xref: /openbmc/linux/drivers/edac/altera_edac.c (revision 78beef62)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 2017-2018, Intel Corporation. All rights reserved
4  *  Copyright Altera Corporation (C) 2014-2016. All rights reserved.
5  *  Copyright 2011-2012 Calxeda, Inc.
6  */
7 
8 #include <asm/cacheflush.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/edac.h>
12 #include <linux/firmware/intel/stratix10-smc.h>
13 #include <linux/genalloc.h>
14 #include <linux/interrupt.h>
15 #include <linux/irqchip/chained_irq.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/notifier.h>
19 #include <linux/of_address.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/regmap.h>
24 #include <linux/types.h>
25 #include <linux/uaccess.h>
26 
27 #include "altera_edac.h"
28 #include "edac_module.h"
29 
30 #define EDAC_MOD_STR		"altera_edac"
31 #define EDAC_DEVICE		"Altera"
32 
33 #ifdef CONFIG_EDAC_ALTERA_SDRAM
34 static const struct altr_sdram_prv_data c5_data = {
35 	.ecc_ctrl_offset    = CV_CTLCFG_OFST,
36 	.ecc_ctl_en_mask    = CV_CTLCFG_ECC_AUTO_EN,
37 	.ecc_stat_offset    = CV_DRAMSTS_OFST,
38 	.ecc_stat_ce_mask   = CV_DRAMSTS_SBEERR,
39 	.ecc_stat_ue_mask   = CV_DRAMSTS_DBEERR,
40 	.ecc_saddr_offset   = CV_ERRADDR_OFST,
41 	.ecc_daddr_offset   = CV_ERRADDR_OFST,
42 	.ecc_cecnt_offset   = CV_SBECOUNT_OFST,
43 	.ecc_uecnt_offset   = CV_DBECOUNT_OFST,
44 	.ecc_irq_en_offset  = CV_DRAMINTR_OFST,
45 	.ecc_irq_en_mask    = CV_DRAMINTR_INTREN,
46 	.ecc_irq_clr_offset = CV_DRAMINTR_OFST,
47 	.ecc_irq_clr_mask   = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
48 	.ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
49 	.ecc_cnt_rst_mask   = CV_DRAMINTR_INTRCLR,
50 	.ce_ue_trgr_offset  = CV_CTLCFG_OFST,
51 	.ce_set_mask        = CV_CTLCFG_GEN_SB_ERR,
52 	.ue_set_mask        = CV_CTLCFG_GEN_DB_ERR,
53 };
54 
55 static const struct altr_sdram_prv_data a10_data = {
56 	.ecc_ctrl_offset    = A10_ECCCTRL1_OFST,
57 	.ecc_ctl_en_mask    = A10_ECCCTRL1_ECC_EN,
58 	.ecc_stat_offset    = A10_INTSTAT_OFST,
59 	.ecc_stat_ce_mask   = A10_INTSTAT_SBEERR,
60 	.ecc_stat_ue_mask   = A10_INTSTAT_DBEERR,
61 	.ecc_saddr_offset   = A10_SERRADDR_OFST,
62 	.ecc_daddr_offset   = A10_DERRADDR_OFST,
63 	.ecc_irq_en_offset  = A10_ERRINTEN_OFST,
64 	.ecc_irq_en_mask    = A10_ECC_IRQ_EN_MASK,
65 	.ecc_irq_clr_offset = A10_INTSTAT_OFST,
66 	.ecc_irq_clr_mask   = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
67 	.ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
68 	.ecc_cnt_rst_mask   = A10_ECC_CNT_RESET_MASK,
69 	.ce_ue_trgr_offset  = A10_DIAGINTTEST_OFST,
70 	.ce_set_mask        = A10_DIAGINT_TSERRA_MASK,
71 	.ue_set_mask        = A10_DIAGINT_TDERRA_MASK,
72 };
73 
74 /*********************** EDAC Memory Controller Functions ****************/
75 
76 /* The SDRAM controller uses the EDAC Memory Controller framework.       */
77 
78 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
79 {
80 	struct mem_ctl_info *mci = dev_id;
81 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
82 	const struct altr_sdram_prv_data *priv = drvdata->data;
83 	u32 status, err_count = 1, err_addr;
84 
85 	regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
86 
87 	if (status & priv->ecc_stat_ue_mask) {
88 		regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
89 			    &err_addr);
90 		if (priv->ecc_uecnt_offset)
91 			regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
92 				    &err_count);
93 		panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
94 		      err_count, err_addr);
95 	}
96 	if (status & priv->ecc_stat_ce_mask) {
97 		regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
98 			    &err_addr);
99 		if (priv->ecc_uecnt_offset)
100 			regmap_read(drvdata->mc_vbase,  priv->ecc_cecnt_offset,
101 				    &err_count);
102 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
103 				     err_addr >> PAGE_SHIFT,
104 				     err_addr & ~PAGE_MASK, 0,
105 				     0, 0, -1, mci->ctl_name, "");
106 		/* Clear IRQ to resume */
107 		regmap_write(drvdata->mc_vbase,	priv->ecc_irq_clr_offset,
108 			     priv->ecc_irq_clr_mask);
109 
110 		return IRQ_HANDLED;
111 	}
112 	return IRQ_NONE;
113 }
114 
115 static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
116 					    const char __user *data,
117 					    size_t count, loff_t *ppos)
118 {
119 	struct mem_ctl_info *mci = file->private_data;
120 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
121 	const struct altr_sdram_prv_data *priv = drvdata->data;
122 	u32 *ptemp;
123 	dma_addr_t dma_handle;
124 	u32 reg, read_reg;
125 
126 	ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
127 	if (!ptemp) {
128 		dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
129 		edac_printk(KERN_ERR, EDAC_MC,
130 			    "Inject: Buffer Allocation error\n");
131 		return -ENOMEM;
132 	}
133 
134 	regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
135 		    &read_reg);
136 	read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
137 
138 	/* Error are injected by writing a word while the SBE or DBE
139 	 * bit in the CTLCFG register is set. Reading the word will
140 	 * trigger the SBE or DBE error and the corresponding IRQ.
141 	 */
142 	if (count == 3) {
143 		edac_printk(KERN_ALERT, EDAC_MC,
144 			    "Inject Double bit error\n");
145 		local_irq_disable();
146 		regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
147 			     (read_reg | priv->ue_set_mask));
148 		local_irq_enable();
149 	} else {
150 		edac_printk(KERN_ALERT, EDAC_MC,
151 			    "Inject Single bit error\n");
152 		local_irq_disable();
153 		regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset,
154 			     (read_reg | priv->ce_set_mask));
155 		local_irq_enable();
156 	}
157 
158 	ptemp[0] = 0x5A5A5A5A;
159 	ptemp[1] = 0xA5A5A5A5;
160 
161 	/* Clear the error injection bits */
162 	regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset, read_reg);
163 	/* Ensure it has been written out */
164 	wmb();
165 
166 	/*
167 	 * To trigger the error, we need to read the data back
168 	 * (the data was written with errors above).
169 	 * The READ_ONCE macros and printk are used to prevent the
170 	 * the compiler optimizing these reads out.
171 	 */
172 	reg = READ_ONCE(ptemp[0]);
173 	read_reg = READ_ONCE(ptemp[1]);
174 	/* Force Read */
175 	rmb();
176 
177 	edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
178 		    reg, read_reg);
179 
180 	dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
181 
182 	return count;
183 }
184 
185 static const struct file_operations altr_sdr_mc_debug_inject_fops = {
186 	.open = simple_open,
187 	.write = altr_sdr_mc_err_inject_write,
188 	.llseek = generic_file_llseek,
189 };
190 
191 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
192 {
193 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
194 		return;
195 
196 	if (!mci->debugfs)
197 		return;
198 
199 	edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
200 				 &altr_sdr_mc_debug_inject_fops);
201 }
202 
203 /* Get total memory size from Open Firmware DTB */
204 static unsigned long get_total_mem(void)
205 {
206 	struct device_node *np = NULL;
207 	struct resource res;
208 	int ret;
209 	unsigned long total_mem = 0;
210 
211 	for_each_node_by_type(np, "memory") {
212 		ret = of_address_to_resource(np, 0, &res);
213 		if (ret)
214 			continue;
215 
216 		total_mem += resource_size(&res);
217 	}
218 	edac_dbg(0, "total_mem 0x%lx\n", total_mem);
219 	return total_mem;
220 }
221 
222 static const struct of_device_id altr_sdram_ctrl_of_match[] = {
223 	{ .compatible = "altr,sdram-edac", .data = &c5_data},
224 	{ .compatible = "altr,sdram-edac-a10", .data = &a10_data},
225 	{},
226 };
227 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
228 
229 static int a10_init(struct regmap *mc_vbase)
230 {
231 	if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
232 			       A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
233 		edac_printk(KERN_ERR, EDAC_MC,
234 			    "Error setting SB IRQ mode\n");
235 		return -ENODEV;
236 	}
237 
238 	if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
239 		edac_printk(KERN_ERR, EDAC_MC,
240 			    "Error setting trigger count\n");
241 		return -ENODEV;
242 	}
243 
244 	return 0;
245 }
246 
247 static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
248 {
249 	void __iomem  *sm_base;
250 	int  ret = 0;
251 
252 	if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
253 				dev_name(&pdev->dev))) {
254 		edac_printk(KERN_ERR, EDAC_MC,
255 			    "Unable to request mem region\n");
256 		return -EBUSY;
257 	}
258 
259 	sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
260 	if (!sm_base) {
261 		edac_printk(KERN_ERR, EDAC_MC,
262 			    "Unable to ioremap device\n");
263 
264 		ret = -ENOMEM;
265 		goto release;
266 	}
267 
268 	iowrite32(mask, sm_base);
269 
270 	iounmap(sm_base);
271 
272 release:
273 	release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
274 
275 	return ret;
276 }
277 
278 static int socfpga_is_a10(void);
279 static int altr_sdram_probe(struct platform_device *pdev)
280 {
281 	const struct of_device_id *id;
282 	struct edac_mc_layer layers[2];
283 	struct mem_ctl_info *mci;
284 	struct altr_sdram_mc_data *drvdata;
285 	const struct altr_sdram_prv_data *priv;
286 	struct regmap *mc_vbase;
287 	struct dimm_info *dimm;
288 	u32 read_reg;
289 	int irq, irq2, res = 0;
290 	unsigned long mem_size, irqflags = 0;
291 
292 	id = of_match_device(altr_sdram_ctrl_of_match, &pdev->dev);
293 	if (!id)
294 		return -ENODEV;
295 
296 	/* Grab the register range from the sdr controller in device tree */
297 	mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
298 						   "altr,sdr-syscon");
299 	if (IS_ERR(mc_vbase)) {
300 		edac_printk(KERN_ERR, EDAC_MC,
301 			    "regmap for altr,sdr-syscon lookup failed.\n");
302 		return -ENODEV;
303 	}
304 
305 	/* Check specific dependencies for the module */
306 	priv = of_match_node(altr_sdram_ctrl_of_match,
307 			     pdev->dev.of_node)->data;
308 
309 	/* Validate the SDRAM controller has ECC enabled */
310 	if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
311 	    ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
312 		edac_printk(KERN_ERR, EDAC_MC,
313 			    "No ECC/ECC disabled [0x%08X]\n", read_reg);
314 		return -ENODEV;
315 	}
316 
317 	/* Grab memory size from device tree. */
318 	mem_size = get_total_mem();
319 	if (!mem_size) {
320 		edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
321 		return -ENODEV;
322 	}
323 
324 	/* Ensure the SDRAM Interrupt is disabled */
325 	if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
326 			       priv->ecc_irq_en_mask, 0)) {
327 		edac_printk(KERN_ERR, EDAC_MC,
328 			    "Error disabling SDRAM ECC IRQ\n");
329 		return -ENODEV;
330 	}
331 
332 	/* Toggle to clear the SDRAM Error count */
333 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
334 			       priv->ecc_cnt_rst_mask,
335 			       priv->ecc_cnt_rst_mask)) {
336 		edac_printk(KERN_ERR, EDAC_MC,
337 			    "Error clearing SDRAM ECC count\n");
338 		return -ENODEV;
339 	}
340 
341 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
342 			       priv->ecc_cnt_rst_mask, 0)) {
343 		edac_printk(KERN_ERR, EDAC_MC,
344 			    "Error clearing SDRAM ECC count\n");
345 		return -ENODEV;
346 	}
347 
348 	irq = platform_get_irq(pdev, 0);
349 	if (irq < 0) {
350 		edac_printk(KERN_ERR, EDAC_MC,
351 			    "No irq %d in DT\n", irq);
352 		return -ENODEV;
353 	}
354 
355 	/* Arria10 has a 2nd IRQ */
356 	irq2 = platform_get_irq(pdev, 1);
357 
358 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
359 	layers[0].size = 1;
360 	layers[0].is_virt_csrow = true;
361 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
362 	layers[1].size = 1;
363 	layers[1].is_virt_csrow = false;
364 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
365 			    sizeof(struct altr_sdram_mc_data));
366 	if (!mci)
367 		return -ENOMEM;
368 
369 	mci->pdev = &pdev->dev;
370 	drvdata = mci->pvt_info;
371 	drvdata->mc_vbase = mc_vbase;
372 	drvdata->data = priv;
373 	platform_set_drvdata(pdev, mci);
374 
375 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
376 		edac_printk(KERN_ERR, EDAC_MC,
377 			    "Unable to get managed device resource\n");
378 		res = -ENOMEM;
379 		goto free;
380 	}
381 
382 	mci->mtype_cap = MEM_FLAG_DDR3;
383 	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
384 	mci->edac_cap = EDAC_FLAG_SECDED;
385 	mci->mod_name = EDAC_MOD_STR;
386 	mci->ctl_name = dev_name(&pdev->dev);
387 	mci->scrub_mode = SCRUB_SW_SRC;
388 	mci->dev_name = dev_name(&pdev->dev);
389 
390 	dimm = *mci->dimms;
391 	dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
392 	dimm->grain = 8;
393 	dimm->dtype = DEV_X8;
394 	dimm->mtype = MEM_DDR3;
395 	dimm->edac_mode = EDAC_SECDED;
396 
397 	res = edac_mc_add_mc(mci);
398 	if (res < 0)
399 		goto err;
400 
401 	/* Only the Arria10 has separate IRQs */
402 	if (socfpga_is_a10()) {
403 		/* Arria10 specific initialization */
404 		res = a10_init(mc_vbase);
405 		if (res < 0)
406 			goto err2;
407 
408 		res = devm_request_irq(&pdev->dev, irq2,
409 				       altr_sdram_mc_err_handler,
410 				       IRQF_SHARED, dev_name(&pdev->dev), mci);
411 		if (res < 0) {
412 			edac_mc_printk(mci, KERN_ERR,
413 				       "Unable to request irq %d\n", irq2);
414 			res = -ENODEV;
415 			goto err2;
416 		}
417 
418 		res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
419 		if (res < 0)
420 			goto err2;
421 
422 		irqflags = IRQF_SHARED;
423 	}
424 
425 	res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
426 			       irqflags, dev_name(&pdev->dev), mci);
427 	if (res < 0) {
428 		edac_mc_printk(mci, KERN_ERR,
429 			       "Unable to request irq %d\n", irq);
430 		res = -ENODEV;
431 		goto err2;
432 	}
433 
434 	/* Infrastructure ready - enable the IRQ */
435 	if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
436 			       priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
437 		edac_mc_printk(mci, KERN_ERR,
438 			       "Error enabling SDRAM ECC IRQ\n");
439 		res = -ENODEV;
440 		goto err2;
441 	}
442 
443 	altr_sdr_mc_create_debugfs_nodes(mci);
444 
445 	devres_close_group(&pdev->dev, NULL);
446 
447 	return 0;
448 
449 err2:
450 	edac_mc_del_mc(&pdev->dev);
451 err:
452 	devres_release_group(&pdev->dev, NULL);
453 free:
454 	edac_mc_free(mci);
455 	edac_printk(KERN_ERR, EDAC_MC,
456 		    "EDAC Probe Failed; Error %d\n", res);
457 
458 	return res;
459 }
460 
461 static int altr_sdram_remove(struct platform_device *pdev)
462 {
463 	struct mem_ctl_info *mci = platform_get_drvdata(pdev);
464 
465 	edac_mc_del_mc(&pdev->dev);
466 	edac_mc_free(mci);
467 	platform_set_drvdata(pdev, NULL);
468 
469 	return 0;
470 }
471 
472 /*
473  * If you want to suspend, need to disable EDAC by removing it
474  * from the device tree or defconfig.
475  */
476 #ifdef CONFIG_PM
477 static int altr_sdram_prepare(struct device *dev)
478 {
479 	pr_err("Suspend not allowed when EDAC is enabled.\n");
480 
481 	return -EPERM;
482 }
483 
484 static const struct dev_pm_ops altr_sdram_pm_ops = {
485 	.prepare = altr_sdram_prepare,
486 };
487 #endif
488 
489 static struct platform_driver altr_sdram_edac_driver = {
490 	.probe = altr_sdram_probe,
491 	.remove = altr_sdram_remove,
492 	.driver = {
493 		.name = "altr_sdram_edac",
494 #ifdef CONFIG_PM
495 		.pm = &altr_sdram_pm_ops,
496 #endif
497 		.of_match_table = altr_sdram_ctrl_of_match,
498 	},
499 };
500 
501 module_platform_driver(altr_sdram_edac_driver);
502 
503 #endif	/* CONFIG_EDAC_ALTERA_SDRAM */
504 
505 /**************** Stratix 10 EDAC Memory Controller Functions ************/
506 
507 /**
508  * s10_protected_reg_write
509  * Write to a protected SMC register.
510  * @context: Not used.
511  * @reg: Address of register
512  * @value: Value to write
513  * Return: INTEL_SIP_SMC_STATUS_OK (0) on success
514  *	   INTEL_SIP_SMC_REG_ERROR on error
515  *	   INTEL_SIP_SMC_RETURN_UNKNOWN_FUNCTION if not supported
516  */
517 static int s10_protected_reg_write(void *context, unsigned int reg,
518 				   unsigned int val)
519 {
520 	struct arm_smccc_res result;
521 	unsigned long offset = (unsigned long)context;
522 
523 	arm_smccc_smc(INTEL_SIP_SMC_REG_WRITE, offset + reg, val, 0, 0,
524 		      0, 0, 0, &result);
525 
526 	return (int)result.a0;
527 }
528 
529 /**
530  * s10_protected_reg_read
531  * Read the status of a protected SMC register
532  * @context: Not used.
533  * @reg: Address of register
534  * @value: Value read.
535  * Return: INTEL_SIP_SMC_STATUS_OK (0) on success
536  *	   INTEL_SIP_SMC_REG_ERROR on error
537  *	   INTEL_SIP_SMC_RETURN_UNKNOWN_FUNCTION if not supported
538  */
539 static int s10_protected_reg_read(void *context, unsigned int reg,
540 				  unsigned int *val)
541 {
542 	struct arm_smccc_res result;
543 	unsigned long offset = (unsigned long)context;
544 
545 	arm_smccc_smc(INTEL_SIP_SMC_REG_READ, offset + reg, 0, 0, 0,
546 		      0, 0, 0, &result);
547 
548 	*val = (unsigned int)result.a1;
549 
550 	return (int)result.a0;
551 }
552 
553 static const struct regmap_config s10_sdram_regmap_cfg = {
554 	.name = "s10_ddr",
555 	.reg_bits = 32,
556 	.reg_stride = 4,
557 	.val_bits = 32,
558 	.max_register = 0xffd12228,
559 	.reg_read = s10_protected_reg_read,
560 	.reg_write = s10_protected_reg_write,
561 	.use_single_read = true,
562 	.use_single_write = true,
563 };
564 
565 /************** </Stratix10 EDAC Memory Controller Functions> ***********/
566 
567 /************************* EDAC Parent Probe *************************/
568 
569 static const struct of_device_id altr_edac_device_of_match[];
570 
571 static const struct of_device_id altr_edac_of_match[] = {
572 	{ .compatible = "altr,socfpga-ecc-manager" },
573 	{},
574 };
575 MODULE_DEVICE_TABLE(of, altr_edac_of_match);
576 
577 static int altr_edac_probe(struct platform_device *pdev)
578 {
579 	of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
580 			     NULL, &pdev->dev);
581 	return 0;
582 }
583 
584 static struct platform_driver altr_edac_driver = {
585 	.probe =  altr_edac_probe,
586 	.driver = {
587 		.name = "socfpga_ecc_manager",
588 		.of_match_table = altr_edac_of_match,
589 	},
590 };
591 module_platform_driver(altr_edac_driver);
592 
593 /************************* EDAC Device Functions *************************/
594 
595 /*
596  * EDAC Device Functions (shared between various IPs).
597  * The discrete memories use the EDAC Device framework. The probe
598  * and error handling functions are very similar between memories
599  * so they are shared. The memory allocation and freeing for EDAC
600  * trigger testing are different for each memory.
601  */
602 
603 static const struct edac_device_prv_data ocramecc_data;
604 static const struct edac_device_prv_data l2ecc_data;
605 static const struct edac_device_prv_data a10_ocramecc_data;
606 static const struct edac_device_prv_data a10_l2ecc_data;
607 
608 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
609 {
610 	irqreturn_t ret_value = IRQ_NONE;
611 	struct edac_device_ctl_info *dci = dev_id;
612 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
613 	const struct edac_device_prv_data *priv = drvdata->data;
614 
615 	if (irq == drvdata->sb_irq) {
616 		if (priv->ce_clear_mask)
617 			writel(priv->ce_clear_mask, drvdata->base);
618 		edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
619 		ret_value = IRQ_HANDLED;
620 	} else if (irq == drvdata->db_irq) {
621 		if (priv->ue_clear_mask)
622 			writel(priv->ue_clear_mask, drvdata->base);
623 		edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
624 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
625 		ret_value = IRQ_HANDLED;
626 	} else {
627 		WARN_ON(1);
628 	}
629 
630 	return ret_value;
631 }
632 
633 static ssize_t altr_edac_device_trig(struct file *file,
634 				     const char __user *user_buf,
635 				     size_t count, loff_t *ppos)
636 
637 {
638 	u32 *ptemp, i, error_mask;
639 	int result = 0;
640 	u8 trig_type;
641 	unsigned long flags;
642 	struct edac_device_ctl_info *edac_dci = file->private_data;
643 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
644 	const struct edac_device_prv_data *priv = drvdata->data;
645 	void *generic_ptr = edac_dci->dev;
646 
647 	if (!user_buf || get_user(trig_type, user_buf))
648 		return -EFAULT;
649 
650 	if (!priv->alloc_mem)
651 		return -ENOMEM;
652 
653 	/*
654 	 * Note that generic_ptr is initialized to the device * but in
655 	 * some alloc_functions, this is overridden and returns data.
656 	 */
657 	ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
658 	if (!ptemp) {
659 		edac_printk(KERN_ERR, EDAC_DEVICE,
660 			    "Inject: Buffer Allocation error\n");
661 		return -ENOMEM;
662 	}
663 
664 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
665 		error_mask = priv->ue_set_mask;
666 	else
667 		error_mask = priv->ce_set_mask;
668 
669 	edac_printk(KERN_ALERT, EDAC_DEVICE,
670 		    "Trigger Error Mask (0x%X)\n", error_mask);
671 
672 	local_irq_save(flags);
673 	/* write ECC corrupted data out. */
674 	for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
675 		/* Read data so we're in the correct state */
676 		rmb();
677 		if (READ_ONCE(ptemp[i]))
678 			result = -1;
679 		/* Toggle Error bit (it is latched), leave ECC enabled */
680 		writel(error_mask, (drvdata->base + priv->set_err_ofst));
681 		writel(priv->ecc_enable_mask, (drvdata->base +
682 					       priv->set_err_ofst));
683 		ptemp[i] = i;
684 	}
685 	/* Ensure it has been written out */
686 	wmb();
687 	local_irq_restore(flags);
688 
689 	if (result)
690 		edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
691 
692 	/* Read out written data. ECC error caused here */
693 	for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
694 		if (READ_ONCE(ptemp[i]) != i)
695 			edac_printk(KERN_ERR, EDAC_DEVICE,
696 				    "Read doesn't match written data\n");
697 
698 	if (priv->free_mem)
699 		priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
700 
701 	return count;
702 }
703 
704 static const struct file_operations altr_edac_device_inject_fops = {
705 	.open = simple_open,
706 	.write = altr_edac_device_trig,
707 	.llseek = generic_file_llseek,
708 };
709 
710 static ssize_t altr_edac_a10_device_trig(struct file *file,
711 					 const char __user *user_buf,
712 					 size_t count, loff_t *ppos);
713 
714 static const struct file_operations altr_edac_a10_device_inject_fops = {
715 	.open = simple_open,
716 	.write = altr_edac_a10_device_trig,
717 	.llseek = generic_file_llseek,
718 };
719 
720 static ssize_t altr_edac_a10_device_trig2(struct file *file,
721 					  const char __user *user_buf,
722 					  size_t count, loff_t *ppos);
723 
724 static const struct file_operations altr_edac_a10_device_inject2_fops = {
725 	.open = simple_open,
726 	.write = altr_edac_a10_device_trig2,
727 	.llseek = generic_file_llseek,
728 };
729 
730 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
731 				      const struct edac_device_prv_data *priv)
732 {
733 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
734 
735 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
736 		return;
737 
738 	drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
739 	if (!drvdata->debugfs_dir)
740 		return;
741 
742 	if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
743 				      drvdata->debugfs_dir, edac_dci,
744 				      priv->inject_fops))
745 		debugfs_remove_recursive(drvdata->debugfs_dir);
746 }
747 
748 static const struct of_device_id altr_edac_device_of_match[] = {
749 #ifdef CONFIG_EDAC_ALTERA_L2C
750 	{ .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
751 #endif
752 #ifdef CONFIG_EDAC_ALTERA_OCRAM
753 	{ .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
754 #endif
755 	{},
756 };
757 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
758 
759 /*
760  * altr_edac_device_probe()
761  *	This is a generic EDAC device driver that will support
762  *	various Altera memory devices such as the L2 cache ECC and
763  *	OCRAM ECC as well as the memories for other peripherals.
764  *	Module specific initialization is done by passing the
765  *	function index in the device tree.
766  */
767 static int altr_edac_device_probe(struct platform_device *pdev)
768 {
769 	struct edac_device_ctl_info *dci;
770 	struct altr_edac_device_dev *drvdata;
771 	struct resource *r;
772 	int res = 0;
773 	struct device_node *np = pdev->dev.of_node;
774 	char *ecc_name = (char *)np->name;
775 	static int dev_instance;
776 
777 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
778 		edac_printk(KERN_ERR, EDAC_DEVICE,
779 			    "Unable to open devm\n");
780 		return -ENOMEM;
781 	}
782 
783 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
784 	if (!r) {
785 		edac_printk(KERN_ERR, EDAC_DEVICE,
786 			    "Unable to get mem resource\n");
787 		res = -ENODEV;
788 		goto fail;
789 	}
790 
791 	if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
792 				     dev_name(&pdev->dev))) {
793 		edac_printk(KERN_ERR, EDAC_DEVICE,
794 			    "%s:Error requesting mem region\n", ecc_name);
795 		res = -EBUSY;
796 		goto fail;
797 	}
798 
799 	dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
800 					 1, ecc_name, 1, 0, NULL, 0,
801 					 dev_instance++);
802 
803 	if (!dci) {
804 		edac_printk(KERN_ERR, EDAC_DEVICE,
805 			    "%s: Unable to allocate EDAC device\n", ecc_name);
806 		res = -ENOMEM;
807 		goto fail;
808 	}
809 
810 	drvdata = dci->pvt_info;
811 	dci->dev = &pdev->dev;
812 	platform_set_drvdata(pdev, dci);
813 	drvdata->edac_dev_name = ecc_name;
814 
815 	drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
816 	if (!drvdata->base) {
817 		res = -ENOMEM;
818 		goto fail1;
819 	}
820 
821 	/* Get driver specific data for this EDAC device */
822 	drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
823 
824 	/* Check specific dependencies for the module */
825 	if (drvdata->data->setup) {
826 		res = drvdata->data->setup(drvdata);
827 		if (res)
828 			goto fail1;
829 	}
830 
831 	drvdata->sb_irq = platform_get_irq(pdev, 0);
832 	res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
833 			       altr_edac_device_handler,
834 			       0, dev_name(&pdev->dev), dci);
835 	if (res)
836 		goto fail1;
837 
838 	drvdata->db_irq = platform_get_irq(pdev, 1);
839 	res = devm_request_irq(&pdev->dev, drvdata->db_irq,
840 			       altr_edac_device_handler,
841 			       0, dev_name(&pdev->dev), dci);
842 	if (res)
843 		goto fail1;
844 
845 	dci->mod_name = "Altera ECC Manager";
846 	dci->dev_name = drvdata->edac_dev_name;
847 
848 	res = edac_device_add_device(dci);
849 	if (res)
850 		goto fail1;
851 
852 	altr_create_edacdev_dbgfs(dci, drvdata->data);
853 
854 	devres_close_group(&pdev->dev, NULL);
855 
856 	return 0;
857 
858 fail1:
859 	edac_device_free_ctl_info(dci);
860 fail:
861 	devres_release_group(&pdev->dev, NULL);
862 	edac_printk(KERN_ERR, EDAC_DEVICE,
863 		    "%s:Error setting up EDAC device: %d\n", ecc_name, res);
864 
865 	return res;
866 }
867 
868 static int altr_edac_device_remove(struct platform_device *pdev)
869 {
870 	struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
871 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
872 
873 	debugfs_remove_recursive(drvdata->debugfs_dir);
874 	edac_device_del_device(&pdev->dev);
875 	edac_device_free_ctl_info(dci);
876 
877 	return 0;
878 }
879 
880 static struct platform_driver altr_edac_device_driver = {
881 	.probe =  altr_edac_device_probe,
882 	.remove = altr_edac_device_remove,
883 	.driver = {
884 		.name = "altr_edac_device",
885 		.of_match_table = altr_edac_device_of_match,
886 	},
887 };
888 module_platform_driver(altr_edac_device_driver);
889 
890 /******************* Arria10 Device ECC Shared Functions *****************/
891 
892 /*
893  *  Test for memory's ECC dependencies upon entry because platform specific
894  *  startup should have initialized the memory and enabled the ECC.
895  *  Can't turn on ECC here because accessing un-initialized memory will
896  *  cause CE/UE errors possibly causing an ABORT.
897  */
898 static int __maybe_unused
899 altr_check_ecc_deps(struct altr_edac_device_dev *device)
900 {
901 	void __iomem  *base = device->base;
902 	const struct edac_device_prv_data *prv = device->data;
903 
904 	if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
905 		return 0;
906 
907 	edac_printk(KERN_ERR, EDAC_DEVICE,
908 		    "%s: No ECC present or ECC disabled.\n",
909 		    device->edac_dev_name);
910 	return -ENODEV;
911 }
912 
913 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
914 {
915 	struct altr_edac_device_dev *dci = dev_id;
916 	void __iomem  *base = dci->base;
917 
918 	if (irq == dci->sb_irq) {
919 		writel(ALTR_A10_ECC_SERRPENA,
920 		       base + ALTR_A10_ECC_INTSTAT_OFST);
921 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
922 
923 		return IRQ_HANDLED;
924 	} else if (irq == dci->db_irq) {
925 		writel(ALTR_A10_ECC_DERRPENA,
926 		       base + ALTR_A10_ECC_INTSTAT_OFST);
927 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
928 		if (dci->data->panic)
929 			panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
930 
931 		return IRQ_HANDLED;
932 	}
933 
934 	WARN_ON(1);
935 
936 	return IRQ_NONE;
937 }
938 
939 /******************* Arria10 Memory Buffer Functions *********************/
940 
941 static inline int a10_get_irq_mask(struct device_node *np)
942 {
943 	int irq;
944 	const u32 *handle = of_get_property(np, "interrupts", NULL);
945 
946 	if (!handle)
947 		return -ENODEV;
948 	irq = be32_to_cpup(handle);
949 	return irq;
950 }
951 
952 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
953 {
954 	u32 value = readl(ioaddr);
955 
956 	value |= bit_mask;
957 	writel(value, ioaddr);
958 }
959 
960 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
961 {
962 	u32 value = readl(ioaddr);
963 
964 	value &= ~bit_mask;
965 	writel(value, ioaddr);
966 }
967 
968 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
969 {
970 	u32 value = readl(ioaddr);
971 
972 	return (value & bit_mask) ? 1 : 0;
973 }
974 
975 /*
976  * This function uses the memory initialization block in the Arria10 ECC
977  * controller to initialize/clear the entire memory data and ECC data.
978  */
979 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
980 {
981 	int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
982 	u32 init_mask, stat_mask, clear_mask;
983 	int ret = 0;
984 
985 	if (port) {
986 		init_mask = ALTR_A10_ECC_INITB;
987 		stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
988 		clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
989 	} else {
990 		init_mask = ALTR_A10_ECC_INITA;
991 		stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
992 		clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
993 	}
994 
995 	ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
996 	while (limit--) {
997 		if (ecc_test_bits(stat_mask,
998 				  (ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
999 			break;
1000 		udelay(1);
1001 	}
1002 	if (limit < 0)
1003 		ret = -EBUSY;
1004 
1005 	/* Clear any pending ECC interrupts */
1006 	writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
1007 
1008 	return ret;
1009 }
1010 
1011 static int socfpga_is_a10(void)
1012 {
1013 	return of_machine_is_compatible("altr,socfpga-arria10");
1014 }
1015 
1016 static int socfpga_is_s10(void)
1017 {
1018 	return of_machine_is_compatible("altr,socfpga-stratix10");
1019 }
1020 
1021 static __init int __maybe_unused
1022 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
1023 			u32 ecc_ctrl_en_mask, bool dual_port)
1024 {
1025 	int ret = 0;
1026 	void __iomem *ecc_block_base;
1027 	struct regmap *ecc_mgr_map;
1028 	char *ecc_name;
1029 	struct device_node *np_eccmgr;
1030 
1031 	ecc_name = (char *)np->name;
1032 
1033 	/* Get the ECC Manager - parent of the device EDACs */
1034 	np_eccmgr = of_get_parent(np);
1035 
1036 	if (socfpga_is_a10()) {
1037 		ecc_mgr_map = syscon_regmap_lookup_by_phandle(np_eccmgr,
1038 							      "altr,sysmgr-syscon");
1039 	} else {
1040 		struct device_node *sysmgr_np;
1041 		struct resource res;
1042 		uintptr_t base;
1043 
1044 		sysmgr_np = of_parse_phandle(np_eccmgr,
1045 					     "altr,sysmgr-syscon", 0);
1046 		if (!sysmgr_np) {
1047 			edac_printk(KERN_ERR, EDAC_DEVICE,
1048 				    "Unable to find altr,sysmgr-syscon\n");
1049 			return -ENODEV;
1050 		}
1051 
1052 		if (of_address_to_resource(sysmgr_np, 0, &res)) {
1053 			of_node_put(sysmgr_np);
1054 			return -ENOMEM;
1055 		}
1056 
1057 		/* Need physical address for SMCC call */
1058 		base = res.start;
1059 
1060 		ecc_mgr_map = regmap_init(NULL, NULL, (void *)base,
1061 					  &s10_sdram_regmap_cfg);
1062 		of_node_put(sysmgr_np);
1063 	}
1064 	of_node_put(np_eccmgr);
1065 	if (IS_ERR(ecc_mgr_map)) {
1066 		edac_printk(KERN_ERR, EDAC_DEVICE,
1067 			    "Unable to get syscon altr,sysmgr-syscon\n");
1068 		return -ENODEV;
1069 	}
1070 
1071 	/* Map the ECC Block */
1072 	ecc_block_base = of_iomap(np, 0);
1073 	if (!ecc_block_base) {
1074 		edac_printk(KERN_ERR, EDAC_DEVICE,
1075 			    "Unable to map %s ECC block\n", ecc_name);
1076 		return -ENODEV;
1077 	}
1078 
1079 	/* Disable ECC */
1080 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
1081 	writel(ALTR_A10_ECC_SERRINTEN,
1082 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
1083 	ecc_clear_bits(ecc_ctrl_en_mask,
1084 		       (ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
1085 	/* Ensure all writes complete */
1086 	wmb();
1087 	/* Use HW initialization block to initialize memory for ECC */
1088 	ret = altr_init_memory_port(ecc_block_base, 0);
1089 	if (ret) {
1090 		edac_printk(KERN_ERR, EDAC_DEVICE,
1091 			    "ECC: cannot init %s PORTA memory\n", ecc_name);
1092 		goto out;
1093 	}
1094 
1095 	if (dual_port) {
1096 		ret = altr_init_memory_port(ecc_block_base, 1);
1097 		if (ret) {
1098 			edac_printk(KERN_ERR, EDAC_DEVICE,
1099 				    "ECC: cannot init %s PORTB memory\n",
1100 				    ecc_name);
1101 			goto out;
1102 		}
1103 	}
1104 
1105 	/* Interrupt mode set to every SBERR */
1106 	regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST,
1107 		     ALTR_A10_ECC_INTMODE);
1108 	/* Enable ECC */
1109 	ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
1110 					ALTR_A10_ECC_CTRL_OFST));
1111 	writel(ALTR_A10_ECC_SERRINTEN,
1112 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
1113 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
1114 	/* Ensure all writes complete */
1115 	wmb();
1116 out:
1117 	iounmap(ecc_block_base);
1118 	return ret;
1119 }
1120 
1121 static int validate_parent_available(struct device_node *np);
1122 static const struct of_device_id altr_edac_a10_device_of_match[];
1123 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
1124 {
1125 	int irq;
1126 	struct device_node *child, *np;
1127 
1128 	if (!socfpga_is_a10() && !socfpga_is_s10())
1129 		return -ENODEV;
1130 
1131 	np = of_find_compatible_node(NULL, NULL,
1132 				     "altr,socfpga-a10-ecc-manager");
1133 	if (!np) {
1134 		edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
1135 		return -ENODEV;
1136 	}
1137 
1138 	for_each_child_of_node(np, child) {
1139 		const struct of_device_id *pdev_id;
1140 		const struct edac_device_prv_data *prv;
1141 
1142 		if (!of_device_is_available(child))
1143 			continue;
1144 		if (!of_device_is_compatible(child, compat))
1145 			continue;
1146 
1147 		if (validate_parent_available(child))
1148 			continue;
1149 
1150 		irq = a10_get_irq_mask(child);
1151 		if (irq < 0)
1152 			continue;
1153 
1154 		/* Get matching node and check for valid result */
1155 		pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
1156 		if (IS_ERR_OR_NULL(pdev_id))
1157 			continue;
1158 
1159 		/* Validate private data pointer before dereferencing */
1160 		prv = pdev_id->data;
1161 		if (!prv)
1162 			continue;
1163 
1164 		altr_init_a10_ecc_block(child, BIT(irq),
1165 					prv->ecc_enable_mask, 0);
1166 	}
1167 
1168 	of_node_put(np);
1169 	return 0;
1170 }
1171 
1172 /*********************** SDRAM EDAC Device Functions *********************/
1173 
1174 #ifdef CONFIG_EDAC_ALTERA_SDRAM
1175 
1176 static const struct edac_device_prv_data s10_sdramecc_data = {
1177 	.setup = altr_check_ecc_deps,
1178 	.ce_clear_mask = ALTR_S10_ECC_SERRPENA,
1179 	.ue_clear_mask = ALTR_S10_ECC_DERRPENA,
1180 	.ecc_enable_mask = ALTR_S10_ECC_EN,
1181 	.ecc_en_ofst = ALTR_S10_ECC_CTRL_SDRAM_OFST,
1182 	.ce_set_mask = ALTR_S10_ECC_TSERRA,
1183 	.ue_set_mask = ALTR_S10_ECC_TDERRA,
1184 	.set_err_ofst = ALTR_S10_ECC_INTTEST_OFST,
1185 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1186 	.inject_fops = &altr_edac_a10_device_inject_fops,
1187 };
1188 #endif /* CONFIG_EDAC_ALTERA_SDRAM */
1189 
1190 /*********************** OCRAM EDAC Device Functions *********************/
1191 
1192 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1193 
1194 static void *ocram_alloc_mem(size_t size, void **other)
1195 {
1196 	struct device_node *np;
1197 	struct gen_pool *gp;
1198 	void *sram_addr;
1199 
1200 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
1201 	if (!np)
1202 		return NULL;
1203 
1204 	gp = of_gen_pool_get(np, "iram", 0);
1205 	of_node_put(np);
1206 	if (!gp)
1207 		return NULL;
1208 
1209 	sram_addr = (void *)gen_pool_alloc(gp, size);
1210 	if (!sram_addr)
1211 		return NULL;
1212 
1213 	memset(sram_addr, 0, size);
1214 	/* Ensure data is written out */
1215 	wmb();
1216 
1217 	/* Remember this handle for freeing  later */
1218 	*other = gp;
1219 
1220 	return sram_addr;
1221 }
1222 
1223 static void ocram_free_mem(void *p, size_t size, void *other)
1224 {
1225 	gen_pool_free((struct gen_pool *)other, (unsigned long)p, size);
1226 }
1227 
1228 static const struct edac_device_prv_data ocramecc_data = {
1229 	.setup = altr_check_ecc_deps,
1230 	.ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
1231 	.ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
1232 	.alloc_mem = ocram_alloc_mem,
1233 	.free_mem = ocram_free_mem,
1234 	.ecc_enable_mask = ALTR_OCR_ECC_EN,
1235 	.ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
1236 	.ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
1237 	.ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
1238 	.set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
1239 	.trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
1240 	.inject_fops = &altr_edac_device_inject_fops,
1241 };
1242 
1243 static int __maybe_unused
1244 altr_check_ocram_deps_init(struct altr_edac_device_dev *device)
1245 {
1246 	void __iomem  *base = device->base;
1247 	int ret;
1248 
1249 	ret = altr_check_ecc_deps(device);
1250 	if (ret)
1251 		return ret;
1252 
1253 	/* Verify OCRAM has been initialized */
1254 	if (!ecc_test_bits(ALTR_A10_ECC_INITCOMPLETEA,
1255 			   (base + ALTR_A10_ECC_INITSTAT_OFST)))
1256 		return -ENODEV;
1257 
1258 	/* Enable IRQ on Single Bit Error */
1259 	writel(ALTR_A10_ECC_SERRINTEN, (base + ALTR_A10_ECC_ERRINTENS_OFST));
1260 	/* Ensure all writes complete */
1261 	wmb();
1262 
1263 	return 0;
1264 }
1265 
1266 static const struct edac_device_prv_data a10_ocramecc_data = {
1267 	.setup = altr_check_ocram_deps_init,
1268 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1269 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1270 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
1271 	.ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
1272 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1273 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1274 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1275 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1276 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1277 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1278 	/*
1279 	 * OCRAM panic on uncorrectable error because sleep/resume
1280 	 * functions and FPGA contents are stored in OCRAM. Prefer
1281 	 * a kernel panic over executing/loading corrupted data.
1282 	 */
1283 	.panic = true,
1284 };
1285 
1286 #endif	/* CONFIG_EDAC_ALTERA_OCRAM */
1287 
1288 /********************* L2 Cache EDAC Device Functions ********************/
1289 
1290 #ifdef CONFIG_EDAC_ALTERA_L2C
1291 
1292 static void *l2_alloc_mem(size_t size, void **other)
1293 {
1294 	struct device *dev = *other;
1295 	void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
1296 
1297 	if (!ptemp)
1298 		return NULL;
1299 
1300 	/* Make sure everything is written out */
1301 	wmb();
1302 
1303 	/*
1304 	 * Clean all cache levels up to LoC (includes L2)
1305 	 * This ensures the corrupted data is written into
1306 	 * L2 cache for readback test (which causes ECC error).
1307 	 */
1308 	flush_cache_all();
1309 
1310 	return ptemp;
1311 }
1312 
1313 static void l2_free_mem(void *p, size_t size, void *other)
1314 {
1315 	struct device *dev = other;
1316 
1317 	if (dev && p)
1318 		devm_kfree(dev, p);
1319 }
1320 
1321 /*
1322  * altr_l2_check_deps()
1323  *	Test for L2 cache ECC dependencies upon entry because
1324  *	platform specific startup should have initialized the L2
1325  *	memory and enabled the ECC.
1326  *	Bail if ECC is not enabled.
1327  *	Note that L2 Cache Enable is forced at build time.
1328  */
1329 static int altr_l2_check_deps(struct altr_edac_device_dev *device)
1330 {
1331 	void __iomem *base = device->base;
1332 	const struct edac_device_prv_data *prv = device->data;
1333 
1334 	if ((readl(base) & prv->ecc_enable_mask) ==
1335 	     prv->ecc_enable_mask)
1336 		return 0;
1337 
1338 	edac_printk(KERN_ERR, EDAC_DEVICE,
1339 		    "L2: No ECC present, or ECC disabled\n");
1340 	return -ENODEV;
1341 }
1342 
1343 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
1344 {
1345 	struct altr_edac_device_dev *dci = dev_id;
1346 
1347 	if (irq == dci->sb_irq) {
1348 		regmap_write(dci->edac->ecc_mgr_map,
1349 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1350 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
1351 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1352 
1353 		return IRQ_HANDLED;
1354 	} else if (irq == dci->db_irq) {
1355 		regmap_write(dci->edac->ecc_mgr_map,
1356 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1357 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
1358 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1359 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1360 
1361 		return IRQ_HANDLED;
1362 	}
1363 
1364 	WARN_ON(1);
1365 
1366 	return IRQ_NONE;
1367 }
1368 
1369 static const struct edac_device_prv_data l2ecc_data = {
1370 	.setup = altr_l2_check_deps,
1371 	.ce_clear_mask = 0,
1372 	.ue_clear_mask = 0,
1373 	.alloc_mem = l2_alloc_mem,
1374 	.free_mem = l2_free_mem,
1375 	.ecc_enable_mask = ALTR_L2_ECC_EN,
1376 	.ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
1377 	.ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
1378 	.set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
1379 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1380 	.inject_fops = &altr_edac_device_inject_fops,
1381 };
1382 
1383 static const struct edac_device_prv_data a10_l2ecc_data = {
1384 	.setup = altr_l2_check_deps,
1385 	.ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
1386 	.ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
1387 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
1388 	.alloc_mem = l2_alloc_mem,
1389 	.free_mem = l2_free_mem,
1390 	.ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
1391 	.ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
1392 	.ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
1393 	.set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
1394 	.ecc_irq_handler = altr_edac_a10_l2_irq,
1395 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1396 	.inject_fops = &altr_edac_device_inject_fops,
1397 };
1398 
1399 #endif	/* CONFIG_EDAC_ALTERA_L2C */
1400 
1401 /********************* Ethernet Device Functions ********************/
1402 
1403 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1404 
1405 static int __init socfpga_init_ethernet_ecc(struct altr_edac_device_dev *dev)
1406 {
1407 	int ret;
1408 
1409 	ret = altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
1410 	if (ret)
1411 		return ret;
1412 
1413 	return altr_check_ecc_deps(dev);
1414 }
1415 
1416 static const struct edac_device_prv_data a10_enetecc_data = {
1417 	.setup = socfpga_init_ethernet_ecc,
1418 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1419 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1420 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1421 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1422 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1423 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1424 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1425 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1426 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1427 };
1428 
1429 #endif	/* CONFIG_EDAC_ALTERA_ETHERNET */
1430 
1431 /********************** NAND Device Functions **********************/
1432 
1433 #ifdef CONFIG_EDAC_ALTERA_NAND
1434 
1435 static int __init socfpga_init_nand_ecc(struct altr_edac_device_dev *device)
1436 {
1437 	int ret;
1438 
1439 	ret = altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
1440 	if (ret)
1441 		return ret;
1442 
1443 	return altr_check_ecc_deps(device);
1444 }
1445 
1446 static const struct edac_device_prv_data a10_nandecc_data = {
1447 	.setup = socfpga_init_nand_ecc,
1448 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1449 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1450 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1451 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1452 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1453 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1454 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1455 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1456 	.inject_fops = &altr_edac_a10_device_inject_fops,
1457 };
1458 
1459 #endif	/* CONFIG_EDAC_ALTERA_NAND */
1460 
1461 /********************** DMA Device Functions **********************/
1462 
1463 #ifdef CONFIG_EDAC_ALTERA_DMA
1464 
1465 static int __init socfpga_init_dma_ecc(struct altr_edac_device_dev *device)
1466 {
1467 	int ret;
1468 
1469 	ret = altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
1470 	if (ret)
1471 		return ret;
1472 
1473 	return altr_check_ecc_deps(device);
1474 }
1475 
1476 static const struct edac_device_prv_data a10_dmaecc_data = {
1477 	.setup = socfpga_init_dma_ecc,
1478 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1479 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1480 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1481 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1482 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1483 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1484 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1485 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1486 	.inject_fops = &altr_edac_a10_device_inject_fops,
1487 };
1488 
1489 #endif	/* CONFIG_EDAC_ALTERA_DMA */
1490 
1491 /********************** USB Device Functions **********************/
1492 
1493 #ifdef CONFIG_EDAC_ALTERA_USB
1494 
1495 static int __init socfpga_init_usb_ecc(struct altr_edac_device_dev *device)
1496 {
1497 	int ret;
1498 
1499 	ret = altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
1500 	if (ret)
1501 		return ret;
1502 
1503 	return altr_check_ecc_deps(device);
1504 }
1505 
1506 static const struct edac_device_prv_data a10_usbecc_data = {
1507 	.setup = socfpga_init_usb_ecc,
1508 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1509 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1510 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1511 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1512 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1513 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1514 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1515 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1516 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1517 };
1518 
1519 #endif	/* CONFIG_EDAC_ALTERA_USB */
1520 
1521 /********************** QSPI Device Functions **********************/
1522 
1523 #ifdef CONFIG_EDAC_ALTERA_QSPI
1524 
1525 static int __init socfpga_init_qspi_ecc(struct altr_edac_device_dev *device)
1526 {
1527 	int ret;
1528 
1529 	ret = altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
1530 	if (ret)
1531 		return ret;
1532 
1533 	return altr_check_ecc_deps(device);
1534 }
1535 
1536 static const struct edac_device_prv_data a10_qspiecc_data = {
1537 	.setup = socfpga_init_qspi_ecc,
1538 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1539 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1540 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1541 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1542 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1543 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1544 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1545 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1546 	.inject_fops = &altr_edac_a10_device_inject_fops,
1547 };
1548 
1549 #endif	/* CONFIG_EDAC_ALTERA_QSPI */
1550 
1551 /********************* SDMMC Device Functions **********************/
1552 
1553 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1554 
1555 static const struct edac_device_prv_data a10_sdmmceccb_data;
1556 static int altr_portb_setup(struct altr_edac_device_dev *device)
1557 {
1558 	struct edac_device_ctl_info *dci;
1559 	struct altr_edac_device_dev *altdev;
1560 	char *ecc_name = "sdmmcb-ecc";
1561 	int edac_idx, rc;
1562 	struct device_node *np;
1563 	const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
1564 
1565 	rc = altr_check_ecc_deps(device);
1566 	if (rc)
1567 		return rc;
1568 
1569 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1570 	if (!np) {
1571 		edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1572 		return -ENODEV;
1573 	}
1574 
1575 	/* Create the PortB EDAC device */
1576 	edac_idx = edac_device_alloc_index();
1577 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
1578 					 ecc_name, 1, 0, NULL, 0, edac_idx);
1579 	if (!dci) {
1580 		edac_printk(KERN_ERR, EDAC_DEVICE,
1581 			    "%s: Unable to allocate PortB EDAC device\n",
1582 			    ecc_name);
1583 		return -ENOMEM;
1584 	}
1585 
1586 	/* Initialize the PortB EDAC device structure from PortA structure */
1587 	altdev = dci->pvt_info;
1588 	*altdev = *device;
1589 
1590 	if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
1591 		return -ENOMEM;
1592 
1593 	/* Update PortB specific values */
1594 	altdev->edac_dev_name = ecc_name;
1595 	altdev->edac_idx = edac_idx;
1596 	altdev->edac_dev = dci;
1597 	altdev->data = prv;
1598 	dci->dev = &altdev->ddev;
1599 	dci->ctl_name = "Altera ECC Manager";
1600 	dci->mod_name = ecc_name;
1601 	dci->dev_name = ecc_name;
1602 
1603 	/* Update the PortB IRQs - A10 has 4, S10 has 2, Index accordingly */
1604 #ifdef CONFIG_ARCH_STRATIX10
1605 	altdev->sb_irq = irq_of_parse_and_map(np, 1);
1606 #else
1607 	altdev->sb_irq = irq_of_parse_and_map(np, 2);
1608 #endif
1609 	if (!altdev->sb_irq) {
1610 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
1611 		rc = -ENODEV;
1612 		goto err_release_group_1;
1613 	}
1614 	rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
1615 			      prv->ecc_irq_handler,
1616 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1617 			      ecc_name, altdev);
1618 	if (rc) {
1619 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
1620 		goto err_release_group_1;
1621 	}
1622 
1623 #ifdef CONFIG_ARCH_STRATIX10
1624 	/* Use IRQ to determine SError origin instead of assigning IRQ */
1625 	rc = of_property_read_u32_index(np, "interrupts", 1, &altdev->db_irq);
1626 	if (rc) {
1627 		edac_printk(KERN_ERR, EDAC_DEVICE,
1628 			    "Error PortB DBIRQ alloc\n");
1629 		goto err_release_group_1;
1630 	}
1631 #else
1632 	altdev->db_irq = irq_of_parse_and_map(np, 3);
1633 	if (!altdev->db_irq) {
1634 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
1635 		rc = -ENODEV;
1636 		goto err_release_group_1;
1637 	}
1638 	rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
1639 			      prv->ecc_irq_handler,
1640 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1641 			      ecc_name, altdev);
1642 	if (rc) {
1643 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
1644 		goto err_release_group_1;
1645 	}
1646 #endif
1647 
1648 	rc = edac_device_add_device(dci);
1649 	if (rc) {
1650 		edac_printk(KERN_ERR, EDAC_DEVICE,
1651 			    "edac_device_add_device portB failed\n");
1652 		rc = -ENOMEM;
1653 		goto err_release_group_1;
1654 	}
1655 	altr_create_edacdev_dbgfs(dci, prv);
1656 
1657 	list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
1658 
1659 	devres_remove_group(&altdev->ddev, altr_portb_setup);
1660 
1661 	return 0;
1662 
1663 err_release_group_1:
1664 	edac_device_free_ctl_info(dci);
1665 	devres_release_group(&altdev->ddev, altr_portb_setup);
1666 	edac_printk(KERN_ERR, EDAC_DEVICE,
1667 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1668 	return rc;
1669 }
1670 
1671 static int __init socfpga_init_sdmmc_ecc(struct altr_edac_device_dev *device)
1672 {
1673 	int rc = -ENODEV;
1674 	struct device_node *child;
1675 
1676 	child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1677 	if (!child)
1678 		return -ENODEV;
1679 
1680 	if (!of_device_is_available(child))
1681 		goto exit;
1682 
1683 	if (validate_parent_available(child))
1684 		goto exit;
1685 
1686 	/* Init portB */
1687 	rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
1688 				     a10_sdmmceccb_data.ecc_enable_mask, 1);
1689 	if (rc)
1690 		goto exit;
1691 
1692 	/* Setup portB */
1693 	return altr_portb_setup(device);
1694 
1695 exit:
1696 	of_node_put(child);
1697 	return rc;
1698 }
1699 
1700 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
1701 {
1702 	struct altr_edac_device_dev *ad = dev_id;
1703 	void __iomem  *base = ad->base;
1704 	const struct edac_device_prv_data *priv = ad->data;
1705 
1706 	if (irq == ad->sb_irq) {
1707 		writel(priv->ce_clear_mask,
1708 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1709 		edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
1710 		return IRQ_HANDLED;
1711 	} else if (irq == ad->db_irq) {
1712 		writel(priv->ue_clear_mask,
1713 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1714 		edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
1715 		return IRQ_HANDLED;
1716 	}
1717 
1718 	WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
1719 
1720 	return IRQ_NONE;
1721 }
1722 
1723 static const struct edac_device_prv_data a10_sdmmcecca_data = {
1724 	.setup = socfpga_init_sdmmc_ecc,
1725 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1726 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1727 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1728 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1729 	.ce_set_mask = ALTR_A10_ECC_SERRPENA,
1730 	.ue_set_mask = ALTR_A10_ECC_DERRPENA,
1731 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1732 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1733 	.inject_fops = &altr_edac_a10_device_inject_fops,
1734 };
1735 
1736 static const struct edac_device_prv_data a10_sdmmceccb_data = {
1737 	.setup = socfpga_init_sdmmc_ecc,
1738 	.ce_clear_mask = ALTR_A10_ECC_SERRPENB,
1739 	.ue_clear_mask = ALTR_A10_ECC_DERRPENB,
1740 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1741 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1742 	.ce_set_mask = ALTR_A10_ECC_TSERRB,
1743 	.ue_set_mask = ALTR_A10_ECC_TDERRB,
1744 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1745 	.ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
1746 	.inject_fops = &altr_edac_a10_device_inject_fops,
1747 };
1748 
1749 #endif	/* CONFIG_EDAC_ALTERA_SDMMC */
1750 
1751 /********************* Arria10 EDAC Device Functions *************************/
1752 static const struct of_device_id altr_edac_a10_device_of_match[] = {
1753 #ifdef CONFIG_EDAC_ALTERA_L2C
1754 	{ .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
1755 #endif
1756 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1757 	{ .compatible = "altr,socfpga-a10-ocram-ecc",
1758 	  .data = &a10_ocramecc_data },
1759 #endif
1760 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1761 	{ .compatible = "altr,socfpga-eth-mac-ecc",
1762 	  .data = &a10_enetecc_data },
1763 #endif
1764 #ifdef CONFIG_EDAC_ALTERA_NAND
1765 	{ .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
1766 #endif
1767 #ifdef CONFIG_EDAC_ALTERA_DMA
1768 	{ .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
1769 #endif
1770 #ifdef CONFIG_EDAC_ALTERA_USB
1771 	{ .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
1772 #endif
1773 #ifdef CONFIG_EDAC_ALTERA_QSPI
1774 	{ .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
1775 #endif
1776 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1777 	{ .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
1778 #endif
1779 #ifdef CONFIG_EDAC_ALTERA_SDRAM
1780 	{ .compatible = "altr,sdram-edac-s10", .data = &s10_sdramecc_data },
1781 #endif
1782 	{},
1783 };
1784 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
1785 
1786 /*
1787  * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
1788  * because 2 IRQs are shared among the all ECC peripherals. The ECC
1789  * manager manages the IRQs and the children.
1790  * Based on xgene_edac.c peripheral code.
1791  */
1792 
1793 static ssize_t altr_edac_a10_device_trig(struct file *file,
1794 					 const char __user *user_buf,
1795 					 size_t count, loff_t *ppos)
1796 {
1797 	struct edac_device_ctl_info *edac_dci = file->private_data;
1798 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1799 	const struct edac_device_prv_data *priv = drvdata->data;
1800 	void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1801 	unsigned long flags;
1802 	u8 trig_type;
1803 
1804 	if (!user_buf || get_user(trig_type, user_buf))
1805 		return -EFAULT;
1806 
1807 	local_irq_save(flags);
1808 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
1809 		writel(priv->ue_set_mask, set_addr);
1810 	else
1811 		writel(priv->ce_set_mask, set_addr);
1812 
1813 	/* Ensure the interrupt test bits are set */
1814 	wmb();
1815 	local_irq_restore(flags);
1816 
1817 	return count;
1818 }
1819 
1820 /*
1821  * The Stratix10 EDAC Error Injection Functions differ from Arria10
1822  * slightly. A few Arria10 peripherals can use this injection function.
1823  * Inject the error into the memory and then readback to trigger the IRQ.
1824  */
1825 static ssize_t altr_edac_a10_device_trig2(struct file *file,
1826 					  const char __user *user_buf,
1827 					  size_t count, loff_t *ppos)
1828 {
1829 	struct edac_device_ctl_info *edac_dci = file->private_data;
1830 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1831 	const struct edac_device_prv_data *priv = drvdata->data;
1832 	void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1833 	unsigned long flags;
1834 	u8 trig_type;
1835 
1836 	if (!user_buf || get_user(trig_type, user_buf))
1837 		return -EFAULT;
1838 
1839 	local_irq_save(flags);
1840 	if (trig_type == ALTR_UE_TRIGGER_CHAR) {
1841 		writel(priv->ue_set_mask, set_addr);
1842 	} else {
1843 		/* Setup read/write of 4 bytes */
1844 		writel(ECC_WORD_WRITE, drvdata->base + ECC_BLK_DBYTECTRL_OFST);
1845 		/* Setup Address to 0 */
1846 		writel(0, drvdata->base + ECC_BLK_ADDRESS_OFST);
1847 		/* Setup accctrl to read & ecc & data override */
1848 		writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1849 		/* Kick it. */
1850 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1851 		/* Setup write for single bit change */
1852 		writel(readl(drvdata->base + ECC_BLK_RDATA0_OFST) ^ 0x1,
1853 		       drvdata->base + ECC_BLK_WDATA0_OFST);
1854 		writel(readl(drvdata->base + ECC_BLK_RDATA1_OFST),
1855 		       drvdata->base + ECC_BLK_WDATA1_OFST);
1856 		writel(readl(drvdata->base + ECC_BLK_RDATA2_OFST),
1857 		       drvdata->base + ECC_BLK_WDATA2_OFST);
1858 		writel(readl(drvdata->base + ECC_BLK_RDATA3_OFST),
1859 		       drvdata->base + ECC_BLK_WDATA3_OFST);
1860 
1861 		/* Copy Read ECC to Write ECC */
1862 		writel(readl(drvdata->base + ECC_BLK_RECC0_OFST),
1863 		       drvdata->base + ECC_BLK_WECC0_OFST);
1864 		writel(readl(drvdata->base + ECC_BLK_RECC1_OFST),
1865 		       drvdata->base + ECC_BLK_WECC1_OFST);
1866 		/* Setup accctrl to write & ecc override & data override */
1867 		writel(ECC_WRITE_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1868 		/* Kick it. */
1869 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1870 		/* Setup accctrl to read & ecc overwrite & data overwrite */
1871 		writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1872 		/* Kick it. */
1873 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1874 	}
1875 
1876 	/* Ensure the interrupt test bits are set */
1877 	wmb();
1878 	local_irq_restore(flags);
1879 
1880 	return count;
1881 }
1882 
1883 static void altr_edac_a10_irq_handler(struct irq_desc *desc)
1884 {
1885 	int dberr, bit, sm_offset, irq_status;
1886 	struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
1887 	struct irq_chip *chip = irq_desc_get_chip(desc);
1888 	int irq = irq_desc_get_irq(desc);
1889 	unsigned long bits;
1890 
1891 	dberr = (irq == edac->db_irq) ? 1 : 0;
1892 	sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
1893 			    A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
1894 
1895 	chained_irq_enter(chip, desc);
1896 
1897 	regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
1898 
1899 	bits = irq_status;
1900 	for_each_set_bit(bit, &bits, 32) {
1901 		irq = irq_linear_revmap(edac->domain, dberr * 32 + bit);
1902 		if (irq)
1903 			generic_handle_irq(irq);
1904 	}
1905 
1906 	chained_irq_exit(chip, desc);
1907 }
1908 
1909 static int validate_parent_available(struct device_node *np)
1910 {
1911 	struct device_node *parent;
1912 	int ret = 0;
1913 
1914 	/* SDRAM must be present for Linux (implied parent) */
1915 	if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1916 		return 0;
1917 
1918 	/* Ensure parent device is enabled if parent node exists */
1919 	parent = of_parse_phandle(np, "altr,ecc-parent", 0);
1920 	if (parent && !of_device_is_available(parent))
1921 		ret = -ENODEV;
1922 
1923 	of_node_put(parent);
1924 	return ret;
1925 }
1926 
1927 static int get_s10_sdram_edac_resource(struct device_node *np,
1928 				       struct resource *res)
1929 {
1930 	struct device_node *parent;
1931 	int ret;
1932 
1933 	parent = of_parse_phandle(np, "altr,sdr-syscon", 0);
1934 	if (!parent)
1935 		return -ENODEV;
1936 
1937 	ret = of_address_to_resource(parent, 0, res);
1938 	of_node_put(parent);
1939 
1940 	return ret;
1941 }
1942 
1943 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
1944 				    struct device_node *np)
1945 {
1946 	struct edac_device_ctl_info *dci;
1947 	struct altr_edac_device_dev *altdev;
1948 	char *ecc_name = (char *)np->name;
1949 	struct resource res;
1950 	int edac_idx;
1951 	int rc = 0;
1952 	const struct edac_device_prv_data *prv;
1953 	/* Get matching node and check for valid result */
1954 	const struct of_device_id *pdev_id =
1955 		of_match_node(altr_edac_a10_device_of_match, np);
1956 	if (IS_ERR_OR_NULL(pdev_id))
1957 		return -ENODEV;
1958 
1959 	/* Get driver specific data for this EDAC device */
1960 	prv = pdev_id->data;
1961 	if (IS_ERR_OR_NULL(prv))
1962 		return -ENODEV;
1963 
1964 	if (validate_parent_available(np))
1965 		return -ENODEV;
1966 
1967 	if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
1968 		return -ENOMEM;
1969 
1970 	if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1971 		rc = get_s10_sdram_edac_resource(np, &res);
1972 	else
1973 		rc = of_address_to_resource(np, 0, &res);
1974 
1975 	if (rc < 0) {
1976 		edac_printk(KERN_ERR, EDAC_DEVICE,
1977 			    "%s: no resource address\n", ecc_name);
1978 		goto err_release_group;
1979 	}
1980 
1981 	edac_idx = edac_device_alloc_index();
1982 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
1983 					 1, ecc_name, 1, 0, NULL, 0,
1984 					 edac_idx);
1985 
1986 	if (!dci) {
1987 		edac_printk(KERN_ERR, EDAC_DEVICE,
1988 			    "%s: Unable to allocate EDAC device\n", ecc_name);
1989 		rc = -ENOMEM;
1990 		goto err_release_group;
1991 	}
1992 
1993 	altdev = dci->pvt_info;
1994 	dci->dev = edac->dev;
1995 	altdev->edac_dev_name = ecc_name;
1996 	altdev->edac_idx = edac_idx;
1997 	altdev->edac = edac;
1998 	altdev->edac_dev = dci;
1999 	altdev->data = prv;
2000 	altdev->ddev = *edac->dev;
2001 	dci->dev = &altdev->ddev;
2002 	dci->ctl_name = "Altera ECC Manager";
2003 	dci->mod_name = ecc_name;
2004 	dci->dev_name = ecc_name;
2005 
2006 	altdev->base = devm_ioremap_resource(edac->dev, &res);
2007 	if (IS_ERR(altdev->base)) {
2008 		rc = PTR_ERR(altdev->base);
2009 		goto err_release_group1;
2010 	}
2011 
2012 	/* Check specific dependencies for the module */
2013 	if (altdev->data->setup) {
2014 		rc = altdev->data->setup(altdev);
2015 		if (rc)
2016 			goto err_release_group1;
2017 	}
2018 
2019 	altdev->sb_irq = irq_of_parse_and_map(np, 0);
2020 	if (!altdev->sb_irq) {
2021 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
2022 		rc = -ENODEV;
2023 		goto err_release_group1;
2024 	}
2025 	rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
2026 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
2027 			      ecc_name, altdev);
2028 	if (rc) {
2029 		edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
2030 		goto err_release_group1;
2031 	}
2032 
2033 #ifdef CONFIG_ARCH_STRATIX10
2034 	/* Use IRQ to determine SError origin instead of assigning IRQ */
2035 	rc = of_property_read_u32_index(np, "interrupts", 0, &altdev->db_irq);
2036 	if (rc) {
2037 		edac_printk(KERN_ERR, EDAC_DEVICE,
2038 			    "Unable to parse DB IRQ index\n");
2039 		goto err_release_group1;
2040 	}
2041 #else
2042 	altdev->db_irq = irq_of_parse_and_map(np, 1);
2043 	if (!altdev->db_irq) {
2044 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
2045 		rc = -ENODEV;
2046 		goto err_release_group1;
2047 	}
2048 	rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
2049 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
2050 			      ecc_name, altdev);
2051 	if (rc) {
2052 		edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
2053 		goto err_release_group1;
2054 	}
2055 #endif
2056 
2057 	rc = edac_device_add_device(dci);
2058 	if (rc) {
2059 		dev_err(edac->dev, "edac_device_add_device failed\n");
2060 		rc = -ENOMEM;
2061 		goto err_release_group1;
2062 	}
2063 
2064 	altr_create_edacdev_dbgfs(dci, prv);
2065 
2066 	list_add(&altdev->next, &edac->a10_ecc_devices);
2067 
2068 	devres_remove_group(edac->dev, altr_edac_a10_device_add);
2069 
2070 	return 0;
2071 
2072 err_release_group1:
2073 	edac_device_free_ctl_info(dci);
2074 err_release_group:
2075 	devres_release_group(edac->dev, NULL);
2076 	edac_printk(KERN_ERR, EDAC_DEVICE,
2077 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
2078 
2079 	return rc;
2080 }
2081 
2082 static void a10_eccmgr_irq_mask(struct irq_data *d)
2083 {
2084 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2085 
2086 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_SET_OFST,
2087 		     BIT(d->hwirq));
2088 }
2089 
2090 static void a10_eccmgr_irq_unmask(struct irq_data *d)
2091 {
2092 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2093 
2094 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_CLR_OFST,
2095 		     BIT(d->hwirq));
2096 }
2097 
2098 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
2099 				    irq_hw_number_t hwirq)
2100 {
2101 	struct altr_arria10_edac *edac = d->host_data;
2102 
2103 	irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
2104 	irq_set_chip_data(irq, edac);
2105 	irq_set_noprobe(irq);
2106 
2107 	return 0;
2108 }
2109 
2110 static const struct irq_domain_ops a10_eccmgr_ic_ops = {
2111 	.map = a10_eccmgr_irqdomain_map,
2112 	.xlate = irq_domain_xlate_twocell,
2113 };
2114 
2115 /************** Stratix 10 EDAC Double Bit Error Handler ************/
2116 #define to_a10edac(p, m) container_of(p, struct altr_arria10_edac, m)
2117 
2118 #ifdef CONFIG_ARCH_STRATIX10
2119 /* panic routine issues reboot on non-zero panic_timeout */
2120 extern int panic_timeout;
2121 
2122 /*
2123  * The double bit error is handled through SError which is fatal. This is
2124  * called as a panic notifier to printout ECC error info as part of the panic.
2125  */
2126 static int s10_edac_dberr_handler(struct notifier_block *this,
2127 				  unsigned long event, void *ptr)
2128 {
2129 	struct altr_arria10_edac *edac = to_a10edac(this, panic_notifier);
2130 	int err_addr, dberror;
2131 
2132 	regmap_read(edac->ecc_mgr_map, S10_SYSMGR_ECC_INTSTAT_DERR_OFST,
2133 		    &dberror);
2134 	regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, dberror);
2135 	if (dberror & S10_DBE_IRQ_MASK) {
2136 		struct list_head *position;
2137 		struct altr_edac_device_dev *ed;
2138 		struct arm_smccc_res result;
2139 
2140 		/* Find the matching DBE in the list of devices */
2141 		list_for_each(position, &edac->a10_ecc_devices) {
2142 			ed = list_entry(position, struct altr_edac_device_dev,
2143 					next);
2144 			if (!(BIT(ed->db_irq) & dberror))
2145 				continue;
2146 
2147 			writel(ALTR_A10_ECC_DERRPENA,
2148 			       ed->base + ALTR_A10_ECC_INTSTAT_OFST);
2149 			err_addr = readl(ed->base + ALTR_S10_DERR_ADDRA_OFST);
2150 			regmap_write(edac->ecc_mgr_map,
2151 				     S10_SYSMGR_UE_ADDR_OFST, err_addr);
2152 			edac_printk(KERN_ERR, EDAC_DEVICE,
2153 				    "EDAC: [Fatal DBE on %s @ 0x%08X]\n",
2154 				    ed->edac_dev_name, err_addr);
2155 			break;
2156 		}
2157 		/* Notify the System through SMC. Reboot delay = 1 second */
2158 		panic_timeout = 1;
2159 		arm_smccc_smc(INTEL_SIP_SMC_ECC_DBE, dberror, 0, 0, 0, 0,
2160 			      0, 0, &result);
2161 	}
2162 
2163 	return NOTIFY_DONE;
2164 }
2165 #endif
2166 
2167 /****************** Arria 10 EDAC Probe Function *********************/
2168 static int altr_edac_a10_probe(struct platform_device *pdev)
2169 {
2170 	struct altr_arria10_edac *edac;
2171 	struct device_node *child;
2172 
2173 	edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
2174 	if (!edac)
2175 		return -ENOMEM;
2176 
2177 	edac->dev = &pdev->dev;
2178 	platform_set_drvdata(pdev, edac);
2179 	INIT_LIST_HEAD(&edac->a10_ecc_devices);
2180 
2181 	if (socfpga_is_a10()) {
2182 		edac->ecc_mgr_map =
2183 			syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
2184 							"altr,sysmgr-syscon");
2185 	} else {
2186 		struct device_node *sysmgr_np;
2187 		struct resource res;
2188 		uintptr_t base;
2189 
2190 		sysmgr_np = of_parse_phandle(pdev->dev.of_node,
2191 					     "altr,sysmgr-syscon", 0);
2192 		if (!sysmgr_np) {
2193 			edac_printk(KERN_ERR, EDAC_DEVICE,
2194 				    "Unable to find altr,sysmgr-syscon\n");
2195 			return -ENODEV;
2196 		}
2197 
2198 		if (of_address_to_resource(sysmgr_np, 0, &res))
2199 			return -ENOMEM;
2200 
2201 		/* Need physical address for SMCC call */
2202 		base = res.start;
2203 
2204 		edac->ecc_mgr_map = devm_regmap_init(&pdev->dev, NULL,
2205 						     (void *)base,
2206 						     &s10_sdram_regmap_cfg);
2207 	}
2208 
2209 	if (IS_ERR(edac->ecc_mgr_map)) {
2210 		edac_printk(KERN_ERR, EDAC_DEVICE,
2211 			    "Unable to get syscon altr,sysmgr-syscon\n");
2212 		return PTR_ERR(edac->ecc_mgr_map);
2213 	}
2214 
2215 	edac->irq_chip.name = pdev->dev.of_node->name;
2216 	edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
2217 	edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
2218 	edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64,
2219 					     &a10_eccmgr_ic_ops, edac);
2220 	if (!edac->domain) {
2221 		dev_err(&pdev->dev, "Error adding IRQ domain\n");
2222 		return -ENOMEM;
2223 	}
2224 
2225 	edac->sb_irq = platform_get_irq(pdev, 0);
2226 	if (edac->sb_irq < 0) {
2227 		dev_err(&pdev->dev, "No SBERR IRQ resource\n");
2228 		return edac->sb_irq;
2229 	}
2230 
2231 	irq_set_chained_handler_and_data(edac->sb_irq,
2232 					 altr_edac_a10_irq_handler,
2233 					 edac);
2234 
2235 #ifdef CONFIG_ARCH_STRATIX10
2236 	{
2237 		int dberror, err_addr;
2238 
2239 		edac->panic_notifier.notifier_call = s10_edac_dberr_handler;
2240 		atomic_notifier_chain_register(&panic_notifier_list,
2241 					       &edac->panic_notifier);
2242 
2243 		/* Printout a message if uncorrectable error previously. */
2244 		regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST,
2245 			    &dberror);
2246 		if (dberror) {
2247 			regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST,
2248 				    &err_addr);
2249 			edac_printk(KERN_ERR, EDAC_DEVICE,
2250 				    "Previous Boot UE detected[0x%X] @ 0x%X\n",
2251 				    dberror, err_addr);
2252 			/* Reset the sticky registers */
2253 			regmap_write(edac->ecc_mgr_map,
2254 				     S10_SYSMGR_UE_VAL_OFST, 0);
2255 			regmap_write(edac->ecc_mgr_map,
2256 				     S10_SYSMGR_UE_ADDR_OFST, 0);
2257 		}
2258 	}
2259 #else
2260 	edac->db_irq = platform_get_irq(pdev, 1);
2261 	if (edac->db_irq < 0) {
2262 		dev_err(&pdev->dev, "No DBERR IRQ resource\n");
2263 		return edac->db_irq;
2264 	}
2265 	irq_set_chained_handler_and_data(edac->db_irq,
2266 					 altr_edac_a10_irq_handler, edac);
2267 #endif
2268 
2269 	for_each_child_of_node(pdev->dev.of_node, child) {
2270 		if (!of_device_is_available(child))
2271 			continue;
2272 
2273 		if (of_device_is_compatible(child, "altr,socfpga-a10-l2-ecc") ||
2274 		    of_device_is_compatible(child, "altr,socfpga-a10-ocram-ecc") ||
2275 		    of_device_is_compatible(child, "altr,socfpga-eth-mac-ecc") ||
2276 		    of_device_is_compatible(child, "altr,socfpga-nand-ecc") ||
2277 		    of_device_is_compatible(child, "altr,socfpga-dma-ecc") ||
2278 		    of_device_is_compatible(child, "altr,socfpga-usb-ecc") ||
2279 		    of_device_is_compatible(child, "altr,socfpga-qspi-ecc") ||
2280 #ifdef CONFIG_EDAC_ALTERA_SDRAM
2281 		    of_device_is_compatible(child, "altr,sdram-edac-s10") ||
2282 #endif
2283 		    of_device_is_compatible(child, "altr,socfpga-sdmmc-ecc"))
2284 
2285 			altr_edac_a10_device_add(edac, child);
2286 
2287 #ifdef CONFIG_EDAC_ALTERA_SDRAM
2288 		else if (of_device_is_compatible(child, "altr,sdram-edac-a10"))
2289 			of_platform_populate(pdev->dev.of_node,
2290 					     altr_sdram_ctrl_of_match,
2291 					     NULL, &pdev->dev);
2292 #endif
2293 	}
2294 
2295 	return 0;
2296 }
2297 
2298 static const struct of_device_id altr_edac_a10_of_match[] = {
2299 	{ .compatible = "altr,socfpga-a10-ecc-manager" },
2300 	{ .compatible = "altr,socfpga-s10-ecc-manager" },
2301 	{},
2302 };
2303 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
2304 
2305 static struct platform_driver altr_edac_a10_driver = {
2306 	.probe =  altr_edac_a10_probe,
2307 	.driver = {
2308 		.name = "socfpga_a10_ecc_manager",
2309 		.of_match_table = altr_edac_a10_of_match,
2310 	},
2311 };
2312 module_platform_driver(altr_edac_a10_driver);
2313 
2314 MODULE_LICENSE("GPL v2");
2315 MODULE_AUTHOR("Thor Thayer");
2316 MODULE_DESCRIPTION("EDAC Driver for Altera Memories");
2317