xref: /openbmc/linux/drivers/edac/altera_edac.c (revision 7fde9d6e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 2017-2018, Intel Corporation. All rights reserved
4  *  Copyright Altera Corporation (C) 2014-2016. All rights reserved.
5  *  Copyright 2011-2012 Calxeda, Inc.
6  */
7 
8 #include <asm/cacheflush.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/edac.h>
12 #include <linux/firmware/intel/stratix10-smc.h>
13 #include <linux/genalloc.h>
14 #include <linux/interrupt.h>
15 #include <linux/irqchip/chained_irq.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/altera-sysmgr.h>
18 #include <linux/mfd/syscon.h>
19 #include <linux/notifier.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_platform.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/platform_device.h>
25 #include <linux/regmap.h>
26 #include <linux/types.h>
27 #include <linux/uaccess.h>
28 
29 #include "altera_edac.h"
30 #include "edac_module.h"
31 
32 #define EDAC_MOD_STR		"altera_edac"
33 #define EDAC_DEVICE		"Altera"
34 
35 #ifdef CONFIG_EDAC_ALTERA_SDRAM
36 static const struct altr_sdram_prv_data c5_data = {
37 	.ecc_ctrl_offset    = CV_CTLCFG_OFST,
38 	.ecc_ctl_en_mask    = CV_CTLCFG_ECC_AUTO_EN,
39 	.ecc_stat_offset    = CV_DRAMSTS_OFST,
40 	.ecc_stat_ce_mask   = CV_DRAMSTS_SBEERR,
41 	.ecc_stat_ue_mask   = CV_DRAMSTS_DBEERR,
42 	.ecc_saddr_offset   = CV_ERRADDR_OFST,
43 	.ecc_daddr_offset   = CV_ERRADDR_OFST,
44 	.ecc_cecnt_offset   = CV_SBECOUNT_OFST,
45 	.ecc_uecnt_offset   = CV_DBECOUNT_OFST,
46 	.ecc_irq_en_offset  = CV_DRAMINTR_OFST,
47 	.ecc_irq_en_mask    = CV_DRAMINTR_INTREN,
48 	.ecc_irq_clr_offset = CV_DRAMINTR_OFST,
49 	.ecc_irq_clr_mask   = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
50 	.ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
51 	.ecc_cnt_rst_mask   = CV_DRAMINTR_INTRCLR,
52 	.ce_ue_trgr_offset  = CV_CTLCFG_OFST,
53 	.ce_set_mask        = CV_CTLCFG_GEN_SB_ERR,
54 	.ue_set_mask        = CV_CTLCFG_GEN_DB_ERR,
55 };
56 
57 static const struct altr_sdram_prv_data a10_data = {
58 	.ecc_ctrl_offset    = A10_ECCCTRL1_OFST,
59 	.ecc_ctl_en_mask    = A10_ECCCTRL1_ECC_EN,
60 	.ecc_stat_offset    = A10_INTSTAT_OFST,
61 	.ecc_stat_ce_mask   = A10_INTSTAT_SBEERR,
62 	.ecc_stat_ue_mask   = A10_INTSTAT_DBEERR,
63 	.ecc_saddr_offset   = A10_SERRADDR_OFST,
64 	.ecc_daddr_offset   = A10_DERRADDR_OFST,
65 	.ecc_irq_en_offset  = A10_ERRINTEN_OFST,
66 	.ecc_irq_en_mask    = A10_ECC_IRQ_EN_MASK,
67 	.ecc_irq_clr_offset = A10_INTSTAT_OFST,
68 	.ecc_irq_clr_mask   = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
69 	.ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
70 	.ecc_cnt_rst_mask   = A10_ECC_CNT_RESET_MASK,
71 	.ce_ue_trgr_offset  = A10_DIAGINTTEST_OFST,
72 	.ce_set_mask        = A10_DIAGINT_TSERRA_MASK,
73 	.ue_set_mask        = A10_DIAGINT_TDERRA_MASK,
74 };
75 
76 /*********************** EDAC Memory Controller Functions ****************/
77 
78 /* The SDRAM controller uses the EDAC Memory Controller framework.       */
79 
80 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
81 {
82 	struct mem_ctl_info *mci = dev_id;
83 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
84 	const struct altr_sdram_prv_data *priv = drvdata->data;
85 	u32 status, err_count = 1, err_addr;
86 
87 	regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
88 
89 	if (status & priv->ecc_stat_ue_mask) {
90 		regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
91 			    &err_addr);
92 		if (priv->ecc_uecnt_offset)
93 			regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
94 				    &err_count);
95 		panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
96 		      err_count, err_addr);
97 	}
98 	if (status & priv->ecc_stat_ce_mask) {
99 		regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
100 			    &err_addr);
101 		if (priv->ecc_uecnt_offset)
102 			regmap_read(drvdata->mc_vbase,  priv->ecc_cecnt_offset,
103 				    &err_count);
104 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
105 				     err_addr >> PAGE_SHIFT,
106 				     err_addr & ~PAGE_MASK, 0,
107 				     0, 0, -1, mci->ctl_name, "");
108 		/* Clear IRQ to resume */
109 		regmap_write(drvdata->mc_vbase,	priv->ecc_irq_clr_offset,
110 			     priv->ecc_irq_clr_mask);
111 
112 		return IRQ_HANDLED;
113 	}
114 	return IRQ_NONE;
115 }
116 
117 static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
118 					    const char __user *data,
119 					    size_t count, loff_t *ppos)
120 {
121 	struct mem_ctl_info *mci = file->private_data;
122 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
123 	const struct altr_sdram_prv_data *priv = drvdata->data;
124 	u32 *ptemp;
125 	dma_addr_t dma_handle;
126 	u32 reg, read_reg;
127 
128 	ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
129 	if (!ptemp) {
130 		dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
131 		edac_printk(KERN_ERR, EDAC_MC,
132 			    "Inject: Buffer Allocation error\n");
133 		return -ENOMEM;
134 	}
135 
136 	regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
137 		    &read_reg);
138 	read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
139 
140 	/* Error are injected by writing a word while the SBE or DBE
141 	 * bit in the CTLCFG register is set. Reading the word will
142 	 * trigger the SBE or DBE error and the corresponding IRQ.
143 	 */
144 	if (count == 3) {
145 		edac_printk(KERN_ALERT, EDAC_MC,
146 			    "Inject Double bit error\n");
147 		local_irq_disable();
148 		regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
149 			     (read_reg | priv->ue_set_mask));
150 		local_irq_enable();
151 	} else {
152 		edac_printk(KERN_ALERT, EDAC_MC,
153 			    "Inject Single bit error\n");
154 		local_irq_disable();
155 		regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset,
156 			     (read_reg | priv->ce_set_mask));
157 		local_irq_enable();
158 	}
159 
160 	ptemp[0] = 0x5A5A5A5A;
161 	ptemp[1] = 0xA5A5A5A5;
162 
163 	/* Clear the error injection bits */
164 	regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset, read_reg);
165 	/* Ensure it has been written out */
166 	wmb();
167 
168 	/*
169 	 * To trigger the error, we need to read the data back
170 	 * (the data was written with errors above).
171 	 * The READ_ONCE macros and printk are used to prevent the
172 	 * the compiler optimizing these reads out.
173 	 */
174 	reg = READ_ONCE(ptemp[0]);
175 	read_reg = READ_ONCE(ptemp[1]);
176 	/* Force Read */
177 	rmb();
178 
179 	edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
180 		    reg, read_reg);
181 
182 	dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
183 
184 	return count;
185 }
186 
187 static const struct file_operations altr_sdr_mc_debug_inject_fops = {
188 	.open = simple_open,
189 	.write = altr_sdr_mc_err_inject_write,
190 	.llseek = generic_file_llseek,
191 };
192 
193 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
194 {
195 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
196 		return;
197 
198 	if (!mci->debugfs)
199 		return;
200 
201 	edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
202 				 &altr_sdr_mc_debug_inject_fops);
203 }
204 
205 /* Get total memory size from Open Firmware DTB */
206 static unsigned long get_total_mem(void)
207 {
208 	struct device_node *np = NULL;
209 	struct resource res;
210 	int ret;
211 	unsigned long total_mem = 0;
212 
213 	for_each_node_by_type(np, "memory") {
214 		ret = of_address_to_resource(np, 0, &res);
215 		if (ret)
216 			continue;
217 
218 		total_mem += resource_size(&res);
219 	}
220 	edac_dbg(0, "total_mem 0x%lx\n", total_mem);
221 	return total_mem;
222 }
223 
224 static const struct of_device_id altr_sdram_ctrl_of_match[] = {
225 	{ .compatible = "altr,sdram-edac", .data = &c5_data},
226 	{ .compatible = "altr,sdram-edac-a10", .data = &a10_data},
227 	{},
228 };
229 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
230 
231 static int a10_init(struct regmap *mc_vbase)
232 {
233 	if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
234 			       A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
235 		edac_printk(KERN_ERR, EDAC_MC,
236 			    "Error setting SB IRQ mode\n");
237 		return -ENODEV;
238 	}
239 
240 	if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
241 		edac_printk(KERN_ERR, EDAC_MC,
242 			    "Error setting trigger count\n");
243 		return -ENODEV;
244 	}
245 
246 	return 0;
247 }
248 
249 static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
250 {
251 	void __iomem  *sm_base;
252 	int  ret = 0;
253 
254 	if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
255 				dev_name(&pdev->dev))) {
256 		edac_printk(KERN_ERR, EDAC_MC,
257 			    "Unable to request mem region\n");
258 		return -EBUSY;
259 	}
260 
261 	sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
262 	if (!sm_base) {
263 		edac_printk(KERN_ERR, EDAC_MC,
264 			    "Unable to ioremap device\n");
265 
266 		ret = -ENOMEM;
267 		goto release;
268 	}
269 
270 	iowrite32(mask, sm_base);
271 
272 	iounmap(sm_base);
273 
274 release:
275 	release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
276 
277 	return ret;
278 }
279 
280 static int altr_sdram_probe(struct platform_device *pdev)
281 {
282 	const struct of_device_id *id;
283 	struct edac_mc_layer layers[2];
284 	struct mem_ctl_info *mci;
285 	struct altr_sdram_mc_data *drvdata;
286 	const struct altr_sdram_prv_data *priv;
287 	struct regmap *mc_vbase;
288 	struct dimm_info *dimm;
289 	u32 read_reg;
290 	int irq, irq2, res = 0;
291 	unsigned long mem_size, irqflags = 0;
292 
293 	id = of_match_device(altr_sdram_ctrl_of_match, &pdev->dev);
294 	if (!id)
295 		return -ENODEV;
296 
297 	/* Grab the register range from the sdr controller in device tree */
298 	mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
299 						   "altr,sdr-syscon");
300 	if (IS_ERR(mc_vbase)) {
301 		edac_printk(KERN_ERR, EDAC_MC,
302 			    "regmap for altr,sdr-syscon lookup failed.\n");
303 		return -ENODEV;
304 	}
305 
306 	/* Check specific dependencies for the module */
307 	priv = of_match_node(altr_sdram_ctrl_of_match,
308 			     pdev->dev.of_node)->data;
309 
310 	/* Validate the SDRAM controller has ECC enabled */
311 	if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
312 	    ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
313 		edac_printk(KERN_ERR, EDAC_MC,
314 			    "No ECC/ECC disabled [0x%08X]\n", read_reg);
315 		return -ENODEV;
316 	}
317 
318 	/* Grab memory size from device tree. */
319 	mem_size = get_total_mem();
320 	if (!mem_size) {
321 		edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
322 		return -ENODEV;
323 	}
324 
325 	/* Ensure the SDRAM Interrupt is disabled */
326 	if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
327 			       priv->ecc_irq_en_mask, 0)) {
328 		edac_printk(KERN_ERR, EDAC_MC,
329 			    "Error disabling SDRAM ECC IRQ\n");
330 		return -ENODEV;
331 	}
332 
333 	/* Toggle to clear the SDRAM Error count */
334 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
335 			       priv->ecc_cnt_rst_mask,
336 			       priv->ecc_cnt_rst_mask)) {
337 		edac_printk(KERN_ERR, EDAC_MC,
338 			    "Error clearing SDRAM ECC count\n");
339 		return -ENODEV;
340 	}
341 
342 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
343 			       priv->ecc_cnt_rst_mask, 0)) {
344 		edac_printk(KERN_ERR, EDAC_MC,
345 			    "Error clearing SDRAM ECC count\n");
346 		return -ENODEV;
347 	}
348 
349 	irq = platform_get_irq(pdev, 0);
350 	if (irq < 0) {
351 		edac_printk(KERN_ERR, EDAC_MC,
352 			    "No irq %d in DT\n", irq);
353 		return -ENODEV;
354 	}
355 
356 	/* Arria10 has a 2nd IRQ */
357 	irq2 = platform_get_irq(pdev, 1);
358 
359 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
360 	layers[0].size = 1;
361 	layers[0].is_virt_csrow = true;
362 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
363 	layers[1].size = 1;
364 	layers[1].is_virt_csrow = false;
365 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
366 			    sizeof(struct altr_sdram_mc_data));
367 	if (!mci)
368 		return -ENOMEM;
369 
370 	mci->pdev = &pdev->dev;
371 	drvdata = mci->pvt_info;
372 	drvdata->mc_vbase = mc_vbase;
373 	drvdata->data = priv;
374 	platform_set_drvdata(pdev, mci);
375 
376 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
377 		edac_printk(KERN_ERR, EDAC_MC,
378 			    "Unable to get managed device resource\n");
379 		res = -ENOMEM;
380 		goto free;
381 	}
382 
383 	mci->mtype_cap = MEM_FLAG_DDR3;
384 	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
385 	mci->edac_cap = EDAC_FLAG_SECDED;
386 	mci->mod_name = EDAC_MOD_STR;
387 	mci->ctl_name = dev_name(&pdev->dev);
388 	mci->scrub_mode = SCRUB_SW_SRC;
389 	mci->dev_name = dev_name(&pdev->dev);
390 
391 	dimm = *mci->dimms;
392 	dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
393 	dimm->grain = 8;
394 	dimm->dtype = DEV_X8;
395 	dimm->mtype = MEM_DDR3;
396 	dimm->edac_mode = EDAC_SECDED;
397 
398 	res = edac_mc_add_mc(mci);
399 	if (res < 0)
400 		goto err;
401 
402 	/* Only the Arria10 has separate IRQs */
403 	if (of_machine_is_compatible("altr,socfpga-arria10")) {
404 		/* Arria10 specific initialization */
405 		res = a10_init(mc_vbase);
406 		if (res < 0)
407 			goto err2;
408 
409 		res = devm_request_irq(&pdev->dev, irq2,
410 				       altr_sdram_mc_err_handler,
411 				       IRQF_SHARED, dev_name(&pdev->dev), mci);
412 		if (res < 0) {
413 			edac_mc_printk(mci, KERN_ERR,
414 				       "Unable to request irq %d\n", irq2);
415 			res = -ENODEV;
416 			goto err2;
417 		}
418 
419 		res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
420 		if (res < 0)
421 			goto err2;
422 
423 		irqflags = IRQF_SHARED;
424 	}
425 
426 	res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
427 			       irqflags, dev_name(&pdev->dev), mci);
428 	if (res < 0) {
429 		edac_mc_printk(mci, KERN_ERR,
430 			       "Unable to request irq %d\n", irq);
431 		res = -ENODEV;
432 		goto err2;
433 	}
434 
435 	/* Infrastructure ready - enable the IRQ */
436 	if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
437 			       priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
438 		edac_mc_printk(mci, KERN_ERR,
439 			       "Error enabling SDRAM ECC IRQ\n");
440 		res = -ENODEV;
441 		goto err2;
442 	}
443 
444 	altr_sdr_mc_create_debugfs_nodes(mci);
445 
446 	devres_close_group(&pdev->dev, NULL);
447 
448 	return 0;
449 
450 err2:
451 	edac_mc_del_mc(&pdev->dev);
452 err:
453 	devres_release_group(&pdev->dev, NULL);
454 free:
455 	edac_mc_free(mci);
456 	edac_printk(KERN_ERR, EDAC_MC,
457 		    "EDAC Probe Failed; Error %d\n", res);
458 
459 	return res;
460 }
461 
462 static int altr_sdram_remove(struct platform_device *pdev)
463 {
464 	struct mem_ctl_info *mci = platform_get_drvdata(pdev);
465 
466 	edac_mc_del_mc(&pdev->dev);
467 	edac_mc_free(mci);
468 	platform_set_drvdata(pdev, NULL);
469 
470 	return 0;
471 }
472 
473 /*
474  * If you want to suspend, need to disable EDAC by removing it
475  * from the device tree or defconfig.
476  */
477 #ifdef CONFIG_PM
478 static int altr_sdram_prepare(struct device *dev)
479 {
480 	pr_err("Suspend not allowed when EDAC is enabled.\n");
481 
482 	return -EPERM;
483 }
484 
485 static const struct dev_pm_ops altr_sdram_pm_ops = {
486 	.prepare = altr_sdram_prepare,
487 };
488 #endif
489 
490 static struct platform_driver altr_sdram_edac_driver = {
491 	.probe = altr_sdram_probe,
492 	.remove = altr_sdram_remove,
493 	.driver = {
494 		.name = "altr_sdram_edac",
495 #ifdef CONFIG_PM
496 		.pm = &altr_sdram_pm_ops,
497 #endif
498 		.of_match_table = altr_sdram_ctrl_of_match,
499 	},
500 };
501 
502 module_platform_driver(altr_sdram_edac_driver);
503 
504 #endif	/* CONFIG_EDAC_ALTERA_SDRAM */
505 
506 /************************* EDAC Parent Probe *************************/
507 
508 static const struct of_device_id altr_edac_device_of_match[];
509 
510 static const struct of_device_id altr_edac_of_match[] = {
511 	{ .compatible = "altr,socfpga-ecc-manager" },
512 	{},
513 };
514 MODULE_DEVICE_TABLE(of, altr_edac_of_match);
515 
516 static int altr_edac_probe(struct platform_device *pdev)
517 {
518 	of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
519 			     NULL, &pdev->dev);
520 	return 0;
521 }
522 
523 static struct platform_driver altr_edac_driver = {
524 	.probe =  altr_edac_probe,
525 	.driver = {
526 		.name = "socfpga_ecc_manager",
527 		.of_match_table = altr_edac_of_match,
528 	},
529 };
530 module_platform_driver(altr_edac_driver);
531 
532 /************************* EDAC Device Functions *************************/
533 
534 /*
535  * EDAC Device Functions (shared between various IPs).
536  * The discrete memories use the EDAC Device framework. The probe
537  * and error handling functions are very similar between memories
538  * so they are shared. The memory allocation and freeing for EDAC
539  * trigger testing are different for each memory.
540  */
541 
542 static const struct edac_device_prv_data ocramecc_data;
543 static const struct edac_device_prv_data l2ecc_data;
544 static const struct edac_device_prv_data a10_ocramecc_data;
545 static const struct edac_device_prv_data a10_l2ecc_data;
546 
547 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
548 {
549 	irqreturn_t ret_value = IRQ_NONE;
550 	struct edac_device_ctl_info *dci = dev_id;
551 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
552 	const struct edac_device_prv_data *priv = drvdata->data;
553 
554 	if (irq == drvdata->sb_irq) {
555 		if (priv->ce_clear_mask)
556 			writel(priv->ce_clear_mask, drvdata->base);
557 		edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
558 		ret_value = IRQ_HANDLED;
559 	} else if (irq == drvdata->db_irq) {
560 		if (priv->ue_clear_mask)
561 			writel(priv->ue_clear_mask, drvdata->base);
562 		edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
563 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
564 		ret_value = IRQ_HANDLED;
565 	} else {
566 		WARN_ON(1);
567 	}
568 
569 	return ret_value;
570 }
571 
572 static ssize_t altr_edac_device_trig(struct file *file,
573 				     const char __user *user_buf,
574 				     size_t count, loff_t *ppos)
575 
576 {
577 	u32 *ptemp, i, error_mask;
578 	int result = 0;
579 	u8 trig_type;
580 	unsigned long flags;
581 	struct edac_device_ctl_info *edac_dci = file->private_data;
582 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
583 	const struct edac_device_prv_data *priv = drvdata->data;
584 	void *generic_ptr = edac_dci->dev;
585 
586 	if (!user_buf || get_user(trig_type, user_buf))
587 		return -EFAULT;
588 
589 	if (!priv->alloc_mem)
590 		return -ENOMEM;
591 
592 	/*
593 	 * Note that generic_ptr is initialized to the device * but in
594 	 * some alloc_functions, this is overridden and returns data.
595 	 */
596 	ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
597 	if (!ptemp) {
598 		edac_printk(KERN_ERR, EDAC_DEVICE,
599 			    "Inject: Buffer Allocation error\n");
600 		return -ENOMEM;
601 	}
602 
603 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
604 		error_mask = priv->ue_set_mask;
605 	else
606 		error_mask = priv->ce_set_mask;
607 
608 	edac_printk(KERN_ALERT, EDAC_DEVICE,
609 		    "Trigger Error Mask (0x%X)\n", error_mask);
610 
611 	local_irq_save(flags);
612 	/* write ECC corrupted data out. */
613 	for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
614 		/* Read data so we're in the correct state */
615 		rmb();
616 		if (READ_ONCE(ptemp[i]))
617 			result = -1;
618 		/* Toggle Error bit (it is latched), leave ECC enabled */
619 		writel(error_mask, (drvdata->base + priv->set_err_ofst));
620 		writel(priv->ecc_enable_mask, (drvdata->base +
621 					       priv->set_err_ofst));
622 		ptemp[i] = i;
623 	}
624 	/* Ensure it has been written out */
625 	wmb();
626 	local_irq_restore(flags);
627 
628 	if (result)
629 		edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
630 
631 	/* Read out written data. ECC error caused here */
632 	for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
633 		if (READ_ONCE(ptemp[i]) != i)
634 			edac_printk(KERN_ERR, EDAC_DEVICE,
635 				    "Read doesn't match written data\n");
636 
637 	if (priv->free_mem)
638 		priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
639 
640 	return count;
641 }
642 
643 static const struct file_operations altr_edac_device_inject_fops = {
644 	.open = simple_open,
645 	.write = altr_edac_device_trig,
646 	.llseek = generic_file_llseek,
647 };
648 
649 static ssize_t altr_edac_a10_device_trig(struct file *file,
650 					 const char __user *user_buf,
651 					 size_t count, loff_t *ppos);
652 
653 static const struct file_operations altr_edac_a10_device_inject_fops = {
654 	.open = simple_open,
655 	.write = altr_edac_a10_device_trig,
656 	.llseek = generic_file_llseek,
657 };
658 
659 static ssize_t altr_edac_a10_device_trig2(struct file *file,
660 					  const char __user *user_buf,
661 					  size_t count, loff_t *ppos);
662 
663 static const struct file_operations altr_edac_a10_device_inject2_fops = {
664 	.open = simple_open,
665 	.write = altr_edac_a10_device_trig2,
666 	.llseek = generic_file_llseek,
667 };
668 
669 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
670 				      const struct edac_device_prv_data *priv)
671 {
672 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
673 
674 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
675 		return;
676 
677 	drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
678 	if (!drvdata->debugfs_dir)
679 		return;
680 
681 	if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
682 				      drvdata->debugfs_dir, edac_dci,
683 				      priv->inject_fops))
684 		debugfs_remove_recursive(drvdata->debugfs_dir);
685 }
686 
687 static const struct of_device_id altr_edac_device_of_match[] = {
688 #ifdef CONFIG_EDAC_ALTERA_L2C
689 	{ .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
690 #endif
691 #ifdef CONFIG_EDAC_ALTERA_OCRAM
692 	{ .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
693 #endif
694 	{},
695 };
696 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
697 
698 /*
699  * altr_edac_device_probe()
700  *	This is a generic EDAC device driver that will support
701  *	various Altera memory devices such as the L2 cache ECC and
702  *	OCRAM ECC as well as the memories for other peripherals.
703  *	Module specific initialization is done by passing the
704  *	function index in the device tree.
705  */
706 static int altr_edac_device_probe(struct platform_device *pdev)
707 {
708 	struct edac_device_ctl_info *dci;
709 	struct altr_edac_device_dev *drvdata;
710 	struct resource *r;
711 	int res = 0;
712 	struct device_node *np = pdev->dev.of_node;
713 	char *ecc_name = (char *)np->name;
714 	static int dev_instance;
715 
716 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
717 		edac_printk(KERN_ERR, EDAC_DEVICE,
718 			    "Unable to open devm\n");
719 		return -ENOMEM;
720 	}
721 
722 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
723 	if (!r) {
724 		edac_printk(KERN_ERR, EDAC_DEVICE,
725 			    "Unable to get mem resource\n");
726 		res = -ENODEV;
727 		goto fail;
728 	}
729 
730 	if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
731 				     dev_name(&pdev->dev))) {
732 		edac_printk(KERN_ERR, EDAC_DEVICE,
733 			    "%s:Error requesting mem region\n", ecc_name);
734 		res = -EBUSY;
735 		goto fail;
736 	}
737 
738 	dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
739 					 1, ecc_name, 1, 0, NULL, 0,
740 					 dev_instance++);
741 
742 	if (!dci) {
743 		edac_printk(KERN_ERR, EDAC_DEVICE,
744 			    "%s: Unable to allocate EDAC device\n", ecc_name);
745 		res = -ENOMEM;
746 		goto fail;
747 	}
748 
749 	drvdata = dci->pvt_info;
750 	dci->dev = &pdev->dev;
751 	platform_set_drvdata(pdev, dci);
752 	drvdata->edac_dev_name = ecc_name;
753 
754 	drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
755 	if (!drvdata->base) {
756 		res = -ENOMEM;
757 		goto fail1;
758 	}
759 
760 	/* Get driver specific data for this EDAC device */
761 	drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
762 
763 	/* Check specific dependencies for the module */
764 	if (drvdata->data->setup) {
765 		res = drvdata->data->setup(drvdata);
766 		if (res)
767 			goto fail1;
768 	}
769 
770 	drvdata->sb_irq = platform_get_irq(pdev, 0);
771 	res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
772 			       altr_edac_device_handler,
773 			       0, dev_name(&pdev->dev), dci);
774 	if (res)
775 		goto fail1;
776 
777 	drvdata->db_irq = platform_get_irq(pdev, 1);
778 	res = devm_request_irq(&pdev->dev, drvdata->db_irq,
779 			       altr_edac_device_handler,
780 			       0, dev_name(&pdev->dev), dci);
781 	if (res)
782 		goto fail1;
783 
784 	dci->mod_name = "Altera ECC Manager";
785 	dci->dev_name = drvdata->edac_dev_name;
786 
787 	res = edac_device_add_device(dci);
788 	if (res)
789 		goto fail1;
790 
791 	altr_create_edacdev_dbgfs(dci, drvdata->data);
792 
793 	devres_close_group(&pdev->dev, NULL);
794 
795 	return 0;
796 
797 fail1:
798 	edac_device_free_ctl_info(dci);
799 fail:
800 	devres_release_group(&pdev->dev, NULL);
801 	edac_printk(KERN_ERR, EDAC_DEVICE,
802 		    "%s:Error setting up EDAC device: %d\n", ecc_name, res);
803 
804 	return res;
805 }
806 
807 static int altr_edac_device_remove(struct platform_device *pdev)
808 {
809 	struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
810 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
811 
812 	debugfs_remove_recursive(drvdata->debugfs_dir);
813 	edac_device_del_device(&pdev->dev);
814 	edac_device_free_ctl_info(dci);
815 
816 	return 0;
817 }
818 
819 static struct platform_driver altr_edac_device_driver = {
820 	.probe =  altr_edac_device_probe,
821 	.remove = altr_edac_device_remove,
822 	.driver = {
823 		.name = "altr_edac_device",
824 		.of_match_table = altr_edac_device_of_match,
825 	},
826 };
827 module_platform_driver(altr_edac_device_driver);
828 
829 /******************* Arria10 Device ECC Shared Functions *****************/
830 
831 /*
832  *  Test for memory's ECC dependencies upon entry because platform specific
833  *  startup should have initialized the memory and enabled the ECC.
834  *  Can't turn on ECC here because accessing un-initialized memory will
835  *  cause CE/UE errors possibly causing an ABORT.
836  */
837 static int __maybe_unused
838 altr_check_ecc_deps(struct altr_edac_device_dev *device)
839 {
840 	void __iomem  *base = device->base;
841 	const struct edac_device_prv_data *prv = device->data;
842 
843 	if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
844 		return 0;
845 
846 	edac_printk(KERN_ERR, EDAC_DEVICE,
847 		    "%s: No ECC present or ECC disabled.\n",
848 		    device->edac_dev_name);
849 	return -ENODEV;
850 }
851 
852 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
853 {
854 	struct altr_edac_device_dev *dci = dev_id;
855 	void __iomem  *base = dci->base;
856 
857 	if (irq == dci->sb_irq) {
858 		writel(ALTR_A10_ECC_SERRPENA,
859 		       base + ALTR_A10_ECC_INTSTAT_OFST);
860 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
861 
862 		return IRQ_HANDLED;
863 	} else if (irq == dci->db_irq) {
864 		writel(ALTR_A10_ECC_DERRPENA,
865 		       base + ALTR_A10_ECC_INTSTAT_OFST);
866 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
867 		if (dci->data->panic)
868 			panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
869 
870 		return IRQ_HANDLED;
871 	}
872 
873 	WARN_ON(1);
874 
875 	return IRQ_NONE;
876 }
877 
878 /******************* Arria10 Memory Buffer Functions *********************/
879 
880 static inline int a10_get_irq_mask(struct device_node *np)
881 {
882 	int irq;
883 	const u32 *handle = of_get_property(np, "interrupts", NULL);
884 
885 	if (!handle)
886 		return -ENODEV;
887 	irq = be32_to_cpup(handle);
888 	return irq;
889 }
890 
891 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
892 {
893 	u32 value = readl(ioaddr);
894 
895 	value |= bit_mask;
896 	writel(value, ioaddr);
897 }
898 
899 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
900 {
901 	u32 value = readl(ioaddr);
902 
903 	value &= ~bit_mask;
904 	writel(value, ioaddr);
905 }
906 
907 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
908 {
909 	u32 value = readl(ioaddr);
910 
911 	return (value & bit_mask) ? 1 : 0;
912 }
913 
914 /*
915  * This function uses the memory initialization block in the Arria10 ECC
916  * controller to initialize/clear the entire memory data and ECC data.
917  */
918 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
919 {
920 	int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
921 	u32 init_mask, stat_mask, clear_mask;
922 	int ret = 0;
923 
924 	if (port) {
925 		init_mask = ALTR_A10_ECC_INITB;
926 		stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
927 		clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
928 	} else {
929 		init_mask = ALTR_A10_ECC_INITA;
930 		stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
931 		clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
932 	}
933 
934 	ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
935 	while (limit--) {
936 		if (ecc_test_bits(stat_mask,
937 				  (ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
938 			break;
939 		udelay(1);
940 	}
941 	if (limit < 0)
942 		ret = -EBUSY;
943 
944 	/* Clear any pending ECC interrupts */
945 	writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
946 
947 	return ret;
948 }
949 
950 static __init int __maybe_unused
951 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
952 			u32 ecc_ctrl_en_mask, bool dual_port)
953 {
954 	int ret = 0;
955 	void __iomem *ecc_block_base;
956 	struct regmap *ecc_mgr_map;
957 	char *ecc_name;
958 	struct device_node *np_eccmgr;
959 
960 	ecc_name = (char *)np->name;
961 
962 	/* Get the ECC Manager - parent of the device EDACs */
963 	np_eccmgr = of_get_parent(np);
964 
965 	ecc_mgr_map =
966 		altr_sysmgr_regmap_lookup_by_phandle(np_eccmgr,
967 						     "altr,sysmgr-syscon");
968 
969 	of_node_put(np_eccmgr);
970 	if (IS_ERR(ecc_mgr_map)) {
971 		edac_printk(KERN_ERR, EDAC_DEVICE,
972 			    "Unable to get syscon altr,sysmgr-syscon\n");
973 		return -ENODEV;
974 	}
975 
976 	/* Map the ECC Block */
977 	ecc_block_base = of_iomap(np, 0);
978 	if (!ecc_block_base) {
979 		edac_printk(KERN_ERR, EDAC_DEVICE,
980 			    "Unable to map %s ECC block\n", ecc_name);
981 		return -ENODEV;
982 	}
983 
984 	/* Disable ECC */
985 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
986 	writel(ALTR_A10_ECC_SERRINTEN,
987 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
988 	ecc_clear_bits(ecc_ctrl_en_mask,
989 		       (ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
990 	/* Ensure all writes complete */
991 	wmb();
992 	/* Use HW initialization block to initialize memory for ECC */
993 	ret = altr_init_memory_port(ecc_block_base, 0);
994 	if (ret) {
995 		edac_printk(KERN_ERR, EDAC_DEVICE,
996 			    "ECC: cannot init %s PORTA memory\n", ecc_name);
997 		goto out;
998 	}
999 
1000 	if (dual_port) {
1001 		ret = altr_init_memory_port(ecc_block_base, 1);
1002 		if (ret) {
1003 			edac_printk(KERN_ERR, EDAC_DEVICE,
1004 				    "ECC: cannot init %s PORTB memory\n",
1005 				    ecc_name);
1006 			goto out;
1007 		}
1008 	}
1009 
1010 	/* Interrupt mode set to every SBERR */
1011 	regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST,
1012 		     ALTR_A10_ECC_INTMODE);
1013 	/* Enable ECC */
1014 	ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
1015 					ALTR_A10_ECC_CTRL_OFST));
1016 	writel(ALTR_A10_ECC_SERRINTEN,
1017 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
1018 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
1019 	/* Ensure all writes complete */
1020 	wmb();
1021 out:
1022 	iounmap(ecc_block_base);
1023 	return ret;
1024 }
1025 
1026 static int validate_parent_available(struct device_node *np);
1027 static const struct of_device_id altr_edac_a10_device_of_match[];
1028 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
1029 {
1030 	int irq;
1031 	struct device_node *child, *np;
1032 
1033 	np = of_find_compatible_node(NULL, NULL,
1034 				     "altr,socfpga-a10-ecc-manager");
1035 	if (!np) {
1036 		edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
1037 		return -ENODEV;
1038 	}
1039 
1040 	for_each_child_of_node(np, child) {
1041 		const struct of_device_id *pdev_id;
1042 		const struct edac_device_prv_data *prv;
1043 
1044 		if (!of_device_is_available(child))
1045 			continue;
1046 		if (!of_device_is_compatible(child, compat))
1047 			continue;
1048 
1049 		if (validate_parent_available(child))
1050 			continue;
1051 
1052 		irq = a10_get_irq_mask(child);
1053 		if (irq < 0)
1054 			continue;
1055 
1056 		/* Get matching node and check for valid result */
1057 		pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
1058 		if (IS_ERR_OR_NULL(pdev_id))
1059 			continue;
1060 
1061 		/* Validate private data pointer before dereferencing */
1062 		prv = pdev_id->data;
1063 		if (!prv)
1064 			continue;
1065 
1066 		altr_init_a10_ecc_block(child, BIT(irq),
1067 					prv->ecc_enable_mask, 0);
1068 	}
1069 
1070 	of_node_put(np);
1071 	return 0;
1072 }
1073 
1074 /*********************** SDRAM EDAC Device Functions *********************/
1075 
1076 #ifdef CONFIG_EDAC_ALTERA_SDRAM
1077 
1078 static const struct edac_device_prv_data s10_sdramecc_data = {
1079 	.setup = altr_check_ecc_deps,
1080 	.ce_clear_mask = ALTR_S10_ECC_SERRPENA,
1081 	.ue_clear_mask = ALTR_S10_ECC_DERRPENA,
1082 	.ecc_enable_mask = ALTR_S10_ECC_EN,
1083 	.ecc_en_ofst = ALTR_S10_ECC_CTRL_SDRAM_OFST,
1084 	.ce_set_mask = ALTR_S10_ECC_TSERRA,
1085 	.ue_set_mask = ALTR_S10_ECC_TDERRA,
1086 	.set_err_ofst = ALTR_S10_ECC_INTTEST_OFST,
1087 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1088 	.inject_fops = &altr_edac_a10_device_inject_fops,
1089 };
1090 #endif /* CONFIG_EDAC_ALTERA_SDRAM */
1091 
1092 /*********************** OCRAM EDAC Device Functions *********************/
1093 
1094 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1095 
1096 static void *ocram_alloc_mem(size_t size, void **other)
1097 {
1098 	struct device_node *np;
1099 	struct gen_pool *gp;
1100 	void *sram_addr;
1101 
1102 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
1103 	if (!np)
1104 		return NULL;
1105 
1106 	gp = of_gen_pool_get(np, "iram", 0);
1107 	of_node_put(np);
1108 	if (!gp)
1109 		return NULL;
1110 
1111 	sram_addr = (void *)gen_pool_alloc(gp, size);
1112 	if (!sram_addr)
1113 		return NULL;
1114 
1115 	memset(sram_addr, 0, size);
1116 	/* Ensure data is written out */
1117 	wmb();
1118 
1119 	/* Remember this handle for freeing  later */
1120 	*other = gp;
1121 
1122 	return sram_addr;
1123 }
1124 
1125 static void ocram_free_mem(void *p, size_t size, void *other)
1126 {
1127 	gen_pool_free((struct gen_pool *)other, (unsigned long)p, size);
1128 }
1129 
1130 static const struct edac_device_prv_data ocramecc_data = {
1131 	.setup = altr_check_ecc_deps,
1132 	.ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
1133 	.ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
1134 	.alloc_mem = ocram_alloc_mem,
1135 	.free_mem = ocram_free_mem,
1136 	.ecc_enable_mask = ALTR_OCR_ECC_EN,
1137 	.ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
1138 	.ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
1139 	.ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
1140 	.set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
1141 	.trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
1142 	.inject_fops = &altr_edac_device_inject_fops,
1143 };
1144 
1145 static int __maybe_unused
1146 altr_check_ocram_deps_init(struct altr_edac_device_dev *device)
1147 {
1148 	void __iomem  *base = device->base;
1149 	int ret;
1150 
1151 	ret = altr_check_ecc_deps(device);
1152 	if (ret)
1153 		return ret;
1154 
1155 	/* Verify OCRAM has been initialized */
1156 	if (!ecc_test_bits(ALTR_A10_ECC_INITCOMPLETEA,
1157 			   (base + ALTR_A10_ECC_INITSTAT_OFST)))
1158 		return -ENODEV;
1159 
1160 	/* Enable IRQ on Single Bit Error */
1161 	writel(ALTR_A10_ECC_SERRINTEN, (base + ALTR_A10_ECC_ERRINTENS_OFST));
1162 	/* Ensure all writes complete */
1163 	wmb();
1164 
1165 	return 0;
1166 }
1167 
1168 static const struct edac_device_prv_data a10_ocramecc_data = {
1169 	.setup = altr_check_ocram_deps_init,
1170 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1171 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1172 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
1173 	.ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
1174 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1175 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1176 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1177 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1178 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1179 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1180 	/*
1181 	 * OCRAM panic on uncorrectable error because sleep/resume
1182 	 * functions and FPGA contents are stored in OCRAM. Prefer
1183 	 * a kernel panic over executing/loading corrupted data.
1184 	 */
1185 	.panic = true,
1186 };
1187 
1188 #endif	/* CONFIG_EDAC_ALTERA_OCRAM */
1189 
1190 /********************* L2 Cache EDAC Device Functions ********************/
1191 
1192 #ifdef CONFIG_EDAC_ALTERA_L2C
1193 
1194 static void *l2_alloc_mem(size_t size, void **other)
1195 {
1196 	struct device *dev = *other;
1197 	void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
1198 
1199 	if (!ptemp)
1200 		return NULL;
1201 
1202 	/* Make sure everything is written out */
1203 	wmb();
1204 
1205 	/*
1206 	 * Clean all cache levels up to LoC (includes L2)
1207 	 * This ensures the corrupted data is written into
1208 	 * L2 cache for readback test (which causes ECC error).
1209 	 */
1210 	flush_cache_all();
1211 
1212 	return ptemp;
1213 }
1214 
1215 static void l2_free_mem(void *p, size_t size, void *other)
1216 {
1217 	struct device *dev = other;
1218 
1219 	if (dev && p)
1220 		devm_kfree(dev, p);
1221 }
1222 
1223 /*
1224  * altr_l2_check_deps()
1225  *	Test for L2 cache ECC dependencies upon entry because
1226  *	platform specific startup should have initialized the L2
1227  *	memory and enabled the ECC.
1228  *	Bail if ECC is not enabled.
1229  *	Note that L2 Cache Enable is forced at build time.
1230  */
1231 static int altr_l2_check_deps(struct altr_edac_device_dev *device)
1232 {
1233 	void __iomem *base = device->base;
1234 	const struct edac_device_prv_data *prv = device->data;
1235 
1236 	if ((readl(base) & prv->ecc_enable_mask) ==
1237 	     prv->ecc_enable_mask)
1238 		return 0;
1239 
1240 	edac_printk(KERN_ERR, EDAC_DEVICE,
1241 		    "L2: No ECC present, or ECC disabled\n");
1242 	return -ENODEV;
1243 }
1244 
1245 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
1246 {
1247 	struct altr_edac_device_dev *dci = dev_id;
1248 
1249 	if (irq == dci->sb_irq) {
1250 		regmap_write(dci->edac->ecc_mgr_map,
1251 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1252 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
1253 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1254 
1255 		return IRQ_HANDLED;
1256 	} else if (irq == dci->db_irq) {
1257 		regmap_write(dci->edac->ecc_mgr_map,
1258 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1259 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
1260 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1261 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1262 
1263 		return IRQ_HANDLED;
1264 	}
1265 
1266 	WARN_ON(1);
1267 
1268 	return IRQ_NONE;
1269 }
1270 
1271 static const struct edac_device_prv_data l2ecc_data = {
1272 	.setup = altr_l2_check_deps,
1273 	.ce_clear_mask = 0,
1274 	.ue_clear_mask = 0,
1275 	.alloc_mem = l2_alloc_mem,
1276 	.free_mem = l2_free_mem,
1277 	.ecc_enable_mask = ALTR_L2_ECC_EN,
1278 	.ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
1279 	.ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
1280 	.set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
1281 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1282 	.inject_fops = &altr_edac_device_inject_fops,
1283 };
1284 
1285 static const struct edac_device_prv_data a10_l2ecc_data = {
1286 	.setup = altr_l2_check_deps,
1287 	.ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
1288 	.ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
1289 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
1290 	.alloc_mem = l2_alloc_mem,
1291 	.free_mem = l2_free_mem,
1292 	.ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
1293 	.ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
1294 	.ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
1295 	.set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
1296 	.ecc_irq_handler = altr_edac_a10_l2_irq,
1297 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1298 	.inject_fops = &altr_edac_device_inject_fops,
1299 };
1300 
1301 #endif	/* CONFIG_EDAC_ALTERA_L2C */
1302 
1303 /********************* Ethernet Device Functions ********************/
1304 
1305 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1306 
1307 static int __init socfpga_init_ethernet_ecc(struct altr_edac_device_dev *dev)
1308 {
1309 	int ret;
1310 
1311 	ret = altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
1312 	if (ret)
1313 		return ret;
1314 
1315 	return altr_check_ecc_deps(dev);
1316 }
1317 
1318 static const struct edac_device_prv_data a10_enetecc_data = {
1319 	.setup = socfpga_init_ethernet_ecc,
1320 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1321 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1322 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1323 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1324 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1325 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1326 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1327 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1328 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1329 };
1330 
1331 #endif	/* CONFIG_EDAC_ALTERA_ETHERNET */
1332 
1333 /********************** NAND Device Functions **********************/
1334 
1335 #ifdef CONFIG_EDAC_ALTERA_NAND
1336 
1337 static int __init socfpga_init_nand_ecc(struct altr_edac_device_dev *device)
1338 {
1339 	int ret;
1340 
1341 	ret = altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
1342 	if (ret)
1343 		return ret;
1344 
1345 	return altr_check_ecc_deps(device);
1346 }
1347 
1348 static const struct edac_device_prv_data a10_nandecc_data = {
1349 	.setup = socfpga_init_nand_ecc,
1350 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1351 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1352 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1353 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1354 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1355 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1356 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1357 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1358 	.inject_fops = &altr_edac_a10_device_inject_fops,
1359 };
1360 
1361 #endif	/* CONFIG_EDAC_ALTERA_NAND */
1362 
1363 /********************** DMA Device Functions **********************/
1364 
1365 #ifdef CONFIG_EDAC_ALTERA_DMA
1366 
1367 static int __init socfpga_init_dma_ecc(struct altr_edac_device_dev *device)
1368 {
1369 	int ret;
1370 
1371 	ret = altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
1372 	if (ret)
1373 		return ret;
1374 
1375 	return altr_check_ecc_deps(device);
1376 }
1377 
1378 static const struct edac_device_prv_data a10_dmaecc_data = {
1379 	.setup = socfpga_init_dma_ecc,
1380 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1381 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1382 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1383 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1384 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1385 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1386 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1387 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1388 	.inject_fops = &altr_edac_a10_device_inject_fops,
1389 };
1390 
1391 #endif	/* CONFIG_EDAC_ALTERA_DMA */
1392 
1393 /********************** USB Device Functions **********************/
1394 
1395 #ifdef CONFIG_EDAC_ALTERA_USB
1396 
1397 static int __init socfpga_init_usb_ecc(struct altr_edac_device_dev *device)
1398 {
1399 	int ret;
1400 
1401 	ret = altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
1402 	if (ret)
1403 		return ret;
1404 
1405 	return altr_check_ecc_deps(device);
1406 }
1407 
1408 static const struct edac_device_prv_data a10_usbecc_data = {
1409 	.setup = socfpga_init_usb_ecc,
1410 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1411 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1412 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1413 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1414 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1415 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1416 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1417 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1418 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1419 };
1420 
1421 #endif	/* CONFIG_EDAC_ALTERA_USB */
1422 
1423 /********************** QSPI Device Functions **********************/
1424 
1425 #ifdef CONFIG_EDAC_ALTERA_QSPI
1426 
1427 static int __init socfpga_init_qspi_ecc(struct altr_edac_device_dev *device)
1428 {
1429 	int ret;
1430 
1431 	ret = altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
1432 	if (ret)
1433 		return ret;
1434 
1435 	return altr_check_ecc_deps(device);
1436 }
1437 
1438 static const struct edac_device_prv_data a10_qspiecc_data = {
1439 	.setup = socfpga_init_qspi_ecc,
1440 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1441 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1442 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1443 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1444 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1445 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1446 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1447 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1448 	.inject_fops = &altr_edac_a10_device_inject_fops,
1449 };
1450 
1451 #endif	/* CONFIG_EDAC_ALTERA_QSPI */
1452 
1453 /********************* SDMMC Device Functions **********************/
1454 
1455 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1456 
1457 static const struct edac_device_prv_data a10_sdmmceccb_data;
1458 static int altr_portb_setup(struct altr_edac_device_dev *device)
1459 {
1460 	struct edac_device_ctl_info *dci;
1461 	struct altr_edac_device_dev *altdev;
1462 	char *ecc_name = "sdmmcb-ecc";
1463 	int edac_idx, rc;
1464 	struct device_node *np;
1465 	const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
1466 
1467 	rc = altr_check_ecc_deps(device);
1468 	if (rc)
1469 		return rc;
1470 
1471 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1472 	if (!np) {
1473 		edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1474 		return -ENODEV;
1475 	}
1476 
1477 	/* Create the PortB EDAC device */
1478 	edac_idx = edac_device_alloc_index();
1479 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
1480 					 ecc_name, 1, 0, NULL, 0, edac_idx);
1481 	if (!dci) {
1482 		edac_printk(KERN_ERR, EDAC_DEVICE,
1483 			    "%s: Unable to allocate PortB EDAC device\n",
1484 			    ecc_name);
1485 		return -ENOMEM;
1486 	}
1487 
1488 	/* Initialize the PortB EDAC device structure from PortA structure */
1489 	altdev = dci->pvt_info;
1490 	*altdev = *device;
1491 
1492 	if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
1493 		return -ENOMEM;
1494 
1495 	/* Update PortB specific values */
1496 	altdev->edac_dev_name = ecc_name;
1497 	altdev->edac_idx = edac_idx;
1498 	altdev->edac_dev = dci;
1499 	altdev->data = prv;
1500 	dci->dev = &altdev->ddev;
1501 	dci->ctl_name = "Altera ECC Manager";
1502 	dci->mod_name = ecc_name;
1503 	dci->dev_name = ecc_name;
1504 
1505 	/*
1506 	 * Update the PortB IRQs - A10 has 4, S10 has 2, Index accordingly
1507 	 *
1508 	 * FIXME: Instead of ifdefs with different architectures the driver
1509 	 *        should properly use compatibles.
1510 	 */
1511 #ifdef CONFIG_64BIT
1512 	altdev->sb_irq = irq_of_parse_and_map(np, 1);
1513 #else
1514 	altdev->sb_irq = irq_of_parse_and_map(np, 2);
1515 #endif
1516 	if (!altdev->sb_irq) {
1517 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
1518 		rc = -ENODEV;
1519 		goto err_release_group_1;
1520 	}
1521 	rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
1522 			      prv->ecc_irq_handler,
1523 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1524 			      ecc_name, altdev);
1525 	if (rc) {
1526 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
1527 		goto err_release_group_1;
1528 	}
1529 
1530 #ifdef CONFIG_64BIT
1531 	/* Use IRQ to determine SError origin instead of assigning IRQ */
1532 	rc = of_property_read_u32_index(np, "interrupts", 1, &altdev->db_irq);
1533 	if (rc) {
1534 		edac_printk(KERN_ERR, EDAC_DEVICE,
1535 			    "Error PortB DBIRQ alloc\n");
1536 		goto err_release_group_1;
1537 	}
1538 #else
1539 	altdev->db_irq = irq_of_parse_and_map(np, 3);
1540 	if (!altdev->db_irq) {
1541 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
1542 		rc = -ENODEV;
1543 		goto err_release_group_1;
1544 	}
1545 	rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
1546 			      prv->ecc_irq_handler,
1547 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1548 			      ecc_name, altdev);
1549 	if (rc) {
1550 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
1551 		goto err_release_group_1;
1552 	}
1553 #endif
1554 
1555 	rc = edac_device_add_device(dci);
1556 	if (rc) {
1557 		edac_printk(KERN_ERR, EDAC_DEVICE,
1558 			    "edac_device_add_device portB failed\n");
1559 		rc = -ENOMEM;
1560 		goto err_release_group_1;
1561 	}
1562 	altr_create_edacdev_dbgfs(dci, prv);
1563 
1564 	list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
1565 
1566 	devres_remove_group(&altdev->ddev, altr_portb_setup);
1567 
1568 	return 0;
1569 
1570 err_release_group_1:
1571 	edac_device_free_ctl_info(dci);
1572 	devres_release_group(&altdev->ddev, altr_portb_setup);
1573 	edac_printk(KERN_ERR, EDAC_DEVICE,
1574 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1575 	return rc;
1576 }
1577 
1578 static int __init socfpga_init_sdmmc_ecc(struct altr_edac_device_dev *device)
1579 {
1580 	int rc = -ENODEV;
1581 	struct device_node *child;
1582 
1583 	child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1584 	if (!child)
1585 		return -ENODEV;
1586 
1587 	if (!of_device_is_available(child))
1588 		goto exit;
1589 
1590 	if (validate_parent_available(child))
1591 		goto exit;
1592 
1593 	/* Init portB */
1594 	rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
1595 				     a10_sdmmceccb_data.ecc_enable_mask, 1);
1596 	if (rc)
1597 		goto exit;
1598 
1599 	/* Setup portB */
1600 	return altr_portb_setup(device);
1601 
1602 exit:
1603 	of_node_put(child);
1604 	return rc;
1605 }
1606 
1607 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
1608 {
1609 	struct altr_edac_device_dev *ad = dev_id;
1610 	void __iomem  *base = ad->base;
1611 	const struct edac_device_prv_data *priv = ad->data;
1612 
1613 	if (irq == ad->sb_irq) {
1614 		writel(priv->ce_clear_mask,
1615 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1616 		edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
1617 		return IRQ_HANDLED;
1618 	} else if (irq == ad->db_irq) {
1619 		writel(priv->ue_clear_mask,
1620 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1621 		edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
1622 		return IRQ_HANDLED;
1623 	}
1624 
1625 	WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
1626 
1627 	return IRQ_NONE;
1628 }
1629 
1630 static const struct edac_device_prv_data a10_sdmmcecca_data = {
1631 	.setup = socfpga_init_sdmmc_ecc,
1632 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1633 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1634 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1635 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1636 	.ce_set_mask = ALTR_A10_ECC_SERRPENA,
1637 	.ue_set_mask = ALTR_A10_ECC_DERRPENA,
1638 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1639 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1640 	.inject_fops = &altr_edac_a10_device_inject_fops,
1641 };
1642 
1643 static const struct edac_device_prv_data a10_sdmmceccb_data = {
1644 	.setup = socfpga_init_sdmmc_ecc,
1645 	.ce_clear_mask = ALTR_A10_ECC_SERRPENB,
1646 	.ue_clear_mask = ALTR_A10_ECC_DERRPENB,
1647 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1648 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1649 	.ce_set_mask = ALTR_A10_ECC_TSERRB,
1650 	.ue_set_mask = ALTR_A10_ECC_TDERRB,
1651 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1652 	.ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
1653 	.inject_fops = &altr_edac_a10_device_inject_fops,
1654 };
1655 
1656 #endif	/* CONFIG_EDAC_ALTERA_SDMMC */
1657 
1658 /********************* Arria10 EDAC Device Functions *************************/
1659 static const struct of_device_id altr_edac_a10_device_of_match[] = {
1660 #ifdef CONFIG_EDAC_ALTERA_L2C
1661 	{ .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
1662 #endif
1663 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1664 	{ .compatible = "altr,socfpga-a10-ocram-ecc",
1665 	  .data = &a10_ocramecc_data },
1666 #endif
1667 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1668 	{ .compatible = "altr,socfpga-eth-mac-ecc",
1669 	  .data = &a10_enetecc_data },
1670 #endif
1671 #ifdef CONFIG_EDAC_ALTERA_NAND
1672 	{ .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
1673 #endif
1674 #ifdef CONFIG_EDAC_ALTERA_DMA
1675 	{ .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
1676 #endif
1677 #ifdef CONFIG_EDAC_ALTERA_USB
1678 	{ .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
1679 #endif
1680 #ifdef CONFIG_EDAC_ALTERA_QSPI
1681 	{ .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
1682 #endif
1683 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1684 	{ .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
1685 #endif
1686 #ifdef CONFIG_EDAC_ALTERA_SDRAM
1687 	{ .compatible = "altr,sdram-edac-s10", .data = &s10_sdramecc_data },
1688 #endif
1689 	{},
1690 };
1691 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
1692 
1693 /*
1694  * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
1695  * because 2 IRQs are shared among the all ECC peripherals. The ECC
1696  * manager manages the IRQs and the children.
1697  * Based on xgene_edac.c peripheral code.
1698  */
1699 
1700 static ssize_t altr_edac_a10_device_trig(struct file *file,
1701 					 const char __user *user_buf,
1702 					 size_t count, loff_t *ppos)
1703 {
1704 	struct edac_device_ctl_info *edac_dci = file->private_data;
1705 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1706 	const struct edac_device_prv_data *priv = drvdata->data;
1707 	void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1708 	unsigned long flags;
1709 	u8 trig_type;
1710 
1711 	if (!user_buf || get_user(trig_type, user_buf))
1712 		return -EFAULT;
1713 
1714 	local_irq_save(flags);
1715 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
1716 		writel(priv->ue_set_mask, set_addr);
1717 	else
1718 		writel(priv->ce_set_mask, set_addr);
1719 
1720 	/* Ensure the interrupt test bits are set */
1721 	wmb();
1722 	local_irq_restore(flags);
1723 
1724 	return count;
1725 }
1726 
1727 /*
1728  * The Stratix10 EDAC Error Injection Functions differ from Arria10
1729  * slightly. A few Arria10 peripherals can use this injection function.
1730  * Inject the error into the memory and then readback to trigger the IRQ.
1731  */
1732 static ssize_t altr_edac_a10_device_trig2(struct file *file,
1733 					  const char __user *user_buf,
1734 					  size_t count, loff_t *ppos)
1735 {
1736 	struct edac_device_ctl_info *edac_dci = file->private_data;
1737 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1738 	const struct edac_device_prv_data *priv = drvdata->data;
1739 	void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1740 	unsigned long flags;
1741 	u8 trig_type;
1742 
1743 	if (!user_buf || get_user(trig_type, user_buf))
1744 		return -EFAULT;
1745 
1746 	local_irq_save(flags);
1747 	if (trig_type == ALTR_UE_TRIGGER_CHAR) {
1748 		writel(priv->ue_set_mask, set_addr);
1749 	} else {
1750 		/* Setup read/write of 4 bytes */
1751 		writel(ECC_WORD_WRITE, drvdata->base + ECC_BLK_DBYTECTRL_OFST);
1752 		/* Setup Address to 0 */
1753 		writel(0, drvdata->base + ECC_BLK_ADDRESS_OFST);
1754 		/* Setup accctrl to read & ecc & data override */
1755 		writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1756 		/* Kick it. */
1757 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1758 		/* Setup write for single bit change */
1759 		writel(readl(drvdata->base + ECC_BLK_RDATA0_OFST) ^ 0x1,
1760 		       drvdata->base + ECC_BLK_WDATA0_OFST);
1761 		writel(readl(drvdata->base + ECC_BLK_RDATA1_OFST),
1762 		       drvdata->base + ECC_BLK_WDATA1_OFST);
1763 		writel(readl(drvdata->base + ECC_BLK_RDATA2_OFST),
1764 		       drvdata->base + ECC_BLK_WDATA2_OFST);
1765 		writel(readl(drvdata->base + ECC_BLK_RDATA3_OFST),
1766 		       drvdata->base + ECC_BLK_WDATA3_OFST);
1767 
1768 		/* Copy Read ECC to Write ECC */
1769 		writel(readl(drvdata->base + ECC_BLK_RECC0_OFST),
1770 		       drvdata->base + ECC_BLK_WECC0_OFST);
1771 		writel(readl(drvdata->base + ECC_BLK_RECC1_OFST),
1772 		       drvdata->base + ECC_BLK_WECC1_OFST);
1773 		/* Setup accctrl to write & ecc override & data override */
1774 		writel(ECC_WRITE_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1775 		/* Kick it. */
1776 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1777 		/* Setup accctrl to read & ecc overwrite & data overwrite */
1778 		writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1779 		/* Kick it. */
1780 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1781 	}
1782 
1783 	/* Ensure the interrupt test bits are set */
1784 	wmb();
1785 	local_irq_restore(flags);
1786 
1787 	return count;
1788 }
1789 
1790 static void altr_edac_a10_irq_handler(struct irq_desc *desc)
1791 {
1792 	int dberr, bit, sm_offset, irq_status;
1793 	struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
1794 	struct irq_chip *chip = irq_desc_get_chip(desc);
1795 	int irq = irq_desc_get_irq(desc);
1796 	unsigned long bits;
1797 
1798 	dberr = (irq == edac->db_irq) ? 1 : 0;
1799 	sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
1800 			    A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
1801 
1802 	chained_irq_enter(chip, desc);
1803 
1804 	regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
1805 
1806 	bits = irq_status;
1807 	for_each_set_bit(bit, &bits, 32) {
1808 		irq = irq_linear_revmap(edac->domain, dberr * 32 + bit);
1809 		if (irq)
1810 			generic_handle_irq(irq);
1811 	}
1812 
1813 	chained_irq_exit(chip, desc);
1814 }
1815 
1816 static int validate_parent_available(struct device_node *np)
1817 {
1818 	struct device_node *parent;
1819 	int ret = 0;
1820 
1821 	/* SDRAM must be present for Linux (implied parent) */
1822 	if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1823 		return 0;
1824 
1825 	/* Ensure parent device is enabled if parent node exists */
1826 	parent = of_parse_phandle(np, "altr,ecc-parent", 0);
1827 	if (parent && !of_device_is_available(parent))
1828 		ret = -ENODEV;
1829 
1830 	of_node_put(parent);
1831 	return ret;
1832 }
1833 
1834 static int get_s10_sdram_edac_resource(struct device_node *np,
1835 				       struct resource *res)
1836 {
1837 	struct device_node *parent;
1838 	int ret;
1839 
1840 	parent = of_parse_phandle(np, "altr,sdr-syscon", 0);
1841 	if (!parent)
1842 		return -ENODEV;
1843 
1844 	ret = of_address_to_resource(parent, 0, res);
1845 	of_node_put(parent);
1846 
1847 	return ret;
1848 }
1849 
1850 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
1851 				    struct device_node *np)
1852 {
1853 	struct edac_device_ctl_info *dci;
1854 	struct altr_edac_device_dev *altdev;
1855 	char *ecc_name = (char *)np->name;
1856 	struct resource res;
1857 	int edac_idx;
1858 	int rc = 0;
1859 	const struct edac_device_prv_data *prv;
1860 	/* Get matching node and check for valid result */
1861 	const struct of_device_id *pdev_id =
1862 		of_match_node(altr_edac_a10_device_of_match, np);
1863 	if (IS_ERR_OR_NULL(pdev_id))
1864 		return -ENODEV;
1865 
1866 	/* Get driver specific data for this EDAC device */
1867 	prv = pdev_id->data;
1868 	if (IS_ERR_OR_NULL(prv))
1869 		return -ENODEV;
1870 
1871 	if (validate_parent_available(np))
1872 		return -ENODEV;
1873 
1874 	if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
1875 		return -ENOMEM;
1876 
1877 	if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1878 		rc = get_s10_sdram_edac_resource(np, &res);
1879 	else
1880 		rc = of_address_to_resource(np, 0, &res);
1881 
1882 	if (rc < 0) {
1883 		edac_printk(KERN_ERR, EDAC_DEVICE,
1884 			    "%s: no resource address\n", ecc_name);
1885 		goto err_release_group;
1886 	}
1887 
1888 	edac_idx = edac_device_alloc_index();
1889 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
1890 					 1, ecc_name, 1, 0, NULL, 0,
1891 					 edac_idx);
1892 
1893 	if (!dci) {
1894 		edac_printk(KERN_ERR, EDAC_DEVICE,
1895 			    "%s: Unable to allocate EDAC device\n", ecc_name);
1896 		rc = -ENOMEM;
1897 		goto err_release_group;
1898 	}
1899 
1900 	altdev = dci->pvt_info;
1901 	dci->dev = edac->dev;
1902 	altdev->edac_dev_name = ecc_name;
1903 	altdev->edac_idx = edac_idx;
1904 	altdev->edac = edac;
1905 	altdev->edac_dev = dci;
1906 	altdev->data = prv;
1907 	altdev->ddev = *edac->dev;
1908 	dci->dev = &altdev->ddev;
1909 	dci->ctl_name = "Altera ECC Manager";
1910 	dci->mod_name = ecc_name;
1911 	dci->dev_name = ecc_name;
1912 
1913 	altdev->base = devm_ioremap_resource(edac->dev, &res);
1914 	if (IS_ERR(altdev->base)) {
1915 		rc = PTR_ERR(altdev->base);
1916 		goto err_release_group1;
1917 	}
1918 
1919 	/* Check specific dependencies for the module */
1920 	if (altdev->data->setup) {
1921 		rc = altdev->data->setup(altdev);
1922 		if (rc)
1923 			goto err_release_group1;
1924 	}
1925 
1926 	altdev->sb_irq = irq_of_parse_and_map(np, 0);
1927 	if (!altdev->sb_irq) {
1928 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
1929 		rc = -ENODEV;
1930 		goto err_release_group1;
1931 	}
1932 	rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
1933 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1934 			      ecc_name, altdev);
1935 	if (rc) {
1936 		edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
1937 		goto err_release_group1;
1938 	}
1939 
1940 #ifdef CONFIG_64BIT
1941 	/* Use IRQ to determine SError origin instead of assigning IRQ */
1942 	rc = of_property_read_u32_index(np, "interrupts", 0, &altdev->db_irq);
1943 	if (rc) {
1944 		edac_printk(KERN_ERR, EDAC_DEVICE,
1945 			    "Unable to parse DB IRQ index\n");
1946 		goto err_release_group1;
1947 	}
1948 #else
1949 	altdev->db_irq = irq_of_parse_and_map(np, 1);
1950 	if (!altdev->db_irq) {
1951 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
1952 		rc = -ENODEV;
1953 		goto err_release_group1;
1954 	}
1955 	rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
1956 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1957 			      ecc_name, altdev);
1958 	if (rc) {
1959 		edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
1960 		goto err_release_group1;
1961 	}
1962 #endif
1963 
1964 	rc = edac_device_add_device(dci);
1965 	if (rc) {
1966 		dev_err(edac->dev, "edac_device_add_device failed\n");
1967 		rc = -ENOMEM;
1968 		goto err_release_group1;
1969 	}
1970 
1971 	altr_create_edacdev_dbgfs(dci, prv);
1972 
1973 	list_add(&altdev->next, &edac->a10_ecc_devices);
1974 
1975 	devres_remove_group(edac->dev, altr_edac_a10_device_add);
1976 
1977 	return 0;
1978 
1979 err_release_group1:
1980 	edac_device_free_ctl_info(dci);
1981 err_release_group:
1982 	devres_release_group(edac->dev, NULL);
1983 	edac_printk(KERN_ERR, EDAC_DEVICE,
1984 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1985 
1986 	return rc;
1987 }
1988 
1989 static void a10_eccmgr_irq_mask(struct irq_data *d)
1990 {
1991 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
1992 
1993 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_SET_OFST,
1994 		     BIT(d->hwirq));
1995 }
1996 
1997 static void a10_eccmgr_irq_unmask(struct irq_data *d)
1998 {
1999 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2000 
2001 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_CLR_OFST,
2002 		     BIT(d->hwirq));
2003 }
2004 
2005 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
2006 				    irq_hw_number_t hwirq)
2007 {
2008 	struct altr_arria10_edac *edac = d->host_data;
2009 
2010 	irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
2011 	irq_set_chip_data(irq, edac);
2012 	irq_set_noprobe(irq);
2013 
2014 	return 0;
2015 }
2016 
2017 static const struct irq_domain_ops a10_eccmgr_ic_ops = {
2018 	.map = a10_eccmgr_irqdomain_map,
2019 	.xlate = irq_domain_xlate_twocell,
2020 };
2021 
2022 /************** Stratix 10 EDAC Double Bit Error Handler ************/
2023 #define to_a10edac(p, m) container_of(p, struct altr_arria10_edac, m)
2024 
2025 #ifdef CONFIG_64BIT
2026 /* panic routine issues reboot on non-zero panic_timeout */
2027 extern int panic_timeout;
2028 
2029 /*
2030  * The double bit error is handled through SError which is fatal. This is
2031  * called as a panic notifier to printout ECC error info as part of the panic.
2032  */
2033 static int s10_edac_dberr_handler(struct notifier_block *this,
2034 				  unsigned long event, void *ptr)
2035 {
2036 	struct altr_arria10_edac *edac = to_a10edac(this, panic_notifier);
2037 	int err_addr, dberror;
2038 
2039 	regmap_read(edac->ecc_mgr_map, S10_SYSMGR_ECC_INTSTAT_DERR_OFST,
2040 		    &dberror);
2041 	regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, dberror);
2042 	if (dberror & S10_DBE_IRQ_MASK) {
2043 		struct list_head *position;
2044 		struct altr_edac_device_dev *ed;
2045 		struct arm_smccc_res result;
2046 
2047 		/* Find the matching DBE in the list of devices */
2048 		list_for_each(position, &edac->a10_ecc_devices) {
2049 			ed = list_entry(position, struct altr_edac_device_dev,
2050 					next);
2051 			if (!(BIT(ed->db_irq) & dberror))
2052 				continue;
2053 
2054 			writel(ALTR_A10_ECC_DERRPENA,
2055 			       ed->base + ALTR_A10_ECC_INTSTAT_OFST);
2056 			err_addr = readl(ed->base + ALTR_S10_DERR_ADDRA_OFST);
2057 			regmap_write(edac->ecc_mgr_map,
2058 				     S10_SYSMGR_UE_ADDR_OFST, err_addr);
2059 			edac_printk(KERN_ERR, EDAC_DEVICE,
2060 				    "EDAC: [Fatal DBE on %s @ 0x%08X]\n",
2061 				    ed->edac_dev_name, err_addr);
2062 			break;
2063 		}
2064 		/* Notify the System through SMC. Reboot delay = 1 second */
2065 		panic_timeout = 1;
2066 		arm_smccc_smc(INTEL_SIP_SMC_ECC_DBE, dberror, 0, 0, 0, 0,
2067 			      0, 0, &result);
2068 	}
2069 
2070 	return NOTIFY_DONE;
2071 }
2072 #endif
2073 
2074 /****************** Arria 10 EDAC Probe Function *********************/
2075 static int altr_edac_a10_probe(struct platform_device *pdev)
2076 {
2077 	struct altr_arria10_edac *edac;
2078 	struct device_node *child;
2079 
2080 	edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
2081 	if (!edac)
2082 		return -ENOMEM;
2083 
2084 	edac->dev = &pdev->dev;
2085 	platform_set_drvdata(pdev, edac);
2086 	INIT_LIST_HEAD(&edac->a10_ecc_devices);
2087 
2088 	edac->ecc_mgr_map =
2089 		altr_sysmgr_regmap_lookup_by_phandle(pdev->dev.of_node,
2090 						     "altr,sysmgr-syscon");
2091 
2092 	if (IS_ERR(edac->ecc_mgr_map)) {
2093 		edac_printk(KERN_ERR, EDAC_DEVICE,
2094 			    "Unable to get syscon altr,sysmgr-syscon\n");
2095 		return PTR_ERR(edac->ecc_mgr_map);
2096 	}
2097 
2098 	edac->irq_chip.name = pdev->dev.of_node->name;
2099 	edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
2100 	edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
2101 	edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64,
2102 					     &a10_eccmgr_ic_ops, edac);
2103 	if (!edac->domain) {
2104 		dev_err(&pdev->dev, "Error adding IRQ domain\n");
2105 		return -ENOMEM;
2106 	}
2107 
2108 	edac->sb_irq = platform_get_irq(pdev, 0);
2109 	if (edac->sb_irq < 0) {
2110 		dev_err(&pdev->dev, "No SBERR IRQ resource\n");
2111 		return edac->sb_irq;
2112 	}
2113 
2114 	irq_set_chained_handler_and_data(edac->sb_irq,
2115 					 altr_edac_a10_irq_handler,
2116 					 edac);
2117 
2118 #ifdef CONFIG_64BIT
2119 	{
2120 		int dberror, err_addr;
2121 
2122 		edac->panic_notifier.notifier_call = s10_edac_dberr_handler;
2123 		atomic_notifier_chain_register(&panic_notifier_list,
2124 					       &edac->panic_notifier);
2125 
2126 		/* Printout a message if uncorrectable error previously. */
2127 		regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST,
2128 			    &dberror);
2129 		if (dberror) {
2130 			regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST,
2131 				    &err_addr);
2132 			edac_printk(KERN_ERR, EDAC_DEVICE,
2133 				    "Previous Boot UE detected[0x%X] @ 0x%X\n",
2134 				    dberror, err_addr);
2135 			/* Reset the sticky registers */
2136 			regmap_write(edac->ecc_mgr_map,
2137 				     S10_SYSMGR_UE_VAL_OFST, 0);
2138 			regmap_write(edac->ecc_mgr_map,
2139 				     S10_SYSMGR_UE_ADDR_OFST, 0);
2140 		}
2141 	}
2142 #else
2143 	edac->db_irq = platform_get_irq(pdev, 1);
2144 	if (edac->db_irq < 0) {
2145 		dev_err(&pdev->dev, "No DBERR IRQ resource\n");
2146 		return edac->db_irq;
2147 	}
2148 	irq_set_chained_handler_and_data(edac->db_irq,
2149 					 altr_edac_a10_irq_handler, edac);
2150 #endif
2151 
2152 	for_each_child_of_node(pdev->dev.of_node, child) {
2153 		if (!of_device_is_available(child))
2154 			continue;
2155 
2156 		if (of_match_node(altr_edac_a10_device_of_match, child))
2157 			altr_edac_a10_device_add(edac, child);
2158 
2159 #ifdef CONFIG_EDAC_ALTERA_SDRAM
2160 		else if (of_device_is_compatible(child, "altr,sdram-edac-a10"))
2161 			of_platform_populate(pdev->dev.of_node,
2162 					     altr_sdram_ctrl_of_match,
2163 					     NULL, &pdev->dev);
2164 #endif
2165 	}
2166 
2167 	return 0;
2168 }
2169 
2170 static const struct of_device_id altr_edac_a10_of_match[] = {
2171 	{ .compatible = "altr,socfpga-a10-ecc-manager" },
2172 	{ .compatible = "altr,socfpga-s10-ecc-manager" },
2173 	{},
2174 };
2175 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
2176 
2177 static struct platform_driver altr_edac_a10_driver = {
2178 	.probe =  altr_edac_a10_probe,
2179 	.driver = {
2180 		.name = "socfpga_a10_ecc_manager",
2181 		.of_match_table = altr_edac_a10_of_match,
2182 	},
2183 };
2184 module_platform_driver(altr_edac_a10_driver);
2185 
2186 MODULE_LICENSE("GPL v2");
2187 MODULE_AUTHOR("Thor Thayer");
2188 MODULE_DESCRIPTION("EDAC Driver for Altera Memories");
2189