long flags;
593 	struct edac_device_ctl_info *edac_dci = file->private_data;
594 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
595 	const struct edac_device_prv_data *priv = drvdata->data;
596 	void *generic_ptr = edac_dci->dev;
597 
598 	if (!user_buf || get_user(trig_type, user_buf))
599 		return -EFAULT;
600 
601 	if (!priv->alloc_mem)
602 		return -ENOMEM;
603 
604 	/*
605 	 * Note that generic_ptr is initialized to the device * but in
606 	 * some alloc_functions, this is overridden and returns data.
607 	 */
608 	ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
609 	if (!ptemp) {
610 		edac_printk(KERN_ERR, EDAC_DEVICE,
611 			    "Inject: Buffer Allocation error\n");
612 		return -ENOMEM;
613 	}
614 
615 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
616 		error_mask = priv->ue_set_mask;
617 	else
618 		error_mask = priv->ce_set_mask;
619 
620 	edac_printk(KERN_ALERT, EDAC_DEVICE,
621 		    "Trigger Error Mask (0x%X)\n", error_mask);
622 
623 	local_irq_save(flags);
624 	/* write ECC corrupted data out. */
625 	for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
626 		/* Read data so we're in the correct state */
627 		rmb();
628 		if (ACCESS_ONCE(ptemp[i]))
629 			result = -1;
630 		/* Toggle Error bit (it is latched), leave ECC enabled */
631 		writel(error_mask, (drvdata->base + priv->set_err_ofst));
632 		writel(priv->ecc_enable_mask, (drvdata->base +
633 					       priv->set_err_ofst));
634 		ptemp[i] = i;
635 	}
636 	/* Ensure it has been written out */
637 	wmb();
638 	local_irq_restore(flags);
639 
640 	if (result)
641 		edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
642 
643 	/* Read out written data. ECC error caused here */
644 	for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
645 		if (ACCESS_ONCE(ptemp[i]) != i)
646 			edac_printk(KERN_ERR, EDAC_DEVICE,
647 				    "Read doesn't match written data\n");
648 
649 	if (priv->free_mem)
650 		priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
651 
652 	return count;
653 }
654 
655 static const struct file_operations altr_edac_device_inject_fops = {
656 	.open = simple_open,
657 	.write = altr_edac_device_trig,
658 	.llseek = generic_file_llseek,
659 };
660 
661 static ssize_t altr_edac_a10_device_trig(struct file *file,
662 					 const char __user *user_buf,
663 					 size_t count, loff_t *ppos);
664 
665 static const struct file_operations altr_edac_a10_device_inject_fops = {
666 	.open = simple_open,
667 	.write = altr_edac_a10_device_trig,
668 	.llseek = generic_file_llseek,
669 };
670 
671 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
672 				      const struct edac_device_prv_data *priv)
673 {
674 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
675 
676 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
677 		return;
678 
679 	drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
680 	if (!drvdata->debugfs_dir)
681 		return;
682 
683 	if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
684 				      drvdata->debugfs_dir, edac_dci,
685 				      priv->inject_fops))
686 		debugfs_remove_recursive(drvdata->debugfs_dir);
687 }
688 
689 static const struct of_device_id altr_edac_device_of_match[] = {
690 #ifdef CONFIG_EDAC_ALTERA_L2C
691 	{ .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
692 #endif
693 #ifdef CONFIG_EDAC_ALTERA_OCRAM
694 	{ .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
695 #endif
696 	{},
697 };
698 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
699 
700 /*
701  * altr_edac_device_probe()
702  *	This is a generic EDAC device driver that will support
703  *	various Altera memory devices such as the L2 cache ECC and
704  *	OCRAM ECC as well as the memories for other peripherals.
705  *	Module specific initialization is done by passing the
706  *	function index in the device tree.
707  */
708 static int altr_edac_device_probe(struct platform_device *pdev)
709 {
710 	struct edac_device_ctl_info *dci;
711 	struct altr_edac_device_dev *drvdata;
712 	struct resource *r;
713 	int res = 0;
714 	struct device_node *np = pdev->dev.of_node;
715 	char *ecc_name = (char *)np->name;
716 	static int dev_instance;
717 
718 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
719 		edac_printk(KERN_ERR, EDAC_DEVICE,
720 			    "Unable to open devm\n");
721 		return -ENOMEM;
722 	}
723 
724 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
725 	if (!r) {
726 		edac_printk(KERN_ERR, EDAC_DEVICE,
727 			    "Unable to get mem resource\n");
728 		res = -ENODEV;
729 		goto fail;
730 	}
731 
732 	if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
733 				     dev_name(&pdev->dev))) {
734 		edac_printk(KERN_ERR, EDAC_DEVICE,
735 			    "%s:Error requesting mem region\n", ecc_name);
736 		res = -EBUSY;
737 		goto fail;
738 	}
739 
740 	dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
741 					 1, ecc_name, 1, 0, NULL, 0,
742 					 dev_instance++);
743 
744 	if (!dci) {
745 		edac_printk(KERN_ERR, EDAC_DEVICE,
746 			    "%s: Unable to allocate EDAC device\n", ecc_name);
747 		res = -ENOMEM;
748 		goto fail;
749 	}
750 
751 	drvdata = dci->pvt_info;
752 	dci->dev = &pdev->dev;
753 	platform_set_drvdata(pdev, dci);
754 	drvdata->edac_dev_name = ecc_name;
755 
756 	drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
757 	if (!drvdata->base)
758 		goto fail1;
759 
760 	/* Get driver specific data for this EDAC device */
761 	drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
762 
763 	/* Check specific dependencies for the module */
764 	if (drvdata->data->setup) {
765 		res = drvdata->data->setup(drvdata);
766 		if (res)
767 			goto fail1;
768 	}
769 
770 	drvdata->sb_irq = platform_get_irq(pdev, 0);
771 	res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
772 			       altr_edac_device_handler,
773 			       0, dev_name(&pdev->dev), dci);
774 	if (res)
775 		goto fail1;
776 
777 	drvdata->db_irq = platform_get_irq(pdev, 1);
778 	res = devm_request_irq(&pdev->dev, drvdata->db_irq,
779 			       altr_edac_device_handler,
780 			       0, dev_name(&pdev->dev), dci);
781 	if (res)
782 		goto fail1;
783 
784 	dci->mod_name = "Altera ECC Manager";
785 	dci->dev_name = drvdata->edac_dev_name;
786 
787 	res = edac_device_add_device(dci);
788 	if (res)
789 		goto fail1;
790 
791 	altr_create_edacdev_dbgfs(dci, drvdata->data);
792 
793 	devres_close_group(&pdev->dev, NULL);
794 
795 	return 0;
796 
797 fail1:
798 	edac_device_free_ctl_info(dci);
799 fail:
800 	devres_release_group(&pdev->dev, NULL);
801 	edac_printk(KERN_ERR, EDAC_DEVICE,
802 		    "%s:Error setting up EDAC device: %d\n", ecc_name, res);
803 
804 	return res;
805 }
806 
807 static int altr_edac_device_remove(struct platform_device *pdev)
808 {
809 	struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
810 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
811 
812 	debugfs_remove_recursive(drvdata->debugfs_dir);
813 	edac_device_del_device(&pdev->dev);
814 	edac_device_free_ctl_info(dci);
815 
816 	return 0;
817 }
818 
819 static struct platform_driver altr_edac_device_driver = {
820 	.probe =  altr_edac_device_probe,
821 	.remove = altr_edac_device_remove,
822 	.driver = {
823 		.name = "altr_edac_device",
824 		.of_match_table = altr_edac_device_of_match,
825 	},
826 };
827 module_platform_driver(altr_edac_device_driver);
828 
829 /******************* Arria10 Device ECC Shared Functions *****************/
830 
831 /*
832  *  Test for memory's ECC dependencies upon entry because platform specific
833  *  startup should have initialized the memory and enabled the ECC.
834  *  Can't turn on ECC here because accessing un-initialized memory will
835  *  cause CE/UE errors possibly causing an ABORT.
836  */
837 static int __maybe_unused
838 altr_check_ecc_deps(struct altr_edac_device_dev *device)
839 {
840 	void __iomem  *base = device->base;
841 	const struct edac_device_prv_data *prv = device->data;
842 
843 	if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
844 		return 0;
845 
846 	edac_printk(KERN_ERR, EDAC_DEVICE,
847 		    "%s: No ECC present or ECC disabled.\n",
848 		    device->edac_dev_name);
849 	return -ENODEV;
850 }
851 
852 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
853 {
854 	struct altr_edac_device_dev *dci = dev_id;
855 	void __iomem  *base = dci->base;
856 
857 	if (irq == dci->sb_irq) {
858 		writel(ALTR_A10_ECC_SERRPENA,
859 		       base + ALTR_A10_ECC_INTSTAT_OFST);
860 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
861 
862 		return IRQ_HANDLED;
863 	} else if (irq == dci->db_irq) {
864 		writel(ALTR_A10_ECC_DERRPENA,
865 		       base + ALTR_A10_ECC_INTSTAT_OFST);
866 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
867 		if (dci->data->panic)
868 			panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
869 
870 		return IRQ_HANDLED;
871 	}
872 
873 	WARN_ON(1);
874 
875 	return IRQ_NONE;
876 }
877 
878 /******************* Arria10 Memory Buffer Functions *********************/
879 
880 static inline int a10_get_irq_mask(struct device_node *np)
881 {
882 	int irq;
883 	const u32 *handle = of_get_property(np, "interrupts", NULL);
884 
885 	if (!handle)
886 		return -ENODEV;
887 	irq = be32_to_cpup(handle);
888 	return irq;
889 }
890 
891 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
892 {
893 	u32 value = readl(ioaddr);
894 
895 	value |= bit_mask;
896 	writel(value, ioaddr);
897 }
898 
899 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
900 {
901 	u32 value = readl(ioaddr);
902 
903 	value &= ~bit_mask;
904 	writel(value, ioaddr);
905 }
906 
907 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
908 {
909 	u32 value = readl(ioaddr);
910 
911 	return (value & bit_mask) ? 1 : 0;
912 }
913 
914 /*
915  * This function uses the memory initialization block in the Arria10 ECC
916  * controller to initialize/clear the entire memory data and ECC data.
917  */
918 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
919 {
920 	int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
921 	u32 init_mask, stat_mask, clear_mask;
922 	int ret = 0;
923 
924 	if (port) {
925 		init_mask = ALTR_A10_ECC_INITB;
926 		stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
927 		clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
928 	} else {
929 		init_mask = ALTR_A10_ECC_INITA;
930 		stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
931 		clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
932 	}
933 
934 	ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
935 	while (limit--) {
936 		if (ecc_test_bits(stat_mask,
937 				  (ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
938 			break;
939 		udelay(1);
940 	}
941 	if (limit < 0)
942 		ret = -EBUSY;
943 
944 	/* Clear any pending ECC interrupts */
945 	writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
946 
947 	return ret;
948 }
949 
950 static __init int __maybe_unused
951 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
952 			u32 ecc_ctrl_en_mask, bool dual_port)
953 {
954 	int ret = 0;
955 	void __iomem *ecc_block_base;
956 	struct regmap *ecc_mgr_map;
957 	char *ecc_name;
958 	struct device_node *np_eccmgr;
959 
960 	ecc_name = (char *)np->name;
961 
962 	/* Get the ECC Manager - parent of the device EDACs */
963 	np_eccmgr = of_get_parent(np);
964 	ecc_mgr_map = syscon_regmap_lookup_by_phandle(np_eccmgr,
965 						      "altr,sysmgr-syscon");
966 	of_node_put(np_eccmgr);
967 	if (IS_ERR(ecc_mgr_map)) {
968 		edac_printk(KERN_ERR, EDAC_DEVICE,
969 			    "Unable to get syscon altr,sysmgr-syscon\n");
970 		return -ENODEV;
971 	}
972 
973 	/* Map the ECC Block */
974 	ecc_block_base = of_iomap(np, 0);
975 	if (!ecc_block_base) {
976 		edac_printk(KERN_ERR, EDAC_DEVICE,
977 			    "Unable to map %s ECC block\n", ecc_name);
978 		return -ENODEV;
979 	}
980 
981 	/* Disable ECC */
982 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
983 	writel(ALTR_A10_ECC_SERRINTEN,
984 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
985 	ecc_clear_bits(ecc_ctrl_en_mask,
986 		       (ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
987 	/* Ensure all writes complete */
988 	wmb();
989 	/* Use HW initialization block to initialize memory for ECC */
990 	ret = altr_init_memory_port(ecc_block_base, 0);
991 	if (ret) {
992 		edac_printk(KERN_ERR, EDAC_DEVICE,
993 			    "ECC: cannot init %s PORTA memory\n", ecc_name);
994 		goto out;
995 	}
996 
997 	if (dual_port) {
998 		ret = altr_init_memory_port(ecc_block_base, 1);
999 		if (ret) {
1000 			edac_printk(KERN_ERR, EDAC_DEVICE,
1001 				    "ECC: cannot init %s PORTB memory\n",
1002 				    ecc_name);
1003 			goto out;
1004 		}
1005 	}
1006 
1007 	/* Interrupt mode set to every SBERR */
1008 	regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST,
1009 		     ALTR_A10_ECC_INTMODE);
1010 	/* Enable ECC */
1011 	ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
1012 					ALTR_A10_ECC_CTRL_OFST));
1013 	writel(ALTR_A10_ECC_SERRINTEN,
1014 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
1015 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
1016 	/* Ensure all writes complete */
1017 	wmb();
1018 out:
1019 	iounmap(ecc_block_base);
1020 	return ret;
1021 }
1022 
1023 static int validate_parent_available(struct device_node *np);
1024 static const struct of_device_id altr_edac_a10_device_of_match[];
1025 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
1026 {
1027 	int irq;
1028 	struct device_node *child, *np = of_find_compatible_node(NULL, NULL,
1029 					"altr,socfpga-a10-ecc-manager");
1030 	if (!np) {
1031 		edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
1032 		return -ENODEV;
1033 	}
1034 
1035 	for_each_child_of_node(np, child) {
1036 		const struct of_device_id *pdev_id;
1037 		const struct edac_device_prv_data *prv;
1038 
1039 		if (!of_device_is_available(child))
1040 			continue;
1041 		if (!of_device_is_compatible(child, compat))
1042 			continue;
1043 
1044 		if (validate_parent_available(child))
1045 			continue;
1046 
1047 		irq = a10_get_irq_mask(child);
1048 		if (irq < 0)
1049 			continue;
1050 
1051 		/* Get matching node and check for valid result */
1052 		pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
1053 		if (IS_ERR_OR_NULL(pdev_id))
1054 			continue;
1055 
1056 		/* Validate private data pointer before dereferencing */
1057 		prv = pdev_id->data;
1058 		if (!prv)
1059 			continue;
1060 
1061 		altr_init_a10_ecc_block(child, BIT(irq),
1062 					prv->ecc_enable_mask, 0);
1063 	}
1064 
1065 	of_node_put(np);
1066 	return 0;
1067 }
1068 
1069 /*********************** OCRAM EDAC Device Functions *********************/
1070 
1071 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1072 
1073 static void *ocram_alloc_mem(size_t size, void **other)
1074 {
1075 	struct device_node *np;
1076 	struct gen_pool *gp;
1077 	void *sram_addr;
1078 
1079 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
1080 	if (!np)
1081 		return NULL;
1082 
1083 	gp = of_gen_pool_get(np, "iram", 0);
1084 	of_node_put(np);
1085 	if (!gp)
1086 		return NULL;
1087 
1088 	sram_addr = (void *)gen_pool_alloc(gp, size);
1089 	if (!sram_addr)
1090 		return NULL;
1091 
1092 	memset(sram_addr, 0, size);
1093 	/* Ensure data is written out */
1094 	wmb();
1095 
1096 	/* Remember this handle for freeing  later */
1097 	*other = gp;
1098 
1099 	return sram_addr;
1100 }
1101 
1102 static void ocram_free_mem(void *p, size_t size, void *other)
1103 {
1104 	gen_pool_free((struct gen_pool *)other, (u32)p, size);
1105 }
1106 
1107 static const struct edac_device_prv_data ocramecc_data = {
1108 	.setup = altr_check_ecc_deps,
1109 	.ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
1110 	.ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
1111 	.alloc_mem = ocram_alloc_mem,
1112 	.free_mem = ocram_free_mem,
1113 	.ecc_enable_mask = ALTR_OCR_ECC_EN,
1114 	.ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
1115 	.ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
1116 	.ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
1117 	.set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
1118 	.trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
1119 	.inject_fops = &altr_edac_device_inject_fops,
1120 };
1121 
1122 static const struct edac_device_prv_data a10_ocramecc_data = {
1123 	.setup = altr_check_ecc_deps,
1124 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1125 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1126 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
1127 	.ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
1128 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1129 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1130 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1131 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1132 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1133 	.inject_fops = &altr_edac_a10_device_inject_fops,
1134 	/*
1135 	 * OCRAM panic on uncorrectable error because sleep/resume
1136 	 * functions and FPGA contents are stored in OCRAM. Prefer
1137 	 * a kernel panic over executing/loading corrupted data.
1138 	 */
1139 	.panic = true,
1140 };
1141 
1142 #endif	/* CONFIG_EDAC_ALTERA_OCRAM */
1143 
1144 /********************* L2 Cache EDAC Device Functions ********************/
1145 
1146 #ifdef CONFIG_EDAC_ALTERA_L2C
1147 
1148 static void *l2_alloc_mem(size_t size, void **other)
1149 {
1150 	struct device *dev = *other;
1151 	void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
1152 
1153 	if (!ptemp)
1154 		return NULL;
1155 
1156 	/* Make sure everything is written out */
1157 	wmb();
1158 
1159 	/*
1160 	 * Clean all cache levels up to LoC (includes L2)
1161 	 * This ensures the corrupted data is written into
1162 	 * L2 cache for readback test (which causes ECC error).
1163 	 */
1164 	flush_cache_all();
1165 
1166 	return ptemp;
1167 }
1168 
1169 static void l2_free_mem(void *p, size_t size, void *other)
1170 {
1171 	struct device *dev = other;
1172 
1173 	if (dev && p)
1174 		devm_kfree(dev, p);
1175 }
1176 
1177 /*
1178  * altr_l2_check_deps()
1179  *	Test for L2 cache ECC dependencies upon entry because
1180  *	platform specific startup should have initialized the L2
1181  *	memory and enabled the ECC.
1182  *	Bail if ECC is not enabled.
1183  *	Note that L2 Cache Enable is forced at build time.
1184  */
1185 static int altr_l2_check_deps(struct altr_edac_device_dev *device)
1186 {
1187 	void __iomem *base = device->base;
1188 	const struct edac_device_prv_data *prv = device->data;
1189 
1190 	if ((readl(base) & prv->ecc_enable_mask) ==
1191 	     prv->ecc_enable_mask)
1192 		return 0;
1193 
1194 	edac_printk(KERN_ERR, EDAC_DEVICE,
1195 		    "L2: No ECC present, or ECC disabled\n");
1196 	return -ENODEV;
1197 }
1198 
1199 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
1200 {
1201 	struct altr_edac_device_dev *dci = dev_id;
1202 
1203 	if (irq == dci->sb_irq) {
1204 		regmap_write(dci->edac->ecc_mgr_map,
1205 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1206 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
1207 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1208 
1209 		return IRQ_HANDLED;
1210 	} else if (irq == dci->db_irq) {
1211 		regmap_write(dci->edac->ecc_mgr_map,
1212 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1213 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
1214 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1215 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1216 
1217 		return IRQ_HANDLED;
1218 	}
1219 
1220 	WARN_ON(1);
1221 
1222 	return IRQ_NONE;
1223 }
1224 
1225 static const struct edac_device_prv_data l2ecc_data = {
1226 	.setup = altr_l2_check_deps,
1227 	.ce_clear_mask = 0,
1228 	.ue_clear_mask = 0,
1229 	.alloc_mem = l2_alloc_mem,
1230 	.free_mem = l2_free_mem,
1231 	.ecc_enable_mask = ALTR_L2_ECC_EN,
1232 	.ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
1233 	.ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
1234 	.set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
1235 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1236 	.inject_fops = &altr_edac_device_inject_fops,
1237 };
1238 
1239 static const struct edac_device_prv_data a10_l2ecc_data = {
1240 	.setup = altr_l2_check_deps,
1241 	.ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
1242 	.ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
1243 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
1244 	.alloc_mem = l2_alloc_mem,
1245 	.free_mem = l2_free_mem,
1246 	.ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
1247 	.ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
1248 	.ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
1249 	.set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
1250 	.ecc_irq_handler = altr_edac_a10_l2_irq,
1251 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1252 	.inject_fops = &altr_edac_device_inject_fops,
1253 };
1254 
1255 #endif	/* CONFIG_EDAC_ALTERA_L2C */
1256 
1257 /********************* Ethernet Device Functions ********************/
1258 
1259 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1260 
1261 static const struct edac_device_prv_data a10_enetecc_data = {
1262 	.setup = altr_check_ecc_deps,
1263 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1264 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1265 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1266 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1267 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1268 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1269 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1270 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1271 	.inject_fops = &altr_edac_a10_device_inject_fops,
1272 };
1273 
1274 static int __init socfpga_init_ethernet_ecc(void)
1275 {
1276 	return altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
1277 }
1278 
1279 early_initcall(socfpga_init_ethernet_ecc);
1280 
1281 #endif	/* CONFIG_EDAC_ALTERA_ETHERNET */
1282 
1283 /********************** NAND Device Functions **********************/
1284 
1285 #ifdef CONFIG_EDAC_ALTERA_NAND
1286 
1287 static const struct edac_device_prv_data a10_nandecc_data = {
1288 	.setup = altr_check_ecc_deps,
1289 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1290 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1291 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1292 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1293 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1294 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1295 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1296 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1297 	.inject_fops = &altr_edac_a10_device_inject_fops,
1298 };
1299 
1300 static int __init socfpga_init_nand_ecc(void)
1301 {
1302 	return altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
1303 }
1304 
1305 early_initcall(socfpga_init_nand_ecc);
1306 
1307 #endif	/* CONFIG_EDAC_ALTERA_NAND */
1308 
1309 /********************** DMA Device Functions **********************/
1310 
1311 #ifdef CONFIG_EDAC_ALTERA_DMA
1312 
1313 static const struct edac_device_prv_data a10_dmaecc_data = {
1314 	.setup = altr_check_ecc_deps,
1315 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1316 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1317 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1318 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1319 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1320 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1321 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1322 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1323 	.inject_fops = &altr_edac_a10_device_inject_fops,
1324 };
1325 
1326 static int __init socfpga_init_dma_ecc(void)
1327 {
1328 	return altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
1329 }
1330 
1331 early_initcall(socfpga_init_dma_ecc);
1332 
1333 #endif	/* CONFIG_EDAC_ALTERA_DMA */
1334 
1335 /********************** USB Device Functions **********************/
1336 
1337 #ifdef CONFIG_EDAC_ALTERA_USB
1338 
1339 static const struct edac_device_prv_data a10_usbecc_data = {
1340 	.setup = altr_check_ecc_deps,
1341 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1342 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1343 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1344 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1345 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1346 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1347 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1348 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1349 	.inject_fops = &altr_edac_a10_device_inject_fops,
1350 };
1351 
1352 static int __init socfpga_init_usb_ecc(void)
1353 {
1354 	return altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
1355 }
1356 
1357 early_initcall(socfpga_init_usb_ecc);
1358 
1359 #endif	/* CONFIG_EDAC_ALTERA_USB */
1360 
1361 /********************** QSPI Device Functions **********************/
1362 
1363 #ifdef CONFIG_EDAC_ALTERA_QSPI
1364 
1365 static const struct edac_device_prv_data a10_qspiecc_data = {
1366 	.setup = altr_check_ecc_deps,
1367 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1368 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1369 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1370 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1371 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1372 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1373 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1374 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1375 	.inject_fops = &altr_edac_a10_device_inject_fops,
1376 };
1377 
1378 static int __init socfpga_init_qspi_ecc(void)
1379 {
1380 	return altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
1381 }
1382 
1383 early_initcall(socfpga_init_qspi_ecc);
1384 
1385 #endif	/* CONFIG_EDAC_ALTERA_QSPI */
1386 
1387 /********************* SDMMC Device Functions **********************/
1388 
1389 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1390 
1391 static const struct edac_device_prv_data a10_sdmmceccb_data;
1392 static int altr_portb_setup(struct altr_edac_device_dev *device)
1393 {
1394 	struct edac_device_ctl_info *dci;
1395 	struct altr_edac_device_dev *altdev;
1396 	char *ecc_name = "sdmmcb-ecc";
1397 	int edac_idx, rc;
1398 	struct device_node *np;
1399 	const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
1400 
1401 	rc = altr_check_ecc_deps(device);
1402 	if (rc)
1403 		return rc;
1404 
1405 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1406 	if (!np) {
1407 		edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1408 		return -ENODEV;
1409 	}
1410 
1411 	/* Create the PortB EDAC device */
1412 	edac_idx = edac_device_alloc_index();
1413 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
1414 					 ecc_name, 1, 0, NULL, 0, edac_idx);
1415 	if (!dci) {
1416 		edac_printk(KERN_ERR, EDAC_DEVICE,
1417 			    "%s: Unable to allocate PortB EDAC device\n",
1418 			    ecc_name);
1419 		return -ENOMEM;
1420 	}
1421 
1422 	/* Initialize the PortB EDAC device structure from PortA structure */
1423 	altdev = dci->pvt_info;
1424 	*altdev = *device;
1425 
1426 	if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
1427 		return -ENOMEM;
1428 
1429 	/* Update PortB specific values */
1430 	altdev->edac_dev_name = ecc_name;
1431 	altdev->edac_idx = edac_idx;
1432 	altdev->edac_dev = dci;
1433 	altdev->data = prv;
1434 	dci->dev = &altdev->ddev;
1435 	dci->ctl_name = "Altera ECC Manager";
1436 	dci->mod_name = ecc_name;
1437 	dci->dev_name = ecc_name;
1438 
1439 	/* Update the IRQs for PortB */
1440 	altdev->sb_irq = irq_of_parse_and_map(np, 2);
1441 	if (!altdev->sb_irq) {
1442 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
1443 		rc = -ENODEV;
1444 		goto err_release_group_1;
1445 	}
1446 	rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
1447 			      prv->ecc_irq_handler,
1448 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1449 			      ecc_name, altdev);
1450 	if (rc) {
1451 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
1452 		goto err_release_group_1;
1453 	}
1454 
1455 	altdev->db_irq = irq_of_parse_and_map(np, 3);
1456 	if (!altdev->db_irq) {
1457 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
1458 		rc = -ENODEV;
1459 		goto err_release_group_1;
1460 	}
1461 	rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
1462 			      prv->ecc_irq_handler,
1463 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1464 			      ecc_name, altdev);
1465 	if (rc) {
1466 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
1467 		goto err_release_group_1;
1468 	}
1469 
1470 	rc = edac_device_add_device(dci);
1471 	if (rc) {
1472 		edac_printk(KERN_ERR, EDAC_DEVICE,
1473 			    "edac_device_add_device portB failed\n");
1474 		rc = -ENOMEM;
1475 		goto err_release_group_1;
1476 	}
1477 	altr_create_edacdev_dbgfs(dci, prv);
1478 
1479 	list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
1480 
1481 	devres_remove_group(&altdev->ddev, altr_portb_setup);
1482 
1483 	return 0;
1484 
1485 err_release_group_1:
1486 	edac_device_free_ctl_info(dci);
1487 	devres_release_group(&altdev->ddev, altr_portb_setup);
1488 	edac_printk(KERN_ERR, EDAC_DEVICE,
1489 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1490 	return rc;
1491 }
1492 
1493 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
1494 {
1495 	struct altr_edac_device_dev *ad = dev_id;
1496 	void __iomem  *base = ad->base;
1497 	const struct edac_device_prv_data *priv = ad->data;
1498 
1499 	if (irq == ad->sb_irq) {
1500 		writel(priv->ce_clear_mask,
1501 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1502 		edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
1503 		return IRQ_HANDLED;
1504 	} else if (irq == ad->db_irq) {
1505 		writel(priv->ue_clear_mask,
1506 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1507 		edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
1508 		return IRQ_HANDLED;
1509 	}
1510 
1511 	WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
1512 
1513 	return IRQ_NONE;
1514 }
1515 
1516 static const struct edac_device_prv_data a10_sdmmcecca_data = {
1517 	.setup = altr_portb_setup,
1518 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1519 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1520 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1521 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1522 	.ce_set_mask = ALTR_A10_ECC_SERRPENA,
1523 	.ue_set_mask = ALTR_A10_ECC_DERRPENA,
1524 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1525 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1526 	.inject_fops = &altr_edac_a10_device_inject_fops,
1527 };
1528 
1529 static const struct edac_device_prv_data a10_sdmmceccb_data = {
1530 	.setup = altr_portb_setup,
1531 	.ce_clear_mask = ALTR_A10_ECC_SERRPENB,
1532 	.ue_clear_mask = ALTR_A10_ECC_DERRPENB,
1533 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1534 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1535 	.ce_set_mask = ALTR_A10_ECC_TSERRB,
1536 	.ue_set_mask = ALTR_A10_ECC_TDERRB,
1537 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1538 	.ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
1539 	.inject_fops = &altr_edac_a10_device_inject_fops,
1540 };
1541 
1542 static int __init socfpga_init_sdmmc_ecc(void)
1543 {
1544 	int rc = -ENODEV;
1545 	struct device_node *child = of_find_compatible_node(NULL, NULL,
1546 						"altr,socfpga-sdmmc-ecc");
1547 	if (!child) {
1548 		edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1549 		return -ENODEV;
1550 	}
1551 
1552 	if (!of_device_is_available(child))
1553 		goto exit;
1554 
1555 	if (validate_parent_available(child))
1556 		goto exit;
1557 
1558 	rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
1559 				     a10_sdmmcecca_data.ecc_enable_mask, 1);
1560 exit:
1561 	of_node_put(child);
1562 	return rc;
1563 }
1564 
1565 early_initcall(socfpga_init_sdmmc_ecc);
1566 
1567 #endif	/* CONFIG_EDAC_ALTERA_SDMMC */
1568 
1569 /********************* Arria10 EDAC Device Functions *************************/
1570 static const struct of_device_id altr_edac_a10_device_of_match[] = {
1571 #ifdef CONFIG_EDAC_ALTERA_L2C
1572 	{ .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
1573 #endif
1574 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1575 	{ .compatible = "altr,socfpga-a10-ocram-ecc",
1576 	  .data = &a10_ocramecc_data },
1577 #endif
1578 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1579 	{ .compatible = "altr,socfpga-eth-mac-ecc",
1580 	  .data = &a10_enetecc_data },
1581 #endif
1582 #ifdef CONFIG_EDAC_ALTERA_NAND
1583 	{ .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
1584 #endif
1585 #ifdef CONFIG_EDAC_ALTERA_DMA
1586 	{ .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
1587 #endif
1588 #ifdef CONFIG_EDAC_ALTERA_USB
1589 	{ .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
1590 #endif
1591 #ifdef CONFIG_EDAC_ALTERA_QSPI
1592 	{ .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
1593 #endif
1594 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1595 	{ .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
1596 #endif
1597 	{},
1598 };
1599 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
1600 
1601 /*
1602  * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
1603  * because 2 IRQs are shared among the all ECC peripherals. The ECC
1604  * manager manages the IRQs and the children.
1605  * Based on xgene_edac.c peripheral code.
1606  */
1607 
1608 static ssize_t altr_edac_a10_device_trig(struct file *file,
1609 					 const char __user *user_buf,
1610 					 size_t count, loff_t *ppos)
1611 {
1612 	struct edac_device_ctl_info *edac_dci = file->private_data;
1613 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1614 	const struct edac_device_prv_data *priv = drvdata->data;
1615 	void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1616 	unsigned long flags;
1617 	u8 trig_type;
1618 
1619 	if (!user_buf || get_user(trig_type, user_buf))
1620 		return -EFAULT;
1621 
1622 	local_irq_save(flags);
1623 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
1624 		writel(priv->ue_set_mask, set_addr);
1625 	else
1626 		writel(priv->ce_set_mask, set_addr);
1627 	/* Ensure the interrupt test bits are set */
1628 	wmb();
1629 	local_irq_restore(flags);
1630 
1631 	return count;
1632 }
1633 
1634 static void altr_edac_a10_irq_handler(struct irq_desc *desc)
1635 {
1636 	int dberr, bit, sm_offset, irq_status;
1637 	struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
1638 	struct irq_chip *chip = irq_desc_get_chip(desc);
1639 	int irq = irq_desc_get_irq(desc);
1640 
1641 	dberr = (irq == edac->db_irq) ? 1 : 0;
1642 	sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
1643 			    A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
1644 
1645 	chained_irq_enter(chip, desc);
1646 
1647 	regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
1648 
1649 	for_each_set_bit(bit, (unsigned long *)&irq_status, 32) {
1650 		irq = irq_linear_revmap(edac->domain, dberr * 32 + bit);
1651 		if (irq)
1652 			generic_handle_irq(irq);
1653 	}
1654 
1655 	chained_irq_exit(chip, desc);
1656 }
1657 
1658 static int validate_parent_available(struct device_node *np)
1659 {
1660 	struct device_node *parent;
1661 	int ret = 0;
1662 
1663 	/* Ensure parent device is enabled if parent node exists */
1664 	parent = of_parse_phandle(np, "altr,ecc-parent", 0);
1665 	if (parent && !of_device_is_available(parent))
1666 		ret = -ENODEV;
1667 
1668 	of_node_put(parent);
1669 	return ret;
1670 }
1671 
1672 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
1673 				    struct device_node *np)
1674 {
1675 	struct edac_device_ctl_info *dci;
1676 	struct altr_edac_device_dev *altdev;
1677 	char *ecc_name = (char *)np->name;
1678 	struct resource res;
1679 	int edac_idx;
1680 	int rc = 0;
1681 	const struct edac_device_prv_data *prv;
1682 	/* Get matching node and check for valid result */
1683 	const struct of_device_id *pdev_id =
1684 		of_match_node(altr_edac_a10_device_of_match, np);
1685 	if (IS_ERR_OR_NULL(pdev_id))
1686 		return -ENODEV;
1687 
1688 	/* Get driver specific data for this EDAC device */
1689 	prv = pdev_id->data;
1690 	if (IS_ERR_OR_NULL(prv))
1691 		return -ENODEV;
1692 
1693 	if (validate_parent_available(np))
1694 		return -ENODEV;
1695 
1696 	if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
1697 		return -ENOMEM;
1698 
1699 	rc = of_address_to_resource(np, 0, &res);
1700 	if (rc < 0) {
1701 		edac_printk(KERN_ERR, EDAC_DEVICE,
1702 			    "%s: no resource address\n", ecc_name);
1703 		goto err_release_group;
1704 	}
1705 
1706 	edac_idx = edac_device_alloc_index();
1707 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
1708 					 1, ecc_name, 1, 0, NULL, 0,
1709 					 edac_idx);
1710 
1711 	if (!dci) {
1712 		edac_printk(KERN_ERR, EDAC_DEVICE,
1713 			    "%s: Unable to allocate EDAC device\n", ecc_name);
1714 		rc = -ENOMEM;
1715 		goto err_release_group;
1716 	}
1717 
1718 	altdev = dci->pvt_info;
1719 	dci->dev = edac->dev;
1720 	altdev->edac_dev_name = ecc_name;
1721 	altdev->edac_idx = edac_idx;
1722 	altdev->edac = edac;
1723 	altdev->edac_dev = dci;
1724 	altdev->data = prv;
1725 	altdev->ddev = *edac->dev;
1726 	dci->dev = &altdev->ddev;
1727 	dci->ctl_name = "Altera ECC Manager";
1728 	dci->mod_name = ecc_name;
1729 	dci->dev_name = ecc_name;
1730 
1731 	altdev->base = devm_ioremap_resource(edac->dev, &res);
1732 	if (IS_ERR(altdev->base)) {
1733 		rc = PTR_ERR(altdev->base);
1734 		goto err_release_group1;
1735 	}
1736 
1737 	/* Check specific dependencies for the module */
1738 	if (altdev->data->setup) {
1739 		rc = altdev->data->setup(altdev);
1740 		if (rc)
1741 			goto err_release_group1;
1742 	}
1743 
1744 	altdev->sb_irq = irq_of_parse_and_map(np, 0);
1745 	if (!altdev->sb_irq) {
1746 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
1747 		rc = -ENODEV;
1748 		goto err_release_group1;
1749 	}
1750 	rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
1751 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1752 			      ecc_name, altdev);
1753 	if (rc) {
1754 		edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
1755 		goto err_release_group1;
1756 	}
1757 
1758 	altdev->db_irq = irq_of_parse_and_map(np, 1);
1759 	if (!altdev->db_irq) {
1760 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
1761 		rc = -ENODEV;
1762 		goto err_release_group1;
1763 	}
1764 	rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
1765 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1766 			      ecc_name, altdev);
1767 	if (rc) {
1768 		edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
1769 		goto err_release_group1;
1770 	}
1771 
1772 	rc = edac_device_add_device(dci);
1773 	if (rc) {
1774 		dev_err(edac->dev, "edac_device_add_device failed\n");
1775 		rc = -ENOMEM;
1776 		goto err_release_group1;
1777 	}
1778 
1779 	altr_create_edacdev_dbgfs(dci, prv);
1780 
1781 	list_add(&altdev->next, &edac->a10_ecc_devices);
1782 
1783 	devres_remove_group(edac->dev, altr_edac_a10_device_add);
1784 
1785 	return 0;
1786 
1787 err_release_group1:
1788 	edac_device_free_ctl_info(dci);
1789 err_release_group:
1790 	devres_release_group(edac->dev, NULL);
1791 	edac_printk(KERN_ERR, EDAC_DEVICE,
1792 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1793 
1794 	return rc;
1795 }
1796 
1797 static void a10_eccmgr_irq_mask(struct irq_data *d)
1798 {
1799 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
1800 
1801 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_SET_OFST,
1802 		     BIT(d->hwirq));
1803 }
1804 
1805 static void a10_eccmgr_irq_unmask(struct irq_data *d)
1806 {
1807 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
1808 
1809 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_CLR_OFST,
1810 		     BIT(d->hwirq));
1811 }
1812 
1813 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
1814 				    irq_hw_number_t hwirq)
1815 {
1816 	struct altr_arria10_edac *edac = d->host_data;
1817 
1818 	irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
1819 	irq_set_chip_data(irq, edac);
1820 	irq_set_noprobe(irq);
1821 
1822 	return 0;
1823 }
1824 
1825 static struct irq_domain_ops a10_eccmgr_ic_ops = {
1826 	.map = a10_eccmgr_irqdomain_map,
1827 	.xlate = irq_domain_xlate_twocell,
1828 };
1829 
1830 static int altr_edac_a10_probe(struct platform_device *pdev)
1831 {
1832 	struct altr_arria10_edac *edac;
1833 	struct device_node *child;
1834 
1835 	edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
1836 	if (!edac)
1837 		return -ENOMEM;
1838 
1839 	edac->dev = &pdev->dev;
1840 	platform_set_drvdata(pdev, edac);
1841 	INIT_LIST_HEAD(&edac->a10_ecc_devices);
1842 
1843 	edac->ecc_mgr_map = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
1844 							"altr,sysmgr-syscon");
1845 	if (IS_ERR(edac->ecc_mgr_map)) {
1846 		edac_printk(KERN_ERR, EDAC_DEVICE,
1847 			    "Unable to get syscon altr,sysmgr-syscon\n");
1848 		return PTR_ERR(edac->ecc_mgr_map);
1849 	}
1850 
1851 	edac->irq_chip.name = pdev->dev.of_node->name;
1852 	edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
1853 	edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
1854 	edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64,
1855 					     &a10_eccmgr_ic_ops, edac);
1856 	if (!edac->domain) {
1857 		dev_err(&pdev->dev, "Error adding IRQ domain\n");
1858 		return -ENOMEM;
1859 	}
1860 
1861 	edac->sb_irq = platform_get_irq(pdev, 0);
1862 	if (edac->sb_irq < 0) {
1863 		dev_err(&pdev->dev, "No SBERR IRQ resource\n");
1864 		return edac->sb_irq;
1865 	}
1866 
1867 	irq_set_chained_handler_and_data(edac->sb_irq,
1868 					 altr_edac_a10_irq_handler,
1869 					 edac);
1870 
1871 	edac->db_irq = platform_get_irq(pdev, 1);
1872 	if (edac->db_irq < 0) {
1873 		dev_err(&pdev->dev, "No DBERR IRQ resource\n");
1874 		return edac->db_irq;
1875 	}
1876 	irq_set_chained_handler_and_data(edac->db_irq,
1877 					 altr_edac_a10_irq_handler,
1878 					 edac);
1879 
1880 	for_each_child_of_node(pdev->dev.of_node, child) {
1881 		if (!of_device_is_available(child))
1882 			continue;
1883 
1884 		if (of_device_is_compatible(child, "altr,socfpga-a10-l2-ecc") ||
1885 		    of_device_is_compatible(child, "altr,socfpga-a10-ocram-ecc") ||
1886 		    of_device_is_compatible(child, "altr,socfpga-eth-mac-ecc") ||
1887 		    of_device_is_compatible(child, "altr,socfpga-nand-ecc") ||
1888 		    of_device_is_compatible(child, "altr,socfpga-dma-ecc") ||
1889 		    of_device_is_compatible(child, "altr,socfpga-usb-ecc") ||
1890 		    of_device_is_compatible(child, "altr,socfpga-qspi-ecc") ||
1891 		    of_device_is_compatible(child, "altr,socfpga-sdmmc-ecc"))
1892 
1893 			altr_edac_a10_device_add(edac, child);
1894 
1895 		else if (of_device_is_compatible(child, "altr,sdram-edac-a10"))
1896 			of_platform_populate(pdev->dev.of_node,
1897 					     altr_sdram_ctrl_of_match,
1898 					     NULL, &pdev->dev);
1899 	}
1900 
1901 	return 0;
1902 }
1903 
1904 static const struct of_device_id altr_edac_a10_of_match[] = {
1905 	{ .compatible = "altr,socfpga-a10-ecc-manager" },
1906 	{},
1907 };
1908 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
1909 
1910 static struct platform_driver altr_edac_a10_driver = {
1911 	.probe =  altr_edac_a10_probe,
1912 	.driver = {
1913 		.name = "socfpga_a10_ecc_manager",
1914 		.of_match_table = altr_edac_a10_of_match,
1915 	},
1916 };
1917 module_platform_driver(altr_edac_a10_driver);
1918 
1919 MODULE_LICENSE("GPL v2");
1920 MODULE_AUTHOR("Thor Thayer");
1921 MODULE_DESCRIPTION("EDAC Driver for Altera Memories");
1922