1 /* 2 * Copyright Altera Corporation (C) 2014-2016. All rights reserved. 3 * Copyright 2011-2012 Calxeda, Inc. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 * 17 * Adapted from the highbank_mc_edac driver. 18 */ 19 20 #include <asm/cacheflush.h> 21 #include <linux/ctype.h> 22 #include <linux/delay.h> 23 #include <linux/edac.h> 24 #include <linux/genalloc.h> 25 #include <linux/interrupt.h> 26 #include <linux/irqchip/chained_irq.h> 27 #include <linux/kernel.h> 28 #include <linux/mfd/syscon.h> 29 #include <linux/of_address.h> 30 #include <linux/of_irq.h> 31 #include <linux/of_platform.h> 32 #include <linux/platform_device.h> 33 #include <linux/regmap.h> 34 #include <linux/types.h> 35 #include <linux/uaccess.h> 36 37 #include "altera_edac.h" 38 #include "edac_core.h" 39 #include "edac_module.h" 40 41 #define EDAC_MOD_STR "altera_edac" 42 #define EDAC_VERSION "1" 43 #define EDAC_DEVICE "Altera" 44 45 static const struct altr_sdram_prv_data c5_data = { 46 .ecc_ctrl_offset = CV_CTLCFG_OFST, 47 .ecc_ctl_en_mask = CV_CTLCFG_ECC_AUTO_EN, 48 .ecc_stat_offset = CV_DRAMSTS_OFST, 49 .ecc_stat_ce_mask = CV_DRAMSTS_SBEERR, 50 .ecc_stat_ue_mask = CV_DRAMSTS_DBEERR, 51 .ecc_saddr_offset = CV_ERRADDR_OFST, 52 .ecc_daddr_offset = CV_ERRADDR_OFST, 53 .ecc_cecnt_offset = CV_SBECOUNT_OFST, 54 .ecc_uecnt_offset = CV_DBECOUNT_OFST, 55 .ecc_irq_en_offset = CV_DRAMINTR_OFST, 56 .ecc_irq_en_mask = CV_DRAMINTR_INTREN, 57 .ecc_irq_clr_offset = CV_DRAMINTR_OFST, 58 .ecc_irq_clr_mask = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN), 59 .ecc_cnt_rst_offset = CV_DRAMINTR_OFST, 60 .ecc_cnt_rst_mask = CV_DRAMINTR_INTRCLR, 61 .ce_ue_trgr_offset = CV_CTLCFG_OFST, 62 .ce_set_mask = CV_CTLCFG_GEN_SB_ERR, 63 .ue_set_mask = CV_CTLCFG_GEN_DB_ERR, 64 }; 65 66 static const struct altr_sdram_prv_data a10_data = { 67 .ecc_ctrl_offset = A10_ECCCTRL1_OFST, 68 .ecc_ctl_en_mask = A10_ECCCTRL1_ECC_EN, 69 .ecc_stat_offset = A10_INTSTAT_OFST, 70 .ecc_stat_ce_mask = A10_INTSTAT_SBEERR, 71 .ecc_stat_ue_mask = A10_INTSTAT_DBEERR, 72 .ecc_saddr_offset = A10_SERRADDR_OFST, 73 .ecc_daddr_offset = A10_DERRADDR_OFST, 74 .ecc_irq_en_offset = A10_ERRINTEN_OFST, 75 .ecc_irq_en_mask = A10_ECC_IRQ_EN_MASK, 76 .ecc_irq_clr_offset = A10_INTSTAT_OFST, 77 .ecc_irq_clr_mask = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR), 78 .ecc_cnt_rst_offset = A10_ECCCTRL1_OFST, 79 .ecc_cnt_rst_mask = A10_ECC_CNT_RESET_MASK, 80 .ce_ue_trgr_offset = A10_DIAGINTTEST_OFST, 81 .ce_set_mask = A10_DIAGINT_TSERRA_MASK, 82 .ue_set_mask = A10_DIAGINT_TDERRA_MASK, 83 }; 84 85 /*********************** EDAC Memory Controller Functions ****************/ 86 87 /* The SDRAM controller uses the EDAC Memory Controller framework. */ 88 89 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id) 90 { 91 struct mem_ctl_info *mci = dev_id; 92 struct altr_sdram_mc_data *drvdata = mci->pvt_info; 93 const struct altr_sdram_prv_data *priv = drvdata->data; 94 u32 status, err_count = 1, err_addr; 95 96 regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status); 97 98 if (status & priv->ecc_stat_ue_mask) { 99 regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset, 100 &err_addr); 101 if (priv->ecc_uecnt_offset) 102 regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset, 103 &err_count); 104 panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n", 105 err_count, err_addr); 106 } 107 if (status & priv->ecc_stat_ce_mask) { 108 regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset, 109 &err_addr); 110 if (priv->ecc_uecnt_offset) 111 regmap_read(drvdata->mc_vbase, priv->ecc_cecnt_offset, 112 &err_count); 113 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count, 114 err_addr >> PAGE_SHIFT, 115 err_addr & ~PAGE_MASK, 0, 116 0, 0, -1, mci->ctl_name, ""); 117 /* Clear IRQ to resume */ 118 regmap_write(drvdata->mc_vbase, priv->ecc_irq_clr_offset, 119 priv->ecc_irq_clr_mask); 120 121 return IRQ_HANDLED; 122 } 123 return IRQ_NONE; 124 } 125 126 static ssize_t altr_sdr_mc_err_inject_write(struct file *file, 127 const char __user *data, 128 size_t count, loff_t *ppos) 129 { 130 struct mem_ctl_info *mci = file->private_data; 131 struct altr_sdram_mc_data *drvdata = mci->pvt_info; 132 const struct altr_sdram_prv_data *priv = drvdata->data; 133 u32 *ptemp; 134 dma_addr_t dma_handle; 135 u32 reg, read_reg; 136 137 ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL); 138 if (!ptemp) { 139 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle); 140 edac_printk(KERN_ERR, EDAC_MC, 141 "Inject: Buffer Allocation error\n"); 142 return -ENOMEM; 143 } 144 145 regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset, 146 &read_reg); 147 read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask); 148 149 /* Error are injected by writing a word while the SBE or DBE 150 * bit in the CTLCFG register is set. Reading the word will 151 * trigger the SBE or DBE error and the corresponding IRQ. 152 */ 153 if (count == 3) { 154 edac_printk(KERN_ALERT, EDAC_MC, 155 "Inject Double bit error\n"); 156 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, 157 (read_reg | priv->ue_set_mask)); 158 } else { 159 edac_printk(KERN_ALERT, EDAC_MC, 160 "Inject Single bit error\n"); 161 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, 162 (read_reg | priv->ce_set_mask)); 163 } 164 165 ptemp[0] = 0x5A5A5A5A; 166 ptemp[1] = 0xA5A5A5A5; 167 168 /* Clear the error injection bits */ 169 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, read_reg); 170 /* Ensure it has been written out */ 171 wmb(); 172 173 /* 174 * To trigger the error, we need to read the data back 175 * (the data was written with errors above). 176 * The ACCESS_ONCE macros and printk are used to prevent the 177 * the compiler optimizing these reads out. 178 */ 179 reg = ACCESS_ONCE(ptemp[0]); 180 read_reg = ACCESS_ONCE(ptemp[1]); 181 /* Force Read */ 182 rmb(); 183 184 edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n", 185 reg, read_reg); 186 187 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle); 188 189 return count; 190 } 191 192 static const struct file_operations altr_sdr_mc_debug_inject_fops = { 193 .open = simple_open, 194 .write = altr_sdr_mc_err_inject_write, 195 .llseek = generic_file_llseek, 196 }; 197 198 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci) 199 { 200 if (!IS_ENABLED(CONFIG_EDAC_DEBUG)) 201 return; 202 203 if (!mci->debugfs) 204 return; 205 206 edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci, 207 &altr_sdr_mc_debug_inject_fops); 208 } 209 210 /* Get total memory size from Open Firmware DTB */ 211 static unsigned long get_total_mem(void) 212 { 213 struct device_node *np = NULL; 214 const unsigned int *reg, *reg_end; 215 int len, sw, aw; 216 unsigned long start, size, total_mem = 0; 217 218 for_each_node_by_type(np, "memory") { 219 aw = of_n_addr_cells(np); 220 sw = of_n_size_cells(np); 221 reg = (const unsigned int *)of_get_property(np, "reg", &len); 222 reg_end = reg + (len / sizeof(u32)); 223 224 total_mem = 0; 225 do { 226 start = of_read_number(reg, aw); 227 reg += aw; 228 size = of_read_number(reg, sw); 229 reg += sw; 230 total_mem += size; 231 } while (reg < reg_end); 232 } 233 edac_dbg(0, "total_mem 0x%lx\n", total_mem); 234 return total_mem; 235 } 236 237 static const struct of_device_id altr_sdram_ctrl_of_match[] = { 238 { .compatible = "altr,sdram-edac", .data = &c5_data}, 239 { .compatible = "altr,sdram-edac-a10", .data = &a10_data}, 240 {}, 241 }; 242 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match); 243 244 static int a10_init(struct regmap *mc_vbase) 245 { 246 if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST, 247 A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) { 248 edac_printk(KERN_ERR, EDAC_MC, 249 "Error setting SB IRQ mode\n"); 250 return -ENODEV; 251 } 252 253 if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) { 254 edac_printk(KERN_ERR, EDAC_MC, 255 "Error setting trigger count\n"); 256 return -ENODEV; 257 } 258 259 return 0; 260 } 261 262 static int a10_unmask_irq(struct platform_device *pdev, u32 mask) 263 { 264 void __iomem *sm_base; 265 int ret = 0; 266 267 if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32), 268 dev_name(&pdev->dev))) { 269 edac_printk(KERN_ERR, EDAC_MC, 270 "Unable to request mem region\n"); 271 return -EBUSY; 272 } 273 274 sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32)); 275 if (!sm_base) { 276 edac_printk(KERN_ERR, EDAC_MC, 277 "Unable to ioremap device\n"); 278 279 ret = -ENOMEM; 280 goto release; 281 } 282 283 iowrite32(mask, sm_base); 284 285 iounmap(sm_base); 286 287 release: 288 release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32)); 289 290 return ret; 291 } 292 293 static int altr_sdram_probe(struct platform_device *pdev) 294 { 295 const struct of_device_id *id; 296 struct edac_mc_layer layers[2]; 297 struct mem_ctl_info *mci; 298 struct altr_sdram_mc_data *drvdata; 299 const struct altr_sdram_prv_data *priv; 300 struct regmap *mc_vbase; 301 struct dimm_info *dimm; 302 u32 read_reg; 303 int irq, irq2, res = 0; 304 unsigned long mem_size, irqflags = 0; 305 306 id = of_match_device(altr_sdram_ctrl_of_match, &pdev->dev); 307 if (!id) 308 return -ENODEV; 309 310 /* Grab the register range from the sdr controller in device tree */ 311 mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, 312 "altr,sdr-syscon"); 313 if (IS_ERR(mc_vbase)) { 314 edac_printk(KERN_ERR, EDAC_MC, 315 "regmap for altr,sdr-syscon lookup failed.\n"); 316 return -ENODEV; 317 } 318 319 /* Check specific dependencies for the module */ 320 priv = of_match_node(altr_sdram_ctrl_of_match, 321 pdev->dev.of_node)->data; 322 323 /* Validate the SDRAM controller has ECC enabled */ 324 if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) || 325 ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) { 326 edac_printk(KERN_ERR, EDAC_MC, 327 "No ECC/ECC disabled [0x%08X]\n", read_reg); 328 return -ENODEV; 329 } 330 331 /* Grab memory size from device tree. */ 332 mem_size = get_total_mem(); 333 if (!mem_size) { 334 edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n"); 335 return -ENODEV; 336 } 337 338 /* Ensure the SDRAM Interrupt is disabled */ 339 if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset, 340 priv->ecc_irq_en_mask, 0)) { 341 edac_printk(KERN_ERR, EDAC_MC, 342 "Error disabling SDRAM ECC IRQ\n"); 343 return -ENODEV; 344 } 345 346 /* Toggle to clear the SDRAM Error count */ 347 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset, 348 priv->ecc_cnt_rst_mask, 349 priv->ecc_cnt_rst_mask)) { 350 edac_printk(KERN_ERR, EDAC_MC, 351 "Error clearing SDRAM ECC count\n"); 352 return -ENODEV; 353 } 354 355 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset, 356 priv->ecc_cnt_rst_mask, 0)) { 357 edac_printk(KERN_ERR, EDAC_MC, 358 "Error clearing SDRAM ECC count\n"); 359 return -ENODEV; 360 } 361 362 irq = platform_get_irq(pdev, 0); 363 if (irq < 0) { 364 edac_printk(KERN_ERR, EDAC_MC, 365 "No irq %d in DT\n", irq); 366 return -ENODEV; 367 } 368 369 /* Arria10 has a 2nd IRQ */ 370 irq2 = platform_get_irq(pdev, 1); 371 372 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; 373 layers[0].size = 1; 374 layers[0].is_virt_csrow = true; 375 layers[1].type = EDAC_MC_LAYER_CHANNEL; 376 layers[1].size = 1; 377 layers[1].is_virt_csrow = false; 378 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 379 sizeof(struct altr_sdram_mc_data)); 380 if (!mci) 381 return -ENOMEM; 382 383 mci->pdev = &pdev->dev; 384 drvdata = mci->pvt_info; 385 drvdata->mc_vbase = mc_vbase; 386 drvdata->data = priv; 387 platform_set_drvdata(pdev, mci); 388 389 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) { 390 edac_printk(KERN_ERR, EDAC_MC, 391 "Unable to get managed device resource\n"); 392 res = -ENOMEM; 393 goto free; 394 } 395 396 mci->mtype_cap = MEM_FLAG_DDR3; 397 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED; 398 mci->edac_cap = EDAC_FLAG_SECDED; 399 mci->mod_name = EDAC_MOD_STR; 400 mci->mod_ver = EDAC_VERSION; 401 mci->ctl_name = dev_name(&pdev->dev); 402 mci->scrub_mode = SCRUB_SW_SRC; 403 mci->dev_name = dev_name(&pdev->dev); 404 405 dimm = *mci->dimms; 406 dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1; 407 dimm->grain = 8; 408 dimm->dtype = DEV_X8; 409 dimm->mtype = MEM_DDR3; 410 dimm->edac_mode = EDAC_SECDED; 411 412 res = edac_mc_add_mc(mci); 413 if (res < 0) 414 goto err; 415 416 /* Only the Arria10 has separate IRQs */ 417 if (irq2 > 0) { 418 /* Arria10 specific initialization */ 419 res = a10_init(mc_vbase); 420 if (res < 0) 421 goto err2; 422 423 res = devm_request_irq(&pdev->dev, irq2, 424 altr_sdram_mc_err_handler, 425 IRQF_SHARED, dev_name(&pdev->dev), mci); 426 if (res < 0) { 427 edac_mc_printk(mci, KERN_ERR, 428 "Unable to request irq %d\n", irq2); 429 res = -ENODEV; 430 goto err2; 431 } 432 433 res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK); 434 if (res < 0) 435 goto err2; 436 437 irqflags = IRQF_SHARED; 438 } 439 440 res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler, 441 irqflags, dev_name(&pdev->dev), mci); 442 if (res < 0) { 443 edac_mc_printk(mci, KERN_ERR, 444 "Unable to request irq %d\n", irq); 445 res = -ENODEV; 446 goto err2; 447 } 448 449 /* Infrastructure ready - enable the IRQ */ 450 if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset, 451 priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) { 452 edac_mc_printk(mci, KERN_ERR, 453 "Error enabling SDRAM ECC IRQ\n"); 454 res = -ENODEV; 455 goto err2; 456 } 457 458 altr_sdr_mc_create_debugfs_nodes(mci); 459 460 devres_close_group(&pdev->dev, NULL); 461 462 return 0; 463 464 err2: 465 edac_mc_del_mc(&pdev->dev); 466 err: 467 devres_release_group(&pdev->dev, NULL); 468 free: 469 edac_mc_free(mci); 470 edac_printk(KERN_ERR, EDAC_MC, 471 "EDAC Probe Failed; Error %d\n", res); 472 473 return res; 474 } 475 476 static int altr_sdram_remove(struct platform_device *pdev) 477 { 478 struct mem_ctl_info *mci = platform_get_drvdata(pdev); 479 480 edac_mc_del_mc(&pdev->dev); 481 edac_mc_free(mci); 482 platform_set_drvdata(pdev, NULL); 483 484 return 0; 485 } 486 487 /* 488 * If you want to suspend, need to disable EDAC by removing it 489 * from the device tree or defconfig. 490 */ 491 #ifdef CONFIG_PM 492 static int altr_sdram_prepare(struct device *dev) 493 { 494 pr_err("Suspend not allowed when EDAC is enabled.\n"); 495 496 return -EPERM; 497 } 498 499 static const struct dev_pm_ops altr_sdram_pm_ops = { 500 .prepare = altr_sdram_prepare, 501 }; 502 #endif 503 504 static struct platform_driver altr_sdram_edac_driver = { 505 .probe = altr_sdram_probe, 506 .remove = altr_sdram_remove, 507 .driver = { 508 .name = "altr_sdram_edac", 509 #ifdef CONFIG_PM 510 .pm = &altr_sdram_pm_ops, 511 #endif 512 .of_match_table = altr_sdram_ctrl_of_match, 513 }, 514 }; 515 516 module_platform_driver(altr_sdram_edac_driver); 517 518 /************************* EDAC Parent Probe *************************/ 519 520 static const struct of_device_id altr_edac_device_of_match[]; 521 522 static const struct of_device_id altr_edac_of_match[] = { 523 { .compatible = "altr,socfpga-ecc-manager" }, 524 {}, 525 }; 526 MODULE_DEVICE_TABLE(of, altr_edac_of_match); 527 528 static int altr_edac_probe(struct platform_device *pdev) 529 { 530 of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match, 531 NULL, &pdev->dev); 532 return 0; 533 } 534 535 static struct platform_driver altr_edac_driver = { 536 .probe = altr_edac_probe, 537 .driver = { 538 .name = "socfpga_ecc_manager", 539 .of_match_table = altr_edac_of_match, 540 }, 541 }; 542 module_platform_driver(altr_edac_driver); 543 544 /************************* EDAC Device Functions *************************/ 545 546 /* 547 * EDAC Device Functions (shared between various IPs). 548 * The discrete memories use the EDAC Device framework. The probe 549 * and error handling functions are very similar between memories 550 * so they are shared. The memory allocation and freeing for EDAC 551 * trigger testing are different for each memory. 552 */ 553 554 static const struct edac_device_prv_data ocramecc_data; 555 static const struct edac_device_prv_data l2ecc_data; 556 static const struct edac_device_prv_data a10_ocramecc_data; 557 static const struct edac_device_prv_data a10_l2ecc_data; 558 559 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id) 560 { 561 irqreturn_t ret_value = IRQ_NONE; 562 struct edac_device_ctl_info *dci = dev_id; 563 struct altr_edac_device_dev *drvdata = dci->pvt_info; 564 const struct edac_device_prv_data *priv = drvdata->data; 565 566 if (irq == drvdata->sb_irq) { 567 if (priv->ce_clear_mask) 568 writel(priv->ce_clear_mask, drvdata->base); 569 edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name); 570 ret_value = IRQ_HANDLED; 571 } else if (irq == drvdata->db_irq) { 572 if (priv->ue_clear_mask) 573 writel(priv->ue_clear_mask, drvdata->base); 574 edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name); 575 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n"); 576 ret_value = IRQ_HANDLED; 577 } else { 578 WARN_ON(1); 579 } 580 581 return ret_value; 582 } 583 584 static ssize_t altr_edac_device_trig(struct file *file, 585 const char __user *user_buf, 586 size_t count, loff_t *ppos) 587 588 { 589 u32 *ptemp, i, error_mask; 590 int result = 0; 591 u8 trig_type; 592 unsigned long flags; 593 struct edac_device_ctl_info *edac_dci = file->private_data; 594 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; 595 const struct edac_device_prv_data *priv = drvdata->data; 596 void *generic_ptr = edac_dci->dev; 597 598 if (!user_buf || get_user(trig_type, user_buf)) 599 return -EFAULT; 600 601 if (!priv->alloc_mem) 602 return -ENOMEM; 603 604 /* 605 * Note that generic_ptr is initialized to the device * but in 606 * some alloc_functions, this is overridden and returns data. 607 */ 608 ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr); 609 if (!ptemp) { 610 edac_printk(KERN_ERR, EDAC_DEVICE, 611 "Inject: Buffer Allocation error\n"); 612 return -ENOMEM; 613 } 614 615 if (trig_type == ALTR_UE_TRIGGER_CHAR) 616 error_mask = priv->ue_set_mask; 617 else 618 error_mask = priv->ce_set_mask; 619 620 edac_printk(KERN_ALERT, EDAC_DEVICE, 621 "Trigger Error Mask (0x%X)\n", error_mask); 622 623 local_irq_save(flags); 624 /* write ECC corrupted data out. */ 625 for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) { 626 /* Read data so we're in the correct state */ 627 rmb(); 628 if (ACCESS_ONCE(ptemp[i])) 629 result = -1; 630 /* Toggle Error bit (it is latched), leave ECC enabled */ 631 writel(error_mask, (drvdata->base + priv->set_err_ofst)); 632 writel(priv->ecc_enable_mask, (drvdata->base + 633 priv->set_err_ofst)); 634 ptemp[i] = i; 635 } 636 /* Ensure it has been written out */ 637 wmb(); 638 local_irq_restore(flags); 639 640 if (result) 641 edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n"); 642 643 /* Read out written data. ECC error caused here */ 644 for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++) 645 if (ACCESS_ONCE(ptemp[i]) != i) 646 edac_printk(KERN_ERR, EDAC_DEVICE, 647 "Read doesn't match written data\n"); 648 649 if (priv->free_mem) 650 priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr); 651 652 return count; 653 } 654 655 static const struct file_operations altr_edac_device_inject_fops = { 656 .open = simple_open, 657 .write = altr_edac_device_trig, 658 .llseek = generic_file_llseek, 659 }; 660 661 static ssize_t altr_edac_a10_device_trig(struct file *file, 662 const char __user *user_buf, 663 size_t count, loff_t *ppos); 664 665 static const struct file_operations altr_edac_a10_device_inject_fops = { 666 .open = simple_open, 667 .write = altr_edac_a10_device_trig, 668 .llseek = generic_file_llseek, 669 }; 670 671 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci, 672 const struct edac_device_prv_data *priv) 673 { 674 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; 675 676 if (!IS_ENABLED(CONFIG_EDAC_DEBUG)) 677 return; 678 679 drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name); 680 if (!drvdata->debugfs_dir) 681 return; 682 683 if (!edac_debugfs_create_file("altr_trigger", S_IWUSR, 684 drvdata->debugfs_dir, edac_dci, 685 priv->inject_fops)) 686 debugfs_remove_recursive(drvdata->debugfs_dir); 687 } 688 689 static const struct of_device_id altr_edac_device_of_match[] = { 690 #ifdef CONFIG_EDAC_ALTERA_L2C 691 { .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data }, 692 #endif 693 #ifdef CONFIG_EDAC_ALTERA_OCRAM 694 { .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data }, 695 #endif 696 {}, 697 }; 698 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match); 699 700 /* 701 * altr_edac_device_probe() 702 * This is a generic EDAC device driver that will support 703 * various Altera memory devices such as the L2 cache ECC and 704 * OCRAM ECC as well as the memories for other peripherals. 705 * Module specific initialization is done by passing the 706 * function index in the device tree. 707 */ 708 static int altr_edac_device_probe(struct platform_device *pdev) 709 { 710 struct edac_device_ctl_info *dci; 711 struct altr_edac_device_dev *drvdata; 712 struct resource *r; 713 int res = 0; 714 struct device_node *np = pdev->dev.of_node; 715 char *ecc_name = (char *)np->name; 716 static int dev_instance; 717 718 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) { 719 edac_printk(KERN_ERR, EDAC_DEVICE, 720 "Unable to open devm\n"); 721 return -ENOMEM; 722 } 723 724 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 725 if (!r) { 726 edac_printk(KERN_ERR, EDAC_DEVICE, 727 "Unable to get mem resource\n"); 728 res = -ENODEV; 729 goto fail; 730 } 731 732 if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r), 733 dev_name(&pdev->dev))) { 734 edac_printk(KERN_ERR, EDAC_DEVICE, 735 "%s:Error requesting mem region\n", ecc_name); 736 res = -EBUSY; 737 goto fail; 738 } 739 740 dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name, 741 1, ecc_name, 1, 0, NULL, 0, 742 dev_instance++); 743 744 if (!dci) { 745 edac_printk(KERN_ERR, EDAC_DEVICE, 746 "%s: Unable to allocate EDAC device\n", ecc_name); 747 res = -ENOMEM; 748 goto fail; 749 } 750 751 drvdata = dci->pvt_info; 752 dci->dev = &pdev->dev; 753 platform_set_drvdata(pdev, dci); 754 drvdata->edac_dev_name = ecc_name; 755 756 drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r)); 757 if (!drvdata->base) 758 goto fail1; 759 760 /* Get driver specific data for this EDAC device */ 761 drvdata->data = of_match_node(altr_edac_device_of_match, np)->data; 762 763 /* Check specific dependencies for the module */ 764 if (drvdata->data->setup) { 765 res = drvdata->data->setup(drvdata); 766 if (res) 767 goto fail1; 768 } 769 770 drvdata->sb_irq = platform_get_irq(pdev, 0); 771 res = devm_request_irq(&pdev->dev, drvdata->sb_irq, 772 altr_edac_device_handler, 773 0, dev_name(&pdev->dev), dci); 774 if (res) 775 goto fail1; 776 777 drvdata->db_irq = platform_get_irq(pdev, 1); 778 res = devm_request_irq(&pdev->dev, drvdata->db_irq, 779 altr_edac_device_handler, 780 0, dev_name(&pdev->dev), dci); 781 if (res) 782 goto fail1; 783 784 dci->mod_name = "Altera ECC Manager"; 785 dci->dev_name = drvdata->edac_dev_name; 786 787 res = edac_device_add_device(dci); 788 if (res) 789 goto fail1; 790 791 altr_create_edacdev_dbgfs(dci, drvdata->data); 792 793 devres_close_group(&pdev->dev, NULL); 794 795 return 0; 796 797 fail1: 798 edac_device_free_ctl_info(dci); 799 fail: 800 devres_release_group(&pdev->dev, NULL); 801 edac_printk(KERN_ERR, EDAC_DEVICE, 802 "%s:Error setting up EDAC device: %d\n", ecc_name, res); 803 804 return res; 805 } 806 807 static int altr_edac_device_remove(struct platform_device *pdev) 808 { 809 struct edac_device_ctl_info *dci = platform_get_drvdata(pdev); 810 struct altr_edac_device_dev *drvdata = dci->pvt_info; 811 812 debugfs_remove_recursive(drvdata->debugfs_dir); 813 edac_device_del_device(&pdev->dev); 814 edac_device_free_ctl_info(dci); 815 816 return 0; 817 } 818 819 static struct platform_driver altr_edac_device_driver = { 820 .probe = altr_edac_device_probe, 821 .remove = altr_edac_device_remove, 822 .driver = { 823 .name = "altr_edac_device", 824 .of_match_table = altr_edac_device_of_match, 825 }, 826 }; 827 module_platform_driver(altr_edac_device_driver); 828 829 /******************* Arria10 Device ECC Shared Functions *****************/ 830 831 /* 832 * Test for memory's ECC dependencies upon entry because platform specific 833 * startup should have initialized the memory and enabled the ECC. 834 * Can't turn on ECC here because accessing un-initialized memory will 835 * cause CE/UE errors possibly causing an ABORT. 836 */ 837 static int __maybe_unused 838 altr_check_ecc_deps(struct altr_edac_device_dev *device) 839 { 840 void __iomem *base = device->base; 841 const struct edac_device_prv_data *prv = device->data; 842 843 if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask) 844 return 0; 845 846 edac_printk(KERN_ERR, EDAC_DEVICE, 847 "%s: No ECC present or ECC disabled.\n", 848 device->edac_dev_name); 849 return -ENODEV; 850 } 851 852 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id) 853 { 854 struct altr_edac_device_dev *dci = dev_id; 855 void __iomem *base = dci->base; 856 857 if (irq == dci->sb_irq) { 858 writel(ALTR_A10_ECC_SERRPENA, 859 base + ALTR_A10_ECC_INTSTAT_OFST); 860 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name); 861 862 return IRQ_HANDLED; 863 } else if (irq == dci->db_irq) { 864 writel(ALTR_A10_ECC_DERRPENA, 865 base + ALTR_A10_ECC_INTSTAT_OFST); 866 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name); 867 if (dci->data->panic) 868 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n"); 869 870 return IRQ_HANDLED; 871 } 872 873 WARN_ON(1); 874 875 return IRQ_NONE; 876 } 877 878 /******************* Arria10 Memory Buffer Functions *********************/ 879 880 static inline int a10_get_irq_mask(struct device_node *np) 881 { 882 int irq; 883 const u32 *handle = of_get_property(np, "interrupts", NULL); 884 885 if (!handle) 886 return -ENODEV; 887 irq = be32_to_cpup(handle); 888 return irq; 889 } 890 891 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr) 892 { 893 u32 value = readl(ioaddr); 894 895 value |= bit_mask; 896 writel(value, ioaddr); 897 } 898 899 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr) 900 { 901 u32 value = readl(ioaddr); 902 903 value &= ~bit_mask; 904 writel(value, ioaddr); 905 } 906 907 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr) 908 { 909 u32 value = readl(ioaddr); 910 911 return (value & bit_mask) ? 1 : 0; 912 } 913 914 /* 915 * This function uses the memory initialization block in the Arria10 ECC 916 * controller to initialize/clear the entire memory data and ECC data. 917 */ 918 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port) 919 { 920 int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US; 921 u32 init_mask, stat_mask, clear_mask; 922 int ret = 0; 923 924 if (port) { 925 init_mask = ALTR_A10_ECC_INITB; 926 stat_mask = ALTR_A10_ECC_INITCOMPLETEB; 927 clear_mask = ALTR_A10_ECC_ERRPENB_MASK; 928 } else { 929 init_mask = ALTR_A10_ECC_INITA; 930 stat_mask = ALTR_A10_ECC_INITCOMPLETEA; 931 clear_mask = ALTR_A10_ECC_ERRPENA_MASK; 932 } 933 934 ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST)); 935 while (limit--) { 936 if (ecc_test_bits(stat_mask, 937 (ioaddr + ALTR_A10_ECC_INITSTAT_OFST))) 938 break; 939 udelay(1); 940 } 941 if (limit < 0) 942 ret = -EBUSY; 943 944 /* Clear any pending ECC interrupts */ 945 writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST)); 946 947 return ret; 948 } 949 950 static __init int __maybe_unused 951 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask, 952 u32 ecc_ctrl_en_mask, bool dual_port) 953 { 954 int ret = 0; 955 void __iomem *ecc_block_base; 956 struct regmap *ecc_mgr_map; 957 char *ecc_name; 958 struct device_node *np_eccmgr; 959 960 ecc_name = (char *)np->name; 961 962 /* Get the ECC Manager - parent of the device EDACs */ 963 np_eccmgr = of_get_parent(np); 964 ecc_mgr_map = syscon_regmap_lookup_by_phandle(np_eccmgr, 965 "altr,sysmgr-syscon"); 966 of_node_put(np_eccmgr); 967 if (IS_ERR(ecc_mgr_map)) { 968 edac_printk(KERN_ERR, EDAC_DEVICE, 969 "Unable to get syscon altr,sysmgr-syscon\n"); 970 return -ENODEV; 971 } 972 973 /* Map the ECC Block */ 974 ecc_block_base = of_iomap(np, 0); 975 if (!ecc_block_base) { 976 edac_printk(KERN_ERR, EDAC_DEVICE, 977 "Unable to map %s ECC block\n", ecc_name); 978 return -ENODEV; 979 } 980 981 /* Disable ECC */ 982 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask); 983 writel(ALTR_A10_ECC_SERRINTEN, 984 (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST)); 985 ecc_clear_bits(ecc_ctrl_en_mask, 986 (ecc_block_base + ALTR_A10_ECC_CTRL_OFST)); 987 /* Ensure all writes complete */ 988 wmb(); 989 /* Use HW initialization block to initialize memory for ECC */ 990 ret = altr_init_memory_port(ecc_block_base, 0); 991 if (ret) { 992 edac_printk(KERN_ERR, EDAC_DEVICE, 993 "ECC: cannot init %s PORTA memory\n", ecc_name); 994 goto out; 995 } 996 997 if (dual_port) { 998 ret = altr_init_memory_port(ecc_block_base, 1); 999 if (ret) { 1000 edac_printk(KERN_ERR, EDAC_DEVICE, 1001 "ECC: cannot init %s PORTB memory\n", 1002 ecc_name); 1003 goto out; 1004 } 1005 } 1006 1007 /* Interrupt mode set to every SBERR */ 1008 regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST, 1009 ALTR_A10_ECC_INTMODE); 1010 /* Enable ECC */ 1011 ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base + 1012 ALTR_A10_ECC_CTRL_OFST)); 1013 writel(ALTR_A10_ECC_SERRINTEN, 1014 (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST)); 1015 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask); 1016 /* Ensure all writes complete */ 1017 wmb(); 1018 out: 1019 iounmap(ecc_block_base); 1020 return ret; 1021 } 1022 1023 static int validate_parent_available(struct device_node *np); 1024 static const struct of_device_id altr_edac_a10_device_of_match[]; 1025 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat) 1026 { 1027 int irq; 1028 struct device_node *child, *np = of_find_compatible_node(NULL, NULL, 1029 "altr,socfpga-a10-ecc-manager"); 1030 if (!np) { 1031 edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n"); 1032 return -ENODEV; 1033 } 1034 1035 for_each_child_of_node(np, child) { 1036 const struct of_device_id *pdev_id; 1037 const struct edac_device_prv_data *prv; 1038 1039 if (!of_device_is_available(child)) 1040 continue; 1041 if (!of_device_is_compatible(child, compat)) 1042 continue; 1043 1044 if (validate_parent_available(child)) 1045 continue; 1046 1047 irq = a10_get_irq_mask(child); 1048 if (irq < 0) 1049 continue; 1050 1051 /* Get matching node and check for valid result */ 1052 pdev_id = of_match_node(altr_edac_a10_device_of_match, child); 1053 if (IS_ERR_OR_NULL(pdev_id)) 1054 continue; 1055 1056 /* Validate private data pointer before dereferencing */ 1057 prv = pdev_id->data; 1058 if (!prv) 1059 continue; 1060 1061 altr_init_a10_ecc_block(child, BIT(irq), 1062 prv->ecc_enable_mask, 0); 1063 } 1064 1065 of_node_put(np); 1066 return 0; 1067 } 1068 1069 /*********************** OCRAM EDAC Device Functions *********************/ 1070 1071 #ifdef CONFIG_EDAC_ALTERA_OCRAM 1072 1073 static void *ocram_alloc_mem(size_t size, void **other) 1074 { 1075 struct device_node *np; 1076 struct gen_pool *gp; 1077 void *sram_addr; 1078 1079 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc"); 1080 if (!np) 1081 return NULL; 1082 1083 gp = of_gen_pool_get(np, "iram", 0); 1084 of_node_put(np); 1085 if (!gp) 1086 return NULL; 1087 1088 sram_addr = (void *)gen_pool_alloc(gp, size); 1089 if (!sram_addr) 1090 return NULL; 1091 1092 memset(sram_addr, 0, size); 1093 /* Ensure data is written out */ 1094 wmb(); 1095 1096 /* Remember this handle for freeing later */ 1097 *other = gp; 1098 1099 return sram_addr; 1100 } 1101 1102 static void ocram_free_mem(void *p, size_t size, void *other) 1103 { 1104 gen_pool_free((struct gen_pool *)other, (u32)p, size); 1105 } 1106 1107 static const struct edac_device_prv_data ocramecc_data = { 1108 .setup = altr_check_ecc_deps, 1109 .ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR), 1110 .ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR), 1111 .alloc_mem = ocram_alloc_mem, 1112 .free_mem = ocram_free_mem, 1113 .ecc_enable_mask = ALTR_OCR_ECC_EN, 1114 .ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET, 1115 .ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS), 1116 .ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD), 1117 .set_err_ofst = ALTR_OCR_ECC_REG_OFFSET, 1118 .trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE, 1119 .inject_fops = &altr_edac_device_inject_fops, 1120 }; 1121 1122 static const struct edac_device_prv_data a10_ocramecc_data = { 1123 .setup = altr_check_ecc_deps, 1124 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1125 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1126 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM, 1127 .ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL, 1128 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1129 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1130 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1131 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1132 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1133 .inject_fops = &altr_edac_a10_device_inject_fops, 1134 /* 1135 * OCRAM panic on uncorrectable error because sleep/resume 1136 * functions and FPGA contents are stored in OCRAM. Prefer 1137 * a kernel panic over executing/loading corrupted data. 1138 */ 1139 .panic = true, 1140 }; 1141 1142 #endif /* CONFIG_EDAC_ALTERA_OCRAM */ 1143 1144 /********************* L2 Cache EDAC Device Functions ********************/ 1145 1146 #ifdef CONFIG_EDAC_ALTERA_L2C 1147 1148 static void *l2_alloc_mem(size_t size, void **other) 1149 { 1150 struct device *dev = *other; 1151 void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL); 1152 1153 if (!ptemp) 1154 return NULL; 1155 1156 /* Make sure everything is written out */ 1157 wmb(); 1158 1159 /* 1160 * Clean all cache levels up to LoC (includes L2) 1161 * This ensures the corrupted data is written into 1162 * L2 cache for readback test (which causes ECC error). 1163 */ 1164 flush_cache_all(); 1165 1166 return ptemp; 1167 } 1168 1169 static void l2_free_mem(void *p, size_t size, void *other) 1170 { 1171 struct device *dev = other; 1172 1173 if (dev && p) 1174 devm_kfree(dev, p); 1175 } 1176 1177 /* 1178 * altr_l2_check_deps() 1179 * Test for L2 cache ECC dependencies upon entry because 1180 * platform specific startup should have initialized the L2 1181 * memory and enabled the ECC. 1182 * Bail if ECC is not enabled. 1183 * Note that L2 Cache Enable is forced at build time. 1184 */ 1185 static int altr_l2_check_deps(struct altr_edac_device_dev *device) 1186 { 1187 void __iomem *base = device->base; 1188 const struct edac_device_prv_data *prv = device->data; 1189 1190 if ((readl(base) & prv->ecc_enable_mask) == 1191 prv->ecc_enable_mask) 1192 return 0; 1193 1194 edac_printk(KERN_ERR, EDAC_DEVICE, 1195 "L2: No ECC present, or ECC disabled\n"); 1196 return -ENODEV; 1197 } 1198 1199 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id) 1200 { 1201 struct altr_edac_device_dev *dci = dev_id; 1202 1203 if (irq == dci->sb_irq) { 1204 regmap_write(dci->edac->ecc_mgr_map, 1205 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST, 1206 A10_SYSGMR_MPU_CLEAR_L2_ECC_SB); 1207 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name); 1208 1209 return IRQ_HANDLED; 1210 } else if (irq == dci->db_irq) { 1211 regmap_write(dci->edac->ecc_mgr_map, 1212 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST, 1213 A10_SYSGMR_MPU_CLEAR_L2_ECC_MB); 1214 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name); 1215 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n"); 1216 1217 return IRQ_HANDLED; 1218 } 1219 1220 WARN_ON(1); 1221 1222 return IRQ_NONE; 1223 } 1224 1225 static const struct edac_device_prv_data l2ecc_data = { 1226 .setup = altr_l2_check_deps, 1227 .ce_clear_mask = 0, 1228 .ue_clear_mask = 0, 1229 .alloc_mem = l2_alloc_mem, 1230 .free_mem = l2_free_mem, 1231 .ecc_enable_mask = ALTR_L2_ECC_EN, 1232 .ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS), 1233 .ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD), 1234 .set_err_ofst = ALTR_L2_ECC_REG_OFFSET, 1235 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE, 1236 .inject_fops = &altr_edac_device_inject_fops, 1237 }; 1238 1239 static const struct edac_device_prv_data a10_l2ecc_data = { 1240 .setup = altr_l2_check_deps, 1241 .ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR, 1242 .ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR, 1243 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2, 1244 .alloc_mem = l2_alloc_mem, 1245 .free_mem = l2_free_mem, 1246 .ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL, 1247 .ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK, 1248 .ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK, 1249 .set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST, 1250 .ecc_irq_handler = altr_edac_a10_l2_irq, 1251 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE, 1252 .inject_fops = &altr_edac_device_inject_fops, 1253 }; 1254 1255 #endif /* CONFIG_EDAC_ALTERA_L2C */ 1256 1257 /********************* Ethernet Device Functions ********************/ 1258 1259 #ifdef CONFIG_EDAC_ALTERA_ETHERNET 1260 1261 static const struct edac_device_prv_data a10_enetecc_data = { 1262 .setup = altr_check_ecc_deps, 1263 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1264 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1265 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1266 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1267 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1268 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1269 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1270 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1271 .inject_fops = &altr_edac_a10_device_inject_fops, 1272 }; 1273 1274 static int __init socfpga_init_ethernet_ecc(void) 1275 { 1276 return altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc"); 1277 } 1278 1279 early_initcall(socfpga_init_ethernet_ecc); 1280 1281 #endif /* CONFIG_EDAC_ALTERA_ETHERNET */ 1282 1283 /********************** NAND Device Functions **********************/ 1284 1285 #ifdef CONFIG_EDAC_ALTERA_NAND 1286 1287 static const struct edac_device_prv_data a10_nandecc_data = { 1288 .setup = altr_check_ecc_deps, 1289 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1290 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1291 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1292 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1293 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1294 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1295 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1296 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1297 .inject_fops = &altr_edac_a10_device_inject_fops, 1298 }; 1299 1300 static int __init socfpga_init_nand_ecc(void) 1301 { 1302 return altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc"); 1303 } 1304 1305 early_initcall(socfpga_init_nand_ecc); 1306 1307 #endif /* CONFIG_EDAC_ALTERA_NAND */ 1308 1309 /********************** DMA Device Functions **********************/ 1310 1311 #ifdef CONFIG_EDAC_ALTERA_DMA 1312 1313 static const struct edac_device_prv_data a10_dmaecc_data = { 1314 .setup = altr_check_ecc_deps, 1315 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1316 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1317 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1318 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1319 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1320 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1321 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1322 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1323 .inject_fops = &altr_edac_a10_device_inject_fops, 1324 }; 1325 1326 static int __init socfpga_init_dma_ecc(void) 1327 { 1328 return altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc"); 1329 } 1330 1331 early_initcall(socfpga_init_dma_ecc); 1332 1333 #endif /* CONFIG_EDAC_ALTERA_DMA */ 1334 1335 /********************** USB Device Functions **********************/ 1336 1337 #ifdef CONFIG_EDAC_ALTERA_USB 1338 1339 static const struct edac_device_prv_data a10_usbecc_data = { 1340 .setup = altr_check_ecc_deps, 1341 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1342 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1343 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1344 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1345 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1346 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1347 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1348 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1349 .inject_fops = &altr_edac_a10_device_inject_fops, 1350 }; 1351 1352 static int __init socfpga_init_usb_ecc(void) 1353 { 1354 return altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc"); 1355 } 1356 1357 early_initcall(socfpga_init_usb_ecc); 1358 1359 #endif /* CONFIG_EDAC_ALTERA_USB */ 1360 1361 /********************** QSPI Device Functions **********************/ 1362 1363 #ifdef CONFIG_EDAC_ALTERA_QSPI 1364 1365 static const struct edac_device_prv_data a10_qspiecc_data = { 1366 .setup = altr_check_ecc_deps, 1367 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1368 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1369 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1370 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1371 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1372 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1373 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1374 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1375 .inject_fops = &altr_edac_a10_device_inject_fops, 1376 }; 1377 1378 static int __init socfpga_init_qspi_ecc(void) 1379 { 1380 return altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc"); 1381 } 1382 1383 early_initcall(socfpga_init_qspi_ecc); 1384 1385 #endif /* CONFIG_EDAC_ALTERA_QSPI */ 1386 1387 /********************* SDMMC Device Functions **********************/ 1388 1389 #ifdef CONFIG_EDAC_ALTERA_SDMMC 1390 1391 static const struct edac_device_prv_data a10_sdmmceccb_data; 1392 static int altr_portb_setup(struct altr_edac_device_dev *device) 1393 { 1394 struct edac_device_ctl_info *dci; 1395 struct altr_edac_device_dev *altdev; 1396 char *ecc_name = "sdmmcb-ecc"; 1397 int edac_idx, rc; 1398 struct device_node *np; 1399 const struct edac_device_prv_data *prv = &a10_sdmmceccb_data; 1400 1401 rc = altr_check_ecc_deps(device); 1402 if (rc) 1403 return rc; 1404 1405 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc"); 1406 if (!np) { 1407 edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n"); 1408 return -ENODEV; 1409 } 1410 1411 /* Create the PortB EDAC device */ 1412 edac_idx = edac_device_alloc_index(); 1413 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1, 1414 ecc_name, 1, 0, NULL, 0, edac_idx); 1415 if (!dci) { 1416 edac_printk(KERN_ERR, EDAC_DEVICE, 1417 "%s: Unable to allocate PortB EDAC device\n", 1418 ecc_name); 1419 return -ENOMEM; 1420 } 1421 1422 /* Initialize the PortB EDAC device structure from PortA structure */ 1423 altdev = dci->pvt_info; 1424 *altdev = *device; 1425 1426 if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL)) 1427 return -ENOMEM; 1428 1429 /* Update PortB specific values */ 1430 altdev->edac_dev_name = ecc_name; 1431 altdev->edac_idx = edac_idx; 1432 altdev->edac_dev = dci; 1433 altdev->data = prv; 1434 dci->dev = &altdev->ddev; 1435 dci->ctl_name = "Altera ECC Manager"; 1436 dci->mod_name = ecc_name; 1437 dci->dev_name = ecc_name; 1438 1439 /* Update the IRQs for PortB */ 1440 altdev->sb_irq = irq_of_parse_and_map(np, 2); 1441 if (!altdev->sb_irq) { 1442 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n"); 1443 rc = -ENODEV; 1444 goto err_release_group_1; 1445 } 1446 rc = devm_request_irq(&altdev->ddev, altdev->sb_irq, 1447 prv->ecc_irq_handler, 1448 IRQF_ONESHOT | IRQF_TRIGGER_HIGH, 1449 ecc_name, altdev); 1450 if (rc) { 1451 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n"); 1452 goto err_release_group_1; 1453 } 1454 1455 altdev->db_irq = irq_of_parse_and_map(np, 3); 1456 if (!altdev->db_irq) { 1457 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n"); 1458 rc = -ENODEV; 1459 goto err_release_group_1; 1460 } 1461 rc = devm_request_irq(&altdev->ddev, altdev->db_irq, 1462 prv->ecc_irq_handler, 1463 IRQF_ONESHOT | IRQF_TRIGGER_HIGH, 1464 ecc_name, altdev); 1465 if (rc) { 1466 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n"); 1467 goto err_release_group_1; 1468 } 1469 1470 rc = edac_device_add_device(dci); 1471 if (rc) { 1472 edac_printk(KERN_ERR, EDAC_DEVICE, 1473 "edac_device_add_device portB failed\n"); 1474 rc = -ENOMEM; 1475 goto err_release_group_1; 1476 } 1477 altr_create_edacdev_dbgfs(dci, prv); 1478 1479 list_add(&altdev->next, &altdev->edac->a10_ecc_devices); 1480 1481 devres_remove_group(&altdev->ddev, altr_portb_setup); 1482 1483 return 0; 1484 1485 err_release_group_1: 1486 edac_device_free_ctl_info(dci); 1487 devres_release_group(&altdev->ddev, altr_portb_setup); 1488 edac_printk(KERN_ERR, EDAC_DEVICE, 1489 "%s:Error setting up EDAC device: %d\n", ecc_name, rc); 1490 return rc; 1491 } 1492 1493 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id) 1494 { 1495 struct altr_edac_device_dev *ad = dev_id; 1496 void __iomem *base = ad->base; 1497 const struct edac_device_prv_data *priv = ad->data; 1498 1499 if (irq == ad->sb_irq) { 1500 writel(priv->ce_clear_mask, 1501 base + ALTR_A10_ECC_INTSTAT_OFST); 1502 edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name); 1503 return IRQ_HANDLED; 1504 } else if (irq == ad->db_irq) { 1505 writel(priv->ue_clear_mask, 1506 base + ALTR_A10_ECC_INTSTAT_OFST); 1507 edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name); 1508 return IRQ_HANDLED; 1509 } 1510 1511 WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq); 1512 1513 return IRQ_NONE; 1514 } 1515 1516 static const struct edac_device_prv_data a10_sdmmcecca_data = { 1517 .setup = altr_portb_setup, 1518 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1519 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1520 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1521 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1522 .ce_set_mask = ALTR_A10_ECC_SERRPENA, 1523 .ue_set_mask = ALTR_A10_ECC_DERRPENA, 1524 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1525 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1526 .inject_fops = &altr_edac_a10_device_inject_fops, 1527 }; 1528 1529 static const struct edac_device_prv_data a10_sdmmceccb_data = { 1530 .setup = altr_portb_setup, 1531 .ce_clear_mask = ALTR_A10_ECC_SERRPENB, 1532 .ue_clear_mask = ALTR_A10_ECC_DERRPENB, 1533 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1534 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1535 .ce_set_mask = ALTR_A10_ECC_TSERRB, 1536 .ue_set_mask = ALTR_A10_ECC_TDERRB, 1537 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1538 .ecc_irq_handler = altr_edac_a10_ecc_irq_portb, 1539 .inject_fops = &altr_edac_a10_device_inject_fops, 1540 }; 1541 1542 static int __init socfpga_init_sdmmc_ecc(void) 1543 { 1544 int rc = -ENODEV; 1545 struct device_node *child = of_find_compatible_node(NULL, NULL, 1546 "altr,socfpga-sdmmc-ecc"); 1547 if (!child) { 1548 edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n"); 1549 return -ENODEV; 1550 } 1551 1552 if (!of_device_is_available(child)) 1553 goto exit; 1554 1555 if (validate_parent_available(child)) 1556 goto exit; 1557 1558 rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK, 1559 a10_sdmmcecca_data.ecc_enable_mask, 1); 1560 exit: 1561 of_node_put(child); 1562 return rc; 1563 } 1564 1565 early_initcall(socfpga_init_sdmmc_ecc); 1566 1567 #endif /* CONFIG_EDAC_ALTERA_SDMMC */ 1568 1569 /********************* Arria10 EDAC Device Functions *************************/ 1570 static const struct of_device_id altr_edac_a10_device_of_match[] = { 1571 #ifdef CONFIG_EDAC_ALTERA_L2C 1572 { .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data }, 1573 #endif 1574 #ifdef CONFIG_EDAC_ALTERA_OCRAM 1575 { .compatible = "altr,socfpga-a10-ocram-ecc", 1576 .data = &a10_ocramecc_data }, 1577 #endif 1578 #ifdef CONFIG_EDAC_ALTERA_ETHERNET 1579 { .compatible = "altr,socfpga-eth-mac-ecc", 1580 .data = &a10_enetecc_data }, 1581 #endif 1582 #ifdef CONFIG_EDAC_ALTERA_NAND 1583 { .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data }, 1584 #endif 1585 #ifdef CONFIG_EDAC_ALTERA_DMA 1586 { .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data }, 1587 #endif 1588 #ifdef CONFIG_EDAC_ALTERA_USB 1589 { .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data }, 1590 #endif 1591 #ifdef CONFIG_EDAC_ALTERA_QSPI 1592 { .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data }, 1593 #endif 1594 #ifdef CONFIG_EDAC_ALTERA_SDMMC 1595 { .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data }, 1596 #endif 1597 {}, 1598 }; 1599 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match); 1600 1601 /* 1602 * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5 1603 * because 2 IRQs are shared among the all ECC peripherals. The ECC 1604 * manager manages the IRQs and the children. 1605 * Based on xgene_edac.c peripheral code. 1606 */ 1607 1608 static ssize_t altr_edac_a10_device_trig(struct file *file, 1609 const char __user *user_buf, 1610 size_t count, loff_t *ppos) 1611 { 1612 struct edac_device_ctl_info *edac_dci = file->private_data; 1613 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; 1614 const struct edac_device_prv_data *priv = drvdata->data; 1615 void __iomem *set_addr = (drvdata->base + priv->set_err_ofst); 1616 unsigned long flags; 1617 u8 trig_type; 1618 1619 if (!user_buf || get_user(trig_type, user_buf)) 1620 return -EFAULT; 1621 1622 local_irq_save(flags); 1623 if (trig_type == ALTR_UE_TRIGGER_CHAR) 1624 writel(priv->ue_set_mask, set_addr); 1625 else 1626 writel(priv->ce_set_mask, set_addr); 1627 /* Ensure the interrupt test bits are set */ 1628 wmb(); 1629 local_irq_restore(flags); 1630 1631 return count; 1632 } 1633 1634 static void altr_edac_a10_irq_handler(struct irq_desc *desc) 1635 { 1636 int dberr, bit, sm_offset, irq_status; 1637 struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc); 1638 struct irq_chip *chip = irq_desc_get_chip(desc); 1639 int irq = irq_desc_get_irq(desc); 1640 1641 dberr = (irq == edac->db_irq) ? 1 : 0; 1642 sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST : 1643 A10_SYSMGR_ECC_INTSTAT_SERR_OFST; 1644 1645 chained_irq_enter(chip, desc); 1646 1647 regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status); 1648 1649 for_each_set_bit(bit, (unsigned long *)&irq_status, 32) { 1650 irq = irq_linear_revmap(edac->domain, dberr * 32 + bit); 1651 if (irq) 1652 generic_handle_irq(irq); 1653 } 1654 1655 chained_irq_exit(chip, desc); 1656 } 1657 1658 static int validate_parent_available(struct device_node *np) 1659 { 1660 struct device_node *parent; 1661 int ret = 0; 1662 1663 /* Ensure parent device is enabled if parent node exists */ 1664 parent = of_parse_phandle(np, "altr,ecc-parent", 0); 1665 if (parent && !of_device_is_available(parent)) 1666 ret = -ENODEV; 1667 1668 of_node_put(parent); 1669 return ret; 1670 } 1671 1672 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac, 1673 struct device_node *np) 1674 { 1675 struct edac_device_ctl_info *dci; 1676 struct altr_edac_device_dev *altdev; 1677 char *ecc_name = (char *)np->name; 1678 struct resource res; 1679 int edac_idx; 1680 int rc = 0; 1681 const struct edac_device_prv_data *prv; 1682 /* Get matching node and check for valid result */ 1683 const struct of_device_id *pdev_id = 1684 of_match_node(altr_edac_a10_device_of_match, np); 1685 if (IS_ERR_OR_NULL(pdev_id)) 1686 return -ENODEV; 1687 1688 /* Get driver specific data for this EDAC device */ 1689 prv = pdev_id->data; 1690 if (IS_ERR_OR_NULL(prv)) 1691 return -ENODEV; 1692 1693 if (validate_parent_available(np)) 1694 return -ENODEV; 1695 1696 if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL)) 1697 return -ENOMEM; 1698 1699 rc = of_address_to_resource(np, 0, &res); 1700 if (rc < 0) { 1701 edac_printk(KERN_ERR, EDAC_DEVICE, 1702 "%s: no resource address\n", ecc_name); 1703 goto err_release_group; 1704 } 1705 1706 edac_idx = edac_device_alloc_index(); 1707 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1708 1, ecc_name, 1, 0, NULL, 0, 1709 edac_idx); 1710 1711 if (!dci) { 1712 edac_printk(KERN_ERR, EDAC_DEVICE, 1713 "%s: Unable to allocate EDAC device\n", ecc_name); 1714 rc = -ENOMEM; 1715 goto err_release_group; 1716 } 1717 1718 altdev = dci->pvt_info; 1719 dci->dev = edac->dev; 1720 altdev->edac_dev_name = ecc_name; 1721 altdev->edac_idx = edac_idx; 1722 altdev->edac = edac; 1723 altdev->edac_dev = dci; 1724 altdev->data = prv; 1725 altdev->ddev = *edac->dev; 1726 dci->dev = &altdev->ddev; 1727 dci->ctl_name = "Altera ECC Manager"; 1728 dci->mod_name = ecc_name; 1729 dci->dev_name = ecc_name; 1730 1731 altdev->base = devm_ioremap_resource(edac->dev, &res); 1732 if (IS_ERR(altdev->base)) { 1733 rc = PTR_ERR(altdev->base); 1734 goto err_release_group1; 1735 } 1736 1737 /* Check specific dependencies for the module */ 1738 if (altdev->data->setup) { 1739 rc = altdev->data->setup(altdev); 1740 if (rc) 1741 goto err_release_group1; 1742 } 1743 1744 altdev->sb_irq = irq_of_parse_and_map(np, 0); 1745 if (!altdev->sb_irq) { 1746 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n"); 1747 rc = -ENODEV; 1748 goto err_release_group1; 1749 } 1750 rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler, 1751 IRQF_ONESHOT | IRQF_TRIGGER_HIGH, 1752 ecc_name, altdev); 1753 if (rc) { 1754 edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n"); 1755 goto err_release_group1; 1756 } 1757 1758 altdev->db_irq = irq_of_parse_and_map(np, 1); 1759 if (!altdev->db_irq) { 1760 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n"); 1761 rc = -ENODEV; 1762 goto err_release_group1; 1763 } 1764 rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler, 1765 IRQF_ONESHOT | IRQF_TRIGGER_HIGH, 1766 ecc_name, altdev); 1767 if (rc) { 1768 edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n"); 1769 goto err_release_group1; 1770 } 1771 1772 rc = edac_device_add_device(dci); 1773 if (rc) { 1774 dev_err(edac->dev, "edac_device_add_device failed\n"); 1775 rc = -ENOMEM; 1776 goto err_release_group1; 1777 } 1778 1779 altr_create_edacdev_dbgfs(dci, prv); 1780 1781 list_add(&altdev->next, &edac->a10_ecc_devices); 1782 1783 devres_remove_group(edac->dev, altr_edac_a10_device_add); 1784 1785 return 0; 1786 1787 err_release_group1: 1788 edac_device_free_ctl_info(dci); 1789 err_release_group: 1790 devres_release_group(edac->dev, NULL); 1791 edac_printk(KERN_ERR, EDAC_DEVICE, 1792 "%s:Error setting up EDAC device: %d\n", ecc_name, rc); 1793 1794 return rc; 1795 } 1796 1797 static void a10_eccmgr_irq_mask(struct irq_data *d) 1798 { 1799 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d); 1800 1801 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, 1802 BIT(d->hwirq)); 1803 } 1804 1805 static void a10_eccmgr_irq_unmask(struct irq_data *d) 1806 { 1807 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d); 1808 1809 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, 1810 BIT(d->hwirq)); 1811 } 1812 1813 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq, 1814 irq_hw_number_t hwirq) 1815 { 1816 struct altr_arria10_edac *edac = d->host_data; 1817 1818 irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq); 1819 irq_set_chip_data(irq, edac); 1820 irq_set_noprobe(irq); 1821 1822 return 0; 1823 } 1824 1825 static struct irq_domain_ops a10_eccmgr_ic_ops = { 1826 .map = a10_eccmgr_irqdomain_map, 1827 .xlate = irq_domain_xlate_twocell, 1828 }; 1829 1830 static int altr_edac_a10_probe(struct platform_device *pdev) 1831 { 1832 struct altr_arria10_edac *edac; 1833 struct device_node *child; 1834 1835 edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL); 1836 if (!edac) 1837 return -ENOMEM; 1838 1839 edac->dev = &pdev->dev; 1840 platform_set_drvdata(pdev, edac); 1841 INIT_LIST_HEAD(&edac->a10_ecc_devices); 1842 1843 edac->ecc_mgr_map = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, 1844 "altr,sysmgr-syscon"); 1845 if (IS_ERR(edac->ecc_mgr_map)) { 1846 edac_printk(KERN_ERR, EDAC_DEVICE, 1847 "Unable to get syscon altr,sysmgr-syscon\n"); 1848 return PTR_ERR(edac->ecc_mgr_map); 1849 } 1850 1851 edac->irq_chip.name = pdev->dev.of_node->name; 1852 edac->irq_chip.irq_mask = a10_eccmgr_irq_mask; 1853 edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask; 1854 edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64, 1855 &a10_eccmgr_ic_ops, edac); 1856 if (!edac->domain) { 1857 dev_err(&pdev->dev, "Error adding IRQ domain\n"); 1858 return -ENOMEM; 1859 } 1860 1861 edac->sb_irq = platform_get_irq(pdev, 0); 1862 if (edac->sb_irq < 0) { 1863 dev_err(&pdev->dev, "No SBERR IRQ resource\n"); 1864 return edac->sb_irq; 1865 } 1866 1867 irq_set_chained_handler_and_data(edac->sb_irq, 1868 altr_edac_a10_irq_handler, 1869 edac); 1870 1871 edac->db_irq = platform_get_irq(pdev, 1); 1872 if (edac->db_irq < 0) { 1873 dev_err(&pdev->dev, "No DBERR IRQ resource\n"); 1874 return edac->db_irq; 1875 } 1876 irq_set_chained_handler_and_data(edac->db_irq, 1877 altr_edac_a10_irq_handler, 1878 edac); 1879 1880 for_each_child_of_node(pdev->dev.of_node, child) { 1881 if (!of_device_is_available(child)) 1882 continue; 1883 1884 if (of_device_is_compatible(child, "altr,socfpga-a10-l2-ecc") || 1885 of_device_is_compatible(child, "altr,socfpga-a10-ocram-ecc") || 1886 of_device_is_compatible(child, "altr,socfpga-eth-mac-ecc") || 1887 of_device_is_compatible(child, "altr,socfpga-nand-ecc") || 1888 of_device_is_compatible(child, "altr,socfpga-dma-ecc") || 1889 of_device_is_compatible(child, "altr,socfpga-usb-ecc") || 1890 of_device_is_compatible(child, "altr,socfpga-qspi-ecc") || 1891 of_device_is_compatible(child, "altr,socfpga-sdmmc-ecc")) 1892 1893 altr_edac_a10_device_add(edac, child); 1894 1895 else if (of_device_is_compatible(child, "altr,sdram-edac-a10")) 1896 of_platform_populate(pdev->dev.of_node, 1897 altr_sdram_ctrl_of_match, 1898 NULL, &pdev->dev); 1899 } 1900 1901 return 0; 1902 } 1903 1904 static const struct of_device_id altr_edac_a10_of_match[] = { 1905 { .compatible = "altr,socfpga-a10-ecc-manager" }, 1906 {}, 1907 }; 1908 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match); 1909 1910 static struct platform_driver altr_edac_a10_driver = { 1911 .probe = altr_edac_a10_probe, 1912 .driver = { 1913 .name = "socfpga_a10_ecc_manager", 1914 .of_match_table = altr_edac_a10_of_match, 1915 }, 1916 }; 1917 module_platform_driver(altr_edac_a10_driver); 1918 1919 MODULE_LICENSE("GPL v2"); 1920 MODULE_AUTHOR("Thor Thayer"); 1921 MODULE_DESCRIPTION("EDAC Driver for Altera Memories"); 1922