xref: /openbmc/linux/drivers/edac/altera_edac.c (revision 7a846d3c43b0b6d04300be9ba666b102b57a391a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 2017-2018, Intel Corporation. All rights reserved
4  *  Copyright Altera Corporation (C) 2014-2016. All rights reserved.
5  *  Copyright 2011-2012 Calxeda, Inc.
6  */
7 
8 #include <asm/cacheflush.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/edac.h>
12 #include <linux/genalloc.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqchip/chained_irq.h>
15 #include <linux/kernel.h>
16 #include <linux/mfd/syscon.h>
17 #include <linux/notifier.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_platform.h>
21 #include <linux/platform_device.h>
22 #include <linux/regmap.h>
23 #include <linux/types.h>
24 #include <linux/uaccess.h>
25 
26 #include "altera_edac.h"
27 #include "edac_module.h"
28 
29 #define EDAC_MOD_STR		"altera_edac"
30 #define EDAC_DEVICE		"Altera"
31 
32 static const struct altr_sdram_prv_data c5_data = {
33 	.ecc_ctrl_offset    = CV_CTLCFG_OFST,
34 	.ecc_ctl_en_mask    = CV_CTLCFG_ECC_AUTO_EN,
35 	.ecc_stat_offset    = CV_DRAMSTS_OFST,
36 	.ecc_stat_ce_mask   = CV_DRAMSTS_SBEERR,
37 	.ecc_stat_ue_mask   = CV_DRAMSTS_DBEERR,
38 	.ecc_saddr_offset   = CV_ERRADDR_OFST,
39 	.ecc_daddr_offset   = CV_ERRADDR_OFST,
40 	.ecc_cecnt_offset   = CV_SBECOUNT_OFST,
41 	.ecc_uecnt_offset   = CV_DBECOUNT_OFST,
42 	.ecc_irq_en_offset  = CV_DRAMINTR_OFST,
43 	.ecc_irq_en_mask    = CV_DRAMINTR_INTREN,
44 	.ecc_irq_clr_offset = CV_DRAMINTR_OFST,
45 	.ecc_irq_clr_mask   = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
46 	.ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
47 	.ecc_cnt_rst_mask   = CV_DRAMINTR_INTRCLR,
48 	.ce_ue_trgr_offset  = CV_CTLCFG_OFST,
49 	.ce_set_mask        = CV_CTLCFG_GEN_SB_ERR,
50 	.ue_set_mask        = CV_CTLCFG_GEN_DB_ERR,
51 };
52 
53 static const struct altr_sdram_prv_data a10_data = {
54 	.ecc_ctrl_offset    = A10_ECCCTRL1_OFST,
55 	.ecc_ctl_en_mask    = A10_ECCCTRL1_ECC_EN,
56 	.ecc_stat_offset    = A10_INTSTAT_OFST,
57 	.ecc_stat_ce_mask   = A10_INTSTAT_SBEERR,
58 	.ecc_stat_ue_mask   = A10_INTSTAT_DBEERR,
59 	.ecc_saddr_offset   = A10_SERRADDR_OFST,
60 	.ecc_daddr_offset   = A10_DERRADDR_OFST,
61 	.ecc_irq_en_offset  = A10_ERRINTEN_OFST,
62 	.ecc_irq_en_mask    = A10_ECC_IRQ_EN_MASK,
63 	.ecc_irq_clr_offset = A10_INTSTAT_OFST,
64 	.ecc_irq_clr_mask   = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
65 	.ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
66 	.ecc_cnt_rst_mask   = A10_ECC_CNT_RESET_MASK,
67 	.ce_ue_trgr_offset  = A10_DIAGINTTEST_OFST,
68 	.ce_set_mask        = A10_DIAGINT_TSERRA_MASK,
69 	.ue_set_mask        = A10_DIAGINT_TDERRA_MASK,
70 };
71 
72 static const struct altr_sdram_prv_data s10_data = {
73 	.ecc_ctrl_offset    = S10_ECCCTRL1_OFST,
74 	.ecc_ctl_en_mask    = A10_ECCCTRL1_ECC_EN,
75 	.ecc_stat_offset    = S10_INTSTAT_OFST,
76 	.ecc_stat_ce_mask   = A10_INTSTAT_SBEERR,
77 	.ecc_stat_ue_mask   = A10_INTSTAT_DBEERR,
78 	.ecc_saddr_offset   = S10_SERRADDR_OFST,
79 	.ecc_daddr_offset   = S10_DERRADDR_OFST,
80 	.ecc_irq_en_offset  = S10_ERRINTEN_OFST,
81 	.ecc_irq_en_mask    = A10_ECC_IRQ_EN_MASK,
82 	.ecc_irq_clr_offset = S10_INTSTAT_OFST,
83 	.ecc_irq_clr_mask   = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
84 	.ecc_cnt_rst_offset = S10_ECCCTRL1_OFST,
85 	.ecc_cnt_rst_mask   = A10_ECC_CNT_RESET_MASK,
86 	.ce_ue_trgr_offset  = S10_DIAGINTTEST_OFST,
87 	.ce_set_mask        = A10_DIAGINT_TSERRA_MASK,
88 	.ue_set_mask        = A10_DIAGINT_TDERRA_MASK,
89 };
90 
91 /*********************** EDAC Memory Controller Functions ****************/
92 
93 /* The SDRAM controller uses the EDAC Memory Controller framework.       */
94 
95 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
96 {
97 	struct mem_ctl_info *mci = dev_id;
98 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
99 	const struct altr_sdram_prv_data *priv = drvdata->data;
100 	u32 status, err_count = 1, err_addr;
101 
102 	regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
103 
104 	if (status & priv->ecc_stat_ue_mask) {
105 		regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
106 			    &err_addr);
107 		if (priv->ecc_uecnt_offset)
108 			regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
109 				    &err_count);
110 		panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
111 		      err_count, err_addr);
112 	}
113 	if (status & priv->ecc_stat_ce_mask) {
114 		regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
115 			    &err_addr);
116 		if (priv->ecc_uecnt_offset)
117 			regmap_read(drvdata->mc_vbase,  priv->ecc_cecnt_offset,
118 				    &err_count);
119 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
120 				     err_addr >> PAGE_SHIFT,
121 				     err_addr & ~PAGE_MASK, 0,
122 				     0, 0, -1, mci->ctl_name, "");
123 		/* Clear IRQ to resume */
124 		regmap_write(drvdata->mc_vbase,	priv->ecc_irq_clr_offset,
125 			     priv->ecc_irq_clr_mask);
126 
127 		return IRQ_HANDLED;
128 	}
129 	return IRQ_NONE;
130 }
131 
132 static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
133 					    const char __user *data,
134 					    size_t count, loff_t *ppos)
135 {
136 	struct mem_ctl_info *mci = file->private_data;
137 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
138 	const struct altr_sdram_prv_data *priv = drvdata->data;
139 	u32 *ptemp;
140 	dma_addr_t dma_handle;
141 	u32 reg, read_reg;
142 
143 	ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
144 	if (!ptemp) {
145 		dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
146 		edac_printk(KERN_ERR, EDAC_MC,
147 			    "Inject: Buffer Allocation error\n");
148 		return -ENOMEM;
149 	}
150 
151 	regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
152 		    &read_reg);
153 	read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
154 
155 	/* Error are injected by writing a word while the SBE or DBE
156 	 * bit in the CTLCFG register is set. Reading the word will
157 	 * trigger the SBE or DBE error and the corresponding IRQ.
158 	 */
159 	if (count == 3) {
160 		edac_printk(KERN_ALERT, EDAC_MC,
161 			    "Inject Double bit error\n");
162 		local_irq_disable();
163 		regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
164 			     (read_reg | priv->ue_set_mask));
165 		local_irq_enable();
166 	} else {
167 		edac_printk(KERN_ALERT, EDAC_MC,
168 			    "Inject Single bit error\n");
169 		local_irq_disable();
170 		regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset,
171 			     (read_reg | priv->ce_set_mask));
172 		local_irq_enable();
173 	}
174 
175 	ptemp[0] = 0x5A5A5A5A;
176 	ptemp[1] = 0xA5A5A5A5;
177 
178 	/* Clear the error injection bits */
179 	regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset, read_reg);
180 	/* Ensure it has been written out */
181 	wmb();
182 
183 	/*
184 	 * To trigger the error, we need to read the data back
185 	 * (the data was written with errors above).
186 	 * The READ_ONCE macros and printk are used to prevent the
187 	 * the compiler optimizing these reads out.
188 	 */
189 	reg = READ_ONCE(ptemp[0]);
190 	read_reg = READ_ONCE(ptemp[1]);
191 	/* Force Read */
192 	rmb();
193 
194 	edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
195 		    reg, read_reg);
196 
197 	dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
198 
199 	return count;
200 }
201 
202 static const struct file_operations altr_sdr_mc_debug_inject_fops = {
203 	.open = simple_open,
204 	.write = altr_sdr_mc_err_inject_write,
205 	.llseek = generic_file_llseek,
206 };
207 
208 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
209 {
210 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
211 		return;
212 
213 	if (!mci->debugfs)
214 		return;
215 
216 	edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
217 				 &altr_sdr_mc_debug_inject_fops);
218 }
219 
220 /* Get total memory size from Open Firmware DTB */
221 static unsigned long get_total_mem(void)
222 {
223 	struct device_node *np = NULL;
224 	struct resource res;
225 	int ret;
226 	unsigned long total_mem = 0;
227 
228 	for_each_node_by_type(np, "memory") {
229 		ret = of_address_to_resource(np, 0, &res);
230 		if (ret)
231 			continue;
232 
233 		total_mem += resource_size(&res);
234 	}
235 	edac_dbg(0, "total_mem 0x%lx\n", total_mem);
236 	return total_mem;
237 }
238 
239 static const struct of_device_id altr_sdram_ctrl_of_match[] = {
240 	{ .compatible = "altr,sdram-edac", .data = &c5_data},
241 	{ .compatible = "altr,sdram-edac-a10", .data = &a10_data},
242 	{ .compatible = "altr,sdram-edac-s10", .data = &s10_data},
243 	{},
244 };
245 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
246 
247 static int a10_init(struct regmap *mc_vbase)
248 {
249 	if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
250 			       A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
251 		edac_printk(KERN_ERR, EDAC_MC,
252 			    "Error setting SB IRQ mode\n");
253 		return -ENODEV;
254 	}
255 
256 	if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
257 		edac_printk(KERN_ERR, EDAC_MC,
258 			    "Error setting trigger count\n");
259 		return -ENODEV;
260 	}
261 
262 	return 0;
263 }
264 
265 static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
266 {
267 	void __iomem  *sm_base;
268 	int  ret = 0;
269 
270 	if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
271 				dev_name(&pdev->dev))) {
272 		edac_printk(KERN_ERR, EDAC_MC,
273 			    "Unable to request mem region\n");
274 		return -EBUSY;
275 	}
276 
277 	sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
278 	if (!sm_base) {
279 		edac_printk(KERN_ERR, EDAC_MC,
280 			    "Unable to ioremap device\n");
281 
282 		ret = -ENOMEM;
283 		goto release;
284 	}
285 
286 	iowrite32(mask, sm_base);
287 
288 	iounmap(sm_base);
289 
290 release:
291 	release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
292 
293 	return ret;
294 }
295 
296 static int altr_sdram_probe(struct platform_device *pdev)
297 {
298 	const struct of_device_id *id;
299 	struct edac_mc_layer layers[2];
300 	struct mem_ctl_info *mci;
301 	struct altr_sdram_mc_data *drvdata;
302 	const struct altr_sdram_prv_data *priv;
303 	struct regmap *mc_vbase;
304 	struct dimm_info *dimm;
305 	u32 read_reg;
306 	int irq, irq2, res = 0;
307 	unsigned long mem_size, irqflags = 0;
308 
309 	id = of_match_device(altr_sdram_ctrl_of_match, &pdev->dev);
310 	if (!id)
311 		return -ENODEV;
312 
313 	/* Grab the register range from the sdr controller in device tree */
314 	mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
315 						   "altr,sdr-syscon");
316 	if (IS_ERR(mc_vbase)) {
317 		edac_printk(KERN_ERR, EDAC_MC,
318 			    "regmap for altr,sdr-syscon lookup failed.\n");
319 		return -ENODEV;
320 	}
321 
322 	/* Check specific dependencies for the module */
323 	priv = of_match_node(altr_sdram_ctrl_of_match,
324 			     pdev->dev.of_node)->data;
325 
326 	/* Validate the SDRAM controller has ECC enabled */
327 	if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
328 	    ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
329 		edac_printk(KERN_ERR, EDAC_MC,
330 			    "No ECC/ECC disabled [0x%08X]\n", read_reg);
331 		return -ENODEV;
332 	}
333 
334 	/* Grab memory size from device tree. */
335 	mem_size = get_total_mem();
336 	if (!mem_size) {
337 		edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
338 		return -ENODEV;
339 	}
340 
341 	/* Ensure the SDRAM Interrupt is disabled */
342 	if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
343 			       priv->ecc_irq_en_mask, 0)) {
344 		edac_printk(KERN_ERR, EDAC_MC,
345 			    "Error disabling SDRAM ECC IRQ\n");
346 		return -ENODEV;
347 	}
348 
349 	/* Toggle to clear the SDRAM Error count */
350 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
351 			       priv->ecc_cnt_rst_mask,
352 			       priv->ecc_cnt_rst_mask)) {
353 		edac_printk(KERN_ERR, EDAC_MC,
354 			    "Error clearing SDRAM ECC count\n");
355 		return -ENODEV;
356 	}
357 
358 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
359 			       priv->ecc_cnt_rst_mask, 0)) {
360 		edac_printk(KERN_ERR, EDAC_MC,
361 			    "Error clearing SDRAM ECC count\n");
362 		return -ENODEV;
363 	}
364 
365 	irq = platform_get_irq(pdev, 0);
366 	if (irq < 0) {
367 		edac_printk(KERN_ERR, EDAC_MC,
368 			    "No irq %d in DT\n", irq);
369 		return -ENODEV;
370 	}
371 
372 	/* Arria10 has a 2nd IRQ */
373 	irq2 = platform_get_irq(pdev, 1);
374 
375 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
376 	layers[0].size = 1;
377 	layers[0].is_virt_csrow = true;
378 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
379 	layers[1].size = 1;
380 	layers[1].is_virt_csrow = false;
381 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
382 			    sizeof(struct altr_sdram_mc_data));
383 	if (!mci)
384 		return -ENOMEM;
385 
386 	mci->pdev = &pdev->dev;
387 	drvdata = mci->pvt_info;
388 	drvdata->mc_vbase = mc_vbase;
389 	drvdata->data = priv;
390 	platform_set_drvdata(pdev, mci);
391 
392 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
393 		edac_printk(KERN_ERR, EDAC_MC,
394 			    "Unable to get managed device resource\n");
395 		res = -ENOMEM;
396 		goto free;
397 	}
398 
399 	mci->mtype_cap = MEM_FLAG_DDR3;
400 	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
401 	mci->edac_cap = EDAC_FLAG_SECDED;
402 	mci->mod_name = EDAC_MOD_STR;
403 	mci->ctl_name = dev_name(&pdev->dev);
404 	mci->scrub_mode = SCRUB_SW_SRC;
405 	mci->dev_name = dev_name(&pdev->dev);
406 
407 	dimm = *mci->dimms;
408 	dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
409 	dimm->grain = 8;
410 	dimm->dtype = DEV_X8;
411 	dimm->mtype = MEM_DDR3;
412 	dimm->edac_mode = EDAC_SECDED;
413 
414 	res = edac_mc_add_mc(mci);
415 	if (res < 0)
416 		goto err;
417 
418 	/* Only the Arria10 has separate IRQs */
419 	if (irq2 > 0) {
420 		/* Arria10 specific initialization */
421 		res = a10_init(mc_vbase);
422 		if (res < 0)
423 			goto err2;
424 
425 		res = devm_request_irq(&pdev->dev, irq2,
426 				       altr_sdram_mc_err_handler,
427 				       IRQF_SHARED, dev_name(&pdev->dev), mci);
428 		if (res < 0) {
429 			edac_mc_printk(mci, KERN_ERR,
430 				       "Unable to request irq %d\n", irq2);
431 			res = -ENODEV;
432 			goto err2;
433 		}
434 
435 		res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
436 		if (res < 0)
437 			goto err2;
438 
439 		irqflags = IRQF_SHARED;
440 	}
441 
442 	res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
443 			       irqflags, dev_name(&pdev->dev), mci);
444 	if (res < 0) {
445 		edac_mc_printk(mci, KERN_ERR,
446 			       "Unable to request irq %d\n", irq);
447 		res = -ENODEV;
448 		goto err2;
449 	}
450 
451 	/* Infrastructure ready - enable the IRQ */
452 	if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
453 			       priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
454 		edac_mc_printk(mci, KERN_ERR,
455 			       "Error enabling SDRAM ECC IRQ\n");
456 		res = -ENODEV;
457 		goto err2;
458 	}
459 
460 	altr_sdr_mc_create_debugfs_nodes(mci);
461 
462 	devres_close_group(&pdev->dev, NULL);
463 
464 	return 0;
465 
466 err2:
467 	edac_mc_del_mc(&pdev->dev);
468 err:
469 	devres_release_group(&pdev->dev, NULL);
470 free:
471 	edac_mc_free(mci);
472 	edac_printk(KERN_ERR, EDAC_MC,
473 		    "EDAC Probe Failed; Error %d\n", res);
474 
475 	return res;
476 }
477 
478 static int altr_sdram_remove(struct platform_device *pdev)
479 {
480 	struct mem_ctl_info *mci = platform_get_drvdata(pdev);
481 
482 	edac_mc_del_mc(&pdev->dev);
483 	edac_mc_free(mci);
484 	platform_set_drvdata(pdev, NULL);
485 
486 	return 0;
487 }
488 
489 /**************** Stratix 10 EDAC Memory Controller Functions ************/
490 
491 /**
492  * s10_protected_reg_write
493  * Write to a protected SMC register.
494  * @context: Not used.
495  * @reg: Address of register
496  * @value: Value to write
497  * Return: INTEL_SIP_SMC_STATUS_OK (0) on success
498  *	   INTEL_SIP_SMC_REG_ERROR on error
499  *	   INTEL_SIP_SMC_RETURN_UNKNOWN_FUNCTION if not supported
500  */
501 static int s10_protected_reg_write(void *context, unsigned int reg,
502 				   unsigned int val)
503 {
504 	struct arm_smccc_res result;
505 
506 	arm_smccc_smc(INTEL_SIP_SMC_REG_WRITE, reg, val, 0, 0,
507 		      0, 0, 0, &result);
508 
509 	return (int)result.a0;
510 }
511 
512 /**
513  * s10_protected_reg_read
514  * Read the status of a protected SMC register
515  * @context: Not used.
516  * @reg: Address of register
517  * @value: Value read.
518  * Return: INTEL_SIP_SMC_STATUS_OK (0) on success
519  *	   INTEL_SIP_SMC_REG_ERROR on error
520  *	   INTEL_SIP_SMC_RETURN_UNKNOWN_FUNCTION if not supported
521  */
522 static int s10_protected_reg_read(void *context, unsigned int reg,
523 				  unsigned int *val)
524 {
525 	struct arm_smccc_res result;
526 
527 	arm_smccc_smc(INTEL_SIP_SMC_REG_READ, reg, 0, 0, 0,
528 		      0, 0, 0, &result);
529 
530 	*val = (unsigned int)result.a1;
531 
532 	return (int)result.a0;
533 }
534 
535 static bool s10_sdram_writeable_reg(struct device *dev, unsigned int reg)
536 {
537 	switch (reg) {
538 	case S10_ECCCTRL1_OFST:
539 	case S10_ERRINTEN_OFST:
540 	case S10_INTMODE_OFST:
541 	case S10_INTSTAT_OFST:
542 	case S10_DIAGINTTEST_OFST:
543 	case S10_SYSMGR_ECC_INTMASK_VAL_OFST:
544 	case S10_SYSMGR_ECC_INTMASK_SET_OFST:
545 	case S10_SYSMGR_ECC_INTMASK_CLR_OFST:
546 		return true;
547 	}
548 	return false;
549 }
550 
551 static bool s10_sdram_readable_reg(struct device *dev, unsigned int reg)
552 {
553 	switch (reg) {
554 	case S10_ECCCTRL1_OFST:
555 	case S10_ERRINTEN_OFST:
556 	case S10_INTMODE_OFST:
557 	case S10_INTSTAT_OFST:
558 	case S10_DERRADDR_OFST:
559 	case S10_SERRADDR_OFST:
560 	case S10_DIAGINTTEST_OFST:
561 	case S10_SYSMGR_ECC_INTMASK_VAL_OFST:
562 	case S10_SYSMGR_ECC_INTMASK_SET_OFST:
563 	case S10_SYSMGR_ECC_INTMASK_CLR_OFST:
564 	case S10_SYSMGR_ECC_INTSTAT_SERR_OFST:
565 	case S10_SYSMGR_ECC_INTSTAT_DERR_OFST:
566 		return true;
567 	}
568 	return false;
569 }
570 
571 static bool s10_sdram_volatile_reg(struct device *dev, unsigned int reg)
572 {
573 	switch (reg) {
574 	case S10_ECCCTRL1_OFST:
575 	case S10_ERRINTEN_OFST:
576 	case S10_INTMODE_OFST:
577 	case S10_INTSTAT_OFST:
578 	case S10_DERRADDR_OFST:
579 	case S10_SERRADDR_OFST:
580 	case S10_DIAGINTTEST_OFST:
581 	case S10_SYSMGR_ECC_INTMASK_VAL_OFST:
582 	case S10_SYSMGR_ECC_INTMASK_SET_OFST:
583 	case S10_SYSMGR_ECC_INTMASK_CLR_OFST:
584 	case S10_SYSMGR_ECC_INTSTAT_SERR_OFST:
585 	case S10_SYSMGR_ECC_INTSTAT_DERR_OFST:
586 		return true;
587 	}
588 	return false;
589 }
590 
591 static const struct regmap_config s10_sdram_regmap_cfg = {
592 	.name = "s10_ddr",
593 	.reg_bits = 32,
594 	.reg_stride = 4,
595 	.val_bits = 32,
596 	.max_register = 0xffffffff,
597 	.writeable_reg = s10_sdram_writeable_reg,
598 	.readable_reg = s10_sdram_readable_reg,
599 	.volatile_reg = s10_sdram_volatile_reg,
600 	.reg_read = s10_protected_reg_read,
601 	.reg_write = s10_protected_reg_write,
602 	.use_single_rw = true,
603 };
604 
605 static int altr_s10_sdram_probe(struct platform_device *pdev)
606 {
607 	const struct of_device_id *id;
608 	struct edac_mc_layer layers[2];
609 	struct mem_ctl_info *mci;
610 	struct altr_sdram_mc_data *drvdata;
611 	const struct altr_sdram_prv_data *priv;
612 	struct regmap *regmap;
613 	struct dimm_info *dimm;
614 	u32 read_reg;
615 	int irq, ret = 0;
616 	unsigned long mem_size;
617 
618 	id = of_match_device(altr_sdram_ctrl_of_match, &pdev->dev);
619 	if (!id)
620 		return -ENODEV;
621 
622 	/* Grab specific offsets and masks for Stratix10 */
623 	priv = of_match_node(altr_sdram_ctrl_of_match,
624 			     pdev->dev.of_node)->data;
625 
626 	regmap = devm_regmap_init(&pdev->dev, NULL, (void *)priv,
627 				  &s10_sdram_regmap_cfg);
628 	if (IS_ERR(regmap))
629 		return PTR_ERR(regmap);
630 
631 	/* Validate the SDRAM controller has ECC enabled */
632 	if (regmap_read(regmap, priv->ecc_ctrl_offset, &read_reg) ||
633 	    ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
634 		edac_printk(KERN_ERR, EDAC_MC,
635 			    "No ECC/ECC disabled [0x%08X]\n", read_reg);
636 		return -ENODEV;
637 	}
638 
639 	/* Grab memory size from device tree. */
640 	mem_size = get_total_mem();
641 	if (!mem_size) {
642 		edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
643 		return -ENODEV;
644 	}
645 
646 	/* Ensure the SDRAM Interrupt is disabled */
647 	if (regmap_update_bits(regmap, priv->ecc_irq_en_offset,
648 			       priv->ecc_irq_en_mask, 0)) {
649 		edac_printk(KERN_ERR, EDAC_MC,
650 			    "Error disabling SDRAM ECC IRQ\n");
651 		return -ENODEV;
652 	}
653 
654 	/* Toggle to clear the SDRAM Error count */
655 	if (regmap_update_bits(regmap, priv->ecc_cnt_rst_offset,
656 			       priv->ecc_cnt_rst_mask,
657 			       priv->ecc_cnt_rst_mask)) {
658 		edac_printk(KERN_ERR, EDAC_MC,
659 			    "Error clearing SDRAM ECC count\n");
660 		return -ENODEV;
661 	}
662 
663 	if (regmap_update_bits(regmap, priv->ecc_cnt_rst_offset,
664 			       priv->ecc_cnt_rst_mask, 0)) {
665 		edac_printk(KERN_ERR, EDAC_MC,
666 			    "Error clearing SDRAM ECC count\n");
667 		return -ENODEV;
668 	}
669 
670 	irq = platform_get_irq(pdev, 0);
671 	if (irq < 0) {
672 		edac_printk(KERN_ERR, EDAC_MC,
673 			    "No irq %d in DT\n", irq);
674 		return -ENODEV;
675 	}
676 
677 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
678 	layers[0].size = 1;
679 	layers[0].is_virt_csrow = true;
680 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
681 	layers[1].size = 1;
682 	layers[1].is_virt_csrow = false;
683 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
684 			    sizeof(struct altr_sdram_mc_data));
685 	if (!mci)
686 		return -ENOMEM;
687 
688 	mci->pdev = &pdev->dev;
689 	drvdata = mci->pvt_info;
690 	drvdata->mc_vbase = regmap;
691 	drvdata->data = priv;
692 	platform_set_drvdata(pdev, mci);
693 
694 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
695 		edac_printk(KERN_ERR, EDAC_MC,
696 			    "Unable to get managed device resource\n");
697 		ret = -ENOMEM;
698 		goto free;
699 	}
700 
701 	mci->mtype_cap = MEM_FLAG_DDR3;
702 	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
703 	mci->edac_cap = EDAC_FLAG_SECDED;
704 	mci->mod_name = EDAC_MOD_STR;
705 	mci->ctl_name = dev_name(&pdev->dev);
706 	mci->scrub_mode = SCRUB_SW_SRC;
707 	mci->dev_name = dev_name(&pdev->dev);
708 
709 	dimm = *mci->dimms;
710 	dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
711 	dimm->grain = 8;
712 	dimm->dtype = DEV_X8;
713 	dimm->mtype = MEM_DDR3;
714 	dimm->edac_mode = EDAC_SECDED;
715 
716 	ret = edac_mc_add_mc(mci);
717 	if (ret < 0)
718 		goto err;
719 
720 	ret = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
721 			       IRQF_SHARED, dev_name(&pdev->dev), mci);
722 	if (ret < 0) {
723 		edac_mc_printk(mci, KERN_ERR,
724 			       "Unable to request irq %d\n", irq);
725 		ret = -ENODEV;
726 		goto err2;
727 	}
728 
729 	if (regmap_write(regmap, S10_SYSMGR_ECC_INTMASK_CLR_OFST,
730 			 S10_DDR0_IRQ_MASK)) {
731 		edac_printk(KERN_ERR, EDAC_MC,
732 			    "Error clearing SDRAM ECC count\n");
733 		return -ENODEV;
734 	}
735 
736 	if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
737 			       priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
738 		edac_mc_printk(mci, KERN_ERR,
739 			       "Error enabling SDRAM ECC IRQ\n");
740 		ret = -ENODEV;
741 		goto err2;
742 	}
743 
744 	altr_sdr_mc_create_debugfs_nodes(mci);
745 
746 	devres_close_group(&pdev->dev, NULL);
747 
748 	return 0;
749 
750 err2:
751 	edac_mc_del_mc(&pdev->dev);
752 err:
753 	devres_release_group(&pdev->dev, NULL);
754 free:
755 	edac_mc_free(mci);
756 	edac_printk(KERN_ERR, EDAC_MC,
757 		    "EDAC Probe Failed; Error %d\n", ret);
758 
759 	return ret;
760 }
761 
762 static int altr_s10_sdram_remove(struct platform_device *pdev)
763 {
764 	struct mem_ctl_info *mci = platform_get_drvdata(pdev);
765 
766 	edac_mc_del_mc(&pdev->dev);
767 	edac_mc_free(mci);
768 	platform_set_drvdata(pdev, NULL);
769 
770 	return 0;
771 }
772 
773 /************** </Stratix10 EDAC Memory Controller Functions> ***********/
774 
775 /*
776  * If you want to suspend, need to disable EDAC by removing it
777  * from the device tree or defconfig.
778  */
779 #ifdef CONFIG_PM
780 static int altr_sdram_prepare(struct device *dev)
781 {
782 	pr_err("Suspend not allowed when EDAC is enabled.\n");
783 
784 	return -EPERM;
785 }
786 
787 static const struct dev_pm_ops altr_sdram_pm_ops = {
788 	.prepare = altr_sdram_prepare,
789 };
790 #endif
791 
792 static struct platform_driver altr_sdram_edac_driver = {
793 	.probe = altr_sdram_probe,
794 	.remove = altr_sdram_remove,
795 	.driver = {
796 		.name = "altr_sdram_edac",
797 #ifdef CONFIG_PM
798 		.pm = &altr_sdram_pm_ops,
799 #endif
800 		.of_match_table = altr_sdram_ctrl_of_match,
801 	},
802 };
803 
804 module_platform_driver(altr_sdram_edac_driver);
805 
806 static struct platform_driver altr_s10_sdram_edac_driver = {
807 	.probe = altr_s10_sdram_probe,
808 	.remove = altr_s10_sdram_remove,
809 	.driver = {
810 		.name = "altr_s10_sdram_edac",
811 #ifdef CONFIG_PM
812 		.pm = &altr_sdram_pm_ops,
813 #endif
814 		.of_match_table = altr_sdram_ctrl_of_match,
815 	},
816 };
817 
818 module_platform_driver(altr_s10_sdram_edac_driver);
819 
820 /************************* EDAC Parent Probe *************************/
821 
822 static const struct of_device_id altr_edac_device_of_match[];
823 
824 static const struct of_device_id altr_edac_of_match[] = {
825 	{ .compatible = "altr,socfpga-ecc-manager" },
826 	{},
827 };
828 MODULE_DEVICE_TABLE(of, altr_edac_of_match);
829 
830 static int altr_edac_probe(struct platform_device *pdev)
831 {
832 	of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
833 			     NULL, &pdev->dev);
834 	return 0;
835 }
836 
837 static struct platform_driver altr_edac_driver = {
838 	.probe =  altr_edac_probe,
839 	.driver = {
840 		.name = "socfpga_ecc_manager",
841 		.of_match_table = altr_edac_of_match,
842 	},
843 };
844 module_platform_driver(altr_edac_driver);
845 
846 /************************* EDAC Device Functions *************************/
847 
848 /*
849  * EDAC Device Functions (shared between various IPs).
850  * The discrete memories use the EDAC Device framework. The probe
851  * and error handling functions are very similar between memories
852  * so they are shared. The memory allocation and freeing for EDAC
853  * trigger testing are different for each memory.
854  */
855 
856 static const struct edac_device_prv_data ocramecc_data;
857 static const struct edac_device_prv_data l2ecc_data;
858 static const struct edac_device_prv_data a10_ocramecc_data;
859 static const struct edac_device_prv_data a10_l2ecc_data;
860 
861 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
862 {
863 	irqreturn_t ret_value = IRQ_NONE;
864 	struct edac_device_ctl_info *dci = dev_id;
865 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
866 	const struct edac_device_prv_data *priv = drvdata->data;
867 
868 	if (irq == drvdata->sb_irq) {
869 		if (priv->ce_clear_mask)
870 			writel(priv->ce_clear_mask, drvdata->base);
871 		edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
872 		ret_value = IRQ_HANDLED;
873 	} else if (irq == drvdata->db_irq) {
874 		if (priv->ue_clear_mask)
875 			writel(priv->ue_clear_mask, drvdata->base);
876 		edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
877 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
878 		ret_value = IRQ_HANDLED;
879 	} else {
880 		WARN_ON(1);
881 	}
882 
883 	return ret_value;
884 }
885 
886 static ssize_t altr_edac_device_trig(struct file *file,
887 				     const char __user *user_buf,
888 				     size_t count, loff_t *ppos)
889 
890 {
891 	u32 *ptemp, i, error_mask;
892 	int result = 0;
893 	u8 trig_type;
894 	unsigned long flags;
895 	struct edac_device_ctl_info *edac_dci = file->private_data;
896 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
897 	const struct edac_device_prv_data *priv = drvdata->data;
898 	void *generic_ptr = edac_dci->dev;
899 
900 	if (!user_buf || get_user(trig_type, user_buf))
901 		return -EFAULT;
902 
903 	if (!priv->alloc_mem)
904 		return -ENOMEM;
905 
906 	/*
907 	 * Note that generic_ptr is initialized to the device * but in
908 	 * some alloc_functions, this is overridden and returns data.
909 	 */
910 	ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
911 	if (!ptemp) {
912 		edac_printk(KERN_ERR, EDAC_DEVICE,
913 			    "Inject: Buffer Allocation error\n");
914 		return -ENOMEM;
915 	}
916 
917 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
918 		error_mask = priv->ue_set_mask;
919 	else
920 		error_mask = priv->ce_set_mask;
921 
922 	edac_printk(KERN_ALERT, EDAC_DEVICE,
923 		    "Trigger Error Mask (0x%X)\n", error_mask);
924 
925 	local_irq_save(flags);
926 	/* write ECC corrupted data out. */
927 	for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
928 		/* Read data so we're in the correct state */
929 		rmb();
930 		if (READ_ONCE(ptemp[i]))
931 			result = -1;
932 		/* Toggle Error bit (it is latched), leave ECC enabled */
933 		writel(error_mask, (drvdata->base + priv->set_err_ofst));
934 		writel(priv->ecc_enable_mask, (drvdata->base +
935 					       priv->set_err_ofst));
936 		ptemp[i] = i;
937 	}
938 	/* Ensure it has been written out */
939 	wmb();
940 	local_irq_restore(flags);
941 
942 	if (result)
943 		edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
944 
945 	/* Read out written data. ECC error caused here */
946 	for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
947 		if (READ_ONCE(ptemp[i]) != i)
948 			edac_printk(KERN_ERR, EDAC_DEVICE,
949 				    "Read doesn't match written data\n");
950 
951 	if (priv->free_mem)
952 		priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
953 
954 	return count;
955 }
956 
957 static const struct file_operations altr_edac_device_inject_fops = {
958 	.open = simple_open,
959 	.write = altr_edac_device_trig,
960 	.llseek = generic_file_llseek,
961 };
962 
963 static ssize_t altr_edac_a10_device_trig(struct file *file,
964 					 const char __user *user_buf,
965 					 size_t count, loff_t *ppos);
966 
967 static const struct file_operations altr_edac_a10_device_inject_fops = {
968 	.open = simple_open,
969 	.write = altr_edac_a10_device_trig,
970 	.llseek = generic_file_llseek,
971 };
972 
973 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
974 				      const struct edac_device_prv_data *priv)
975 {
976 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
977 
978 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
979 		return;
980 
981 	drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
982 	if (!drvdata->debugfs_dir)
983 		return;
984 
985 	if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
986 				      drvdata->debugfs_dir, edac_dci,
987 				      priv->inject_fops))
988 		debugfs_remove_recursive(drvdata->debugfs_dir);
989 }
990 
991 static const struct of_device_id altr_edac_device_of_match[] = {
992 #ifdef CONFIG_EDAC_ALTERA_L2C
993 	{ .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
994 #endif
995 #ifdef CONFIG_EDAC_ALTERA_OCRAM
996 	{ .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
997 #endif
998 	{},
999 };
1000 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
1001 
1002 /*
1003  * altr_edac_device_probe()
1004  *	This is a generic EDAC device driver that will support
1005  *	various Altera memory devices such as the L2 cache ECC and
1006  *	OCRAM ECC as well as the memories for other peripherals.
1007  *	Module specific initialization is done by passing the
1008  *	function index in the device tree.
1009  */
1010 static int altr_edac_device_probe(struct platform_device *pdev)
1011 {
1012 	struct edac_device_ctl_info *dci;
1013 	struct altr_edac_device_dev *drvdata;
1014 	struct resource *r;
1015 	int res = 0;
1016 	struct device_node *np = pdev->dev.of_node;
1017 	char *ecc_name = (char *)np->name;
1018 	static int dev_instance;
1019 
1020 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
1021 		edac_printk(KERN_ERR, EDAC_DEVICE,
1022 			    "Unable to open devm\n");
1023 		return -ENOMEM;
1024 	}
1025 
1026 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1027 	if (!r) {
1028 		edac_printk(KERN_ERR, EDAC_DEVICE,
1029 			    "Unable to get mem resource\n");
1030 		res = -ENODEV;
1031 		goto fail;
1032 	}
1033 
1034 	if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
1035 				     dev_name(&pdev->dev))) {
1036 		edac_printk(KERN_ERR, EDAC_DEVICE,
1037 			    "%s:Error requesting mem region\n", ecc_name);
1038 		res = -EBUSY;
1039 		goto fail;
1040 	}
1041 
1042 	dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
1043 					 1, ecc_name, 1, 0, NULL, 0,
1044 					 dev_instance++);
1045 
1046 	if (!dci) {
1047 		edac_printk(KERN_ERR, EDAC_DEVICE,
1048 			    "%s: Unable to allocate EDAC device\n", ecc_name);
1049 		res = -ENOMEM;
1050 		goto fail;
1051 	}
1052 
1053 	drvdata = dci->pvt_info;
1054 	dci->dev = &pdev->dev;
1055 	platform_set_drvdata(pdev, dci);
1056 	drvdata->edac_dev_name = ecc_name;
1057 
1058 	drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
1059 	if (!drvdata->base) {
1060 		res = -ENOMEM;
1061 		goto fail1;
1062 	}
1063 
1064 	/* Get driver specific data for this EDAC device */
1065 	drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
1066 
1067 	/* Check specific dependencies for the module */
1068 	if (drvdata->data->setup) {
1069 		res = drvdata->data->setup(drvdata);
1070 		if (res)
1071 			goto fail1;
1072 	}
1073 
1074 	drvdata->sb_irq = platform_get_irq(pdev, 0);
1075 	res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
1076 			       altr_edac_device_handler,
1077 			       0, dev_name(&pdev->dev), dci);
1078 	if (res)
1079 		goto fail1;
1080 
1081 	drvdata->db_irq = platform_get_irq(pdev, 1);
1082 	res = devm_request_irq(&pdev->dev, drvdata->db_irq,
1083 			       altr_edac_device_handler,
1084 			       0, dev_name(&pdev->dev), dci);
1085 	if (res)
1086 		goto fail1;
1087 
1088 	dci->mod_name = "Altera ECC Manager";
1089 	dci->dev_name = drvdata->edac_dev_name;
1090 
1091 	res = edac_device_add_device(dci);
1092 	if (res)
1093 		goto fail1;
1094 
1095 	altr_create_edacdev_dbgfs(dci, drvdata->data);
1096 
1097 	devres_close_group(&pdev->dev, NULL);
1098 
1099 	return 0;
1100 
1101 fail1:
1102 	edac_device_free_ctl_info(dci);
1103 fail:
1104 	devres_release_group(&pdev->dev, NULL);
1105 	edac_printk(KERN_ERR, EDAC_DEVICE,
1106 		    "%s:Error setting up EDAC device: %d\n", ecc_name, res);
1107 
1108 	return res;
1109 }
1110 
1111 static int altr_edac_device_remove(struct platform_device *pdev)
1112 {
1113 	struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
1114 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
1115 
1116 	debugfs_remove_recursive(drvdata->debugfs_dir);
1117 	edac_device_del_device(&pdev->dev);
1118 	edac_device_free_ctl_info(dci);
1119 
1120 	return 0;
1121 }
1122 
1123 static struct platform_driver altr_edac_device_driver = {
1124 	.probe =  altr_edac_device_probe,
1125 	.remove = altr_edac_device_remove,
1126 	.driver = {
1127 		.name = "altr_edac_device",
1128 		.of_match_table = altr_edac_device_of_match,
1129 	},
1130 };
1131 module_platform_driver(altr_edac_device_driver);
1132 
1133 /******************* Arria10 Device ECC Shared Functions *****************/
1134 
1135 /*
1136  *  Test for memory's ECC dependencies upon entry because platform specific
1137  *  startup should have initialized the memory and enabled the ECC.
1138  *  Can't turn on ECC here because accessing un-initialized memory will
1139  *  cause CE/UE errors possibly causing an ABORT.
1140  */
1141 static int __maybe_unused
1142 altr_check_ecc_deps(struct altr_edac_device_dev *device)
1143 {
1144 	void __iomem  *base = device->base;
1145 	const struct edac_device_prv_data *prv = device->data;
1146 
1147 	if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
1148 		return 0;
1149 
1150 	edac_printk(KERN_ERR, EDAC_DEVICE,
1151 		    "%s: No ECC present or ECC disabled.\n",
1152 		    device->edac_dev_name);
1153 	return -ENODEV;
1154 }
1155 
1156 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
1157 {
1158 	struct altr_edac_device_dev *dci = dev_id;
1159 	void __iomem  *base = dci->base;
1160 
1161 	if (irq == dci->sb_irq) {
1162 		writel(ALTR_A10_ECC_SERRPENA,
1163 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1164 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1165 
1166 		return IRQ_HANDLED;
1167 	} else if (irq == dci->db_irq) {
1168 		writel(ALTR_A10_ECC_DERRPENA,
1169 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1170 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1171 		if (dci->data->panic)
1172 			panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1173 
1174 		return IRQ_HANDLED;
1175 	}
1176 
1177 	WARN_ON(1);
1178 
1179 	return IRQ_NONE;
1180 }
1181 
1182 /******************* Arria10 Memory Buffer Functions *********************/
1183 
1184 static inline int a10_get_irq_mask(struct device_node *np)
1185 {
1186 	int irq;
1187 	const u32 *handle = of_get_property(np, "interrupts", NULL);
1188 
1189 	if (!handle)
1190 		return -ENODEV;
1191 	irq = be32_to_cpup(handle);
1192 	return irq;
1193 }
1194 
1195 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
1196 {
1197 	u32 value = readl(ioaddr);
1198 
1199 	value |= bit_mask;
1200 	writel(value, ioaddr);
1201 }
1202 
1203 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
1204 {
1205 	u32 value = readl(ioaddr);
1206 
1207 	value &= ~bit_mask;
1208 	writel(value, ioaddr);
1209 }
1210 
1211 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
1212 {
1213 	u32 value = readl(ioaddr);
1214 
1215 	return (value & bit_mask) ? 1 : 0;
1216 }
1217 
1218 /*
1219  * This function uses the memory initialization block in the Arria10 ECC
1220  * controller to initialize/clear the entire memory data and ECC data.
1221  */
1222 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
1223 {
1224 	int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
1225 	u32 init_mask, stat_mask, clear_mask;
1226 	int ret = 0;
1227 
1228 	if (port) {
1229 		init_mask = ALTR_A10_ECC_INITB;
1230 		stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
1231 		clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
1232 	} else {
1233 		init_mask = ALTR_A10_ECC_INITA;
1234 		stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
1235 		clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
1236 	}
1237 
1238 	ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
1239 	while (limit--) {
1240 		if (ecc_test_bits(stat_mask,
1241 				  (ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
1242 			break;
1243 		udelay(1);
1244 	}
1245 	if (limit < 0)
1246 		ret = -EBUSY;
1247 
1248 	/* Clear any pending ECC interrupts */
1249 	writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
1250 
1251 	return ret;
1252 }
1253 
1254 static __init int __maybe_unused
1255 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
1256 			u32 ecc_ctrl_en_mask, bool dual_port)
1257 {
1258 	int ret = 0;
1259 	void __iomem *ecc_block_base;
1260 	struct regmap *ecc_mgr_map;
1261 	char *ecc_name;
1262 	struct device_node *np_eccmgr;
1263 
1264 	ecc_name = (char *)np->name;
1265 
1266 	/* Get the ECC Manager - parent of the device EDACs */
1267 	np_eccmgr = of_get_parent(np);
1268 	ecc_mgr_map = syscon_regmap_lookup_by_phandle(np_eccmgr,
1269 						      "altr,sysmgr-syscon");
1270 	of_node_put(np_eccmgr);
1271 	if (IS_ERR(ecc_mgr_map)) {
1272 		edac_printk(KERN_ERR, EDAC_DEVICE,
1273 			    "Unable to get syscon altr,sysmgr-syscon\n");
1274 		return -ENODEV;
1275 	}
1276 
1277 	/* Map the ECC Block */
1278 	ecc_block_base = of_iomap(np, 0);
1279 	if (!ecc_block_base) {
1280 		edac_printk(KERN_ERR, EDAC_DEVICE,
1281 			    "Unable to map %s ECC block\n", ecc_name);
1282 		return -ENODEV;
1283 	}
1284 
1285 	/* Disable ECC */
1286 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
1287 	writel(ALTR_A10_ECC_SERRINTEN,
1288 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
1289 	ecc_clear_bits(ecc_ctrl_en_mask,
1290 		       (ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
1291 	/* Ensure all writes complete */
1292 	wmb();
1293 	/* Use HW initialization block to initialize memory for ECC */
1294 	ret = altr_init_memory_port(ecc_block_base, 0);
1295 	if (ret) {
1296 		edac_printk(KERN_ERR, EDAC_DEVICE,
1297 			    "ECC: cannot init %s PORTA memory\n", ecc_name);
1298 		goto out;
1299 	}
1300 
1301 	if (dual_port) {
1302 		ret = altr_init_memory_port(ecc_block_base, 1);
1303 		if (ret) {
1304 			edac_printk(KERN_ERR, EDAC_DEVICE,
1305 				    "ECC: cannot init %s PORTB memory\n",
1306 				    ecc_name);
1307 			goto out;
1308 		}
1309 	}
1310 
1311 	/* Interrupt mode set to every SBERR */
1312 	regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST,
1313 		     ALTR_A10_ECC_INTMODE);
1314 	/* Enable ECC */
1315 	ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
1316 					ALTR_A10_ECC_CTRL_OFST));
1317 	writel(ALTR_A10_ECC_SERRINTEN,
1318 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
1319 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
1320 	/* Ensure all writes complete */
1321 	wmb();
1322 out:
1323 	iounmap(ecc_block_base);
1324 	return ret;
1325 }
1326 
1327 static int socfpga_is_a10(void)
1328 {
1329 	return of_machine_is_compatible("altr,socfpga-arria10");
1330 }
1331 
1332 static int validate_parent_available(struct device_node *np);
1333 static const struct of_device_id altr_edac_a10_device_of_match[];
1334 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
1335 {
1336 	int irq;
1337 	struct device_node *child, *np;
1338 
1339 	if (!socfpga_is_a10())
1340 		return -ENODEV;
1341 
1342 	np = of_find_compatible_node(NULL, NULL,
1343 				     "altr,socfpga-a10-ecc-manager");
1344 	if (!np) {
1345 		edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
1346 		return -ENODEV;
1347 	}
1348 
1349 	for_each_child_of_node(np, child) {
1350 		const struct of_device_id *pdev_id;
1351 		const struct edac_device_prv_data *prv;
1352 
1353 		if (!of_device_is_available(child))
1354 			continue;
1355 		if (!of_device_is_compatible(child, compat))
1356 			continue;
1357 
1358 		if (validate_parent_available(child))
1359 			continue;
1360 
1361 		irq = a10_get_irq_mask(child);
1362 		if (irq < 0)
1363 			continue;
1364 
1365 		/* Get matching node and check for valid result */
1366 		pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
1367 		if (IS_ERR_OR_NULL(pdev_id))
1368 			continue;
1369 
1370 		/* Validate private data pointer before dereferencing */
1371 		prv = pdev_id->data;
1372 		if (!prv)
1373 			continue;
1374 
1375 		altr_init_a10_ecc_block(child, BIT(irq),
1376 					prv->ecc_enable_mask, 0);
1377 	}
1378 
1379 	of_node_put(np);
1380 	return 0;
1381 }
1382 
1383 /*********************** OCRAM EDAC Device Functions *********************/
1384 
1385 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1386 
1387 static void *ocram_alloc_mem(size_t size, void **other)
1388 {
1389 	struct device_node *np;
1390 	struct gen_pool *gp;
1391 	void *sram_addr;
1392 
1393 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
1394 	if (!np)
1395 		return NULL;
1396 
1397 	gp = of_gen_pool_get(np, "iram", 0);
1398 	of_node_put(np);
1399 	if (!gp)
1400 		return NULL;
1401 
1402 	sram_addr = (void *)gen_pool_alloc(gp, size);
1403 	if (!sram_addr)
1404 		return NULL;
1405 
1406 	memset(sram_addr, 0, size);
1407 	/* Ensure data is written out */
1408 	wmb();
1409 
1410 	/* Remember this handle for freeing  later */
1411 	*other = gp;
1412 
1413 	return sram_addr;
1414 }
1415 
1416 static void ocram_free_mem(void *p, size_t size, void *other)
1417 {
1418 	gen_pool_free((struct gen_pool *)other, (unsigned long)p, size);
1419 }
1420 
1421 static const struct edac_device_prv_data ocramecc_data = {
1422 	.setup = altr_check_ecc_deps,
1423 	.ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
1424 	.ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
1425 	.alloc_mem = ocram_alloc_mem,
1426 	.free_mem = ocram_free_mem,
1427 	.ecc_enable_mask = ALTR_OCR_ECC_EN,
1428 	.ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
1429 	.ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
1430 	.ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
1431 	.set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
1432 	.trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
1433 	.inject_fops = &altr_edac_device_inject_fops,
1434 };
1435 
1436 static const struct edac_device_prv_data a10_ocramecc_data = {
1437 	.setup = altr_check_ecc_deps,
1438 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1439 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1440 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
1441 	.ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
1442 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1443 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1444 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1445 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1446 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1447 	.inject_fops = &altr_edac_a10_device_inject_fops,
1448 	/*
1449 	 * OCRAM panic on uncorrectable error because sleep/resume
1450 	 * functions and FPGA contents are stored in OCRAM. Prefer
1451 	 * a kernel panic over executing/loading corrupted data.
1452 	 */
1453 	.panic = true,
1454 };
1455 
1456 #endif	/* CONFIG_EDAC_ALTERA_OCRAM */
1457 
1458 /********************* L2 Cache EDAC Device Functions ********************/
1459 
1460 #ifdef CONFIG_EDAC_ALTERA_L2C
1461 
1462 static void *l2_alloc_mem(size_t size, void **other)
1463 {
1464 	struct device *dev = *other;
1465 	void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
1466 
1467 	if (!ptemp)
1468 		return NULL;
1469 
1470 	/* Make sure everything is written out */
1471 	wmb();
1472 
1473 	/*
1474 	 * Clean all cache levels up to LoC (includes L2)
1475 	 * This ensures the corrupted data is written into
1476 	 * L2 cache for readback test (which causes ECC error).
1477 	 */
1478 	flush_cache_all();
1479 
1480 	return ptemp;
1481 }
1482 
1483 static void l2_free_mem(void *p, size_t size, void *other)
1484 {
1485 	struct device *dev = other;
1486 
1487 	if (dev && p)
1488 		devm_kfree(dev, p);
1489 }
1490 
1491 /*
1492  * altr_l2_check_deps()
1493  *	Test for L2 cache ECC dependencies upon entry because
1494  *	platform specific startup should have initialized the L2
1495  *	memory and enabled the ECC.
1496  *	Bail if ECC is not enabled.
1497  *	Note that L2 Cache Enable is forced at build time.
1498  */
1499 static int altr_l2_check_deps(struct altr_edac_device_dev *device)
1500 {
1501 	void __iomem *base = device->base;
1502 	const struct edac_device_prv_data *prv = device->data;
1503 
1504 	if ((readl(base) & prv->ecc_enable_mask) ==
1505 	     prv->ecc_enable_mask)
1506 		return 0;
1507 
1508 	edac_printk(KERN_ERR, EDAC_DEVICE,
1509 		    "L2: No ECC present, or ECC disabled\n");
1510 	return -ENODEV;
1511 }
1512 
1513 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
1514 {
1515 	struct altr_edac_device_dev *dci = dev_id;
1516 
1517 	if (irq == dci->sb_irq) {
1518 		regmap_write(dci->edac->ecc_mgr_map,
1519 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1520 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
1521 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1522 
1523 		return IRQ_HANDLED;
1524 	} else if (irq == dci->db_irq) {
1525 		regmap_write(dci->edac->ecc_mgr_map,
1526 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1527 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
1528 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1529 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1530 
1531 		return IRQ_HANDLED;
1532 	}
1533 
1534 	WARN_ON(1);
1535 
1536 	return IRQ_NONE;
1537 }
1538 
1539 static const struct edac_device_prv_data l2ecc_data = {
1540 	.setup = altr_l2_check_deps,
1541 	.ce_clear_mask = 0,
1542 	.ue_clear_mask = 0,
1543 	.alloc_mem = l2_alloc_mem,
1544 	.free_mem = l2_free_mem,
1545 	.ecc_enable_mask = ALTR_L2_ECC_EN,
1546 	.ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
1547 	.ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
1548 	.set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
1549 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1550 	.inject_fops = &altr_edac_device_inject_fops,
1551 };
1552 
1553 static const struct edac_device_prv_data a10_l2ecc_data = {
1554 	.setup = altr_l2_check_deps,
1555 	.ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
1556 	.ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
1557 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
1558 	.alloc_mem = l2_alloc_mem,
1559 	.free_mem = l2_free_mem,
1560 	.ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
1561 	.ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
1562 	.ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
1563 	.set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
1564 	.ecc_irq_handler = altr_edac_a10_l2_irq,
1565 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1566 	.inject_fops = &altr_edac_device_inject_fops,
1567 };
1568 
1569 #endif	/* CONFIG_EDAC_ALTERA_L2C */
1570 
1571 /********************* Ethernet Device Functions ********************/
1572 
1573 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1574 
1575 static const struct edac_device_prv_data a10_enetecc_data = {
1576 	.setup = altr_check_ecc_deps,
1577 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1578 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1579 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1580 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1581 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1582 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1583 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1584 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1585 	.inject_fops = &altr_edac_a10_device_inject_fops,
1586 };
1587 
1588 static int __init socfpga_init_ethernet_ecc(void)
1589 {
1590 	return altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
1591 }
1592 
1593 early_initcall(socfpga_init_ethernet_ecc);
1594 
1595 #endif	/* CONFIG_EDAC_ALTERA_ETHERNET */
1596 
1597 /********************** NAND Device Functions **********************/
1598 
1599 #ifdef CONFIG_EDAC_ALTERA_NAND
1600 
1601 static const struct edac_device_prv_data a10_nandecc_data = {
1602 	.setup = altr_check_ecc_deps,
1603 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1604 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1605 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1606 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1607 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1608 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1609 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1610 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1611 	.inject_fops = &altr_edac_a10_device_inject_fops,
1612 };
1613 
1614 static int __init socfpga_init_nand_ecc(void)
1615 {
1616 	return altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
1617 }
1618 
1619 early_initcall(socfpga_init_nand_ecc);
1620 
1621 #endif	/* CONFIG_EDAC_ALTERA_NAND */
1622 
1623 /********************** DMA Device Functions **********************/
1624 
1625 #ifdef CONFIG_EDAC_ALTERA_DMA
1626 
1627 static const struct edac_device_prv_data a10_dmaecc_data = {
1628 	.setup = altr_check_ecc_deps,
1629 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1630 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1631 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1632 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1633 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1634 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1635 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1636 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1637 	.inject_fops = &altr_edac_a10_device_inject_fops,
1638 };
1639 
1640 static int __init socfpga_init_dma_ecc(void)
1641 {
1642 	return altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
1643 }
1644 
1645 early_initcall(socfpga_init_dma_ecc);
1646 
1647 #endif	/* CONFIG_EDAC_ALTERA_DMA */
1648 
1649 /********************** USB Device Functions **********************/
1650 
1651 #ifdef CONFIG_EDAC_ALTERA_USB
1652 
1653 static const struct edac_device_prv_data a10_usbecc_data = {
1654 	.setup = altr_check_ecc_deps,
1655 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1656 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1657 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1658 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1659 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1660 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1661 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1662 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1663 	.inject_fops = &altr_edac_a10_device_inject_fops,
1664 };
1665 
1666 static int __init socfpga_init_usb_ecc(void)
1667 {
1668 	return altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
1669 }
1670 
1671 early_initcall(socfpga_init_usb_ecc);
1672 
1673 #endif	/* CONFIG_EDAC_ALTERA_USB */
1674 
1675 /********************** QSPI Device Functions **********************/
1676 
1677 #ifdef CONFIG_EDAC_ALTERA_QSPI
1678 
1679 static const struct edac_device_prv_data a10_qspiecc_data = {
1680 	.setup = altr_check_ecc_deps,
1681 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1682 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1683 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1684 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1685 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1686 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1687 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1688 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1689 	.inject_fops = &altr_edac_a10_device_inject_fops,
1690 };
1691 
1692 static int __init socfpga_init_qspi_ecc(void)
1693 {
1694 	return altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
1695 }
1696 
1697 early_initcall(socfpga_init_qspi_ecc);
1698 
1699 #endif	/* CONFIG_EDAC_ALTERA_QSPI */
1700 
1701 /********************* SDMMC Device Functions **********************/
1702 
1703 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1704 
1705 static const struct edac_device_prv_data a10_sdmmceccb_data;
1706 static int altr_portb_setup(struct altr_edac_device_dev *device)
1707 {
1708 	struct edac_device_ctl_info *dci;
1709 	struct altr_edac_device_dev *altdev;
1710 	char *ecc_name = "sdmmcb-ecc";
1711 	int edac_idx, rc;
1712 	struct device_node *np;
1713 	const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
1714 
1715 	rc = altr_check_ecc_deps(device);
1716 	if (rc)
1717 		return rc;
1718 
1719 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1720 	if (!np) {
1721 		edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1722 		return -ENODEV;
1723 	}
1724 
1725 	/* Create the PortB EDAC device */
1726 	edac_idx = edac_device_alloc_index();
1727 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
1728 					 ecc_name, 1, 0, NULL, 0, edac_idx);
1729 	if (!dci) {
1730 		edac_printk(KERN_ERR, EDAC_DEVICE,
1731 			    "%s: Unable to allocate PortB EDAC device\n",
1732 			    ecc_name);
1733 		return -ENOMEM;
1734 	}
1735 
1736 	/* Initialize the PortB EDAC device structure from PortA structure */
1737 	altdev = dci->pvt_info;
1738 	*altdev = *device;
1739 
1740 	if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
1741 		return -ENOMEM;
1742 
1743 	/* Update PortB specific values */
1744 	altdev->edac_dev_name = ecc_name;
1745 	altdev->edac_idx = edac_idx;
1746 	altdev->edac_dev = dci;
1747 	altdev->data = prv;
1748 	dci->dev = &altdev->ddev;
1749 	dci->ctl_name = "Altera ECC Manager";
1750 	dci->mod_name = ecc_name;
1751 	dci->dev_name = ecc_name;
1752 
1753 	/* Update the IRQs for PortB */
1754 	altdev->sb_irq = irq_of_parse_and_map(np, 2);
1755 	if (!altdev->sb_irq) {
1756 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
1757 		rc = -ENODEV;
1758 		goto err_release_group_1;
1759 	}
1760 	rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
1761 			      prv->ecc_irq_handler,
1762 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1763 			      ecc_name, altdev);
1764 	if (rc) {
1765 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
1766 		goto err_release_group_1;
1767 	}
1768 
1769 	altdev->db_irq = irq_of_parse_and_map(np, 3);
1770 	if (!altdev->db_irq) {
1771 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
1772 		rc = -ENODEV;
1773 		goto err_release_group_1;
1774 	}
1775 	rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
1776 			      prv->ecc_irq_handler,
1777 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1778 			      ecc_name, altdev);
1779 	if (rc) {
1780 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
1781 		goto err_release_group_1;
1782 	}
1783 
1784 	rc = edac_device_add_device(dci);
1785 	if (rc) {
1786 		edac_printk(KERN_ERR, EDAC_DEVICE,
1787 			    "edac_device_add_device portB failed\n");
1788 		rc = -ENOMEM;
1789 		goto err_release_group_1;
1790 	}
1791 	altr_create_edacdev_dbgfs(dci, prv);
1792 
1793 	list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
1794 
1795 	devres_remove_group(&altdev->ddev, altr_portb_setup);
1796 
1797 	return 0;
1798 
1799 err_release_group_1:
1800 	edac_device_free_ctl_info(dci);
1801 	devres_release_group(&altdev->ddev, altr_portb_setup);
1802 	edac_printk(KERN_ERR, EDAC_DEVICE,
1803 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1804 	return rc;
1805 }
1806 
1807 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
1808 {
1809 	struct altr_edac_device_dev *ad = dev_id;
1810 	void __iomem  *base = ad->base;
1811 	const struct edac_device_prv_data *priv = ad->data;
1812 
1813 	if (irq == ad->sb_irq) {
1814 		writel(priv->ce_clear_mask,
1815 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1816 		edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
1817 		return IRQ_HANDLED;
1818 	} else if (irq == ad->db_irq) {
1819 		writel(priv->ue_clear_mask,
1820 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1821 		edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
1822 		return IRQ_HANDLED;
1823 	}
1824 
1825 	WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
1826 
1827 	return IRQ_NONE;
1828 }
1829 
1830 static const struct edac_device_prv_data a10_sdmmcecca_data = {
1831 	.setup = altr_portb_setup,
1832 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1833 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1834 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1835 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1836 	.ce_set_mask = ALTR_A10_ECC_SERRPENA,
1837 	.ue_set_mask = ALTR_A10_ECC_DERRPENA,
1838 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1839 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1840 	.inject_fops = &altr_edac_a10_device_inject_fops,
1841 };
1842 
1843 static const struct edac_device_prv_data a10_sdmmceccb_data = {
1844 	.setup = altr_portb_setup,
1845 	.ce_clear_mask = ALTR_A10_ECC_SERRPENB,
1846 	.ue_clear_mask = ALTR_A10_ECC_DERRPENB,
1847 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1848 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1849 	.ce_set_mask = ALTR_A10_ECC_TSERRB,
1850 	.ue_set_mask = ALTR_A10_ECC_TDERRB,
1851 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1852 	.ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
1853 	.inject_fops = &altr_edac_a10_device_inject_fops,
1854 };
1855 
1856 static int __init socfpga_init_sdmmc_ecc(void)
1857 {
1858 	int rc = -ENODEV;
1859 	struct device_node *child;
1860 
1861 	if (!socfpga_is_a10())
1862 		return -ENODEV;
1863 
1864 	child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1865 	if (!child) {
1866 		edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1867 		return -ENODEV;
1868 	}
1869 
1870 	if (!of_device_is_available(child))
1871 		goto exit;
1872 
1873 	if (validate_parent_available(child))
1874 		goto exit;
1875 
1876 	rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
1877 				     a10_sdmmcecca_data.ecc_enable_mask, 1);
1878 exit:
1879 	of_node_put(child);
1880 	return rc;
1881 }
1882 
1883 early_initcall(socfpga_init_sdmmc_ecc);
1884 
1885 #endif	/* CONFIG_EDAC_ALTERA_SDMMC */
1886 
1887 /********************* Arria10 EDAC Device Functions *************************/
1888 static const struct of_device_id altr_edac_a10_device_of_match[] = {
1889 #ifdef CONFIG_EDAC_ALTERA_L2C
1890 	{ .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
1891 #endif
1892 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1893 	{ .compatible = "altr,socfpga-a10-ocram-ecc",
1894 	  .data = &a10_ocramecc_data },
1895 #endif
1896 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1897 	{ .compatible = "altr,socfpga-eth-mac-ecc",
1898 	  .data = &a10_enetecc_data },
1899 #endif
1900 #ifdef CONFIG_EDAC_ALTERA_NAND
1901 	{ .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
1902 #endif
1903 #ifdef CONFIG_EDAC_ALTERA_DMA
1904 	{ .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
1905 #endif
1906 #ifdef CONFIG_EDAC_ALTERA_USB
1907 	{ .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
1908 #endif
1909 #ifdef CONFIG_EDAC_ALTERA_QSPI
1910 	{ .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
1911 #endif
1912 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1913 	{ .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
1914 #endif
1915 	{},
1916 };
1917 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
1918 
1919 /*
1920  * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
1921  * because 2 IRQs are shared among the all ECC peripherals. The ECC
1922  * manager manages the IRQs and the children.
1923  * Based on xgene_edac.c peripheral code.
1924  */
1925 
1926 static ssize_t altr_edac_a10_device_trig(struct file *file,
1927 					 const char __user *user_buf,
1928 					 size_t count, loff_t *ppos)
1929 {
1930 	struct edac_device_ctl_info *edac_dci = file->private_data;
1931 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1932 	const struct edac_device_prv_data *priv = drvdata->data;
1933 	void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1934 	unsigned long flags;
1935 	u8 trig_type;
1936 
1937 	if (!user_buf || get_user(trig_type, user_buf))
1938 		return -EFAULT;
1939 
1940 	local_irq_save(flags);
1941 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
1942 		writel(priv->ue_set_mask, set_addr);
1943 	else
1944 		writel(priv->ce_set_mask, set_addr);
1945 	/* Ensure the interrupt test bits are set */
1946 	wmb();
1947 	local_irq_restore(flags);
1948 
1949 	return count;
1950 }
1951 
1952 static void altr_edac_a10_irq_handler(struct irq_desc *desc)
1953 {
1954 	int dberr, bit, sm_offset, irq_status;
1955 	struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
1956 	struct irq_chip *chip = irq_desc_get_chip(desc);
1957 	int irq = irq_desc_get_irq(desc);
1958 
1959 	dberr = (irq == edac->db_irq) ? 1 : 0;
1960 	sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
1961 			    A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
1962 
1963 	chained_irq_enter(chip, desc);
1964 
1965 	regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
1966 
1967 	for_each_set_bit(bit, (unsigned long *)&irq_status, 32) {
1968 		irq = irq_linear_revmap(edac->domain, dberr * 32 + bit);
1969 		if (irq)
1970 			generic_handle_irq(irq);
1971 	}
1972 
1973 	chained_irq_exit(chip, desc);
1974 }
1975 
1976 static int validate_parent_available(struct device_node *np)
1977 {
1978 	struct device_node *parent;
1979 	int ret = 0;
1980 
1981 	/* Ensure parent device is enabled if parent node exists */
1982 	parent = of_parse_phandle(np, "altr,ecc-parent", 0);
1983 	if (parent && !of_device_is_available(parent))
1984 		ret = -ENODEV;
1985 
1986 	of_node_put(parent);
1987 	return ret;
1988 }
1989 
1990 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
1991 				    struct device_node *np)
1992 {
1993 	struct edac_device_ctl_info *dci;
1994 	struct altr_edac_device_dev *altdev;
1995 	char *ecc_name = (char *)np->name;
1996 	struct resource res;
1997 	int edac_idx;
1998 	int rc = 0;
1999 	const struct edac_device_prv_data *prv;
2000 	/* Get matching node and check for valid result */
2001 	const struct of_device_id *pdev_id =
2002 		of_match_node(altr_edac_a10_device_of_match, np);
2003 	if (IS_ERR_OR_NULL(pdev_id))
2004 		return -ENODEV;
2005 
2006 	/* Get driver specific data for this EDAC device */
2007 	prv = pdev_id->data;
2008 	if (IS_ERR_OR_NULL(prv))
2009 		return -ENODEV;
2010 
2011 	if (validate_parent_available(np))
2012 		return -ENODEV;
2013 
2014 	if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
2015 		return -ENOMEM;
2016 
2017 	rc = of_address_to_resource(np, 0, &res);
2018 	if (rc < 0) {
2019 		edac_printk(KERN_ERR, EDAC_DEVICE,
2020 			    "%s: no resource address\n", ecc_name);
2021 		goto err_release_group;
2022 	}
2023 
2024 	edac_idx = edac_device_alloc_index();
2025 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
2026 					 1, ecc_name, 1, 0, NULL, 0,
2027 					 edac_idx);
2028 
2029 	if (!dci) {
2030 		edac_printk(KERN_ERR, EDAC_DEVICE,
2031 			    "%s: Unable to allocate EDAC device\n", ecc_name);
2032 		rc = -ENOMEM;
2033 		goto err_release_group;
2034 	}
2035 
2036 	altdev = dci->pvt_info;
2037 	dci->dev = edac->dev;
2038 	altdev->edac_dev_name = ecc_name;
2039 	altdev->edac_idx = edac_idx;
2040 	altdev->edac = edac;
2041 	altdev->edac_dev = dci;
2042 	altdev->data = prv;
2043 	altdev->ddev = *edac->dev;
2044 	dci->dev = &altdev->ddev;
2045 	dci->ctl_name = "Altera ECC Manager";
2046 	dci->mod_name = ecc_name;
2047 	dci->dev_name = ecc_name;
2048 
2049 	altdev->base = devm_ioremap_resource(edac->dev, &res);
2050 	if (IS_ERR(altdev->base)) {
2051 		rc = PTR_ERR(altdev->base);
2052 		goto err_release_group1;
2053 	}
2054 
2055 	/* Check specific dependencies for the module */
2056 	if (altdev->data->setup) {
2057 		rc = altdev->data->setup(altdev);
2058 		if (rc)
2059 			goto err_release_group1;
2060 	}
2061 
2062 	altdev->sb_irq = irq_of_parse_and_map(np, 0);
2063 	if (!altdev->sb_irq) {
2064 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
2065 		rc = -ENODEV;
2066 		goto err_release_group1;
2067 	}
2068 	rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
2069 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
2070 			      ecc_name, altdev);
2071 	if (rc) {
2072 		edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
2073 		goto err_release_group1;
2074 	}
2075 
2076 	altdev->db_irq = irq_of_parse_and_map(np, 1);
2077 	if (!altdev->db_irq) {
2078 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
2079 		rc = -ENODEV;
2080 		goto err_release_group1;
2081 	}
2082 	rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
2083 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
2084 			      ecc_name, altdev);
2085 	if (rc) {
2086 		edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
2087 		goto err_release_group1;
2088 	}
2089 
2090 	rc = edac_device_add_device(dci);
2091 	if (rc) {
2092 		dev_err(edac->dev, "edac_device_add_device failed\n");
2093 		rc = -ENOMEM;
2094 		goto err_release_group1;
2095 	}
2096 
2097 	altr_create_edacdev_dbgfs(dci, prv);
2098 
2099 	list_add(&altdev->next, &edac->a10_ecc_devices);
2100 
2101 	devres_remove_group(edac->dev, altr_edac_a10_device_add);
2102 
2103 	return 0;
2104 
2105 err_release_group1:
2106 	edac_device_free_ctl_info(dci);
2107 err_release_group:
2108 	devres_release_group(edac->dev, NULL);
2109 	edac_printk(KERN_ERR, EDAC_DEVICE,
2110 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
2111 
2112 	return rc;
2113 }
2114 
2115 static void a10_eccmgr_irq_mask(struct irq_data *d)
2116 {
2117 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2118 
2119 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_SET_OFST,
2120 		     BIT(d->hwirq));
2121 }
2122 
2123 static void a10_eccmgr_irq_unmask(struct irq_data *d)
2124 {
2125 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2126 
2127 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_CLR_OFST,
2128 		     BIT(d->hwirq));
2129 }
2130 
2131 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
2132 				    irq_hw_number_t hwirq)
2133 {
2134 	struct altr_arria10_edac *edac = d->host_data;
2135 
2136 	irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
2137 	irq_set_chip_data(irq, edac);
2138 	irq_set_noprobe(irq);
2139 
2140 	return 0;
2141 }
2142 
2143 static const struct irq_domain_ops a10_eccmgr_ic_ops = {
2144 	.map = a10_eccmgr_irqdomain_map,
2145 	.xlate = irq_domain_xlate_twocell,
2146 };
2147 
2148 static int altr_edac_a10_probe(struct platform_device *pdev)
2149 {
2150 	struct altr_arria10_edac *edac;
2151 	struct device_node *child;
2152 
2153 	edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
2154 	if (!edac)
2155 		return -ENOMEM;
2156 
2157 	edac->dev = &pdev->dev;
2158 	platform_set_drvdata(pdev, edac);
2159 	INIT_LIST_HEAD(&edac->a10_ecc_devices);
2160 
2161 	edac->ecc_mgr_map = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
2162 							"altr,sysmgr-syscon");
2163 	if (IS_ERR(edac->ecc_mgr_map)) {
2164 		edac_printk(KERN_ERR, EDAC_DEVICE,
2165 			    "Unable to get syscon altr,sysmgr-syscon\n");
2166 		return PTR_ERR(edac->ecc_mgr_map);
2167 	}
2168 
2169 	edac->irq_chip.name = pdev->dev.of_node->name;
2170 	edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
2171 	edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
2172 	edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64,
2173 					     &a10_eccmgr_ic_ops, edac);
2174 	if (!edac->domain) {
2175 		dev_err(&pdev->dev, "Error adding IRQ domain\n");
2176 		return -ENOMEM;
2177 	}
2178 
2179 	edac->sb_irq = platform_get_irq(pdev, 0);
2180 	if (edac->sb_irq < 0) {
2181 		dev_err(&pdev->dev, "No SBERR IRQ resource\n");
2182 		return edac->sb_irq;
2183 	}
2184 
2185 	irq_set_chained_handler_and_data(edac->sb_irq,
2186 					 altr_edac_a10_irq_handler,
2187 					 edac);
2188 
2189 	edac->db_irq = platform_get_irq(pdev, 1);
2190 	if (edac->db_irq < 0) {
2191 		dev_err(&pdev->dev, "No DBERR IRQ resource\n");
2192 		return edac->db_irq;
2193 	}
2194 	irq_set_chained_handler_and_data(edac->db_irq,
2195 					 altr_edac_a10_irq_handler,
2196 					 edac);
2197 
2198 	for_each_child_of_node(pdev->dev.of_node, child) {
2199 		if (!of_device_is_available(child))
2200 			continue;
2201 
2202 		if (of_device_is_compatible(child, "altr,socfpga-a10-l2-ecc") ||
2203 		    of_device_is_compatible(child, "altr,socfpga-a10-ocram-ecc") ||
2204 		    of_device_is_compatible(child, "altr,socfpga-eth-mac-ecc") ||
2205 		    of_device_is_compatible(child, "altr,socfpga-nand-ecc") ||
2206 		    of_device_is_compatible(child, "altr,socfpga-dma-ecc") ||
2207 		    of_device_is_compatible(child, "altr,socfpga-usb-ecc") ||
2208 		    of_device_is_compatible(child, "altr,socfpga-qspi-ecc") ||
2209 		    of_device_is_compatible(child, "altr,socfpga-sdmmc-ecc"))
2210 
2211 			altr_edac_a10_device_add(edac, child);
2212 
2213 		else if (of_device_is_compatible(child, "altr,sdram-edac-a10"))
2214 			of_platform_populate(pdev->dev.of_node,
2215 					     altr_sdram_ctrl_of_match,
2216 					     NULL, &pdev->dev);
2217 	}
2218 
2219 	return 0;
2220 }
2221 
2222 static const struct of_device_id altr_edac_a10_of_match[] = {
2223 	{ .compatible = "altr,socfpga-a10-ecc-manager" },
2224 	{},
2225 };
2226 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
2227 
2228 static struct platform_driver altr_edac_a10_driver = {
2229 	.probe =  altr_edac_a10_probe,
2230 	.driver = {
2231 		.name = "socfpga_a10_ecc_manager",
2232 		.of_match_table = altr_edac_a10_of_match,
2233 	},
2234 };
2235 module_platform_driver(altr_edac_a10_driver);
2236 
2237 /************** Stratix 10 EDAC Device Controller Functions> ************/
2238 
2239 #define to_s10edac(p, m) container_of(p, struct altr_stratix10_edac, m)
2240 
2241 /*
2242  * The double bit error is handled through SError which is fatal. This is
2243  * called as a panic notifier to printout ECC error info as part of the panic.
2244  */
2245 static int s10_edac_dberr_handler(struct notifier_block *this,
2246 				  unsigned long event, void *ptr)
2247 {
2248 	struct altr_stratix10_edac *edac = to_s10edac(this, panic_notifier);
2249 	int err_addr, dberror;
2250 
2251 	s10_protected_reg_read(edac, S10_SYSMGR_ECC_INTSTAT_DERR_OFST,
2252 			       &dberror);
2253 	/* Remember the UE Errors for a reboot */
2254 	s10_protected_reg_write(edac, S10_SYSMGR_UE_VAL_OFST, dberror);
2255 	if (dberror & S10_DDR0_IRQ_MASK) {
2256 		s10_protected_reg_read(edac, S10_DERRADDR_OFST, &err_addr);
2257 		/* Remember the UE Error address */
2258 		s10_protected_reg_write(edac, S10_SYSMGR_UE_ADDR_OFST,
2259 					err_addr);
2260 		edac_printk(KERN_ERR, EDAC_MC,
2261 			    "EDAC: [Uncorrectable errors @ 0x%08X]\n\n",
2262 			    err_addr);
2263 	}
2264 
2265 	return NOTIFY_DONE;
2266 }
2267 
2268 static void altr_edac_s10_irq_handler(struct irq_desc *desc)
2269 {
2270 	struct altr_stratix10_edac *edac = irq_desc_get_handler_data(desc);
2271 	struct irq_chip *chip = irq_desc_get_chip(desc);
2272 	int irq = irq_desc_get_irq(desc);
2273 	int bit, sm_offset, irq_status;
2274 
2275 	sm_offset = S10_SYSMGR_ECC_INTSTAT_SERR_OFST;
2276 
2277 	chained_irq_enter(chip, desc);
2278 
2279 	s10_protected_reg_read(NULL, sm_offset, &irq_status);
2280 
2281 	for_each_set_bit(bit, (unsigned long *)&irq_status, 32) {
2282 		irq = irq_linear_revmap(edac->domain, bit);
2283 		if (irq)
2284 			generic_handle_irq(irq);
2285 	}
2286 
2287 	chained_irq_exit(chip, desc);
2288 }
2289 
2290 static void s10_eccmgr_irq_mask(struct irq_data *d)
2291 {
2292 	struct altr_stratix10_edac *edac = irq_data_get_irq_chip_data(d);
2293 
2294 	s10_protected_reg_write(edac, S10_SYSMGR_ECC_INTMASK_SET_OFST,
2295 				BIT(d->hwirq));
2296 }
2297 
2298 static void s10_eccmgr_irq_unmask(struct irq_data *d)
2299 {
2300 	struct altr_stratix10_edac *edac = irq_data_get_irq_chip_data(d);
2301 
2302 	s10_protected_reg_write(edac, S10_SYSMGR_ECC_INTMASK_CLR_OFST,
2303 				BIT(d->hwirq));
2304 }
2305 
2306 static int s10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
2307 				    irq_hw_number_t hwirq)
2308 {
2309 	struct altr_stratix10_edac *edac = d->host_data;
2310 
2311 	irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
2312 	irq_set_chip_data(irq, edac);
2313 	irq_set_noprobe(irq);
2314 
2315 	return 0;
2316 }
2317 
2318 static const struct irq_domain_ops s10_eccmgr_ic_ops = {
2319 	.map = s10_eccmgr_irqdomain_map,
2320 	.xlate = irq_domain_xlate_twocell,
2321 };
2322 
2323 static int altr_edac_s10_probe(struct platform_device *pdev)
2324 {
2325 	struct altr_stratix10_edac *edac;
2326 	struct device_node *child;
2327 	int dberror, err_addr;
2328 
2329 	edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
2330 	if (!edac)
2331 		return -ENOMEM;
2332 
2333 	edac->dev = &pdev->dev;
2334 	platform_set_drvdata(pdev, edac);
2335 	INIT_LIST_HEAD(&edac->s10_ecc_devices);
2336 
2337 	edac->irq_chip.name = pdev->dev.of_node->name;
2338 	edac->irq_chip.irq_mask = s10_eccmgr_irq_mask;
2339 	edac->irq_chip.irq_unmask = s10_eccmgr_irq_unmask;
2340 	edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64,
2341 					     &s10_eccmgr_ic_ops, edac);
2342 	if (!edac->domain) {
2343 		dev_err(&pdev->dev, "Error adding IRQ domain\n");
2344 		return -ENOMEM;
2345 	}
2346 
2347 	edac->sb_irq = platform_get_irq(pdev, 0);
2348 	if (edac->sb_irq < 0) {
2349 		dev_err(&pdev->dev, "No SBERR IRQ resource\n");
2350 		return edac->sb_irq;
2351 	}
2352 
2353 	irq_set_chained_handler_and_data(edac->sb_irq,
2354 					 altr_edac_s10_irq_handler,
2355 					 edac);
2356 
2357 	edac->panic_notifier.notifier_call = s10_edac_dberr_handler;
2358 	atomic_notifier_chain_register(&panic_notifier_list,
2359 				       &edac->panic_notifier);
2360 
2361 	/* Printout a message if uncorrectable error previously. */
2362 	s10_protected_reg_read(edac, S10_SYSMGR_UE_VAL_OFST, &dberror);
2363 	if (dberror) {
2364 		s10_protected_reg_read(edac, S10_SYSMGR_UE_ADDR_OFST,
2365 				       &err_addr);
2366 		edac_printk(KERN_ERR, EDAC_DEVICE,
2367 			    "Previous Boot UE detected[0x%X] @ 0x%X\n",
2368 			    dberror, err_addr);
2369 		/* Reset the sticky registers */
2370 		s10_protected_reg_write(edac, S10_SYSMGR_UE_VAL_OFST, 0);
2371 		s10_protected_reg_write(edac, S10_SYSMGR_UE_ADDR_OFST, 0);
2372 	}
2373 
2374 	for_each_child_of_node(pdev->dev.of_node, child) {
2375 		if (!of_device_is_available(child))
2376 			continue;
2377 
2378 		if (of_device_is_compatible(child, "altr,sdram-edac-s10"))
2379 			of_platform_populate(pdev->dev.of_node,
2380 					     altr_sdram_ctrl_of_match,
2381 					     NULL, &pdev->dev);
2382 	}
2383 
2384 	return 0;
2385 }
2386 
2387 static const struct of_device_id altr_edac_s10_of_match[] = {
2388 	{ .compatible = "altr,socfpga-s10-ecc-manager" },
2389 	{},
2390 };
2391 MODULE_DEVICE_TABLE(of, altr_edac_s10_of_match);
2392 
2393 static struct platform_driver altr_edac_s10_driver = {
2394 	.probe =  altr_edac_s10_probe,
2395 	.driver = {
2396 		.name = "socfpga_s10_ecc_manager",
2397 		.of_match_table = altr_edac_s10_of_match,
2398 	},
2399 };
2400 module_platform_driver(altr_edac_s10_driver);
2401 
2402 MODULE_LICENSE("GPL v2");
2403 MODULE_AUTHOR("Thor Thayer");
2404 MODULE_DESCRIPTION("EDAC Driver for Altera Memories");
2405