xref: /openbmc/linux/drivers/edac/altera_edac.c (revision 023e4163)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 2017-2018, Intel Corporation. All rights reserved
4  *  Copyright Altera Corporation (C) 2014-2016. All rights reserved.
5  *  Copyright 2011-2012 Calxeda, Inc.
6  */
7 
8 #include <asm/cacheflush.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/edac.h>
12 #include <linux/genalloc.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqchip/chained_irq.h>
15 #include <linux/kernel.h>
16 #include <linux/mfd/syscon.h>
17 #include <linux/notifier.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_platform.h>
21 #include <linux/platform_device.h>
22 #include <linux/regmap.h>
23 #include <linux/types.h>
24 #include <linux/uaccess.h>
25 
26 #include "altera_edac.h"
27 #include "edac_module.h"
28 
29 #define EDAC_MOD_STR		"altera_edac"
30 #define EDAC_DEVICE		"Altera"
31 
32 #ifdef CONFIG_EDAC_ALTERA_SDRAM
33 static const struct altr_sdram_prv_data c5_data = {
34 	.ecc_ctrl_offset    = CV_CTLCFG_OFST,
35 	.ecc_ctl_en_mask    = CV_CTLCFG_ECC_AUTO_EN,
36 	.ecc_stat_offset    = CV_DRAMSTS_OFST,
37 	.ecc_stat_ce_mask   = CV_DRAMSTS_SBEERR,
38 	.ecc_stat_ue_mask   = CV_DRAMSTS_DBEERR,
39 	.ecc_saddr_offset   = CV_ERRADDR_OFST,
40 	.ecc_daddr_offset   = CV_ERRADDR_OFST,
41 	.ecc_cecnt_offset   = CV_SBECOUNT_OFST,
42 	.ecc_uecnt_offset   = CV_DBECOUNT_OFST,
43 	.ecc_irq_en_offset  = CV_DRAMINTR_OFST,
44 	.ecc_irq_en_mask    = CV_DRAMINTR_INTREN,
45 	.ecc_irq_clr_offset = CV_DRAMINTR_OFST,
46 	.ecc_irq_clr_mask   = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
47 	.ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
48 	.ecc_cnt_rst_mask   = CV_DRAMINTR_INTRCLR,
49 	.ce_ue_trgr_offset  = CV_CTLCFG_OFST,
50 	.ce_set_mask        = CV_CTLCFG_GEN_SB_ERR,
51 	.ue_set_mask        = CV_CTLCFG_GEN_DB_ERR,
52 };
53 
54 static const struct altr_sdram_prv_data a10_data = {
55 	.ecc_ctrl_offset    = A10_ECCCTRL1_OFST,
56 	.ecc_ctl_en_mask    = A10_ECCCTRL1_ECC_EN,
57 	.ecc_stat_offset    = A10_INTSTAT_OFST,
58 	.ecc_stat_ce_mask   = A10_INTSTAT_SBEERR,
59 	.ecc_stat_ue_mask   = A10_INTSTAT_DBEERR,
60 	.ecc_saddr_offset   = A10_SERRADDR_OFST,
61 	.ecc_daddr_offset   = A10_DERRADDR_OFST,
62 	.ecc_irq_en_offset  = A10_ERRINTEN_OFST,
63 	.ecc_irq_en_mask    = A10_ECC_IRQ_EN_MASK,
64 	.ecc_irq_clr_offset = A10_INTSTAT_OFST,
65 	.ecc_irq_clr_mask   = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
66 	.ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
67 	.ecc_cnt_rst_mask   = A10_ECC_CNT_RESET_MASK,
68 	.ce_ue_trgr_offset  = A10_DIAGINTTEST_OFST,
69 	.ce_set_mask        = A10_DIAGINT_TSERRA_MASK,
70 	.ue_set_mask        = A10_DIAGINT_TDERRA_MASK,
71 };
72 
73 /*********************** EDAC Memory Controller Functions ****************/
74 
75 /* The SDRAM controller uses the EDAC Memory Controller framework.       */
76 
77 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
78 {
79 	struct mem_ctl_info *mci = dev_id;
80 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
81 	const struct altr_sdram_prv_data *priv = drvdata->data;
82 	u32 status, err_count = 1, err_addr;
83 
84 	regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
85 
86 	if (status & priv->ecc_stat_ue_mask) {
87 		regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
88 			    &err_addr);
89 		if (priv->ecc_uecnt_offset)
90 			regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
91 				    &err_count);
92 		panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
93 		      err_count, err_addr);
94 	}
95 	if (status & priv->ecc_stat_ce_mask) {
96 		regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
97 			    &err_addr);
98 		if (priv->ecc_uecnt_offset)
99 			regmap_read(drvdata->mc_vbase,  priv->ecc_cecnt_offset,
100 				    &err_count);
101 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
102 				     err_addr >> PAGE_SHIFT,
103 				     err_addr & ~PAGE_MASK, 0,
104 				     0, 0, -1, mci->ctl_name, "");
105 		/* Clear IRQ to resume */
106 		regmap_write(drvdata->mc_vbase,	priv->ecc_irq_clr_offset,
107 			     priv->ecc_irq_clr_mask);
108 
109 		return IRQ_HANDLED;
110 	}
111 	return IRQ_NONE;
112 }
113 
114 static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
115 					    const char __user *data,
116 					    size_t count, loff_t *ppos)
117 {
118 	struct mem_ctl_info *mci = file->private_data;
119 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
120 	const struct altr_sdram_prv_data *priv = drvdata->data;
121 	u32 *ptemp;
122 	dma_addr_t dma_handle;
123 	u32 reg, read_reg;
124 
125 	ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
126 	if (!ptemp) {
127 		dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
128 		edac_printk(KERN_ERR, EDAC_MC,
129 			    "Inject: Buffer Allocation error\n");
130 		return -ENOMEM;
131 	}
132 
133 	regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
134 		    &read_reg);
135 	read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
136 
137 	/* Error are injected by writing a word while the SBE or DBE
138 	 * bit in the CTLCFG register is set. Reading the word will
139 	 * trigger the SBE or DBE error and the corresponding IRQ.
140 	 */
141 	if (count == 3) {
142 		edac_printk(KERN_ALERT, EDAC_MC,
143 			    "Inject Double bit error\n");
144 		local_irq_disable();
145 		regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
146 			     (read_reg | priv->ue_set_mask));
147 		local_irq_enable();
148 	} else {
149 		edac_printk(KERN_ALERT, EDAC_MC,
150 			    "Inject Single bit error\n");
151 		local_irq_disable();
152 		regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset,
153 			     (read_reg | priv->ce_set_mask));
154 		local_irq_enable();
155 	}
156 
157 	ptemp[0] = 0x5A5A5A5A;
158 	ptemp[1] = 0xA5A5A5A5;
159 
160 	/* Clear the error injection bits */
161 	regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset, read_reg);
162 	/* Ensure it has been written out */
163 	wmb();
164 
165 	/*
166 	 * To trigger the error, we need to read the data back
167 	 * (the data was written with errors above).
168 	 * The READ_ONCE macros and printk are used to prevent the
169 	 * the compiler optimizing these reads out.
170 	 */
171 	reg = READ_ONCE(ptemp[0]);
172 	read_reg = READ_ONCE(ptemp[1]);
173 	/* Force Read */
174 	rmb();
175 
176 	edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
177 		    reg, read_reg);
178 
179 	dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
180 
181 	return count;
182 }
183 
184 static const struct file_operations altr_sdr_mc_debug_inject_fops = {
185 	.open = simple_open,
186 	.write = altr_sdr_mc_err_inject_write,
187 	.llseek = generic_file_llseek,
188 };
189 
190 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
191 {
192 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
193 		return;
194 
195 	if (!mci->debugfs)
196 		return;
197 
198 	edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
199 				 &altr_sdr_mc_debug_inject_fops);
200 }
201 
202 /* Get total memory size from Open Firmware DTB */
203 static unsigned long get_total_mem(void)
204 {
205 	struct device_node *np = NULL;
206 	struct resource res;
207 	int ret;
208 	unsigned long total_mem = 0;
209 
210 	for_each_node_by_type(np, "memory") {
211 		ret = of_address_to_resource(np, 0, &res);
212 		if (ret)
213 			continue;
214 
215 		total_mem += resource_size(&res);
216 	}
217 	edac_dbg(0, "total_mem 0x%lx\n", total_mem);
218 	return total_mem;
219 }
220 
221 static const struct of_device_id altr_sdram_ctrl_of_match[] = {
222 	{ .compatible = "altr,sdram-edac", .data = &c5_data},
223 	{ .compatible = "altr,sdram-edac-a10", .data = &a10_data},
224 	{ .compatible = "altr,sdram-edac-s10", .data = &a10_data},
225 	{},
226 };
227 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
228 
229 static int a10_init(struct regmap *mc_vbase)
230 {
231 	if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
232 			       A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
233 		edac_printk(KERN_ERR, EDAC_MC,
234 			    "Error setting SB IRQ mode\n");
235 		return -ENODEV;
236 	}
237 
238 	if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
239 		edac_printk(KERN_ERR, EDAC_MC,
240 			    "Error setting trigger count\n");
241 		return -ENODEV;
242 	}
243 
244 	return 0;
245 }
246 
247 static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
248 {
249 	void __iomem  *sm_base;
250 	int  ret = 0;
251 
252 	if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
253 				dev_name(&pdev->dev))) {
254 		edac_printk(KERN_ERR, EDAC_MC,
255 			    "Unable to request mem region\n");
256 		return -EBUSY;
257 	}
258 
259 	sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
260 	if (!sm_base) {
261 		edac_printk(KERN_ERR, EDAC_MC,
262 			    "Unable to ioremap device\n");
263 
264 		ret = -ENOMEM;
265 		goto release;
266 	}
267 
268 	iowrite32(mask, sm_base);
269 
270 	iounmap(sm_base);
271 
272 release:
273 	release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
274 
275 	return ret;
276 }
277 
278 static int socfpga_is_a10(void);
279 static int altr_sdram_probe(struct platform_device *pdev)
280 {
281 	const struct of_device_id *id;
282 	struct edac_mc_layer layers[2];
283 	struct mem_ctl_info *mci;
284 	struct altr_sdram_mc_data *drvdata;
285 	const struct altr_sdram_prv_data *priv;
286 	struct regmap *mc_vbase;
287 	struct dimm_info *dimm;
288 	u32 read_reg;
289 	int irq, irq2, res = 0;
290 	unsigned long mem_size, irqflags = 0;
291 
292 	id = of_match_device(altr_sdram_ctrl_of_match, &pdev->dev);
293 	if (!id)
294 		return -ENODEV;
295 
296 	/* Grab the register range from the sdr controller in device tree */
297 	mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
298 						   "altr,sdr-syscon");
299 	if (IS_ERR(mc_vbase)) {
300 		edac_printk(KERN_ERR, EDAC_MC,
301 			    "regmap for altr,sdr-syscon lookup failed.\n");
302 		return -ENODEV;
303 	}
304 
305 	/* Check specific dependencies for the module */
306 	priv = of_match_node(altr_sdram_ctrl_of_match,
307 			     pdev->dev.of_node)->data;
308 
309 	/* Validate the SDRAM controller has ECC enabled */
310 	if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
311 	    ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
312 		edac_printk(KERN_ERR, EDAC_MC,
313 			    "No ECC/ECC disabled [0x%08X]\n", read_reg);
314 		return -ENODEV;
315 	}
316 
317 	/* Grab memory size from device tree. */
318 	mem_size = get_total_mem();
319 	if (!mem_size) {
320 		edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
321 		return -ENODEV;
322 	}
323 
324 	/* Ensure the SDRAM Interrupt is disabled */
325 	if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
326 			       priv->ecc_irq_en_mask, 0)) {
327 		edac_printk(KERN_ERR, EDAC_MC,
328 			    "Error disabling SDRAM ECC IRQ\n");
329 		return -ENODEV;
330 	}
331 
332 	/* Toggle to clear the SDRAM Error count */
333 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
334 			       priv->ecc_cnt_rst_mask,
335 			       priv->ecc_cnt_rst_mask)) {
336 		edac_printk(KERN_ERR, EDAC_MC,
337 			    "Error clearing SDRAM ECC count\n");
338 		return -ENODEV;
339 	}
340 
341 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
342 			       priv->ecc_cnt_rst_mask, 0)) {
343 		edac_printk(KERN_ERR, EDAC_MC,
344 			    "Error clearing SDRAM ECC count\n");
345 		return -ENODEV;
346 	}
347 
348 	irq = platform_get_irq(pdev, 0);
349 	if (irq < 0) {
350 		edac_printk(KERN_ERR, EDAC_MC,
351 			    "No irq %d in DT\n", irq);
352 		return -ENODEV;
353 	}
354 
355 	/* Arria10 has a 2nd IRQ */
356 	irq2 = platform_get_irq(pdev, 1);
357 
358 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
359 	layers[0].size = 1;
360 	layers[0].is_virt_csrow = true;
361 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
362 	layers[1].size = 1;
363 	layers[1].is_virt_csrow = false;
364 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
365 			    sizeof(struct altr_sdram_mc_data));
366 	if (!mci)
367 		return -ENOMEM;
368 
369 	mci->pdev = &pdev->dev;
370 	drvdata = mci->pvt_info;
371 	drvdata->mc_vbase = mc_vbase;
372 	drvdata->data = priv;
373 	platform_set_drvdata(pdev, mci);
374 
375 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
376 		edac_printk(KERN_ERR, EDAC_MC,
377 			    "Unable to get managed device resource\n");
378 		res = -ENOMEM;
379 		goto free;
380 	}
381 
382 	mci->mtype_cap = MEM_FLAG_DDR3;
383 	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
384 	mci->edac_cap = EDAC_FLAG_SECDED;
385 	mci->mod_name = EDAC_MOD_STR;
386 	mci->ctl_name = dev_name(&pdev->dev);
387 	mci->scrub_mode = SCRUB_SW_SRC;
388 	mci->dev_name = dev_name(&pdev->dev);
389 
390 	dimm = *mci->dimms;
391 	dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
392 	dimm->grain = 8;
393 	dimm->dtype = DEV_X8;
394 	dimm->mtype = MEM_DDR3;
395 	dimm->edac_mode = EDAC_SECDED;
396 
397 	res = edac_mc_add_mc(mci);
398 	if (res < 0)
399 		goto err;
400 
401 	/* Only the Arria10 has separate IRQs */
402 	if (socfpga_is_a10()) {
403 		/* Arria10 specific initialization */
404 		res = a10_init(mc_vbase);
405 		if (res < 0)
406 			goto err2;
407 
408 		res = devm_request_irq(&pdev->dev, irq2,
409 				       altr_sdram_mc_err_handler,
410 				       IRQF_SHARED, dev_name(&pdev->dev), mci);
411 		if (res < 0) {
412 			edac_mc_printk(mci, KERN_ERR,
413 				       "Unable to request irq %d\n", irq2);
414 			res = -ENODEV;
415 			goto err2;
416 		}
417 
418 		res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
419 		if (res < 0)
420 			goto err2;
421 
422 		irqflags = IRQF_SHARED;
423 	}
424 
425 	res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
426 			       irqflags, dev_name(&pdev->dev), mci);
427 	if (res < 0) {
428 		edac_mc_printk(mci, KERN_ERR,
429 			       "Unable to request irq %d\n", irq);
430 		res = -ENODEV;
431 		goto err2;
432 	}
433 
434 	/* Infrastructure ready - enable the IRQ */
435 	if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
436 			       priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
437 		edac_mc_printk(mci, KERN_ERR,
438 			       "Error enabling SDRAM ECC IRQ\n");
439 		res = -ENODEV;
440 		goto err2;
441 	}
442 
443 	altr_sdr_mc_create_debugfs_nodes(mci);
444 
445 	devres_close_group(&pdev->dev, NULL);
446 
447 	return 0;
448 
449 err2:
450 	edac_mc_del_mc(&pdev->dev);
451 err:
452 	devres_release_group(&pdev->dev, NULL);
453 free:
454 	edac_mc_free(mci);
455 	edac_printk(KERN_ERR, EDAC_MC,
456 		    "EDAC Probe Failed; Error %d\n", res);
457 
458 	return res;
459 }
460 
461 static int altr_sdram_remove(struct platform_device *pdev)
462 {
463 	struct mem_ctl_info *mci = platform_get_drvdata(pdev);
464 
465 	edac_mc_del_mc(&pdev->dev);
466 	edac_mc_free(mci);
467 	platform_set_drvdata(pdev, NULL);
468 
469 	return 0;
470 }
471 
472 /*
473  * If you want to suspend, need to disable EDAC by removing it
474  * from the device tree or defconfig.
475  */
476 #ifdef CONFIG_PM
477 static int altr_sdram_prepare(struct device *dev)
478 {
479 	pr_err("Suspend not allowed when EDAC is enabled.\n");
480 
481 	return -EPERM;
482 }
483 
484 static const struct dev_pm_ops altr_sdram_pm_ops = {
485 	.prepare = altr_sdram_prepare,
486 };
487 #endif
488 
489 static struct platform_driver altr_sdram_edac_driver = {
490 	.probe = altr_sdram_probe,
491 	.remove = altr_sdram_remove,
492 	.driver = {
493 		.name = "altr_sdram_edac",
494 #ifdef CONFIG_PM
495 		.pm = &altr_sdram_pm_ops,
496 #endif
497 		.of_match_table = altr_sdram_ctrl_of_match,
498 	},
499 };
500 
501 module_platform_driver(altr_sdram_edac_driver);
502 
503 #endif	/* CONFIG_EDAC_ALTERA_SDRAM */
504 
505 /**************** Stratix 10 EDAC Memory Controller Functions ************/
506 
507 /**
508  * s10_protected_reg_write
509  * Write to a protected SMC register.
510  * @context: Not used.
511  * @reg: Address of register
512  * @value: Value to write
513  * Return: INTEL_SIP_SMC_STATUS_OK (0) on success
514  *	   INTEL_SIP_SMC_REG_ERROR on error
515  *	   INTEL_SIP_SMC_RETURN_UNKNOWN_FUNCTION if not supported
516  */
517 static int s10_protected_reg_write(void *context, unsigned int reg,
518 				   unsigned int val)
519 {
520 	struct arm_smccc_res result;
521 	unsigned long offset = (unsigned long)context;
522 
523 	arm_smccc_smc(INTEL_SIP_SMC_REG_WRITE, offset + reg, val, 0, 0,
524 		      0, 0, 0, &result);
525 
526 	return (int)result.a0;
527 }
528 
529 /**
530  * s10_protected_reg_read
531  * Read the status of a protected SMC register
532  * @context: Not used.
533  * @reg: Address of register
534  * @value: Value read.
535  * Return: INTEL_SIP_SMC_STATUS_OK (0) on success
536  *	   INTEL_SIP_SMC_REG_ERROR on error
537  *	   INTEL_SIP_SMC_RETURN_UNKNOWN_FUNCTION if not supported
538  */
539 static int s10_protected_reg_read(void *context, unsigned int reg,
540 				  unsigned int *val)
541 {
542 	struct arm_smccc_res result;
543 	unsigned long offset = (unsigned long)context;
544 
545 	arm_smccc_smc(INTEL_SIP_SMC_REG_READ, offset + reg, 0, 0, 0,
546 		      0, 0, 0, &result);
547 
548 	*val = (unsigned int)result.a1;
549 
550 	return (int)result.a0;
551 }
552 
553 static const struct regmap_config s10_sdram_regmap_cfg = {
554 	.name = "s10_ddr",
555 	.reg_bits = 32,
556 	.reg_stride = 4,
557 	.val_bits = 32,
558 	.max_register = 0xffd12228,
559 	.reg_read = s10_protected_reg_read,
560 	.reg_write = s10_protected_reg_write,
561 	.use_single_read = true,
562 	.use_single_write = true,
563 };
564 
565 /************** </Stratix10 EDAC Memory Controller Functions> ***********/
566 
567 /************************* EDAC Parent Probe *************************/
568 
569 static const struct of_device_id altr_edac_device_of_match[];
570 
571 static const struct of_device_id altr_edac_of_match[] = {
572 	{ .compatible = "altr,socfpga-ecc-manager" },
573 	{},
574 };
575 MODULE_DEVICE_TABLE(of, altr_edac_of_match);
576 
577 static int altr_edac_probe(struct platform_device *pdev)
578 {
579 	of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
580 			     NULL, &pdev->dev);
581 	return 0;
582 }
583 
584 static struct platform_driver altr_edac_driver = {
585 	.probe =  altr_edac_probe,
586 	.driver = {
587 		.name = "socfpga_ecc_manager",
588 		.of_match_table = altr_edac_of_match,
589 	},
590 };
591 module_platform_driver(altr_edac_driver);
592 
593 /************************* EDAC Device Functions *************************/
594 
595 /*
596  * EDAC Device Functions (shared between various IPs).
597  * The discrete memories use the EDAC Device framework. The probe
598  * and error handling functions are very similar between memories
599  * so they are shared. The memory allocation and freeing for EDAC
600  * trigger testing are different for each memory.
601  */
602 
603 static const struct edac_device_prv_data ocramecc_data;
604 static const struct edac_device_prv_data l2ecc_data;
605 static const struct edac_device_prv_data a10_ocramecc_data;
606 static const struct edac_device_prv_data a10_l2ecc_data;
607 
608 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
609 {
610 	irqreturn_t ret_value = IRQ_NONE;
611 	struct edac_device_ctl_info *dci = dev_id;
612 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
613 	const struct edac_device_prv_data *priv = drvdata->data;
614 
615 	if (irq == drvdata->sb_irq) {
616 		if (priv->ce_clear_mask)
617 			writel(priv->ce_clear_mask, drvdata->base);
618 		edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
619 		ret_value = IRQ_HANDLED;
620 	} else if (irq == drvdata->db_irq) {
621 		if (priv->ue_clear_mask)
622 			writel(priv->ue_clear_mask, drvdata->base);
623 		edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
624 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
625 		ret_value = IRQ_HANDLED;
626 	} else {
627 		WARN_ON(1);
628 	}
629 
630 	return ret_value;
631 }
632 
633 static ssize_t altr_edac_device_trig(struct file *file,
634 				     const char __user *user_buf,
635 				     size_t count, loff_t *ppos)
636 
637 {
638 	u32 *ptemp, i, error_mask;
639 	int result = 0;
640 	u8 trig_type;
641 	unsigned long flags;
642 	struct edac_device_ctl_info *edac_dci = file->private_data;
643 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
644 	const struct edac_device_prv_data *priv = drvdata->data;
645 	void *generic_ptr = edac_dci->dev;
646 
647 	if (!user_buf || get_user(trig_type, user_buf))
648 		return -EFAULT;
649 
650 	if (!priv->alloc_mem)
651 		return -ENOMEM;
652 
653 	/*
654 	 * Note that generic_ptr is initialized to the device * but in
655 	 * some alloc_functions, this is overridden and returns data.
656 	 */
657 	ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
658 	if (!ptemp) {
659 		edac_printk(KERN_ERR, EDAC_DEVICE,
660 			    "Inject: Buffer Allocation error\n");
661 		return -ENOMEM;
662 	}
663 
664 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
665 		error_mask = priv->ue_set_mask;
666 	else
667 		error_mask = priv->ce_set_mask;
668 
669 	edac_printk(KERN_ALERT, EDAC_DEVICE,
670 		    "Trigger Error Mask (0x%X)\n", error_mask);
671 
672 	local_irq_save(flags);
673 	/* write ECC corrupted data out. */
674 	for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
675 		/* Read data so we're in the correct state */
676 		rmb();
677 		if (READ_ONCE(ptemp[i]))
678 			result = -1;
679 		/* Toggle Error bit (it is latched), leave ECC enabled */
680 		writel(error_mask, (drvdata->base + priv->set_err_ofst));
681 		writel(priv->ecc_enable_mask, (drvdata->base +
682 					       priv->set_err_ofst));
683 		ptemp[i] = i;
684 	}
685 	/* Ensure it has been written out */
686 	wmb();
687 	local_irq_restore(flags);
688 
689 	if (result)
690 		edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
691 
692 	/* Read out written data. ECC error caused here */
693 	for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
694 		if (READ_ONCE(ptemp[i]) != i)
695 			edac_printk(KERN_ERR, EDAC_DEVICE,
696 				    "Read doesn't match written data\n");
697 
698 	if (priv->free_mem)
699 		priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
700 
701 	return count;
702 }
703 
704 static const struct file_operations altr_edac_device_inject_fops = {
705 	.open = simple_open,
706 	.write = altr_edac_device_trig,
707 	.llseek = generic_file_llseek,
708 };
709 
710 static ssize_t altr_edac_a10_device_trig(struct file *file,
711 					 const char __user *user_buf,
712 					 size_t count, loff_t *ppos);
713 
714 static const struct file_operations altr_edac_a10_device_inject_fops = {
715 	.open = simple_open,
716 	.write = altr_edac_a10_device_trig,
717 	.llseek = generic_file_llseek,
718 };
719 
720 static ssize_t altr_edac_a10_device_trig2(struct file *file,
721 					  const char __user *user_buf,
722 					  size_t count, loff_t *ppos);
723 
724 static const struct file_operations altr_edac_a10_device_inject2_fops = {
725 	.open = simple_open,
726 	.write = altr_edac_a10_device_trig2,
727 	.llseek = generic_file_llseek,
728 };
729 
730 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
731 				      const struct edac_device_prv_data *priv)
732 {
733 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
734 
735 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
736 		return;
737 
738 	drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
739 	if (!drvdata->debugfs_dir)
740 		return;
741 
742 	if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
743 				      drvdata->debugfs_dir, edac_dci,
744 				      priv->inject_fops))
745 		debugfs_remove_recursive(drvdata->debugfs_dir);
746 }
747 
748 static const struct of_device_id altr_edac_device_of_match[] = {
749 #ifdef CONFIG_EDAC_ALTERA_L2C
750 	{ .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
751 #endif
752 #ifdef CONFIG_EDAC_ALTERA_OCRAM
753 	{ .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
754 #endif
755 	{},
756 };
757 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
758 
759 /*
760  * altr_edac_device_probe()
761  *	This is a generic EDAC device driver that will support
762  *	various Altera memory devices such as the L2 cache ECC and
763  *	OCRAM ECC as well as the memories for other peripherals.
764  *	Module specific initialization is done by passing the
765  *	function index in the device tree.
766  */
767 static int altr_edac_device_probe(struct platform_device *pdev)
768 {
769 	struct edac_device_ctl_info *dci;
770 	struct altr_edac_device_dev *drvdata;
771 	struct resource *r;
772 	int res = 0;
773 	struct device_node *np = pdev->dev.of_node;
774 	char *ecc_name = (char *)np->name;
775 	static int dev_instance;
776 
777 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
778 		edac_printk(KERN_ERR, EDAC_DEVICE,
779 			    "Unable to open devm\n");
780 		return -ENOMEM;
781 	}
782 
783 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
784 	if (!r) {
785 		edac_printk(KERN_ERR, EDAC_DEVICE,
786 			    "Unable to get mem resource\n");
787 		res = -ENODEV;
788 		goto fail;
789 	}
790 
791 	if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
792 				     dev_name(&pdev->dev))) {
793 		edac_printk(KERN_ERR, EDAC_DEVICE,
794 			    "%s:Error requesting mem region\n", ecc_name);
795 		res = -EBUSY;
796 		goto fail;
797 	}
798 
799 	dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
800 					 1, ecc_name, 1, 0, NULL, 0,
801 					 dev_instance++);
802 
803 	if (!dci) {
804 		edac_printk(KERN_ERR, EDAC_DEVICE,
805 			    "%s: Unable to allocate EDAC device\n", ecc_name);
806 		res = -ENOMEM;
807 		goto fail;
808 	}
809 
810 	drvdata = dci->pvt_info;
811 	dci->dev = &pdev->dev;
812 	platform_set_drvdata(pdev, dci);
813 	drvdata->edac_dev_name = ecc_name;
814 
815 	drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
816 	if (!drvdata->base) {
817 		res = -ENOMEM;
818 		goto fail1;
819 	}
820 
821 	/* Get driver specific data for this EDAC device */
822 	drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
823 
824 	/* Check specific dependencies for the module */
825 	if (drvdata->data->setup) {
826 		res = drvdata->data->setup(drvdata);
827 		if (res)
828 			goto fail1;
829 	}
830 
831 	drvdata->sb_irq = platform_get_irq(pdev, 0);
832 	res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
833 			       altr_edac_device_handler,
834 			       0, dev_name(&pdev->dev), dci);
835 	if (res)
836 		goto fail1;
837 
838 	drvdata->db_irq = platform_get_irq(pdev, 1);
839 	res = devm_request_irq(&pdev->dev, drvdata->db_irq,
840 			       altr_edac_device_handler,
841 			       0, dev_name(&pdev->dev), dci);
842 	if (res)
843 		goto fail1;
844 
845 	dci->mod_name = "Altera ECC Manager";
846 	dci->dev_name = drvdata->edac_dev_name;
847 
848 	res = edac_device_add_device(dci);
849 	if (res)
850 		goto fail1;
851 
852 	altr_create_edacdev_dbgfs(dci, drvdata->data);
853 
854 	devres_close_group(&pdev->dev, NULL);
855 
856 	return 0;
857 
858 fail1:
859 	edac_device_free_ctl_info(dci);
860 fail:
861 	devres_release_group(&pdev->dev, NULL);
862 	edac_printk(KERN_ERR, EDAC_DEVICE,
863 		    "%s:Error setting up EDAC device: %d\n", ecc_name, res);
864 
865 	return res;
866 }
867 
868 static int altr_edac_device_remove(struct platform_device *pdev)
869 {
870 	struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
871 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
872 
873 	debugfs_remove_recursive(drvdata->debugfs_dir);
874 	edac_device_del_device(&pdev->dev);
875 	edac_device_free_ctl_info(dci);
876 
877 	return 0;
878 }
879 
880 static struct platform_driver altr_edac_device_driver = {
881 	.probe =  altr_edac_device_probe,
882 	.remove = altr_edac_device_remove,
883 	.driver = {
884 		.name = "altr_edac_device",
885 		.of_match_table = altr_edac_device_of_match,
886 	},
887 };
888 module_platform_driver(altr_edac_device_driver);
889 
890 /******************* Arria10 Device ECC Shared Functions *****************/
891 
892 /*
893  *  Test for memory's ECC dependencies upon entry because platform specific
894  *  startup should have initialized the memory and enabled the ECC.
895  *  Can't turn on ECC here because accessing un-initialized memory will
896  *  cause CE/UE errors possibly causing an ABORT.
897  */
898 static int __maybe_unused
899 altr_check_ecc_deps(struct altr_edac_device_dev *device)
900 {
901 	void __iomem  *base = device->base;
902 	const struct edac_device_prv_data *prv = device->data;
903 
904 	if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
905 		return 0;
906 
907 	edac_printk(KERN_ERR, EDAC_DEVICE,
908 		    "%s: No ECC present or ECC disabled.\n",
909 		    device->edac_dev_name);
910 	return -ENODEV;
911 }
912 
913 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
914 {
915 	struct altr_edac_device_dev *dci = dev_id;
916 	void __iomem  *base = dci->base;
917 
918 	if (irq == dci->sb_irq) {
919 		writel(ALTR_A10_ECC_SERRPENA,
920 		       base + ALTR_A10_ECC_INTSTAT_OFST);
921 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
922 
923 		return IRQ_HANDLED;
924 	} else if (irq == dci->db_irq) {
925 		writel(ALTR_A10_ECC_DERRPENA,
926 		       base + ALTR_A10_ECC_INTSTAT_OFST);
927 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
928 		if (dci->data->panic)
929 			panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
930 
931 		return IRQ_HANDLED;
932 	}
933 
934 	WARN_ON(1);
935 
936 	return IRQ_NONE;
937 }
938 
939 /******************* Arria10 Memory Buffer Functions *********************/
940 
941 static inline int a10_get_irq_mask(struct device_node *np)
942 {
943 	int irq;
944 	const u32 *handle = of_get_property(np, "interrupts", NULL);
945 
946 	if (!handle)
947 		return -ENODEV;
948 	irq = be32_to_cpup(handle);
949 	return irq;
950 }
951 
952 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
953 {
954 	u32 value = readl(ioaddr);
955 
956 	value |= bit_mask;
957 	writel(value, ioaddr);
958 }
959 
960 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
961 {
962 	u32 value = readl(ioaddr);
963 
964 	value &= ~bit_mask;
965 	writel(value, ioaddr);
966 }
967 
968 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
969 {
970 	u32 value = readl(ioaddr);
971 
972 	return (value & bit_mask) ? 1 : 0;
973 }
974 
975 /*
976  * This function uses the memory initialization block in the Arria10 ECC
977  * controller to initialize/clear the entire memory data and ECC data.
978  */
979 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
980 {
981 	int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
982 	u32 init_mask, stat_mask, clear_mask;
983 	int ret = 0;
984 
985 	if (port) {
986 		init_mask = ALTR_A10_ECC_INITB;
987 		stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
988 		clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
989 	} else {
990 		init_mask = ALTR_A10_ECC_INITA;
991 		stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
992 		clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
993 	}
994 
995 	ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
996 	while (limit--) {
997 		if (ecc_test_bits(stat_mask,
998 				  (ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
999 			break;
1000 		udelay(1);
1001 	}
1002 	if (limit < 0)
1003 		ret = -EBUSY;
1004 
1005 	/* Clear any pending ECC interrupts */
1006 	writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
1007 
1008 	return ret;
1009 }
1010 
1011 static int socfpga_is_a10(void)
1012 {
1013 	return of_machine_is_compatible("altr,socfpga-arria10");
1014 }
1015 
1016 static int socfpga_is_s10(void)
1017 {
1018 	return of_machine_is_compatible("altr,socfpga-stratix10");
1019 }
1020 
1021 static __init int __maybe_unused
1022 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
1023 			u32 ecc_ctrl_en_mask, bool dual_port)
1024 {
1025 	int ret = 0;
1026 	void __iomem *ecc_block_base;
1027 	struct regmap *ecc_mgr_map;
1028 	char *ecc_name;
1029 	struct device_node *np_eccmgr;
1030 
1031 	ecc_name = (char *)np->name;
1032 
1033 	/* Get the ECC Manager - parent of the device EDACs */
1034 	np_eccmgr = of_get_parent(np);
1035 
1036 	if (socfpga_is_a10()) {
1037 		ecc_mgr_map = syscon_regmap_lookup_by_phandle(np_eccmgr,
1038 							      "altr,sysmgr-syscon");
1039 	} else {
1040 		struct device_node *sysmgr_np;
1041 		struct resource res;
1042 		uintptr_t base;
1043 
1044 		sysmgr_np = of_parse_phandle(np_eccmgr,
1045 					     "altr,sysmgr-syscon", 0);
1046 		if (!sysmgr_np) {
1047 			edac_printk(KERN_ERR, EDAC_DEVICE,
1048 				    "Unable to find altr,sysmgr-syscon\n");
1049 			return -ENODEV;
1050 		}
1051 
1052 		if (of_address_to_resource(sysmgr_np, 0, &res)) {
1053 			of_node_put(sysmgr_np);
1054 			return -ENOMEM;
1055 		}
1056 
1057 		/* Need physical address for SMCC call */
1058 		base = res.start;
1059 
1060 		ecc_mgr_map = regmap_init(NULL, NULL, (void *)base,
1061 					  &s10_sdram_regmap_cfg);
1062 		of_node_put(sysmgr_np);
1063 	}
1064 	of_node_put(np_eccmgr);
1065 	if (IS_ERR(ecc_mgr_map)) {
1066 		edac_printk(KERN_ERR, EDAC_DEVICE,
1067 			    "Unable to get syscon altr,sysmgr-syscon\n");
1068 		return -ENODEV;
1069 	}
1070 
1071 	/* Map the ECC Block */
1072 	ecc_block_base = of_iomap(np, 0);
1073 	if (!ecc_block_base) {
1074 		edac_printk(KERN_ERR, EDAC_DEVICE,
1075 			    "Unable to map %s ECC block\n", ecc_name);
1076 		return -ENODEV;
1077 	}
1078 
1079 	/* Disable ECC */
1080 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
1081 	writel(ALTR_A10_ECC_SERRINTEN,
1082 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
1083 	ecc_clear_bits(ecc_ctrl_en_mask,
1084 		       (ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
1085 	/* Ensure all writes complete */
1086 	wmb();
1087 	/* Use HW initialization block to initialize memory for ECC */
1088 	ret = altr_init_memory_port(ecc_block_base, 0);
1089 	if (ret) {
1090 		edac_printk(KERN_ERR, EDAC_DEVICE,
1091 			    "ECC: cannot init %s PORTA memory\n", ecc_name);
1092 		goto out;
1093 	}
1094 
1095 	if (dual_port) {
1096 		ret = altr_init_memory_port(ecc_block_base, 1);
1097 		if (ret) {
1098 			edac_printk(KERN_ERR, EDAC_DEVICE,
1099 				    "ECC: cannot init %s PORTB memory\n",
1100 				    ecc_name);
1101 			goto out;
1102 		}
1103 	}
1104 
1105 	/* Interrupt mode set to every SBERR */
1106 	regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST,
1107 		     ALTR_A10_ECC_INTMODE);
1108 	/* Enable ECC */
1109 	ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
1110 					ALTR_A10_ECC_CTRL_OFST));
1111 	writel(ALTR_A10_ECC_SERRINTEN,
1112 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
1113 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
1114 	/* Ensure all writes complete */
1115 	wmb();
1116 out:
1117 	iounmap(ecc_block_base);
1118 	return ret;
1119 }
1120 
1121 static int validate_parent_available(struct device_node *np);
1122 static const struct of_device_id altr_edac_a10_device_of_match[];
1123 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
1124 {
1125 	int irq;
1126 	struct device_node *child, *np;
1127 
1128 	if (!socfpga_is_a10() && !socfpga_is_s10())
1129 		return -ENODEV;
1130 
1131 	np = of_find_compatible_node(NULL, NULL,
1132 				     "altr,socfpga-a10-ecc-manager");
1133 	if (!np) {
1134 		edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
1135 		return -ENODEV;
1136 	}
1137 
1138 	for_each_child_of_node(np, child) {
1139 		const struct of_device_id *pdev_id;
1140 		const struct edac_device_prv_data *prv;
1141 
1142 		if (!of_device_is_available(child))
1143 			continue;
1144 		if (!of_device_is_compatible(child, compat))
1145 			continue;
1146 
1147 		if (validate_parent_available(child))
1148 			continue;
1149 
1150 		irq = a10_get_irq_mask(child);
1151 		if (irq < 0)
1152 			continue;
1153 
1154 		/* Get matching node and check for valid result */
1155 		pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
1156 		if (IS_ERR_OR_NULL(pdev_id))
1157 			continue;
1158 
1159 		/* Validate private data pointer before dereferencing */
1160 		prv = pdev_id->data;
1161 		if (!prv)
1162 			continue;
1163 
1164 		altr_init_a10_ecc_block(child, BIT(irq),
1165 					prv->ecc_enable_mask, 0);
1166 	}
1167 
1168 	of_node_put(np);
1169 	return 0;
1170 }
1171 
1172 /*********************** OCRAM EDAC Device Functions *********************/
1173 
1174 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1175 
1176 static void *ocram_alloc_mem(size_t size, void **other)
1177 {
1178 	struct device_node *np;
1179 	struct gen_pool *gp;
1180 	void *sram_addr;
1181 
1182 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
1183 	if (!np)
1184 		return NULL;
1185 
1186 	gp = of_gen_pool_get(np, "iram", 0);
1187 	of_node_put(np);
1188 	if (!gp)
1189 		return NULL;
1190 
1191 	sram_addr = (void *)gen_pool_alloc(gp, size);
1192 	if (!sram_addr)
1193 		return NULL;
1194 
1195 	memset(sram_addr, 0, size);
1196 	/* Ensure data is written out */
1197 	wmb();
1198 
1199 	/* Remember this handle for freeing  later */
1200 	*other = gp;
1201 
1202 	return sram_addr;
1203 }
1204 
1205 static void ocram_free_mem(void *p, size_t size, void *other)
1206 {
1207 	gen_pool_free((struct gen_pool *)other, (unsigned long)p, size);
1208 }
1209 
1210 static const struct edac_device_prv_data ocramecc_data = {
1211 	.setup = altr_check_ecc_deps,
1212 	.ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
1213 	.ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
1214 	.alloc_mem = ocram_alloc_mem,
1215 	.free_mem = ocram_free_mem,
1216 	.ecc_enable_mask = ALTR_OCR_ECC_EN,
1217 	.ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
1218 	.ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
1219 	.ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
1220 	.set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
1221 	.trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
1222 	.inject_fops = &altr_edac_device_inject_fops,
1223 };
1224 
1225 static const struct edac_device_prv_data a10_ocramecc_data = {
1226 	.setup = altr_check_ecc_deps,
1227 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1228 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1229 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
1230 	.ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
1231 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1232 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1233 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1234 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1235 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1236 	.inject_fops = &altr_edac_a10_device_inject_fops,
1237 	/*
1238 	 * OCRAM panic on uncorrectable error because sleep/resume
1239 	 * functions and FPGA contents are stored in OCRAM. Prefer
1240 	 * a kernel panic over executing/loading corrupted data.
1241 	 */
1242 	.panic = true,
1243 };
1244 
1245 #endif	/* CONFIG_EDAC_ALTERA_OCRAM */
1246 
1247 /********************* L2 Cache EDAC Device Functions ********************/
1248 
1249 #ifdef CONFIG_EDAC_ALTERA_L2C
1250 
1251 static void *l2_alloc_mem(size_t size, void **other)
1252 {
1253 	struct device *dev = *other;
1254 	void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
1255 
1256 	if (!ptemp)
1257 		return NULL;
1258 
1259 	/* Make sure everything is written out */
1260 	wmb();
1261 
1262 	/*
1263 	 * Clean all cache levels up to LoC (includes L2)
1264 	 * This ensures the corrupted data is written into
1265 	 * L2 cache for readback test (which causes ECC error).
1266 	 */
1267 	flush_cache_all();
1268 
1269 	return ptemp;
1270 }
1271 
1272 static void l2_free_mem(void *p, size_t size, void *other)
1273 {
1274 	struct device *dev = other;
1275 
1276 	if (dev && p)
1277 		devm_kfree(dev, p);
1278 }
1279 
1280 /*
1281  * altr_l2_check_deps()
1282  *	Test for L2 cache ECC dependencies upon entry because
1283  *	platform specific startup should have initialized the L2
1284  *	memory and enabled the ECC.
1285  *	Bail if ECC is not enabled.
1286  *	Note that L2 Cache Enable is forced at build time.
1287  */
1288 static int altr_l2_check_deps(struct altr_edac_device_dev *device)
1289 {
1290 	void __iomem *base = device->base;
1291 	const struct edac_device_prv_data *prv = device->data;
1292 
1293 	if ((readl(base) & prv->ecc_enable_mask) ==
1294 	     prv->ecc_enable_mask)
1295 		return 0;
1296 
1297 	edac_printk(KERN_ERR, EDAC_DEVICE,
1298 		    "L2: No ECC present, or ECC disabled\n");
1299 	return -ENODEV;
1300 }
1301 
1302 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
1303 {
1304 	struct altr_edac_device_dev *dci = dev_id;
1305 
1306 	if (irq == dci->sb_irq) {
1307 		regmap_write(dci->edac->ecc_mgr_map,
1308 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1309 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
1310 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1311 
1312 		return IRQ_HANDLED;
1313 	} else if (irq == dci->db_irq) {
1314 		regmap_write(dci->edac->ecc_mgr_map,
1315 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1316 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
1317 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1318 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1319 
1320 		return IRQ_HANDLED;
1321 	}
1322 
1323 	WARN_ON(1);
1324 
1325 	return IRQ_NONE;
1326 }
1327 
1328 static const struct edac_device_prv_data l2ecc_data = {
1329 	.setup = altr_l2_check_deps,
1330 	.ce_clear_mask = 0,
1331 	.ue_clear_mask = 0,
1332 	.alloc_mem = l2_alloc_mem,
1333 	.free_mem = l2_free_mem,
1334 	.ecc_enable_mask = ALTR_L2_ECC_EN,
1335 	.ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
1336 	.ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
1337 	.set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
1338 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1339 	.inject_fops = &altr_edac_device_inject_fops,
1340 };
1341 
1342 static const struct edac_device_prv_data a10_l2ecc_data = {
1343 	.setup = altr_l2_check_deps,
1344 	.ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
1345 	.ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
1346 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
1347 	.alloc_mem = l2_alloc_mem,
1348 	.free_mem = l2_free_mem,
1349 	.ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
1350 	.ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
1351 	.ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
1352 	.set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
1353 	.ecc_irq_handler = altr_edac_a10_l2_irq,
1354 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1355 	.inject_fops = &altr_edac_device_inject_fops,
1356 };
1357 
1358 #endif	/* CONFIG_EDAC_ALTERA_L2C */
1359 
1360 /********************* Ethernet Device Functions ********************/
1361 
1362 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1363 
1364 static const struct edac_device_prv_data a10_enetecc_data = {
1365 	.setup = altr_check_ecc_deps,
1366 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1367 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1368 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1369 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1370 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1371 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1372 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1373 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1374 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1375 };
1376 
1377 static int __init socfpga_init_ethernet_ecc(void)
1378 {
1379 	return altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
1380 }
1381 
1382 early_initcall(socfpga_init_ethernet_ecc);
1383 
1384 #endif	/* CONFIG_EDAC_ALTERA_ETHERNET */
1385 
1386 /********************** NAND Device Functions **********************/
1387 
1388 #ifdef CONFIG_EDAC_ALTERA_NAND
1389 
1390 static const struct edac_device_prv_data a10_nandecc_data = {
1391 	.setup = altr_check_ecc_deps,
1392 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1393 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1394 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1395 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1396 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1397 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1398 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1399 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1400 	.inject_fops = &altr_edac_a10_device_inject_fops,
1401 };
1402 
1403 static int __init socfpga_init_nand_ecc(void)
1404 {
1405 	return altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
1406 }
1407 
1408 early_initcall(socfpga_init_nand_ecc);
1409 
1410 #endif	/* CONFIG_EDAC_ALTERA_NAND */
1411 
1412 /********************** DMA Device Functions **********************/
1413 
1414 #ifdef CONFIG_EDAC_ALTERA_DMA
1415 
1416 static const struct edac_device_prv_data a10_dmaecc_data = {
1417 	.setup = altr_check_ecc_deps,
1418 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1419 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1420 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1421 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1422 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1423 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1424 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1425 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1426 	.inject_fops = &altr_edac_a10_device_inject_fops,
1427 };
1428 
1429 static int __init socfpga_init_dma_ecc(void)
1430 {
1431 	return altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
1432 }
1433 
1434 early_initcall(socfpga_init_dma_ecc);
1435 
1436 #endif	/* CONFIG_EDAC_ALTERA_DMA */
1437 
1438 /********************** USB Device Functions **********************/
1439 
1440 #ifdef CONFIG_EDAC_ALTERA_USB
1441 
1442 static const struct edac_device_prv_data a10_usbecc_data = {
1443 	.setup = altr_check_ecc_deps,
1444 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1445 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1446 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1447 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1448 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1449 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1450 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1451 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1452 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1453 };
1454 
1455 static int __init socfpga_init_usb_ecc(void)
1456 {
1457 	return altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
1458 }
1459 
1460 early_initcall(socfpga_init_usb_ecc);
1461 
1462 #endif	/* CONFIG_EDAC_ALTERA_USB */
1463 
1464 /********************** QSPI Device Functions **********************/
1465 
1466 #ifdef CONFIG_EDAC_ALTERA_QSPI
1467 
1468 static const struct edac_device_prv_data a10_qspiecc_data = {
1469 	.setup = altr_check_ecc_deps,
1470 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1471 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1472 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1473 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1474 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1475 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1476 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1477 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1478 	.inject_fops = &altr_edac_a10_device_inject_fops,
1479 };
1480 
1481 static int __init socfpga_init_qspi_ecc(void)
1482 {
1483 	return altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
1484 }
1485 
1486 early_initcall(socfpga_init_qspi_ecc);
1487 
1488 #endif	/* CONFIG_EDAC_ALTERA_QSPI */
1489 
1490 /********************* SDMMC Device Functions **********************/
1491 
1492 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1493 
1494 static const struct edac_device_prv_data a10_sdmmceccb_data;
1495 static int altr_portb_setup(struct altr_edac_device_dev *device)
1496 {
1497 	struct edac_device_ctl_info *dci;
1498 	struct altr_edac_device_dev *altdev;
1499 	char *ecc_name = "sdmmcb-ecc";
1500 	int edac_idx, rc;
1501 	struct device_node *np;
1502 	const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
1503 
1504 	rc = altr_check_ecc_deps(device);
1505 	if (rc)
1506 		return rc;
1507 
1508 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1509 	if (!np) {
1510 		edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1511 		return -ENODEV;
1512 	}
1513 
1514 	/* Create the PortB EDAC device */
1515 	edac_idx = edac_device_alloc_index();
1516 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
1517 					 ecc_name, 1, 0, NULL, 0, edac_idx);
1518 	if (!dci) {
1519 		edac_printk(KERN_ERR, EDAC_DEVICE,
1520 			    "%s: Unable to allocate PortB EDAC device\n",
1521 			    ecc_name);
1522 		return -ENOMEM;
1523 	}
1524 
1525 	/* Initialize the PortB EDAC device structure from PortA structure */
1526 	altdev = dci->pvt_info;
1527 	*altdev = *device;
1528 
1529 	if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
1530 		return -ENOMEM;
1531 
1532 	/* Update PortB specific values */
1533 	altdev->edac_dev_name = ecc_name;
1534 	altdev->edac_idx = edac_idx;
1535 	altdev->edac_dev = dci;
1536 	altdev->data = prv;
1537 	dci->dev = &altdev->ddev;
1538 	dci->ctl_name = "Altera ECC Manager";
1539 	dci->mod_name = ecc_name;
1540 	dci->dev_name = ecc_name;
1541 
1542 	/* Update the IRQs for PortB */
1543 	altdev->sb_irq = irq_of_parse_and_map(np, 2);
1544 	if (!altdev->sb_irq) {
1545 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
1546 		rc = -ENODEV;
1547 		goto err_release_group_1;
1548 	}
1549 	rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
1550 			      prv->ecc_irq_handler,
1551 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1552 			      ecc_name, altdev);
1553 	if (rc) {
1554 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
1555 		goto err_release_group_1;
1556 	}
1557 
1558 	altdev->db_irq = irq_of_parse_and_map(np, 3);
1559 	if (!altdev->db_irq) {
1560 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
1561 		rc = -ENODEV;
1562 		goto err_release_group_1;
1563 	}
1564 	rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
1565 			      prv->ecc_irq_handler,
1566 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1567 			      ecc_name, altdev);
1568 	if (rc) {
1569 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
1570 		goto err_release_group_1;
1571 	}
1572 
1573 	rc = edac_device_add_device(dci);
1574 	if (rc) {
1575 		edac_printk(KERN_ERR, EDAC_DEVICE,
1576 			    "edac_device_add_device portB failed\n");
1577 		rc = -ENOMEM;
1578 		goto err_release_group_1;
1579 	}
1580 	altr_create_edacdev_dbgfs(dci, prv);
1581 
1582 	list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
1583 
1584 	devres_remove_group(&altdev->ddev, altr_portb_setup);
1585 
1586 	return 0;
1587 
1588 err_release_group_1:
1589 	edac_device_free_ctl_info(dci);
1590 	devres_release_group(&altdev->ddev, altr_portb_setup);
1591 	edac_printk(KERN_ERR, EDAC_DEVICE,
1592 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1593 	return rc;
1594 }
1595 
1596 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
1597 {
1598 	struct altr_edac_device_dev *ad = dev_id;
1599 	void __iomem  *base = ad->base;
1600 	const struct edac_device_prv_data *priv = ad->data;
1601 
1602 	if (irq == ad->sb_irq) {
1603 		writel(priv->ce_clear_mask,
1604 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1605 		edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
1606 		return IRQ_HANDLED;
1607 	} else if (irq == ad->db_irq) {
1608 		writel(priv->ue_clear_mask,
1609 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1610 		edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
1611 		return IRQ_HANDLED;
1612 	}
1613 
1614 	WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
1615 
1616 	return IRQ_NONE;
1617 }
1618 
1619 static const struct edac_device_prv_data a10_sdmmcecca_data = {
1620 	.setup = altr_portb_setup,
1621 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1622 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1623 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1624 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1625 	.ce_set_mask = ALTR_A10_ECC_SERRPENA,
1626 	.ue_set_mask = ALTR_A10_ECC_DERRPENA,
1627 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1628 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1629 	.inject_fops = &altr_edac_a10_device_inject_fops,
1630 };
1631 
1632 static const struct edac_device_prv_data a10_sdmmceccb_data = {
1633 	.setup = altr_portb_setup,
1634 	.ce_clear_mask = ALTR_A10_ECC_SERRPENB,
1635 	.ue_clear_mask = ALTR_A10_ECC_DERRPENB,
1636 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1637 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1638 	.ce_set_mask = ALTR_A10_ECC_TSERRB,
1639 	.ue_set_mask = ALTR_A10_ECC_TDERRB,
1640 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1641 	.ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
1642 	.inject_fops = &altr_edac_a10_device_inject_fops,
1643 };
1644 
1645 static int __init socfpga_init_sdmmc_ecc(void)
1646 {
1647 	int rc = -ENODEV;
1648 	struct device_node *child;
1649 
1650 	if (!socfpga_is_a10() && !socfpga_is_s10())
1651 		return -ENODEV;
1652 
1653 	child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1654 	if (!child) {
1655 		edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1656 		return -ENODEV;
1657 	}
1658 
1659 	if (!of_device_is_available(child))
1660 		goto exit;
1661 
1662 	if (validate_parent_available(child))
1663 		goto exit;
1664 
1665 	rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
1666 				     a10_sdmmcecca_data.ecc_enable_mask, 1);
1667 exit:
1668 	of_node_put(child);
1669 	return rc;
1670 }
1671 
1672 early_initcall(socfpga_init_sdmmc_ecc);
1673 
1674 #endif	/* CONFIG_EDAC_ALTERA_SDMMC */
1675 
1676 /********************* Arria10 EDAC Device Functions *************************/
1677 static const struct of_device_id altr_edac_a10_device_of_match[] = {
1678 #ifdef CONFIG_EDAC_ALTERA_L2C
1679 	{ .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
1680 #endif
1681 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1682 	{ .compatible = "altr,socfpga-a10-ocram-ecc",
1683 	  .data = &a10_ocramecc_data },
1684 #endif
1685 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1686 	{ .compatible = "altr,socfpga-eth-mac-ecc",
1687 	  .data = &a10_enetecc_data },
1688 #endif
1689 #ifdef CONFIG_EDAC_ALTERA_NAND
1690 	{ .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
1691 #endif
1692 #ifdef CONFIG_EDAC_ALTERA_DMA
1693 	{ .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
1694 #endif
1695 #ifdef CONFIG_EDAC_ALTERA_USB
1696 	{ .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
1697 #endif
1698 #ifdef CONFIG_EDAC_ALTERA_QSPI
1699 	{ .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
1700 #endif
1701 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1702 	{ .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
1703 #endif
1704 	{},
1705 };
1706 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
1707 
1708 /*
1709  * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
1710  * because 2 IRQs are shared among the all ECC peripherals. The ECC
1711  * manager manages the IRQs and the children.
1712  * Based on xgene_edac.c peripheral code.
1713  */
1714 
1715 static ssize_t altr_edac_a10_device_trig(struct file *file,
1716 					 const char __user *user_buf,
1717 					 size_t count, loff_t *ppos)
1718 {
1719 	struct edac_device_ctl_info *edac_dci = file->private_data;
1720 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1721 	const struct edac_device_prv_data *priv = drvdata->data;
1722 	void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1723 	unsigned long flags;
1724 	u8 trig_type;
1725 
1726 	if (!user_buf || get_user(trig_type, user_buf))
1727 		return -EFAULT;
1728 
1729 	local_irq_save(flags);
1730 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
1731 		writel(priv->ue_set_mask, set_addr);
1732 	else
1733 		writel(priv->ce_set_mask, set_addr);
1734 
1735 	/* Ensure the interrupt test bits are set */
1736 	wmb();
1737 	local_irq_restore(flags);
1738 
1739 	return count;
1740 }
1741 
1742 /*
1743  * The Stratix10 EDAC Error Injection Functions differ from Arria10
1744  * slightly. A few Arria10 peripherals can use this injection function.
1745  * Inject the error into the memory and then readback to trigger the IRQ.
1746  */
1747 static ssize_t altr_edac_a10_device_trig2(struct file *file,
1748 					  const char __user *user_buf,
1749 					  size_t count, loff_t *ppos)
1750 {
1751 	struct edac_device_ctl_info *edac_dci = file->private_data;
1752 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1753 	const struct edac_device_prv_data *priv = drvdata->data;
1754 	void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1755 	unsigned long flags;
1756 	u8 trig_type;
1757 
1758 	if (!user_buf || get_user(trig_type, user_buf))
1759 		return -EFAULT;
1760 
1761 	local_irq_save(flags);
1762 	if (trig_type == ALTR_UE_TRIGGER_CHAR) {
1763 		writel(priv->ue_set_mask, set_addr);
1764 	} else {
1765 		/* Setup write of 0 to first 4 bytes */
1766 		writel(0x0, drvdata->base + ECC_BLK_WDATA0_OFST);
1767 		writel(0x0, drvdata->base + ECC_BLK_WDATA1_OFST);
1768 		writel(0x0, drvdata->base + ECC_BLK_WDATA2_OFST);
1769 		writel(0x0, drvdata->base + ECC_BLK_WDATA3_OFST);
1770 		/* Setup write of 4 bytes */
1771 		writel(ECC_WORD_WRITE, drvdata->base + ECC_BLK_DBYTECTRL_OFST);
1772 		/* Setup Address to 0 */
1773 		writel(0x0, drvdata->base + ECC_BLK_ADDRESS_OFST);
1774 		/* Setup accctrl to write & data override */
1775 		writel(ECC_WRITE_DOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1776 		/* Kick it. */
1777 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1778 		/* Setup accctrl to read & ecc override */
1779 		writel(ECC_READ_EOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1780 		/* Kick it. */
1781 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1782 		/* Setup write for single bit change */
1783 		writel(0x1, drvdata->base + ECC_BLK_WDATA0_OFST);
1784 		writel(0x0, drvdata->base + ECC_BLK_WDATA1_OFST);
1785 		writel(0x0, drvdata->base + ECC_BLK_WDATA2_OFST);
1786 		writel(0x0, drvdata->base + ECC_BLK_WDATA3_OFST);
1787 		/* Copy Read ECC to Write ECC */
1788 		writel(readl(drvdata->base + ECC_BLK_RECC0_OFST),
1789 		       drvdata->base + ECC_BLK_WECC0_OFST);
1790 		writel(readl(drvdata->base + ECC_BLK_RECC1_OFST),
1791 		       drvdata->base + ECC_BLK_WECC1_OFST);
1792 		/* Setup accctrl to write & ecc override & data override */
1793 		writel(ECC_WRITE_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1794 		/* Kick it. */
1795 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1796 		/* Setup accctrl to read & ecc overwrite & data overwrite */
1797 		writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1798 		/* Kick it. */
1799 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1800 	}
1801 
1802 	/* Ensure the interrupt test bits are set */
1803 	wmb();
1804 	local_irq_restore(flags);
1805 
1806 	return count;
1807 }
1808 
1809 static void altr_edac_a10_irq_handler(struct irq_desc *desc)
1810 {
1811 	int dberr, bit, sm_offset, irq_status;
1812 	struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
1813 	struct irq_chip *chip = irq_desc_get_chip(desc);
1814 	int irq = irq_desc_get_irq(desc);
1815 
1816 	dberr = (irq == edac->db_irq) ? 1 : 0;
1817 	sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
1818 			    A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
1819 
1820 	chained_irq_enter(chip, desc);
1821 
1822 	regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
1823 
1824 	for_each_set_bit(bit, (unsigned long *)&irq_status, 32) {
1825 		irq = irq_linear_revmap(edac->domain, dberr * 32 + bit);
1826 		if (irq)
1827 			generic_handle_irq(irq);
1828 	}
1829 
1830 	chained_irq_exit(chip, desc);
1831 }
1832 
1833 static int validate_parent_available(struct device_node *np)
1834 {
1835 	struct device_node *parent;
1836 	int ret = 0;
1837 
1838 	/* Ensure parent device is enabled if parent node exists */
1839 	parent = of_parse_phandle(np, "altr,ecc-parent", 0);
1840 	if (parent && !of_device_is_available(parent))
1841 		ret = -ENODEV;
1842 
1843 	of_node_put(parent);
1844 	return ret;
1845 }
1846 
1847 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
1848 				    struct device_node *np)
1849 {
1850 	struct edac_device_ctl_info *dci;
1851 	struct altr_edac_device_dev *altdev;
1852 	char *ecc_name = (char *)np->name;
1853 	struct resource res;
1854 	int edac_idx;
1855 	int rc = 0;
1856 	const struct edac_device_prv_data *prv;
1857 	/* Get matching node and check for valid result */
1858 	const struct of_device_id *pdev_id =
1859 		of_match_node(altr_edac_a10_device_of_match, np);
1860 	if (IS_ERR_OR_NULL(pdev_id))
1861 		return -ENODEV;
1862 
1863 	/* Get driver specific data for this EDAC device */
1864 	prv = pdev_id->data;
1865 	if (IS_ERR_OR_NULL(prv))
1866 		return -ENODEV;
1867 
1868 	if (validate_parent_available(np))
1869 		return -ENODEV;
1870 
1871 	if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
1872 		return -ENOMEM;
1873 
1874 	rc = of_address_to_resource(np, 0, &res);
1875 	if (rc < 0) {
1876 		edac_printk(KERN_ERR, EDAC_DEVICE,
1877 			    "%s: no resource address\n", ecc_name);
1878 		goto err_release_group;
1879 	}
1880 
1881 	edac_idx = edac_device_alloc_index();
1882 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
1883 					 1, ecc_name, 1, 0, NULL, 0,
1884 					 edac_idx);
1885 
1886 	if (!dci) {
1887 		edac_printk(KERN_ERR, EDAC_DEVICE,
1888 			    "%s: Unable to allocate EDAC device\n", ecc_name);
1889 		rc = -ENOMEM;
1890 		goto err_release_group;
1891 	}
1892 
1893 	altdev = dci->pvt_info;
1894 	dci->dev = edac->dev;
1895 	altdev->edac_dev_name = ecc_name;
1896 	altdev->edac_idx = edac_idx;
1897 	altdev->edac = edac;
1898 	altdev->edac_dev = dci;
1899 	altdev->data = prv;
1900 	altdev->ddev = *edac->dev;
1901 	dci->dev = &altdev->ddev;
1902 	dci->ctl_name = "Altera ECC Manager";
1903 	dci->mod_name = ecc_name;
1904 	dci->dev_name = ecc_name;
1905 
1906 	altdev->base = devm_ioremap_resource(edac->dev, &res);
1907 	if (IS_ERR(altdev->base)) {
1908 		rc = PTR_ERR(altdev->base);
1909 		goto err_release_group1;
1910 	}
1911 
1912 	/* Check specific dependencies for the module */
1913 	if (altdev->data->setup) {
1914 		rc = altdev->data->setup(altdev);
1915 		if (rc)
1916 			goto err_release_group1;
1917 	}
1918 
1919 	altdev->sb_irq = irq_of_parse_and_map(np, 0);
1920 	if (!altdev->sb_irq) {
1921 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
1922 		rc = -ENODEV;
1923 		goto err_release_group1;
1924 	}
1925 	rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
1926 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1927 			      ecc_name, altdev);
1928 	if (rc) {
1929 		edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
1930 		goto err_release_group1;
1931 	}
1932 
1933 	altdev->db_irq = irq_of_parse_and_map(np, 1);
1934 	if (!altdev->db_irq) {
1935 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
1936 		rc = -ENODEV;
1937 		goto err_release_group1;
1938 	}
1939 	rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
1940 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1941 			      ecc_name, altdev);
1942 	if (rc) {
1943 		edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
1944 		goto err_release_group1;
1945 	}
1946 
1947 	rc = edac_device_add_device(dci);
1948 	if (rc) {
1949 		dev_err(edac->dev, "edac_device_add_device failed\n");
1950 		rc = -ENOMEM;
1951 		goto err_release_group1;
1952 	}
1953 
1954 	altr_create_edacdev_dbgfs(dci, prv);
1955 
1956 	list_add(&altdev->next, &edac->a10_ecc_devices);
1957 
1958 	devres_remove_group(edac->dev, altr_edac_a10_device_add);
1959 
1960 	return 0;
1961 
1962 err_release_group1:
1963 	edac_device_free_ctl_info(dci);
1964 err_release_group:
1965 	devres_release_group(edac->dev, NULL);
1966 	edac_printk(KERN_ERR, EDAC_DEVICE,
1967 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1968 
1969 	return rc;
1970 }
1971 
1972 static void a10_eccmgr_irq_mask(struct irq_data *d)
1973 {
1974 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
1975 
1976 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_SET_OFST,
1977 		     BIT(d->hwirq));
1978 }
1979 
1980 static void a10_eccmgr_irq_unmask(struct irq_data *d)
1981 {
1982 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
1983 
1984 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_CLR_OFST,
1985 		     BIT(d->hwirq));
1986 }
1987 
1988 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
1989 				    irq_hw_number_t hwirq)
1990 {
1991 	struct altr_arria10_edac *edac = d->host_data;
1992 
1993 	irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
1994 	irq_set_chip_data(irq, edac);
1995 	irq_set_noprobe(irq);
1996 
1997 	return 0;
1998 }
1999 
2000 static const struct irq_domain_ops a10_eccmgr_ic_ops = {
2001 	.map = a10_eccmgr_irqdomain_map,
2002 	.xlate = irq_domain_xlate_twocell,
2003 };
2004 
2005 /************** Stratix 10 EDAC Double Bit Error Handler ************/
2006 #define to_a10edac(p, m) container_of(p, struct altr_arria10_edac, m)
2007 
2008 /*
2009  * The double bit error is handled through SError which is fatal. This is
2010  * called as a panic notifier to printout ECC error info as part of the panic.
2011  */
2012 static int s10_edac_dberr_handler(struct notifier_block *this,
2013 				  unsigned long event, void *ptr)
2014 {
2015 	struct altr_arria10_edac *edac = to_a10edac(this, panic_notifier);
2016 	int err_addr, dberror;
2017 
2018 	regmap_read(edac->ecc_mgr_map, S10_SYSMGR_ECC_INTSTAT_DERR_OFST,
2019 		    &dberror);
2020 	regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, dberror);
2021 	if (dberror & S10_DDR0_IRQ_MASK) {
2022 		regmap_read(edac->ecc_mgr_map, A10_DERRADDR_OFST, &err_addr);
2023 		regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST,
2024 			     err_addr);
2025 		edac_printk(KERN_ERR, EDAC_MC,
2026 			    "EDAC: [Uncorrectable errors @ 0x%08X]\n\n",
2027 			    err_addr);
2028 	}
2029 
2030 	return NOTIFY_DONE;
2031 }
2032 
2033 /****************** Arria 10 EDAC Probe Function *********************/
2034 static int altr_edac_a10_probe(struct platform_device *pdev)
2035 {
2036 	struct altr_arria10_edac *edac;
2037 	struct device_node *child;
2038 
2039 	edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
2040 	if (!edac)
2041 		return -ENOMEM;
2042 
2043 	edac->dev = &pdev->dev;
2044 	platform_set_drvdata(pdev, edac);
2045 	INIT_LIST_HEAD(&edac->a10_ecc_devices);
2046 
2047 	if (socfpga_is_a10()) {
2048 		edac->ecc_mgr_map =
2049 			syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
2050 							"altr,sysmgr-syscon");
2051 	} else {
2052 		struct device_node *sysmgr_np;
2053 		struct resource res;
2054 		uintptr_t base;
2055 
2056 		sysmgr_np = of_parse_phandle(pdev->dev.of_node,
2057 					     "altr,sysmgr-syscon", 0);
2058 		if (!sysmgr_np) {
2059 			edac_printk(KERN_ERR, EDAC_DEVICE,
2060 				    "Unable to find altr,sysmgr-syscon\n");
2061 			return -ENODEV;
2062 		}
2063 
2064 		if (of_address_to_resource(sysmgr_np, 0, &res))
2065 			return -ENOMEM;
2066 
2067 		/* Need physical address for SMCC call */
2068 		base = res.start;
2069 
2070 		edac->ecc_mgr_map = devm_regmap_init(&pdev->dev, NULL,
2071 						     (void *)base,
2072 						     &s10_sdram_regmap_cfg);
2073 	}
2074 
2075 	if (IS_ERR(edac->ecc_mgr_map)) {
2076 		edac_printk(KERN_ERR, EDAC_DEVICE,
2077 			    "Unable to get syscon altr,sysmgr-syscon\n");
2078 		return PTR_ERR(edac->ecc_mgr_map);
2079 	}
2080 
2081 	edac->irq_chip.name = pdev->dev.of_node->name;
2082 	edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
2083 	edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
2084 	edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64,
2085 					     &a10_eccmgr_ic_ops, edac);
2086 	if (!edac->domain) {
2087 		dev_err(&pdev->dev, "Error adding IRQ domain\n");
2088 		return -ENOMEM;
2089 	}
2090 
2091 	edac->sb_irq = platform_get_irq(pdev, 0);
2092 	if (edac->sb_irq < 0) {
2093 		dev_err(&pdev->dev, "No SBERR IRQ resource\n");
2094 		return edac->sb_irq;
2095 	}
2096 
2097 	irq_set_chained_handler_and_data(edac->sb_irq,
2098 					 altr_edac_a10_irq_handler,
2099 					 edac);
2100 
2101 	if (socfpga_is_a10()) {
2102 		edac->db_irq = platform_get_irq(pdev, 1);
2103 		if (edac->db_irq < 0) {
2104 			dev_err(&pdev->dev, "No DBERR IRQ resource\n");
2105 			return edac->db_irq;
2106 		}
2107 		irq_set_chained_handler_and_data(edac->db_irq,
2108 						 altr_edac_a10_irq_handler,
2109 						 edac);
2110 	} else {
2111 		int dberror, err_addr;
2112 
2113 		edac->panic_notifier.notifier_call = s10_edac_dberr_handler;
2114 		atomic_notifier_chain_register(&panic_notifier_list,
2115 					       &edac->panic_notifier);
2116 
2117 		/* Printout a message if uncorrectable error previously. */
2118 		regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST,
2119 			    &dberror);
2120 		if (dberror) {
2121 			regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST,
2122 				    &err_addr);
2123 			edac_printk(KERN_ERR, EDAC_DEVICE,
2124 				    "Previous Boot UE detected[0x%X] @ 0x%X\n",
2125 				    dberror, err_addr);
2126 			/* Reset the sticky registers */
2127 			regmap_write(edac->ecc_mgr_map,
2128 				     S10_SYSMGR_UE_VAL_OFST, 0);
2129 			regmap_write(edac->ecc_mgr_map,
2130 				     S10_SYSMGR_UE_ADDR_OFST, 0);
2131 		}
2132 	}
2133 
2134 	for_each_child_of_node(pdev->dev.of_node, child) {
2135 		if (!of_device_is_available(child))
2136 			continue;
2137 
2138 		if (of_device_is_compatible(child, "altr,socfpga-a10-l2-ecc") ||
2139 		    of_device_is_compatible(child, "altr,socfpga-a10-ocram-ecc") ||
2140 		    of_device_is_compatible(child, "altr,socfpga-eth-mac-ecc") ||
2141 		    of_device_is_compatible(child, "altr,socfpga-nand-ecc") ||
2142 		    of_device_is_compatible(child, "altr,socfpga-dma-ecc") ||
2143 		    of_device_is_compatible(child, "altr,socfpga-usb-ecc") ||
2144 		    of_device_is_compatible(child, "altr,socfpga-qspi-ecc") ||
2145 		    of_device_is_compatible(child, "altr,socfpga-sdmmc-ecc"))
2146 
2147 			altr_edac_a10_device_add(edac, child);
2148 
2149 #ifdef CONFIG_EDAC_ALTERA_SDRAM
2150 		else if ((of_device_is_compatible(child, "altr,sdram-edac-a10")) ||
2151 			 (of_device_is_compatible(child, "altr,sdram-edac-s10")))
2152 			of_platform_populate(pdev->dev.of_node,
2153 					     altr_sdram_ctrl_of_match,
2154 					     NULL, &pdev->dev);
2155 #endif
2156 	}
2157 
2158 	return 0;
2159 }
2160 
2161 static const struct of_device_id altr_edac_a10_of_match[] = {
2162 	{ .compatible = "altr,socfpga-a10-ecc-manager" },
2163 	{ .compatible = "altr,socfpga-s10-ecc-manager" },
2164 	{},
2165 };
2166 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
2167 
2168 static struct platform_driver altr_edac_a10_driver = {
2169 	.probe =  altr_edac_a10_probe,
2170 	.driver = {
2171 		.name = "socfpga_a10_ecc_manager",
2172 		.of_match_table = altr_edac_a10_of_match,
2173 	},
2174 };
2175 module_platform_driver(altr_edac_a10_driver);
2176 
2177 MODULE_LICENSE("GPL v2");
2178 MODULE_AUTHOR("Thor Thayer");
2179 MODULE_DESCRIPTION("EDAC Driver for Altera Memories");
2180