1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * DMA driver for Xilinx Video DMA Engine 4 * 5 * Copyright (C) 2010-2014 Xilinx, Inc. All rights reserved. 6 * 7 * Based on the Freescale DMA driver. 8 * 9 * Description: 10 * The AXI Video Direct Memory Access (AXI VDMA) core is a soft Xilinx IP 11 * core that provides high-bandwidth direct memory access between memory 12 * and AXI4-Stream type video target peripherals. The core provides efficient 13 * two dimensional DMA operations with independent asynchronous read (S2MM) 14 * and write (MM2S) channel operation. It can be configured to have either 15 * one channel or two channels. If configured as two channels, one is to 16 * transmit to the video device (MM2S) and another is to receive from the 17 * video device (S2MM). Initialization, status, interrupt and management 18 * registers are accessed through an AXI4-Lite slave interface. 19 * 20 * The AXI Direct Memory Access (AXI DMA) core is a soft Xilinx IP core that 21 * provides high-bandwidth one dimensional direct memory access between memory 22 * and AXI4-Stream target peripherals. It supports one receive and one 23 * transmit channel, both of them optional at synthesis time. 24 * 25 * The AXI CDMA, is a soft IP, which provides high-bandwidth Direct Memory 26 * Access (DMA) between a memory-mapped source address and a memory-mapped 27 * destination address. 28 * 29 * The AXI Multichannel Direct Memory Access (AXI MCDMA) core is a soft 30 * Xilinx IP that provides high-bandwidth direct memory access between 31 * memory and AXI4-Stream target peripherals. It provides scatter gather 32 * (SG) interface with multiple channels independent configuration support. 33 * 34 */ 35 36 #include <linux/bitops.h> 37 #include <linux/dmapool.h> 38 #include <linux/dma/xilinx_dma.h> 39 #include <linux/init.h> 40 #include <linux/interrupt.h> 41 #include <linux/io.h> 42 #include <linux/iopoll.h> 43 #include <linux/module.h> 44 #include <linux/of_address.h> 45 #include <linux/of_dma.h> 46 #include <linux/of_platform.h> 47 #include <linux/of_irq.h> 48 #include <linux/slab.h> 49 #include <linux/clk.h> 50 #include <linux/io-64-nonatomic-lo-hi.h> 51 52 #include "../dmaengine.h" 53 54 /* Register/Descriptor Offsets */ 55 #define XILINX_DMA_MM2S_CTRL_OFFSET 0x0000 56 #define XILINX_DMA_S2MM_CTRL_OFFSET 0x0030 57 #define XILINX_VDMA_MM2S_DESC_OFFSET 0x0050 58 #define XILINX_VDMA_S2MM_DESC_OFFSET 0x00a0 59 60 /* Control Registers */ 61 #define XILINX_DMA_REG_DMACR 0x0000 62 #define XILINX_DMA_DMACR_DELAY_MAX 0xff 63 #define XILINX_DMA_DMACR_DELAY_SHIFT 24 64 #define XILINX_DMA_DMACR_FRAME_COUNT_MAX 0xff 65 #define XILINX_DMA_DMACR_FRAME_COUNT_SHIFT 16 66 #define XILINX_DMA_DMACR_ERR_IRQ BIT(14) 67 #define XILINX_DMA_DMACR_DLY_CNT_IRQ BIT(13) 68 #define XILINX_DMA_DMACR_FRM_CNT_IRQ BIT(12) 69 #define XILINX_DMA_DMACR_MASTER_SHIFT 8 70 #define XILINX_DMA_DMACR_FSYNCSRC_SHIFT 5 71 #define XILINX_DMA_DMACR_FRAMECNT_EN BIT(4) 72 #define XILINX_DMA_DMACR_GENLOCK_EN BIT(3) 73 #define XILINX_DMA_DMACR_RESET BIT(2) 74 #define XILINX_DMA_DMACR_CIRC_EN BIT(1) 75 #define XILINX_DMA_DMACR_RUNSTOP BIT(0) 76 #define XILINX_DMA_DMACR_FSYNCSRC_MASK GENMASK(6, 5) 77 #define XILINX_DMA_DMACR_DELAY_MASK GENMASK(31, 24) 78 #define XILINX_DMA_DMACR_FRAME_COUNT_MASK GENMASK(23, 16) 79 #define XILINX_DMA_DMACR_MASTER_MASK GENMASK(11, 8) 80 81 #define XILINX_DMA_REG_DMASR 0x0004 82 #define XILINX_DMA_DMASR_EOL_LATE_ERR BIT(15) 83 #define XILINX_DMA_DMASR_ERR_IRQ BIT(14) 84 #define XILINX_DMA_DMASR_DLY_CNT_IRQ BIT(13) 85 #define XILINX_DMA_DMASR_FRM_CNT_IRQ BIT(12) 86 #define XILINX_DMA_DMASR_SOF_LATE_ERR BIT(11) 87 #define XILINX_DMA_DMASR_SG_DEC_ERR BIT(10) 88 #define XILINX_DMA_DMASR_SG_SLV_ERR BIT(9) 89 #define XILINX_DMA_DMASR_EOF_EARLY_ERR BIT(8) 90 #define XILINX_DMA_DMASR_SOF_EARLY_ERR BIT(7) 91 #define XILINX_DMA_DMASR_DMA_DEC_ERR BIT(6) 92 #define XILINX_DMA_DMASR_DMA_SLAVE_ERR BIT(5) 93 #define XILINX_DMA_DMASR_DMA_INT_ERR BIT(4) 94 #define XILINX_DMA_DMASR_SG_MASK BIT(3) 95 #define XILINX_DMA_DMASR_IDLE BIT(1) 96 #define XILINX_DMA_DMASR_HALTED BIT(0) 97 #define XILINX_DMA_DMASR_DELAY_MASK GENMASK(31, 24) 98 #define XILINX_DMA_DMASR_FRAME_COUNT_MASK GENMASK(23, 16) 99 100 #define XILINX_DMA_REG_CURDESC 0x0008 101 #define XILINX_DMA_REG_TAILDESC 0x0010 102 #define XILINX_DMA_REG_REG_INDEX 0x0014 103 #define XILINX_DMA_REG_FRMSTORE 0x0018 104 #define XILINX_DMA_REG_THRESHOLD 0x001c 105 #define XILINX_DMA_REG_FRMPTR_STS 0x0024 106 #define XILINX_DMA_REG_PARK_PTR 0x0028 107 #define XILINX_DMA_PARK_PTR_WR_REF_SHIFT 8 108 #define XILINX_DMA_PARK_PTR_WR_REF_MASK GENMASK(12, 8) 109 #define XILINX_DMA_PARK_PTR_RD_REF_SHIFT 0 110 #define XILINX_DMA_PARK_PTR_RD_REF_MASK GENMASK(4, 0) 111 #define XILINX_DMA_REG_VDMA_VERSION 0x002c 112 113 /* Register Direct Mode Registers */ 114 #define XILINX_DMA_REG_VSIZE 0x0000 115 #define XILINX_DMA_REG_HSIZE 0x0004 116 117 #define XILINX_DMA_REG_FRMDLY_STRIDE 0x0008 118 #define XILINX_DMA_FRMDLY_STRIDE_FRMDLY_SHIFT 24 119 #define XILINX_DMA_FRMDLY_STRIDE_STRIDE_SHIFT 0 120 121 #define XILINX_VDMA_REG_START_ADDRESS(n) (0x000c + 4 * (n)) 122 #define XILINX_VDMA_REG_START_ADDRESS_64(n) (0x000c + 8 * (n)) 123 124 #define XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP 0x00ec 125 #define XILINX_VDMA_ENABLE_VERTICAL_FLIP BIT(0) 126 127 /* HW specific definitions */ 128 #define XILINX_MCDMA_MAX_CHANS_PER_DEVICE 0x20 129 #define XILINX_DMA_MAX_CHANS_PER_DEVICE 0x2 130 #define XILINX_CDMA_MAX_CHANS_PER_DEVICE 0x1 131 132 #define XILINX_DMA_DMAXR_ALL_IRQ_MASK \ 133 (XILINX_DMA_DMASR_FRM_CNT_IRQ | \ 134 XILINX_DMA_DMASR_DLY_CNT_IRQ | \ 135 XILINX_DMA_DMASR_ERR_IRQ) 136 137 #define XILINX_DMA_DMASR_ALL_ERR_MASK \ 138 (XILINX_DMA_DMASR_EOL_LATE_ERR | \ 139 XILINX_DMA_DMASR_SOF_LATE_ERR | \ 140 XILINX_DMA_DMASR_SG_DEC_ERR | \ 141 XILINX_DMA_DMASR_SG_SLV_ERR | \ 142 XILINX_DMA_DMASR_EOF_EARLY_ERR | \ 143 XILINX_DMA_DMASR_SOF_EARLY_ERR | \ 144 XILINX_DMA_DMASR_DMA_DEC_ERR | \ 145 XILINX_DMA_DMASR_DMA_SLAVE_ERR | \ 146 XILINX_DMA_DMASR_DMA_INT_ERR) 147 148 /* 149 * Recoverable errors are DMA Internal error, SOF Early, EOF Early 150 * and SOF Late. They are only recoverable when C_FLUSH_ON_FSYNC 151 * is enabled in the h/w system. 152 */ 153 #define XILINX_DMA_DMASR_ERR_RECOVER_MASK \ 154 (XILINX_DMA_DMASR_SOF_LATE_ERR | \ 155 XILINX_DMA_DMASR_EOF_EARLY_ERR | \ 156 XILINX_DMA_DMASR_SOF_EARLY_ERR | \ 157 XILINX_DMA_DMASR_DMA_INT_ERR) 158 159 /* Axi VDMA Flush on Fsync bits */ 160 #define XILINX_DMA_FLUSH_S2MM 3 161 #define XILINX_DMA_FLUSH_MM2S 2 162 #define XILINX_DMA_FLUSH_BOTH 1 163 164 /* Delay loop counter to prevent hardware failure */ 165 #define XILINX_DMA_LOOP_COUNT 1000000 166 167 /* AXI DMA Specific Registers/Offsets */ 168 #define XILINX_DMA_REG_SRCDSTADDR 0x18 169 #define XILINX_DMA_REG_BTT 0x28 170 171 /* AXI DMA Specific Masks/Bit fields */ 172 #define XILINX_DMA_MAX_TRANS_LEN_MIN 8 173 #define XILINX_DMA_MAX_TRANS_LEN_MAX 23 174 #define XILINX_DMA_V2_MAX_TRANS_LEN_MAX 26 175 #define XILINX_DMA_CR_COALESCE_MAX GENMASK(23, 16) 176 #define XILINX_DMA_CR_CYCLIC_BD_EN_MASK BIT(4) 177 #define XILINX_DMA_CR_COALESCE_SHIFT 16 178 #define XILINX_DMA_BD_SOP BIT(27) 179 #define XILINX_DMA_BD_EOP BIT(26) 180 #define XILINX_DMA_COALESCE_MAX 255 181 #define XILINX_DMA_NUM_DESCS 255 182 #define XILINX_DMA_NUM_APP_WORDS 5 183 184 /* AXI CDMA Specific Registers/Offsets */ 185 #define XILINX_CDMA_REG_SRCADDR 0x18 186 #define XILINX_CDMA_REG_DSTADDR 0x20 187 188 /* AXI CDMA Specific Masks */ 189 #define XILINX_CDMA_CR_SGMODE BIT(3) 190 191 #define xilinx_prep_dma_addr_t(addr) \ 192 ((dma_addr_t)((u64)addr##_##msb << 32 | (addr))) 193 194 /* AXI MCDMA Specific Registers/Offsets */ 195 #define XILINX_MCDMA_MM2S_CTRL_OFFSET 0x0000 196 #define XILINX_MCDMA_S2MM_CTRL_OFFSET 0x0500 197 #define XILINX_MCDMA_CHEN_OFFSET 0x0008 198 #define XILINX_MCDMA_CH_ERR_OFFSET 0x0010 199 #define XILINX_MCDMA_RXINT_SER_OFFSET 0x0020 200 #define XILINX_MCDMA_TXINT_SER_OFFSET 0x0028 201 #define XILINX_MCDMA_CHAN_CR_OFFSET(x) (0x40 + (x) * 0x40) 202 #define XILINX_MCDMA_CHAN_SR_OFFSET(x) (0x44 + (x) * 0x40) 203 #define XILINX_MCDMA_CHAN_CDESC_OFFSET(x) (0x48 + (x) * 0x40) 204 #define XILINX_MCDMA_CHAN_TDESC_OFFSET(x) (0x50 + (x) * 0x40) 205 206 /* AXI MCDMA Specific Masks/Shifts */ 207 #define XILINX_MCDMA_COALESCE_SHIFT 16 208 #define XILINX_MCDMA_COALESCE_MAX 24 209 #define XILINX_MCDMA_IRQ_ALL_MASK GENMASK(7, 5) 210 #define XILINX_MCDMA_COALESCE_MASK GENMASK(23, 16) 211 #define XILINX_MCDMA_CR_RUNSTOP_MASK BIT(0) 212 #define XILINX_MCDMA_IRQ_IOC_MASK BIT(5) 213 #define XILINX_MCDMA_IRQ_DELAY_MASK BIT(6) 214 #define XILINX_MCDMA_IRQ_ERR_MASK BIT(7) 215 #define XILINX_MCDMA_BD_EOP BIT(30) 216 #define XILINX_MCDMA_BD_SOP BIT(31) 217 218 /** 219 * struct xilinx_vdma_desc_hw - Hardware Descriptor 220 * @next_desc: Next Descriptor Pointer @0x00 221 * @pad1: Reserved @0x04 222 * @buf_addr: Buffer address @0x08 223 * @buf_addr_msb: MSB of Buffer address @0x0C 224 * @vsize: Vertical Size @0x10 225 * @hsize: Horizontal Size @0x14 226 * @stride: Number of bytes between the first 227 * pixels of each horizontal line @0x18 228 */ 229 struct xilinx_vdma_desc_hw { 230 u32 next_desc; 231 u32 pad1; 232 u32 buf_addr; 233 u32 buf_addr_msb; 234 u32 vsize; 235 u32 hsize; 236 u32 stride; 237 } __aligned(64); 238 239 /** 240 * struct xilinx_axidma_desc_hw - Hardware Descriptor for AXI DMA 241 * @next_desc: Next Descriptor Pointer @0x00 242 * @next_desc_msb: MSB of Next Descriptor Pointer @0x04 243 * @buf_addr: Buffer address @0x08 244 * @buf_addr_msb: MSB of Buffer address @0x0C 245 * @reserved1: Reserved @0x10 246 * @reserved2: Reserved @0x14 247 * @control: Control field @0x18 248 * @status: Status field @0x1C 249 * @app: APP Fields @0x20 - 0x30 250 */ 251 struct xilinx_axidma_desc_hw { 252 u32 next_desc; 253 u32 next_desc_msb; 254 u32 buf_addr; 255 u32 buf_addr_msb; 256 u32 reserved1; 257 u32 reserved2; 258 u32 control; 259 u32 status; 260 u32 app[XILINX_DMA_NUM_APP_WORDS]; 261 } __aligned(64); 262 263 /** 264 * struct xilinx_aximcdma_desc_hw - Hardware Descriptor for AXI MCDMA 265 * @next_desc: Next Descriptor Pointer @0x00 266 * @next_desc_msb: MSB of Next Descriptor Pointer @0x04 267 * @buf_addr: Buffer address @0x08 268 * @buf_addr_msb: MSB of Buffer address @0x0C 269 * @rsvd: Reserved field @0x10 270 * @control: Control Information field @0x14 271 * @status: Status field @0x18 272 * @sideband_status: Status of sideband signals @0x1C 273 * @app: APP Fields @0x20 - 0x30 274 */ 275 struct xilinx_aximcdma_desc_hw { 276 u32 next_desc; 277 u32 next_desc_msb; 278 u32 buf_addr; 279 u32 buf_addr_msb; 280 u32 rsvd; 281 u32 control; 282 u32 status; 283 u32 sideband_status; 284 u32 app[XILINX_DMA_NUM_APP_WORDS]; 285 } __aligned(64); 286 287 /** 288 * struct xilinx_cdma_desc_hw - Hardware Descriptor 289 * @next_desc: Next Descriptor Pointer @0x00 290 * @next_desc_msb: Next Descriptor Pointer MSB @0x04 291 * @src_addr: Source address @0x08 292 * @src_addr_msb: Source address MSB @0x0C 293 * @dest_addr: Destination address @0x10 294 * @dest_addr_msb: Destination address MSB @0x14 295 * @control: Control field @0x18 296 * @status: Status field @0x1C 297 */ 298 struct xilinx_cdma_desc_hw { 299 u32 next_desc; 300 u32 next_desc_msb; 301 u32 src_addr; 302 u32 src_addr_msb; 303 u32 dest_addr; 304 u32 dest_addr_msb; 305 u32 control; 306 u32 status; 307 } __aligned(64); 308 309 /** 310 * struct xilinx_vdma_tx_segment - Descriptor segment 311 * @hw: Hardware descriptor 312 * @node: Node in the descriptor segments list 313 * @phys: Physical address of segment 314 */ 315 struct xilinx_vdma_tx_segment { 316 struct xilinx_vdma_desc_hw hw; 317 struct list_head node; 318 dma_addr_t phys; 319 } __aligned(64); 320 321 /** 322 * struct xilinx_axidma_tx_segment - Descriptor segment 323 * @hw: Hardware descriptor 324 * @node: Node in the descriptor segments list 325 * @phys: Physical address of segment 326 */ 327 struct xilinx_axidma_tx_segment { 328 struct xilinx_axidma_desc_hw hw; 329 struct list_head node; 330 dma_addr_t phys; 331 } __aligned(64); 332 333 /** 334 * struct xilinx_aximcdma_tx_segment - Descriptor segment 335 * @hw: Hardware descriptor 336 * @node: Node in the descriptor segments list 337 * @phys: Physical address of segment 338 */ 339 struct xilinx_aximcdma_tx_segment { 340 struct xilinx_aximcdma_desc_hw hw; 341 struct list_head node; 342 dma_addr_t phys; 343 } __aligned(64); 344 345 /** 346 * struct xilinx_cdma_tx_segment - Descriptor segment 347 * @hw: Hardware descriptor 348 * @node: Node in the descriptor segments list 349 * @phys: Physical address of segment 350 */ 351 struct xilinx_cdma_tx_segment { 352 struct xilinx_cdma_desc_hw hw; 353 struct list_head node; 354 dma_addr_t phys; 355 } __aligned(64); 356 357 /** 358 * struct xilinx_dma_tx_descriptor - Per Transaction structure 359 * @async_tx: Async transaction descriptor 360 * @segments: TX segments list 361 * @node: Node in the channel descriptors list 362 * @cyclic: Check for cyclic transfers. 363 * @err: Whether the descriptor has an error. 364 * @residue: Residue of the completed descriptor 365 */ 366 struct xilinx_dma_tx_descriptor { 367 struct dma_async_tx_descriptor async_tx; 368 struct list_head segments; 369 struct list_head node; 370 bool cyclic; 371 bool err; 372 u32 residue; 373 }; 374 375 /** 376 * struct xilinx_dma_chan - Driver specific DMA channel structure 377 * @xdev: Driver specific device structure 378 * @ctrl_offset: Control registers offset 379 * @desc_offset: TX descriptor registers offset 380 * @lock: Descriptor operation lock 381 * @pending_list: Descriptors waiting 382 * @active_list: Descriptors ready to submit 383 * @done_list: Complete descriptors 384 * @free_seg_list: Free descriptors 385 * @common: DMA common channel 386 * @desc_pool: Descriptors pool 387 * @dev: The dma device 388 * @irq: Channel IRQ 389 * @id: Channel ID 390 * @direction: Transfer direction 391 * @num_frms: Number of frames 392 * @has_sg: Support scatter transfers 393 * @cyclic: Check for cyclic transfers. 394 * @genlock: Support genlock mode 395 * @err: Channel has errors 396 * @idle: Check for channel idle 397 * @terminating: Check for channel being synchronized by user 398 * @tasklet: Cleanup work after irq 399 * @config: Device configuration info 400 * @flush_on_fsync: Flush on Frame sync 401 * @desc_pendingcount: Descriptor pending count 402 * @ext_addr: Indicates 64 bit addressing is supported by dma channel 403 * @desc_submitcount: Descriptor h/w submitted count 404 * @seg_v: Statically allocated segments base 405 * @seg_mv: Statically allocated segments base for MCDMA 406 * @seg_p: Physical allocated segments base 407 * @cyclic_seg_v: Statically allocated segment base for cyclic transfers 408 * @cyclic_seg_p: Physical allocated segments base for cyclic dma 409 * @start_transfer: Differentiate b/w DMA IP's transfer 410 * @stop_transfer: Differentiate b/w DMA IP's quiesce 411 * @tdest: TDEST value for mcdma 412 * @has_vflip: S2MM vertical flip 413 */ 414 struct xilinx_dma_chan { 415 struct xilinx_dma_device *xdev; 416 u32 ctrl_offset; 417 u32 desc_offset; 418 spinlock_t lock; 419 struct list_head pending_list; 420 struct list_head active_list; 421 struct list_head done_list; 422 struct list_head free_seg_list; 423 struct dma_chan common; 424 struct dma_pool *desc_pool; 425 struct device *dev; 426 int irq; 427 int id; 428 enum dma_transfer_direction direction; 429 int num_frms; 430 bool has_sg; 431 bool cyclic; 432 bool genlock; 433 bool err; 434 bool idle; 435 bool terminating; 436 struct tasklet_struct tasklet; 437 struct xilinx_vdma_config config; 438 bool flush_on_fsync; 439 u32 desc_pendingcount; 440 bool ext_addr; 441 u32 desc_submitcount; 442 struct xilinx_axidma_tx_segment *seg_v; 443 struct xilinx_aximcdma_tx_segment *seg_mv; 444 dma_addr_t seg_p; 445 struct xilinx_axidma_tx_segment *cyclic_seg_v; 446 dma_addr_t cyclic_seg_p; 447 void (*start_transfer)(struct xilinx_dma_chan *chan); 448 int (*stop_transfer)(struct xilinx_dma_chan *chan); 449 u16 tdest; 450 bool has_vflip; 451 }; 452 453 /** 454 * enum xdma_ip_type - DMA IP type. 455 * 456 * @XDMA_TYPE_AXIDMA: Axi dma ip. 457 * @XDMA_TYPE_CDMA: Axi cdma ip. 458 * @XDMA_TYPE_VDMA: Axi vdma ip. 459 * @XDMA_TYPE_AXIMCDMA: Axi MCDMA ip. 460 * 461 */ 462 enum xdma_ip_type { 463 XDMA_TYPE_AXIDMA = 0, 464 XDMA_TYPE_CDMA, 465 XDMA_TYPE_VDMA, 466 XDMA_TYPE_AXIMCDMA 467 }; 468 469 struct xilinx_dma_config { 470 enum xdma_ip_type dmatype; 471 int (*clk_init)(struct platform_device *pdev, struct clk **axi_clk, 472 struct clk **tx_clk, struct clk **txs_clk, 473 struct clk **rx_clk, struct clk **rxs_clk); 474 irqreturn_t (*irq_handler)(int irq, void *data); 475 const int max_channels; 476 }; 477 478 /** 479 * struct xilinx_dma_device - DMA device structure 480 * @regs: I/O mapped base address 481 * @dev: Device Structure 482 * @common: DMA device structure 483 * @chan: Driver specific DMA channel 484 * @flush_on_fsync: Flush on frame sync 485 * @ext_addr: Indicates 64 bit addressing is supported by dma device 486 * @pdev: Platform device structure pointer 487 * @dma_config: DMA config structure 488 * @axi_clk: DMA Axi4-lite interace clock 489 * @tx_clk: DMA mm2s clock 490 * @txs_clk: DMA mm2s stream clock 491 * @rx_clk: DMA s2mm clock 492 * @rxs_clk: DMA s2mm stream clock 493 * @s2mm_chan_id: DMA s2mm channel identifier 494 * @mm2s_chan_id: DMA mm2s channel identifier 495 * @max_buffer_len: Max buffer length 496 */ 497 struct xilinx_dma_device { 498 void __iomem *regs; 499 struct device *dev; 500 struct dma_device common; 501 struct xilinx_dma_chan *chan[XILINX_MCDMA_MAX_CHANS_PER_DEVICE]; 502 u32 flush_on_fsync; 503 bool ext_addr; 504 struct platform_device *pdev; 505 const struct xilinx_dma_config *dma_config; 506 struct clk *axi_clk; 507 struct clk *tx_clk; 508 struct clk *txs_clk; 509 struct clk *rx_clk; 510 struct clk *rxs_clk; 511 u32 s2mm_chan_id; 512 u32 mm2s_chan_id; 513 u32 max_buffer_len; 514 }; 515 516 /* Macros */ 517 #define to_xilinx_chan(chan) \ 518 container_of(chan, struct xilinx_dma_chan, common) 519 #define to_dma_tx_descriptor(tx) \ 520 container_of(tx, struct xilinx_dma_tx_descriptor, async_tx) 521 #define xilinx_dma_poll_timeout(chan, reg, val, cond, delay_us, timeout_us) \ 522 readl_poll_timeout_atomic(chan->xdev->regs + chan->ctrl_offset + reg, \ 523 val, cond, delay_us, timeout_us) 524 525 /* IO accessors */ 526 static inline u32 dma_read(struct xilinx_dma_chan *chan, u32 reg) 527 { 528 return ioread32(chan->xdev->regs + reg); 529 } 530 531 static inline void dma_write(struct xilinx_dma_chan *chan, u32 reg, u32 value) 532 { 533 iowrite32(value, chan->xdev->regs + reg); 534 } 535 536 static inline void vdma_desc_write(struct xilinx_dma_chan *chan, u32 reg, 537 u32 value) 538 { 539 dma_write(chan, chan->desc_offset + reg, value); 540 } 541 542 static inline u32 dma_ctrl_read(struct xilinx_dma_chan *chan, u32 reg) 543 { 544 return dma_read(chan, chan->ctrl_offset + reg); 545 } 546 547 static inline void dma_ctrl_write(struct xilinx_dma_chan *chan, u32 reg, 548 u32 value) 549 { 550 dma_write(chan, chan->ctrl_offset + reg, value); 551 } 552 553 static inline void dma_ctrl_clr(struct xilinx_dma_chan *chan, u32 reg, 554 u32 clr) 555 { 556 dma_ctrl_write(chan, reg, dma_ctrl_read(chan, reg) & ~clr); 557 } 558 559 static inline void dma_ctrl_set(struct xilinx_dma_chan *chan, u32 reg, 560 u32 set) 561 { 562 dma_ctrl_write(chan, reg, dma_ctrl_read(chan, reg) | set); 563 } 564 565 /** 566 * vdma_desc_write_64 - 64-bit descriptor write 567 * @chan: Driver specific VDMA channel 568 * @reg: Register to write 569 * @value_lsb: lower address of the descriptor. 570 * @value_msb: upper address of the descriptor. 571 * 572 * Since vdma driver is trying to write to a register offset which is not a 573 * multiple of 64 bits(ex : 0x5c), we are writing as two separate 32 bits 574 * instead of a single 64 bit register write. 575 */ 576 static inline void vdma_desc_write_64(struct xilinx_dma_chan *chan, u32 reg, 577 u32 value_lsb, u32 value_msb) 578 { 579 /* Write the lsb 32 bits*/ 580 writel(value_lsb, chan->xdev->regs + chan->desc_offset + reg); 581 582 /* Write the msb 32 bits */ 583 writel(value_msb, chan->xdev->regs + chan->desc_offset + reg + 4); 584 } 585 586 static inline void dma_writeq(struct xilinx_dma_chan *chan, u32 reg, u64 value) 587 { 588 lo_hi_writeq(value, chan->xdev->regs + chan->ctrl_offset + reg); 589 } 590 591 static inline void xilinx_write(struct xilinx_dma_chan *chan, u32 reg, 592 dma_addr_t addr) 593 { 594 if (chan->ext_addr) 595 dma_writeq(chan, reg, addr); 596 else 597 dma_ctrl_write(chan, reg, addr); 598 } 599 600 static inline void xilinx_axidma_buf(struct xilinx_dma_chan *chan, 601 struct xilinx_axidma_desc_hw *hw, 602 dma_addr_t buf_addr, size_t sg_used, 603 size_t period_len) 604 { 605 if (chan->ext_addr) { 606 hw->buf_addr = lower_32_bits(buf_addr + sg_used + period_len); 607 hw->buf_addr_msb = upper_32_bits(buf_addr + sg_used + 608 period_len); 609 } else { 610 hw->buf_addr = buf_addr + sg_used + period_len; 611 } 612 } 613 614 static inline void xilinx_aximcdma_buf(struct xilinx_dma_chan *chan, 615 struct xilinx_aximcdma_desc_hw *hw, 616 dma_addr_t buf_addr, size_t sg_used) 617 { 618 if (chan->ext_addr) { 619 hw->buf_addr = lower_32_bits(buf_addr + sg_used); 620 hw->buf_addr_msb = upper_32_bits(buf_addr + sg_used); 621 } else { 622 hw->buf_addr = buf_addr + sg_used; 623 } 624 } 625 626 /* ----------------------------------------------------------------------------- 627 * Descriptors and segments alloc and free 628 */ 629 630 /** 631 * xilinx_vdma_alloc_tx_segment - Allocate transaction segment 632 * @chan: Driver specific DMA channel 633 * 634 * Return: The allocated segment on success and NULL on failure. 635 */ 636 static struct xilinx_vdma_tx_segment * 637 xilinx_vdma_alloc_tx_segment(struct xilinx_dma_chan *chan) 638 { 639 struct xilinx_vdma_tx_segment *segment; 640 dma_addr_t phys; 641 642 segment = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &phys); 643 if (!segment) 644 return NULL; 645 646 segment->phys = phys; 647 648 return segment; 649 } 650 651 /** 652 * xilinx_cdma_alloc_tx_segment - Allocate transaction segment 653 * @chan: Driver specific DMA channel 654 * 655 * Return: The allocated segment on success and NULL on failure. 656 */ 657 static struct xilinx_cdma_tx_segment * 658 xilinx_cdma_alloc_tx_segment(struct xilinx_dma_chan *chan) 659 { 660 struct xilinx_cdma_tx_segment *segment; 661 dma_addr_t phys; 662 663 segment = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &phys); 664 if (!segment) 665 return NULL; 666 667 segment->phys = phys; 668 669 return segment; 670 } 671 672 /** 673 * xilinx_axidma_alloc_tx_segment - Allocate transaction segment 674 * @chan: Driver specific DMA channel 675 * 676 * Return: The allocated segment on success and NULL on failure. 677 */ 678 static struct xilinx_axidma_tx_segment * 679 xilinx_axidma_alloc_tx_segment(struct xilinx_dma_chan *chan) 680 { 681 struct xilinx_axidma_tx_segment *segment = NULL; 682 unsigned long flags; 683 684 spin_lock_irqsave(&chan->lock, flags); 685 if (!list_empty(&chan->free_seg_list)) { 686 segment = list_first_entry(&chan->free_seg_list, 687 struct xilinx_axidma_tx_segment, 688 node); 689 list_del(&segment->node); 690 } 691 spin_unlock_irqrestore(&chan->lock, flags); 692 693 if (!segment) 694 dev_dbg(chan->dev, "Could not find free tx segment\n"); 695 696 return segment; 697 } 698 699 /** 700 * xilinx_aximcdma_alloc_tx_segment - Allocate transaction segment 701 * @chan: Driver specific DMA channel 702 * 703 * Return: The allocated segment on success and NULL on failure. 704 */ 705 static struct xilinx_aximcdma_tx_segment * 706 xilinx_aximcdma_alloc_tx_segment(struct xilinx_dma_chan *chan) 707 { 708 struct xilinx_aximcdma_tx_segment *segment = NULL; 709 unsigned long flags; 710 711 spin_lock_irqsave(&chan->lock, flags); 712 if (!list_empty(&chan->free_seg_list)) { 713 segment = list_first_entry(&chan->free_seg_list, 714 struct xilinx_aximcdma_tx_segment, 715 node); 716 list_del(&segment->node); 717 } 718 spin_unlock_irqrestore(&chan->lock, flags); 719 720 return segment; 721 } 722 723 static void xilinx_dma_clean_hw_desc(struct xilinx_axidma_desc_hw *hw) 724 { 725 u32 next_desc = hw->next_desc; 726 u32 next_desc_msb = hw->next_desc_msb; 727 728 memset(hw, 0, sizeof(struct xilinx_axidma_desc_hw)); 729 730 hw->next_desc = next_desc; 731 hw->next_desc_msb = next_desc_msb; 732 } 733 734 static void xilinx_mcdma_clean_hw_desc(struct xilinx_aximcdma_desc_hw *hw) 735 { 736 u32 next_desc = hw->next_desc; 737 u32 next_desc_msb = hw->next_desc_msb; 738 739 memset(hw, 0, sizeof(struct xilinx_aximcdma_desc_hw)); 740 741 hw->next_desc = next_desc; 742 hw->next_desc_msb = next_desc_msb; 743 } 744 745 /** 746 * xilinx_dma_free_tx_segment - Free transaction segment 747 * @chan: Driver specific DMA channel 748 * @segment: DMA transaction segment 749 */ 750 static void xilinx_dma_free_tx_segment(struct xilinx_dma_chan *chan, 751 struct xilinx_axidma_tx_segment *segment) 752 { 753 xilinx_dma_clean_hw_desc(&segment->hw); 754 755 list_add_tail(&segment->node, &chan->free_seg_list); 756 } 757 758 /** 759 * xilinx_mcdma_free_tx_segment - Free transaction segment 760 * @chan: Driver specific DMA channel 761 * @segment: DMA transaction segment 762 */ 763 static void xilinx_mcdma_free_tx_segment(struct xilinx_dma_chan *chan, 764 struct xilinx_aximcdma_tx_segment * 765 segment) 766 { 767 xilinx_mcdma_clean_hw_desc(&segment->hw); 768 769 list_add_tail(&segment->node, &chan->free_seg_list); 770 } 771 772 /** 773 * xilinx_cdma_free_tx_segment - Free transaction segment 774 * @chan: Driver specific DMA channel 775 * @segment: DMA transaction segment 776 */ 777 static void xilinx_cdma_free_tx_segment(struct xilinx_dma_chan *chan, 778 struct xilinx_cdma_tx_segment *segment) 779 { 780 dma_pool_free(chan->desc_pool, segment, segment->phys); 781 } 782 783 /** 784 * xilinx_vdma_free_tx_segment - Free transaction segment 785 * @chan: Driver specific DMA channel 786 * @segment: DMA transaction segment 787 */ 788 static void xilinx_vdma_free_tx_segment(struct xilinx_dma_chan *chan, 789 struct xilinx_vdma_tx_segment *segment) 790 { 791 dma_pool_free(chan->desc_pool, segment, segment->phys); 792 } 793 794 /** 795 * xilinx_dma_tx_descriptor - Allocate transaction descriptor 796 * @chan: Driver specific DMA channel 797 * 798 * Return: The allocated descriptor on success and NULL on failure. 799 */ 800 static struct xilinx_dma_tx_descriptor * 801 xilinx_dma_alloc_tx_descriptor(struct xilinx_dma_chan *chan) 802 { 803 struct xilinx_dma_tx_descriptor *desc; 804 805 desc = kzalloc(sizeof(*desc), GFP_NOWAIT); 806 if (!desc) 807 return NULL; 808 809 INIT_LIST_HEAD(&desc->segments); 810 811 return desc; 812 } 813 814 /** 815 * xilinx_dma_free_tx_descriptor - Free transaction descriptor 816 * @chan: Driver specific DMA channel 817 * @desc: DMA transaction descriptor 818 */ 819 static void 820 xilinx_dma_free_tx_descriptor(struct xilinx_dma_chan *chan, 821 struct xilinx_dma_tx_descriptor *desc) 822 { 823 struct xilinx_vdma_tx_segment *segment, *next; 824 struct xilinx_cdma_tx_segment *cdma_segment, *cdma_next; 825 struct xilinx_axidma_tx_segment *axidma_segment, *axidma_next; 826 struct xilinx_aximcdma_tx_segment *aximcdma_segment, *aximcdma_next; 827 828 if (!desc) 829 return; 830 831 if (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { 832 list_for_each_entry_safe(segment, next, &desc->segments, node) { 833 list_del(&segment->node); 834 xilinx_vdma_free_tx_segment(chan, segment); 835 } 836 } else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { 837 list_for_each_entry_safe(cdma_segment, cdma_next, 838 &desc->segments, node) { 839 list_del(&cdma_segment->node); 840 xilinx_cdma_free_tx_segment(chan, cdma_segment); 841 } 842 } else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { 843 list_for_each_entry_safe(axidma_segment, axidma_next, 844 &desc->segments, node) { 845 list_del(&axidma_segment->node); 846 xilinx_dma_free_tx_segment(chan, axidma_segment); 847 } 848 } else { 849 list_for_each_entry_safe(aximcdma_segment, aximcdma_next, 850 &desc->segments, node) { 851 list_del(&aximcdma_segment->node); 852 xilinx_mcdma_free_tx_segment(chan, aximcdma_segment); 853 } 854 } 855 856 kfree(desc); 857 } 858 859 /* Required functions */ 860 861 /** 862 * xilinx_dma_free_desc_list - Free descriptors list 863 * @chan: Driver specific DMA channel 864 * @list: List to parse and delete the descriptor 865 */ 866 static void xilinx_dma_free_desc_list(struct xilinx_dma_chan *chan, 867 struct list_head *list) 868 { 869 struct xilinx_dma_tx_descriptor *desc, *next; 870 871 list_for_each_entry_safe(desc, next, list, node) { 872 list_del(&desc->node); 873 xilinx_dma_free_tx_descriptor(chan, desc); 874 } 875 } 876 877 /** 878 * xilinx_dma_free_descriptors - Free channel descriptors 879 * @chan: Driver specific DMA channel 880 */ 881 static void xilinx_dma_free_descriptors(struct xilinx_dma_chan *chan) 882 { 883 unsigned long flags; 884 885 spin_lock_irqsave(&chan->lock, flags); 886 887 xilinx_dma_free_desc_list(chan, &chan->pending_list); 888 xilinx_dma_free_desc_list(chan, &chan->done_list); 889 xilinx_dma_free_desc_list(chan, &chan->active_list); 890 891 spin_unlock_irqrestore(&chan->lock, flags); 892 } 893 894 /** 895 * xilinx_dma_free_chan_resources - Free channel resources 896 * @dchan: DMA channel 897 */ 898 static void xilinx_dma_free_chan_resources(struct dma_chan *dchan) 899 { 900 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 901 unsigned long flags; 902 903 dev_dbg(chan->dev, "Free all channel resources.\n"); 904 905 xilinx_dma_free_descriptors(chan); 906 907 if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { 908 spin_lock_irqsave(&chan->lock, flags); 909 INIT_LIST_HEAD(&chan->free_seg_list); 910 spin_unlock_irqrestore(&chan->lock, flags); 911 912 /* Free memory that is allocated for BD */ 913 dma_free_coherent(chan->dev, sizeof(*chan->seg_v) * 914 XILINX_DMA_NUM_DESCS, chan->seg_v, 915 chan->seg_p); 916 917 /* Free Memory that is allocated for cyclic DMA Mode */ 918 dma_free_coherent(chan->dev, sizeof(*chan->cyclic_seg_v), 919 chan->cyclic_seg_v, chan->cyclic_seg_p); 920 } 921 922 if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) { 923 spin_lock_irqsave(&chan->lock, flags); 924 INIT_LIST_HEAD(&chan->free_seg_list); 925 spin_unlock_irqrestore(&chan->lock, flags); 926 927 /* Free memory that is allocated for BD */ 928 dma_free_coherent(chan->dev, sizeof(*chan->seg_mv) * 929 XILINX_DMA_NUM_DESCS, chan->seg_mv, 930 chan->seg_p); 931 } 932 933 if (chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIDMA && 934 chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIMCDMA) { 935 dma_pool_destroy(chan->desc_pool); 936 chan->desc_pool = NULL; 937 } 938 939 } 940 941 /** 942 * xilinx_dma_get_residue - Compute residue for a given descriptor 943 * @chan: Driver specific dma channel 944 * @desc: dma transaction descriptor 945 * 946 * Return: The number of residue bytes for the descriptor. 947 */ 948 static u32 xilinx_dma_get_residue(struct xilinx_dma_chan *chan, 949 struct xilinx_dma_tx_descriptor *desc) 950 { 951 struct xilinx_cdma_tx_segment *cdma_seg; 952 struct xilinx_axidma_tx_segment *axidma_seg; 953 struct xilinx_aximcdma_tx_segment *aximcdma_seg; 954 struct xilinx_cdma_desc_hw *cdma_hw; 955 struct xilinx_axidma_desc_hw *axidma_hw; 956 struct xilinx_aximcdma_desc_hw *aximcdma_hw; 957 struct list_head *entry; 958 u32 residue = 0; 959 960 list_for_each(entry, &desc->segments) { 961 if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { 962 cdma_seg = list_entry(entry, 963 struct xilinx_cdma_tx_segment, 964 node); 965 cdma_hw = &cdma_seg->hw; 966 residue += (cdma_hw->control - cdma_hw->status) & 967 chan->xdev->max_buffer_len; 968 } else if (chan->xdev->dma_config->dmatype == 969 XDMA_TYPE_AXIDMA) { 970 axidma_seg = list_entry(entry, 971 struct xilinx_axidma_tx_segment, 972 node); 973 axidma_hw = &axidma_seg->hw; 974 residue += (axidma_hw->control - axidma_hw->status) & 975 chan->xdev->max_buffer_len; 976 } else { 977 aximcdma_seg = 978 list_entry(entry, 979 struct xilinx_aximcdma_tx_segment, 980 node); 981 aximcdma_hw = &aximcdma_seg->hw; 982 residue += 983 (aximcdma_hw->control - aximcdma_hw->status) & 984 chan->xdev->max_buffer_len; 985 } 986 } 987 988 return residue; 989 } 990 991 /** 992 * xilinx_dma_chan_handle_cyclic - Cyclic dma callback 993 * @chan: Driver specific dma channel 994 * @desc: dma transaction descriptor 995 * @flags: flags for spin lock 996 */ 997 static void xilinx_dma_chan_handle_cyclic(struct xilinx_dma_chan *chan, 998 struct xilinx_dma_tx_descriptor *desc, 999 unsigned long *flags) 1000 { 1001 dma_async_tx_callback callback; 1002 void *callback_param; 1003 1004 callback = desc->async_tx.callback; 1005 callback_param = desc->async_tx.callback_param; 1006 if (callback) { 1007 spin_unlock_irqrestore(&chan->lock, *flags); 1008 callback(callback_param); 1009 spin_lock_irqsave(&chan->lock, *flags); 1010 } 1011 } 1012 1013 /** 1014 * xilinx_dma_chan_desc_cleanup - Clean channel descriptors 1015 * @chan: Driver specific DMA channel 1016 */ 1017 static void xilinx_dma_chan_desc_cleanup(struct xilinx_dma_chan *chan) 1018 { 1019 struct xilinx_dma_tx_descriptor *desc, *next; 1020 unsigned long flags; 1021 1022 spin_lock_irqsave(&chan->lock, flags); 1023 1024 list_for_each_entry_safe(desc, next, &chan->done_list, node) { 1025 struct dmaengine_result result; 1026 1027 if (desc->cyclic) { 1028 xilinx_dma_chan_handle_cyclic(chan, desc, &flags); 1029 break; 1030 } 1031 1032 /* Remove from the list of running transactions */ 1033 list_del(&desc->node); 1034 1035 if (unlikely(desc->err)) { 1036 if (chan->direction == DMA_DEV_TO_MEM) 1037 result.result = DMA_TRANS_READ_FAILED; 1038 else 1039 result.result = DMA_TRANS_WRITE_FAILED; 1040 } else { 1041 result.result = DMA_TRANS_NOERROR; 1042 } 1043 1044 result.residue = desc->residue; 1045 1046 /* Run the link descriptor callback function */ 1047 spin_unlock_irqrestore(&chan->lock, flags); 1048 dmaengine_desc_get_callback_invoke(&desc->async_tx, &result); 1049 spin_lock_irqsave(&chan->lock, flags); 1050 1051 /* Run any dependencies, then free the descriptor */ 1052 dma_run_dependencies(&desc->async_tx); 1053 xilinx_dma_free_tx_descriptor(chan, desc); 1054 1055 /* 1056 * While we ran a callback the user called a terminate function, 1057 * which takes care of cleaning up any remaining descriptors 1058 */ 1059 if (chan->terminating) 1060 break; 1061 } 1062 1063 spin_unlock_irqrestore(&chan->lock, flags); 1064 } 1065 1066 /** 1067 * xilinx_dma_do_tasklet - Schedule completion tasklet 1068 * @t: Pointer to the Xilinx DMA channel structure 1069 */ 1070 static void xilinx_dma_do_tasklet(struct tasklet_struct *t) 1071 { 1072 struct xilinx_dma_chan *chan = from_tasklet(chan, t, tasklet); 1073 1074 xilinx_dma_chan_desc_cleanup(chan); 1075 } 1076 1077 /** 1078 * xilinx_dma_alloc_chan_resources - Allocate channel resources 1079 * @dchan: DMA channel 1080 * 1081 * Return: '0' on success and failure value on error 1082 */ 1083 static int xilinx_dma_alloc_chan_resources(struct dma_chan *dchan) 1084 { 1085 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 1086 int i; 1087 1088 /* Has this channel already been allocated? */ 1089 if (chan->desc_pool) 1090 return 0; 1091 1092 /* 1093 * We need the descriptor to be aligned to 64bytes 1094 * for meeting Xilinx VDMA specification requirement. 1095 */ 1096 if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { 1097 /* Allocate the buffer descriptors. */ 1098 chan->seg_v = dma_alloc_coherent(chan->dev, 1099 sizeof(*chan->seg_v) * XILINX_DMA_NUM_DESCS, 1100 &chan->seg_p, GFP_KERNEL); 1101 if (!chan->seg_v) { 1102 dev_err(chan->dev, 1103 "unable to allocate channel %d descriptors\n", 1104 chan->id); 1105 return -ENOMEM; 1106 } 1107 /* 1108 * For cyclic DMA mode we need to program the tail Descriptor 1109 * register with a value which is not a part of the BD chain 1110 * so allocating a desc segment during channel allocation for 1111 * programming tail descriptor. 1112 */ 1113 chan->cyclic_seg_v = dma_alloc_coherent(chan->dev, 1114 sizeof(*chan->cyclic_seg_v), 1115 &chan->cyclic_seg_p, 1116 GFP_KERNEL); 1117 if (!chan->cyclic_seg_v) { 1118 dev_err(chan->dev, 1119 "unable to allocate desc segment for cyclic DMA\n"); 1120 dma_free_coherent(chan->dev, sizeof(*chan->seg_v) * 1121 XILINX_DMA_NUM_DESCS, chan->seg_v, 1122 chan->seg_p); 1123 return -ENOMEM; 1124 } 1125 chan->cyclic_seg_v->phys = chan->cyclic_seg_p; 1126 1127 for (i = 0; i < XILINX_DMA_NUM_DESCS; i++) { 1128 chan->seg_v[i].hw.next_desc = 1129 lower_32_bits(chan->seg_p + sizeof(*chan->seg_v) * 1130 ((i + 1) % XILINX_DMA_NUM_DESCS)); 1131 chan->seg_v[i].hw.next_desc_msb = 1132 upper_32_bits(chan->seg_p + sizeof(*chan->seg_v) * 1133 ((i + 1) % XILINX_DMA_NUM_DESCS)); 1134 chan->seg_v[i].phys = chan->seg_p + 1135 sizeof(*chan->seg_v) * i; 1136 list_add_tail(&chan->seg_v[i].node, 1137 &chan->free_seg_list); 1138 } 1139 } else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) { 1140 /* Allocate the buffer descriptors. */ 1141 chan->seg_mv = dma_alloc_coherent(chan->dev, 1142 sizeof(*chan->seg_mv) * 1143 XILINX_DMA_NUM_DESCS, 1144 &chan->seg_p, GFP_KERNEL); 1145 if (!chan->seg_mv) { 1146 dev_err(chan->dev, 1147 "unable to allocate channel %d descriptors\n", 1148 chan->id); 1149 return -ENOMEM; 1150 } 1151 for (i = 0; i < XILINX_DMA_NUM_DESCS; i++) { 1152 chan->seg_mv[i].hw.next_desc = 1153 lower_32_bits(chan->seg_p + sizeof(*chan->seg_mv) * 1154 ((i + 1) % XILINX_DMA_NUM_DESCS)); 1155 chan->seg_mv[i].hw.next_desc_msb = 1156 upper_32_bits(chan->seg_p + sizeof(*chan->seg_mv) * 1157 ((i + 1) % XILINX_DMA_NUM_DESCS)); 1158 chan->seg_mv[i].phys = chan->seg_p + 1159 sizeof(*chan->seg_mv) * i; 1160 list_add_tail(&chan->seg_mv[i].node, 1161 &chan->free_seg_list); 1162 } 1163 } else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { 1164 chan->desc_pool = dma_pool_create("xilinx_cdma_desc_pool", 1165 chan->dev, 1166 sizeof(struct xilinx_cdma_tx_segment), 1167 __alignof__(struct xilinx_cdma_tx_segment), 1168 0); 1169 } else { 1170 chan->desc_pool = dma_pool_create("xilinx_vdma_desc_pool", 1171 chan->dev, 1172 sizeof(struct xilinx_vdma_tx_segment), 1173 __alignof__(struct xilinx_vdma_tx_segment), 1174 0); 1175 } 1176 1177 if (!chan->desc_pool && 1178 ((chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIDMA) && 1179 chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIMCDMA)) { 1180 dev_err(chan->dev, 1181 "unable to allocate channel %d descriptor pool\n", 1182 chan->id); 1183 return -ENOMEM; 1184 } 1185 1186 dma_cookie_init(dchan); 1187 1188 if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { 1189 /* For AXI DMA resetting once channel will reset the 1190 * other channel as well so enable the interrupts here. 1191 */ 1192 dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, 1193 XILINX_DMA_DMAXR_ALL_IRQ_MASK); 1194 } 1195 1196 if ((chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) && chan->has_sg) 1197 dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, 1198 XILINX_CDMA_CR_SGMODE); 1199 1200 return 0; 1201 } 1202 1203 /** 1204 * xilinx_dma_calc_copysize - Calculate the amount of data to copy 1205 * @chan: Driver specific DMA channel 1206 * @size: Total data that needs to be copied 1207 * @done: Amount of data that has been already copied 1208 * 1209 * Return: Amount of data that has to be copied 1210 */ 1211 static int xilinx_dma_calc_copysize(struct xilinx_dma_chan *chan, 1212 int size, int done) 1213 { 1214 size_t copy; 1215 1216 copy = min_t(size_t, size - done, 1217 chan->xdev->max_buffer_len); 1218 1219 if ((copy + done < size) && 1220 chan->xdev->common.copy_align) { 1221 /* 1222 * If this is not the last descriptor, make sure 1223 * the next one will be properly aligned 1224 */ 1225 copy = rounddown(copy, 1226 (1 << chan->xdev->common.copy_align)); 1227 } 1228 return copy; 1229 } 1230 1231 /** 1232 * xilinx_dma_tx_status - Get DMA transaction status 1233 * @dchan: DMA channel 1234 * @cookie: Transaction identifier 1235 * @txstate: Transaction state 1236 * 1237 * Return: DMA transaction status 1238 */ 1239 static enum dma_status xilinx_dma_tx_status(struct dma_chan *dchan, 1240 dma_cookie_t cookie, 1241 struct dma_tx_state *txstate) 1242 { 1243 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 1244 struct xilinx_dma_tx_descriptor *desc; 1245 enum dma_status ret; 1246 unsigned long flags; 1247 u32 residue = 0; 1248 1249 ret = dma_cookie_status(dchan, cookie, txstate); 1250 if (ret == DMA_COMPLETE || !txstate) 1251 return ret; 1252 1253 spin_lock_irqsave(&chan->lock, flags); 1254 if (!list_empty(&chan->active_list)) { 1255 desc = list_last_entry(&chan->active_list, 1256 struct xilinx_dma_tx_descriptor, node); 1257 /* 1258 * VDMA and simple mode do not support residue reporting, so the 1259 * residue field will always be 0. 1260 */ 1261 if (chan->has_sg && chan->xdev->dma_config->dmatype != XDMA_TYPE_VDMA) 1262 residue = xilinx_dma_get_residue(chan, desc); 1263 } 1264 spin_unlock_irqrestore(&chan->lock, flags); 1265 1266 dma_set_residue(txstate, residue); 1267 1268 return ret; 1269 } 1270 1271 /** 1272 * xilinx_dma_stop_transfer - Halt DMA channel 1273 * @chan: Driver specific DMA channel 1274 * 1275 * Return: '0' on success and failure value on error 1276 */ 1277 static int xilinx_dma_stop_transfer(struct xilinx_dma_chan *chan) 1278 { 1279 u32 val; 1280 1281 dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RUNSTOP); 1282 1283 /* Wait for the hardware to halt */ 1284 return xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val, 1285 val & XILINX_DMA_DMASR_HALTED, 0, 1286 XILINX_DMA_LOOP_COUNT); 1287 } 1288 1289 /** 1290 * xilinx_cdma_stop_transfer - Wait for the current transfer to complete 1291 * @chan: Driver specific DMA channel 1292 * 1293 * Return: '0' on success and failure value on error 1294 */ 1295 static int xilinx_cdma_stop_transfer(struct xilinx_dma_chan *chan) 1296 { 1297 u32 val; 1298 1299 return xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val, 1300 val & XILINX_DMA_DMASR_IDLE, 0, 1301 XILINX_DMA_LOOP_COUNT); 1302 } 1303 1304 /** 1305 * xilinx_dma_start - Start DMA channel 1306 * @chan: Driver specific DMA channel 1307 */ 1308 static void xilinx_dma_start(struct xilinx_dma_chan *chan) 1309 { 1310 int err; 1311 u32 val; 1312 1313 dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RUNSTOP); 1314 1315 /* Wait for the hardware to start */ 1316 err = xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val, 1317 !(val & XILINX_DMA_DMASR_HALTED), 0, 1318 XILINX_DMA_LOOP_COUNT); 1319 1320 if (err) { 1321 dev_err(chan->dev, "Cannot start channel %p: %x\n", 1322 chan, dma_ctrl_read(chan, XILINX_DMA_REG_DMASR)); 1323 1324 chan->err = true; 1325 } 1326 } 1327 1328 /** 1329 * xilinx_vdma_start_transfer - Starts VDMA transfer 1330 * @chan: Driver specific channel struct pointer 1331 */ 1332 static void xilinx_vdma_start_transfer(struct xilinx_dma_chan *chan) 1333 { 1334 struct xilinx_vdma_config *config = &chan->config; 1335 struct xilinx_dma_tx_descriptor *desc; 1336 u32 reg, j; 1337 struct xilinx_vdma_tx_segment *segment, *last = NULL; 1338 int i = 0; 1339 1340 /* This function was invoked with lock held */ 1341 if (chan->err) 1342 return; 1343 1344 if (!chan->idle) 1345 return; 1346 1347 if (list_empty(&chan->pending_list)) 1348 return; 1349 1350 desc = list_first_entry(&chan->pending_list, 1351 struct xilinx_dma_tx_descriptor, node); 1352 1353 /* Configure the hardware using info in the config structure */ 1354 if (chan->has_vflip) { 1355 reg = dma_read(chan, XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP); 1356 reg &= ~XILINX_VDMA_ENABLE_VERTICAL_FLIP; 1357 reg |= config->vflip_en; 1358 dma_write(chan, XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP, 1359 reg); 1360 } 1361 1362 reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR); 1363 1364 if (config->frm_cnt_en) 1365 reg |= XILINX_DMA_DMACR_FRAMECNT_EN; 1366 else 1367 reg &= ~XILINX_DMA_DMACR_FRAMECNT_EN; 1368 1369 /* If not parking, enable circular mode */ 1370 if (config->park) 1371 reg &= ~XILINX_DMA_DMACR_CIRC_EN; 1372 else 1373 reg |= XILINX_DMA_DMACR_CIRC_EN; 1374 1375 dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg); 1376 1377 j = chan->desc_submitcount; 1378 reg = dma_read(chan, XILINX_DMA_REG_PARK_PTR); 1379 if (chan->direction == DMA_MEM_TO_DEV) { 1380 reg &= ~XILINX_DMA_PARK_PTR_RD_REF_MASK; 1381 reg |= j << XILINX_DMA_PARK_PTR_RD_REF_SHIFT; 1382 } else { 1383 reg &= ~XILINX_DMA_PARK_PTR_WR_REF_MASK; 1384 reg |= j << XILINX_DMA_PARK_PTR_WR_REF_SHIFT; 1385 } 1386 dma_write(chan, XILINX_DMA_REG_PARK_PTR, reg); 1387 1388 /* Start the hardware */ 1389 xilinx_dma_start(chan); 1390 1391 if (chan->err) 1392 return; 1393 1394 /* Start the transfer */ 1395 if (chan->desc_submitcount < chan->num_frms) 1396 i = chan->desc_submitcount; 1397 1398 list_for_each_entry(segment, &desc->segments, node) { 1399 if (chan->ext_addr) 1400 vdma_desc_write_64(chan, 1401 XILINX_VDMA_REG_START_ADDRESS_64(i++), 1402 segment->hw.buf_addr, 1403 segment->hw.buf_addr_msb); 1404 else 1405 vdma_desc_write(chan, 1406 XILINX_VDMA_REG_START_ADDRESS(i++), 1407 segment->hw.buf_addr); 1408 1409 last = segment; 1410 } 1411 1412 if (!last) 1413 return; 1414 1415 /* HW expects these parameters to be same for one transaction */ 1416 vdma_desc_write(chan, XILINX_DMA_REG_HSIZE, last->hw.hsize); 1417 vdma_desc_write(chan, XILINX_DMA_REG_FRMDLY_STRIDE, 1418 last->hw.stride); 1419 vdma_desc_write(chan, XILINX_DMA_REG_VSIZE, last->hw.vsize); 1420 1421 chan->desc_submitcount++; 1422 chan->desc_pendingcount--; 1423 list_del(&desc->node); 1424 list_add_tail(&desc->node, &chan->active_list); 1425 if (chan->desc_submitcount == chan->num_frms) 1426 chan->desc_submitcount = 0; 1427 1428 chan->idle = false; 1429 } 1430 1431 /** 1432 * xilinx_cdma_start_transfer - Starts cdma transfer 1433 * @chan: Driver specific channel struct pointer 1434 */ 1435 static void xilinx_cdma_start_transfer(struct xilinx_dma_chan *chan) 1436 { 1437 struct xilinx_dma_tx_descriptor *head_desc, *tail_desc; 1438 struct xilinx_cdma_tx_segment *tail_segment; 1439 u32 ctrl_reg = dma_read(chan, XILINX_DMA_REG_DMACR); 1440 1441 if (chan->err) 1442 return; 1443 1444 if (!chan->idle) 1445 return; 1446 1447 if (list_empty(&chan->pending_list)) 1448 return; 1449 1450 head_desc = list_first_entry(&chan->pending_list, 1451 struct xilinx_dma_tx_descriptor, node); 1452 tail_desc = list_last_entry(&chan->pending_list, 1453 struct xilinx_dma_tx_descriptor, node); 1454 tail_segment = list_last_entry(&tail_desc->segments, 1455 struct xilinx_cdma_tx_segment, node); 1456 1457 if (chan->desc_pendingcount <= XILINX_DMA_COALESCE_MAX) { 1458 ctrl_reg &= ~XILINX_DMA_CR_COALESCE_MAX; 1459 ctrl_reg |= chan->desc_pendingcount << 1460 XILINX_DMA_CR_COALESCE_SHIFT; 1461 dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, ctrl_reg); 1462 } 1463 1464 if (chan->has_sg) { 1465 dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR, 1466 XILINX_CDMA_CR_SGMODE); 1467 1468 dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, 1469 XILINX_CDMA_CR_SGMODE); 1470 1471 xilinx_write(chan, XILINX_DMA_REG_CURDESC, 1472 head_desc->async_tx.phys); 1473 1474 /* Update tail ptr register which will start the transfer */ 1475 xilinx_write(chan, XILINX_DMA_REG_TAILDESC, 1476 tail_segment->phys); 1477 } else { 1478 /* In simple mode */ 1479 struct xilinx_cdma_tx_segment *segment; 1480 struct xilinx_cdma_desc_hw *hw; 1481 1482 segment = list_first_entry(&head_desc->segments, 1483 struct xilinx_cdma_tx_segment, 1484 node); 1485 1486 hw = &segment->hw; 1487 1488 xilinx_write(chan, XILINX_CDMA_REG_SRCADDR, 1489 xilinx_prep_dma_addr_t(hw->src_addr)); 1490 xilinx_write(chan, XILINX_CDMA_REG_DSTADDR, 1491 xilinx_prep_dma_addr_t(hw->dest_addr)); 1492 1493 /* Start the transfer */ 1494 dma_ctrl_write(chan, XILINX_DMA_REG_BTT, 1495 hw->control & chan->xdev->max_buffer_len); 1496 } 1497 1498 list_splice_tail_init(&chan->pending_list, &chan->active_list); 1499 chan->desc_pendingcount = 0; 1500 chan->idle = false; 1501 } 1502 1503 /** 1504 * xilinx_dma_start_transfer - Starts DMA transfer 1505 * @chan: Driver specific channel struct pointer 1506 */ 1507 static void xilinx_dma_start_transfer(struct xilinx_dma_chan *chan) 1508 { 1509 struct xilinx_dma_tx_descriptor *head_desc, *tail_desc; 1510 struct xilinx_axidma_tx_segment *tail_segment; 1511 u32 reg; 1512 1513 if (chan->err) 1514 return; 1515 1516 if (list_empty(&chan->pending_list)) 1517 return; 1518 1519 if (!chan->idle) 1520 return; 1521 1522 head_desc = list_first_entry(&chan->pending_list, 1523 struct xilinx_dma_tx_descriptor, node); 1524 tail_desc = list_last_entry(&chan->pending_list, 1525 struct xilinx_dma_tx_descriptor, node); 1526 tail_segment = list_last_entry(&tail_desc->segments, 1527 struct xilinx_axidma_tx_segment, node); 1528 1529 reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR); 1530 1531 if (chan->desc_pendingcount <= XILINX_DMA_COALESCE_MAX) { 1532 reg &= ~XILINX_DMA_CR_COALESCE_MAX; 1533 reg |= chan->desc_pendingcount << 1534 XILINX_DMA_CR_COALESCE_SHIFT; 1535 dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg); 1536 } 1537 1538 if (chan->has_sg) 1539 xilinx_write(chan, XILINX_DMA_REG_CURDESC, 1540 head_desc->async_tx.phys); 1541 1542 xilinx_dma_start(chan); 1543 1544 if (chan->err) 1545 return; 1546 1547 /* Start the transfer */ 1548 if (chan->has_sg) { 1549 if (chan->cyclic) 1550 xilinx_write(chan, XILINX_DMA_REG_TAILDESC, 1551 chan->cyclic_seg_v->phys); 1552 else 1553 xilinx_write(chan, XILINX_DMA_REG_TAILDESC, 1554 tail_segment->phys); 1555 } else { 1556 struct xilinx_axidma_tx_segment *segment; 1557 struct xilinx_axidma_desc_hw *hw; 1558 1559 segment = list_first_entry(&head_desc->segments, 1560 struct xilinx_axidma_tx_segment, 1561 node); 1562 hw = &segment->hw; 1563 1564 xilinx_write(chan, XILINX_DMA_REG_SRCDSTADDR, 1565 xilinx_prep_dma_addr_t(hw->buf_addr)); 1566 1567 /* Start the transfer */ 1568 dma_ctrl_write(chan, XILINX_DMA_REG_BTT, 1569 hw->control & chan->xdev->max_buffer_len); 1570 } 1571 1572 list_splice_tail_init(&chan->pending_list, &chan->active_list); 1573 chan->desc_pendingcount = 0; 1574 chan->idle = false; 1575 } 1576 1577 /** 1578 * xilinx_mcdma_start_transfer - Starts MCDMA transfer 1579 * @chan: Driver specific channel struct pointer 1580 */ 1581 static void xilinx_mcdma_start_transfer(struct xilinx_dma_chan *chan) 1582 { 1583 struct xilinx_dma_tx_descriptor *head_desc, *tail_desc; 1584 struct xilinx_aximcdma_tx_segment *tail_segment; 1585 u32 reg; 1586 1587 /* 1588 * lock has been held by calling functions, so we don't need it 1589 * to take it here again. 1590 */ 1591 1592 if (chan->err) 1593 return; 1594 1595 if (!chan->idle) 1596 return; 1597 1598 if (list_empty(&chan->pending_list)) 1599 return; 1600 1601 head_desc = list_first_entry(&chan->pending_list, 1602 struct xilinx_dma_tx_descriptor, node); 1603 tail_desc = list_last_entry(&chan->pending_list, 1604 struct xilinx_dma_tx_descriptor, node); 1605 tail_segment = list_last_entry(&tail_desc->segments, 1606 struct xilinx_aximcdma_tx_segment, node); 1607 1608 reg = dma_ctrl_read(chan, XILINX_MCDMA_CHAN_CR_OFFSET(chan->tdest)); 1609 1610 if (chan->desc_pendingcount <= XILINX_MCDMA_COALESCE_MAX) { 1611 reg &= ~XILINX_MCDMA_COALESCE_MASK; 1612 reg |= chan->desc_pendingcount << 1613 XILINX_MCDMA_COALESCE_SHIFT; 1614 } 1615 1616 reg |= XILINX_MCDMA_IRQ_ALL_MASK; 1617 dma_ctrl_write(chan, XILINX_MCDMA_CHAN_CR_OFFSET(chan->tdest), reg); 1618 1619 /* Program current descriptor */ 1620 xilinx_write(chan, XILINX_MCDMA_CHAN_CDESC_OFFSET(chan->tdest), 1621 head_desc->async_tx.phys); 1622 1623 /* Program channel enable register */ 1624 reg = dma_ctrl_read(chan, XILINX_MCDMA_CHEN_OFFSET); 1625 reg |= BIT(chan->tdest); 1626 dma_ctrl_write(chan, XILINX_MCDMA_CHEN_OFFSET, reg); 1627 1628 /* Start the fetch of BDs for the channel */ 1629 reg = dma_ctrl_read(chan, XILINX_MCDMA_CHAN_CR_OFFSET(chan->tdest)); 1630 reg |= XILINX_MCDMA_CR_RUNSTOP_MASK; 1631 dma_ctrl_write(chan, XILINX_MCDMA_CHAN_CR_OFFSET(chan->tdest), reg); 1632 1633 xilinx_dma_start(chan); 1634 1635 if (chan->err) 1636 return; 1637 1638 /* Start the transfer */ 1639 xilinx_write(chan, XILINX_MCDMA_CHAN_TDESC_OFFSET(chan->tdest), 1640 tail_segment->phys); 1641 1642 list_splice_tail_init(&chan->pending_list, &chan->active_list); 1643 chan->desc_pendingcount = 0; 1644 chan->idle = false; 1645 } 1646 1647 /** 1648 * xilinx_dma_issue_pending - Issue pending transactions 1649 * @dchan: DMA channel 1650 */ 1651 static void xilinx_dma_issue_pending(struct dma_chan *dchan) 1652 { 1653 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 1654 unsigned long flags; 1655 1656 spin_lock_irqsave(&chan->lock, flags); 1657 chan->start_transfer(chan); 1658 spin_unlock_irqrestore(&chan->lock, flags); 1659 } 1660 1661 /** 1662 * xilinx_dma_complete_descriptor - Mark the active descriptor as complete 1663 * @chan : xilinx DMA channel 1664 * 1665 * CONTEXT: hardirq 1666 */ 1667 static void xilinx_dma_complete_descriptor(struct xilinx_dma_chan *chan) 1668 { 1669 struct xilinx_dma_tx_descriptor *desc, *next; 1670 1671 /* This function was invoked with lock held */ 1672 if (list_empty(&chan->active_list)) 1673 return; 1674 1675 list_for_each_entry_safe(desc, next, &chan->active_list, node) { 1676 if (chan->has_sg && chan->xdev->dma_config->dmatype != 1677 XDMA_TYPE_VDMA) 1678 desc->residue = xilinx_dma_get_residue(chan, desc); 1679 else 1680 desc->residue = 0; 1681 desc->err = chan->err; 1682 1683 list_del(&desc->node); 1684 if (!desc->cyclic) 1685 dma_cookie_complete(&desc->async_tx); 1686 list_add_tail(&desc->node, &chan->done_list); 1687 } 1688 } 1689 1690 /** 1691 * xilinx_dma_reset - Reset DMA channel 1692 * @chan: Driver specific DMA channel 1693 * 1694 * Return: '0' on success and failure value on error 1695 */ 1696 static int xilinx_dma_reset(struct xilinx_dma_chan *chan) 1697 { 1698 int err; 1699 u32 tmp; 1700 1701 dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RESET); 1702 1703 /* Wait for the hardware to finish reset */ 1704 err = xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMACR, tmp, 1705 !(tmp & XILINX_DMA_DMACR_RESET), 0, 1706 XILINX_DMA_LOOP_COUNT); 1707 1708 if (err) { 1709 dev_err(chan->dev, "reset timeout, cr %x, sr %x\n", 1710 dma_ctrl_read(chan, XILINX_DMA_REG_DMACR), 1711 dma_ctrl_read(chan, XILINX_DMA_REG_DMASR)); 1712 return -ETIMEDOUT; 1713 } 1714 1715 chan->err = false; 1716 chan->idle = true; 1717 chan->desc_pendingcount = 0; 1718 chan->desc_submitcount = 0; 1719 1720 return err; 1721 } 1722 1723 /** 1724 * xilinx_dma_chan_reset - Reset DMA channel and enable interrupts 1725 * @chan: Driver specific DMA channel 1726 * 1727 * Return: '0' on success and failure value on error 1728 */ 1729 static int xilinx_dma_chan_reset(struct xilinx_dma_chan *chan) 1730 { 1731 int err; 1732 1733 /* Reset VDMA */ 1734 err = xilinx_dma_reset(chan); 1735 if (err) 1736 return err; 1737 1738 /* Enable interrupts */ 1739 dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, 1740 XILINX_DMA_DMAXR_ALL_IRQ_MASK); 1741 1742 return 0; 1743 } 1744 1745 /** 1746 * xilinx_mcdma_irq_handler - MCDMA Interrupt handler 1747 * @irq: IRQ number 1748 * @data: Pointer to the Xilinx MCDMA channel structure 1749 * 1750 * Return: IRQ_HANDLED/IRQ_NONE 1751 */ 1752 static irqreturn_t xilinx_mcdma_irq_handler(int irq, void *data) 1753 { 1754 struct xilinx_dma_chan *chan = data; 1755 u32 status, ser_offset, chan_sermask, chan_offset = 0, chan_id; 1756 1757 if (chan->direction == DMA_DEV_TO_MEM) 1758 ser_offset = XILINX_MCDMA_RXINT_SER_OFFSET; 1759 else 1760 ser_offset = XILINX_MCDMA_TXINT_SER_OFFSET; 1761 1762 /* Read the channel id raising the interrupt*/ 1763 chan_sermask = dma_ctrl_read(chan, ser_offset); 1764 chan_id = ffs(chan_sermask); 1765 1766 if (!chan_id) 1767 return IRQ_NONE; 1768 1769 if (chan->direction == DMA_DEV_TO_MEM) 1770 chan_offset = chan->xdev->dma_config->max_channels / 2; 1771 1772 chan_offset = chan_offset + (chan_id - 1); 1773 chan = chan->xdev->chan[chan_offset]; 1774 /* Read the status and ack the interrupts. */ 1775 status = dma_ctrl_read(chan, XILINX_MCDMA_CHAN_SR_OFFSET(chan->tdest)); 1776 if (!(status & XILINX_MCDMA_IRQ_ALL_MASK)) 1777 return IRQ_NONE; 1778 1779 dma_ctrl_write(chan, XILINX_MCDMA_CHAN_SR_OFFSET(chan->tdest), 1780 status & XILINX_MCDMA_IRQ_ALL_MASK); 1781 1782 if (status & XILINX_MCDMA_IRQ_ERR_MASK) { 1783 dev_err(chan->dev, "Channel %p has errors %x cdr %x tdr %x\n", 1784 chan, 1785 dma_ctrl_read(chan, XILINX_MCDMA_CH_ERR_OFFSET), 1786 dma_ctrl_read(chan, XILINX_MCDMA_CHAN_CDESC_OFFSET 1787 (chan->tdest)), 1788 dma_ctrl_read(chan, XILINX_MCDMA_CHAN_TDESC_OFFSET 1789 (chan->tdest))); 1790 chan->err = true; 1791 } 1792 1793 if (status & XILINX_MCDMA_IRQ_DELAY_MASK) { 1794 /* 1795 * Device takes too long to do the transfer when user requires 1796 * responsiveness. 1797 */ 1798 dev_dbg(chan->dev, "Inter-packet latency too long\n"); 1799 } 1800 1801 if (status & XILINX_MCDMA_IRQ_IOC_MASK) { 1802 spin_lock(&chan->lock); 1803 xilinx_dma_complete_descriptor(chan); 1804 chan->idle = true; 1805 chan->start_transfer(chan); 1806 spin_unlock(&chan->lock); 1807 } 1808 1809 tasklet_schedule(&chan->tasklet); 1810 return IRQ_HANDLED; 1811 } 1812 1813 /** 1814 * xilinx_dma_irq_handler - DMA Interrupt handler 1815 * @irq: IRQ number 1816 * @data: Pointer to the Xilinx DMA channel structure 1817 * 1818 * Return: IRQ_HANDLED/IRQ_NONE 1819 */ 1820 static irqreturn_t xilinx_dma_irq_handler(int irq, void *data) 1821 { 1822 struct xilinx_dma_chan *chan = data; 1823 u32 status; 1824 1825 /* Read the status and ack the interrupts. */ 1826 status = dma_ctrl_read(chan, XILINX_DMA_REG_DMASR); 1827 if (!(status & XILINX_DMA_DMAXR_ALL_IRQ_MASK)) 1828 return IRQ_NONE; 1829 1830 dma_ctrl_write(chan, XILINX_DMA_REG_DMASR, 1831 status & XILINX_DMA_DMAXR_ALL_IRQ_MASK); 1832 1833 if (status & XILINX_DMA_DMASR_ERR_IRQ) { 1834 /* 1835 * An error occurred. If C_FLUSH_ON_FSYNC is enabled and the 1836 * error is recoverable, ignore it. Otherwise flag the error. 1837 * 1838 * Only recoverable errors can be cleared in the DMASR register, 1839 * make sure not to write to other error bits to 1. 1840 */ 1841 u32 errors = status & XILINX_DMA_DMASR_ALL_ERR_MASK; 1842 1843 dma_ctrl_write(chan, XILINX_DMA_REG_DMASR, 1844 errors & XILINX_DMA_DMASR_ERR_RECOVER_MASK); 1845 1846 if (!chan->flush_on_fsync || 1847 (errors & ~XILINX_DMA_DMASR_ERR_RECOVER_MASK)) { 1848 dev_err(chan->dev, 1849 "Channel %p has errors %x, cdr %x tdr %x\n", 1850 chan, errors, 1851 dma_ctrl_read(chan, XILINX_DMA_REG_CURDESC), 1852 dma_ctrl_read(chan, XILINX_DMA_REG_TAILDESC)); 1853 chan->err = true; 1854 } 1855 } 1856 1857 if (status & XILINX_DMA_DMASR_DLY_CNT_IRQ) { 1858 /* 1859 * Device takes too long to do the transfer when user requires 1860 * responsiveness. 1861 */ 1862 dev_dbg(chan->dev, "Inter-packet latency too long\n"); 1863 } 1864 1865 if (status & XILINX_DMA_DMASR_FRM_CNT_IRQ) { 1866 spin_lock(&chan->lock); 1867 xilinx_dma_complete_descriptor(chan); 1868 chan->idle = true; 1869 chan->start_transfer(chan); 1870 spin_unlock(&chan->lock); 1871 } 1872 1873 tasklet_schedule(&chan->tasklet); 1874 return IRQ_HANDLED; 1875 } 1876 1877 /** 1878 * append_desc_queue - Queuing descriptor 1879 * @chan: Driver specific dma channel 1880 * @desc: dma transaction descriptor 1881 */ 1882 static void append_desc_queue(struct xilinx_dma_chan *chan, 1883 struct xilinx_dma_tx_descriptor *desc) 1884 { 1885 struct xilinx_vdma_tx_segment *tail_segment; 1886 struct xilinx_dma_tx_descriptor *tail_desc; 1887 struct xilinx_axidma_tx_segment *axidma_tail_segment; 1888 struct xilinx_aximcdma_tx_segment *aximcdma_tail_segment; 1889 struct xilinx_cdma_tx_segment *cdma_tail_segment; 1890 1891 if (list_empty(&chan->pending_list)) 1892 goto append; 1893 1894 /* 1895 * Add the hardware descriptor to the chain of hardware descriptors 1896 * that already exists in memory. 1897 */ 1898 tail_desc = list_last_entry(&chan->pending_list, 1899 struct xilinx_dma_tx_descriptor, node); 1900 if (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { 1901 tail_segment = list_last_entry(&tail_desc->segments, 1902 struct xilinx_vdma_tx_segment, 1903 node); 1904 tail_segment->hw.next_desc = (u32)desc->async_tx.phys; 1905 } else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { 1906 cdma_tail_segment = list_last_entry(&tail_desc->segments, 1907 struct xilinx_cdma_tx_segment, 1908 node); 1909 cdma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys; 1910 } else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { 1911 axidma_tail_segment = list_last_entry(&tail_desc->segments, 1912 struct xilinx_axidma_tx_segment, 1913 node); 1914 axidma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys; 1915 } else { 1916 aximcdma_tail_segment = 1917 list_last_entry(&tail_desc->segments, 1918 struct xilinx_aximcdma_tx_segment, 1919 node); 1920 aximcdma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys; 1921 } 1922 1923 /* 1924 * Add the software descriptor and all children to the list 1925 * of pending transactions 1926 */ 1927 append: 1928 list_add_tail(&desc->node, &chan->pending_list); 1929 chan->desc_pendingcount++; 1930 1931 if (chan->has_sg && (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) 1932 && unlikely(chan->desc_pendingcount > chan->num_frms)) { 1933 dev_dbg(chan->dev, "desc pendingcount is too high\n"); 1934 chan->desc_pendingcount = chan->num_frms; 1935 } 1936 } 1937 1938 /** 1939 * xilinx_dma_tx_submit - Submit DMA transaction 1940 * @tx: Async transaction descriptor 1941 * 1942 * Return: cookie value on success and failure value on error 1943 */ 1944 static dma_cookie_t xilinx_dma_tx_submit(struct dma_async_tx_descriptor *tx) 1945 { 1946 struct xilinx_dma_tx_descriptor *desc = to_dma_tx_descriptor(tx); 1947 struct xilinx_dma_chan *chan = to_xilinx_chan(tx->chan); 1948 dma_cookie_t cookie; 1949 unsigned long flags; 1950 int err; 1951 1952 if (chan->cyclic) { 1953 xilinx_dma_free_tx_descriptor(chan, desc); 1954 return -EBUSY; 1955 } 1956 1957 if (chan->err) { 1958 /* 1959 * If reset fails, need to hard reset the system. 1960 * Channel is no longer functional 1961 */ 1962 err = xilinx_dma_chan_reset(chan); 1963 if (err < 0) 1964 return err; 1965 } 1966 1967 spin_lock_irqsave(&chan->lock, flags); 1968 1969 cookie = dma_cookie_assign(tx); 1970 1971 /* Put this transaction onto the tail of the pending queue */ 1972 append_desc_queue(chan, desc); 1973 1974 if (desc->cyclic) 1975 chan->cyclic = true; 1976 1977 chan->terminating = false; 1978 1979 spin_unlock_irqrestore(&chan->lock, flags); 1980 1981 return cookie; 1982 } 1983 1984 /** 1985 * xilinx_vdma_dma_prep_interleaved - prepare a descriptor for a 1986 * DMA_SLAVE transaction 1987 * @dchan: DMA channel 1988 * @xt: Interleaved template pointer 1989 * @flags: transfer ack flags 1990 * 1991 * Return: Async transaction descriptor on success and NULL on failure 1992 */ 1993 static struct dma_async_tx_descriptor * 1994 xilinx_vdma_dma_prep_interleaved(struct dma_chan *dchan, 1995 struct dma_interleaved_template *xt, 1996 unsigned long flags) 1997 { 1998 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 1999 struct xilinx_dma_tx_descriptor *desc; 2000 struct xilinx_vdma_tx_segment *segment; 2001 struct xilinx_vdma_desc_hw *hw; 2002 2003 if (!is_slave_direction(xt->dir)) 2004 return NULL; 2005 2006 if (!xt->numf || !xt->sgl[0].size) 2007 return NULL; 2008 2009 if (xt->frame_size != 1) 2010 return NULL; 2011 2012 /* Allocate a transaction descriptor. */ 2013 desc = xilinx_dma_alloc_tx_descriptor(chan); 2014 if (!desc) 2015 return NULL; 2016 2017 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); 2018 desc->async_tx.tx_submit = xilinx_dma_tx_submit; 2019 async_tx_ack(&desc->async_tx); 2020 2021 /* Allocate the link descriptor from DMA pool */ 2022 segment = xilinx_vdma_alloc_tx_segment(chan); 2023 if (!segment) 2024 goto error; 2025 2026 /* Fill in the hardware descriptor */ 2027 hw = &segment->hw; 2028 hw->vsize = xt->numf; 2029 hw->hsize = xt->sgl[0].size; 2030 hw->stride = (xt->sgl[0].icg + xt->sgl[0].size) << 2031 XILINX_DMA_FRMDLY_STRIDE_STRIDE_SHIFT; 2032 hw->stride |= chan->config.frm_dly << 2033 XILINX_DMA_FRMDLY_STRIDE_FRMDLY_SHIFT; 2034 2035 if (xt->dir != DMA_MEM_TO_DEV) { 2036 if (chan->ext_addr) { 2037 hw->buf_addr = lower_32_bits(xt->dst_start); 2038 hw->buf_addr_msb = upper_32_bits(xt->dst_start); 2039 } else { 2040 hw->buf_addr = xt->dst_start; 2041 } 2042 } else { 2043 if (chan->ext_addr) { 2044 hw->buf_addr = lower_32_bits(xt->src_start); 2045 hw->buf_addr_msb = upper_32_bits(xt->src_start); 2046 } else { 2047 hw->buf_addr = xt->src_start; 2048 } 2049 } 2050 2051 /* Insert the segment into the descriptor segments list. */ 2052 list_add_tail(&segment->node, &desc->segments); 2053 2054 /* Link the last hardware descriptor with the first. */ 2055 segment = list_first_entry(&desc->segments, 2056 struct xilinx_vdma_tx_segment, node); 2057 desc->async_tx.phys = segment->phys; 2058 2059 return &desc->async_tx; 2060 2061 error: 2062 xilinx_dma_free_tx_descriptor(chan, desc); 2063 return NULL; 2064 } 2065 2066 /** 2067 * xilinx_cdma_prep_memcpy - prepare descriptors for a memcpy transaction 2068 * @dchan: DMA channel 2069 * @dma_dst: destination address 2070 * @dma_src: source address 2071 * @len: transfer length 2072 * @flags: transfer ack flags 2073 * 2074 * Return: Async transaction descriptor on success and NULL on failure 2075 */ 2076 static struct dma_async_tx_descriptor * 2077 xilinx_cdma_prep_memcpy(struct dma_chan *dchan, dma_addr_t dma_dst, 2078 dma_addr_t dma_src, size_t len, unsigned long flags) 2079 { 2080 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 2081 struct xilinx_dma_tx_descriptor *desc; 2082 struct xilinx_cdma_tx_segment *segment; 2083 struct xilinx_cdma_desc_hw *hw; 2084 2085 if (!len || len > chan->xdev->max_buffer_len) 2086 return NULL; 2087 2088 desc = xilinx_dma_alloc_tx_descriptor(chan); 2089 if (!desc) 2090 return NULL; 2091 2092 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); 2093 desc->async_tx.tx_submit = xilinx_dma_tx_submit; 2094 2095 /* Allocate the link descriptor from DMA pool */ 2096 segment = xilinx_cdma_alloc_tx_segment(chan); 2097 if (!segment) 2098 goto error; 2099 2100 hw = &segment->hw; 2101 hw->control = len; 2102 hw->src_addr = dma_src; 2103 hw->dest_addr = dma_dst; 2104 if (chan->ext_addr) { 2105 hw->src_addr_msb = upper_32_bits(dma_src); 2106 hw->dest_addr_msb = upper_32_bits(dma_dst); 2107 } 2108 2109 /* Insert the segment into the descriptor segments list. */ 2110 list_add_tail(&segment->node, &desc->segments); 2111 2112 desc->async_tx.phys = segment->phys; 2113 hw->next_desc = segment->phys; 2114 2115 return &desc->async_tx; 2116 2117 error: 2118 xilinx_dma_free_tx_descriptor(chan, desc); 2119 return NULL; 2120 } 2121 2122 /** 2123 * xilinx_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 2124 * @dchan: DMA channel 2125 * @sgl: scatterlist to transfer to/from 2126 * @sg_len: number of entries in @scatterlist 2127 * @direction: DMA direction 2128 * @flags: transfer ack flags 2129 * @context: APP words of the descriptor 2130 * 2131 * Return: Async transaction descriptor on success and NULL on failure 2132 */ 2133 static struct dma_async_tx_descriptor *xilinx_dma_prep_slave_sg( 2134 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len, 2135 enum dma_transfer_direction direction, unsigned long flags, 2136 void *context) 2137 { 2138 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 2139 struct xilinx_dma_tx_descriptor *desc; 2140 struct xilinx_axidma_tx_segment *segment = NULL; 2141 u32 *app_w = (u32 *)context; 2142 struct scatterlist *sg; 2143 size_t copy; 2144 size_t sg_used; 2145 unsigned int i; 2146 2147 if (!is_slave_direction(direction)) 2148 return NULL; 2149 2150 /* Allocate a transaction descriptor. */ 2151 desc = xilinx_dma_alloc_tx_descriptor(chan); 2152 if (!desc) 2153 return NULL; 2154 2155 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); 2156 desc->async_tx.tx_submit = xilinx_dma_tx_submit; 2157 2158 /* Build transactions using information in the scatter gather list */ 2159 for_each_sg(sgl, sg, sg_len, i) { 2160 sg_used = 0; 2161 2162 /* Loop until the entire scatterlist entry is used */ 2163 while (sg_used < sg_dma_len(sg)) { 2164 struct xilinx_axidma_desc_hw *hw; 2165 2166 /* Get a free segment */ 2167 segment = xilinx_axidma_alloc_tx_segment(chan); 2168 if (!segment) 2169 goto error; 2170 2171 /* 2172 * Calculate the maximum number of bytes to transfer, 2173 * making sure it is less than the hw limit 2174 */ 2175 copy = xilinx_dma_calc_copysize(chan, sg_dma_len(sg), 2176 sg_used); 2177 hw = &segment->hw; 2178 2179 /* Fill in the descriptor */ 2180 xilinx_axidma_buf(chan, hw, sg_dma_address(sg), 2181 sg_used, 0); 2182 2183 hw->control = copy; 2184 2185 if (chan->direction == DMA_MEM_TO_DEV) { 2186 if (app_w) 2187 memcpy(hw->app, app_w, sizeof(u32) * 2188 XILINX_DMA_NUM_APP_WORDS); 2189 } 2190 2191 sg_used += copy; 2192 2193 /* 2194 * Insert the segment into the descriptor segments 2195 * list. 2196 */ 2197 list_add_tail(&segment->node, &desc->segments); 2198 } 2199 } 2200 2201 segment = list_first_entry(&desc->segments, 2202 struct xilinx_axidma_tx_segment, node); 2203 desc->async_tx.phys = segment->phys; 2204 2205 /* For the last DMA_MEM_TO_DEV transfer, set EOP */ 2206 if (chan->direction == DMA_MEM_TO_DEV) { 2207 segment->hw.control |= XILINX_DMA_BD_SOP; 2208 segment = list_last_entry(&desc->segments, 2209 struct xilinx_axidma_tx_segment, 2210 node); 2211 segment->hw.control |= XILINX_DMA_BD_EOP; 2212 } 2213 2214 return &desc->async_tx; 2215 2216 error: 2217 xilinx_dma_free_tx_descriptor(chan, desc); 2218 return NULL; 2219 } 2220 2221 /** 2222 * xilinx_dma_prep_dma_cyclic - prepare descriptors for a DMA_SLAVE transaction 2223 * @dchan: DMA channel 2224 * @buf_addr: Physical address of the buffer 2225 * @buf_len: Total length of the cyclic buffers 2226 * @period_len: length of individual cyclic buffer 2227 * @direction: DMA direction 2228 * @flags: transfer ack flags 2229 * 2230 * Return: Async transaction descriptor on success and NULL on failure 2231 */ 2232 static struct dma_async_tx_descriptor *xilinx_dma_prep_dma_cyclic( 2233 struct dma_chan *dchan, dma_addr_t buf_addr, size_t buf_len, 2234 size_t period_len, enum dma_transfer_direction direction, 2235 unsigned long flags) 2236 { 2237 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 2238 struct xilinx_dma_tx_descriptor *desc; 2239 struct xilinx_axidma_tx_segment *segment, *head_segment, *prev = NULL; 2240 size_t copy, sg_used; 2241 unsigned int num_periods; 2242 int i; 2243 u32 reg; 2244 2245 if (!period_len) 2246 return NULL; 2247 2248 num_periods = buf_len / period_len; 2249 2250 if (!num_periods) 2251 return NULL; 2252 2253 if (!is_slave_direction(direction)) 2254 return NULL; 2255 2256 /* Allocate a transaction descriptor. */ 2257 desc = xilinx_dma_alloc_tx_descriptor(chan); 2258 if (!desc) 2259 return NULL; 2260 2261 chan->direction = direction; 2262 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); 2263 desc->async_tx.tx_submit = xilinx_dma_tx_submit; 2264 2265 for (i = 0; i < num_periods; ++i) { 2266 sg_used = 0; 2267 2268 while (sg_used < period_len) { 2269 struct xilinx_axidma_desc_hw *hw; 2270 2271 /* Get a free segment */ 2272 segment = xilinx_axidma_alloc_tx_segment(chan); 2273 if (!segment) 2274 goto error; 2275 2276 /* 2277 * Calculate the maximum number of bytes to transfer, 2278 * making sure it is less than the hw limit 2279 */ 2280 copy = xilinx_dma_calc_copysize(chan, period_len, 2281 sg_used); 2282 hw = &segment->hw; 2283 xilinx_axidma_buf(chan, hw, buf_addr, sg_used, 2284 period_len * i); 2285 hw->control = copy; 2286 2287 if (prev) 2288 prev->hw.next_desc = segment->phys; 2289 2290 prev = segment; 2291 sg_used += copy; 2292 2293 /* 2294 * Insert the segment into the descriptor segments 2295 * list. 2296 */ 2297 list_add_tail(&segment->node, &desc->segments); 2298 } 2299 } 2300 2301 head_segment = list_first_entry(&desc->segments, 2302 struct xilinx_axidma_tx_segment, node); 2303 desc->async_tx.phys = head_segment->phys; 2304 2305 desc->cyclic = true; 2306 reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR); 2307 reg |= XILINX_DMA_CR_CYCLIC_BD_EN_MASK; 2308 dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg); 2309 2310 segment = list_last_entry(&desc->segments, 2311 struct xilinx_axidma_tx_segment, 2312 node); 2313 segment->hw.next_desc = (u32) head_segment->phys; 2314 2315 /* For the last DMA_MEM_TO_DEV transfer, set EOP */ 2316 if (direction == DMA_MEM_TO_DEV) { 2317 head_segment->hw.control |= XILINX_DMA_BD_SOP; 2318 segment->hw.control |= XILINX_DMA_BD_EOP; 2319 } 2320 2321 return &desc->async_tx; 2322 2323 error: 2324 xilinx_dma_free_tx_descriptor(chan, desc); 2325 return NULL; 2326 } 2327 2328 /** 2329 * xilinx_mcdma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 2330 * @dchan: DMA channel 2331 * @sgl: scatterlist to transfer to/from 2332 * @sg_len: number of entries in @scatterlist 2333 * @direction: DMA direction 2334 * @flags: transfer ack flags 2335 * @context: APP words of the descriptor 2336 * 2337 * Return: Async transaction descriptor on success and NULL on failure 2338 */ 2339 static struct dma_async_tx_descriptor * 2340 xilinx_mcdma_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl, 2341 unsigned int sg_len, 2342 enum dma_transfer_direction direction, 2343 unsigned long flags, void *context) 2344 { 2345 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 2346 struct xilinx_dma_tx_descriptor *desc; 2347 struct xilinx_aximcdma_tx_segment *segment = NULL; 2348 u32 *app_w = (u32 *)context; 2349 struct scatterlist *sg; 2350 size_t copy; 2351 size_t sg_used; 2352 unsigned int i; 2353 2354 if (!is_slave_direction(direction)) 2355 return NULL; 2356 2357 /* Allocate a transaction descriptor. */ 2358 desc = xilinx_dma_alloc_tx_descriptor(chan); 2359 if (!desc) 2360 return NULL; 2361 2362 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); 2363 desc->async_tx.tx_submit = xilinx_dma_tx_submit; 2364 2365 /* Build transactions using information in the scatter gather list */ 2366 for_each_sg(sgl, sg, sg_len, i) { 2367 sg_used = 0; 2368 2369 /* Loop until the entire scatterlist entry is used */ 2370 while (sg_used < sg_dma_len(sg)) { 2371 struct xilinx_aximcdma_desc_hw *hw; 2372 2373 /* Get a free segment */ 2374 segment = xilinx_aximcdma_alloc_tx_segment(chan); 2375 if (!segment) 2376 goto error; 2377 2378 /* 2379 * Calculate the maximum number of bytes to transfer, 2380 * making sure it is less than the hw limit 2381 */ 2382 copy = min_t(size_t, sg_dma_len(sg) - sg_used, 2383 chan->xdev->max_buffer_len); 2384 hw = &segment->hw; 2385 2386 /* Fill in the descriptor */ 2387 xilinx_aximcdma_buf(chan, hw, sg_dma_address(sg), 2388 sg_used); 2389 hw->control = copy; 2390 2391 if (chan->direction == DMA_MEM_TO_DEV && app_w) { 2392 memcpy(hw->app, app_w, sizeof(u32) * 2393 XILINX_DMA_NUM_APP_WORDS); 2394 } 2395 2396 sg_used += copy; 2397 /* 2398 * Insert the segment into the descriptor segments 2399 * list. 2400 */ 2401 list_add_tail(&segment->node, &desc->segments); 2402 } 2403 } 2404 2405 segment = list_first_entry(&desc->segments, 2406 struct xilinx_aximcdma_tx_segment, node); 2407 desc->async_tx.phys = segment->phys; 2408 2409 /* For the last DMA_MEM_TO_DEV transfer, set EOP */ 2410 if (chan->direction == DMA_MEM_TO_DEV) { 2411 segment->hw.control |= XILINX_MCDMA_BD_SOP; 2412 segment = list_last_entry(&desc->segments, 2413 struct xilinx_aximcdma_tx_segment, 2414 node); 2415 segment->hw.control |= XILINX_MCDMA_BD_EOP; 2416 } 2417 2418 return &desc->async_tx; 2419 2420 error: 2421 xilinx_dma_free_tx_descriptor(chan, desc); 2422 2423 return NULL; 2424 } 2425 2426 /** 2427 * xilinx_dma_terminate_all - Halt the channel and free descriptors 2428 * @dchan: Driver specific DMA Channel pointer 2429 * 2430 * Return: '0' always. 2431 */ 2432 static int xilinx_dma_terminate_all(struct dma_chan *dchan) 2433 { 2434 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 2435 u32 reg; 2436 int err; 2437 2438 if (!chan->cyclic) { 2439 err = chan->stop_transfer(chan); 2440 if (err) { 2441 dev_err(chan->dev, "Cannot stop channel %p: %x\n", 2442 chan, dma_ctrl_read(chan, 2443 XILINX_DMA_REG_DMASR)); 2444 chan->err = true; 2445 } 2446 } 2447 2448 xilinx_dma_chan_reset(chan); 2449 /* Remove and free all of the descriptors in the lists */ 2450 chan->terminating = true; 2451 xilinx_dma_free_descriptors(chan); 2452 chan->idle = true; 2453 2454 if (chan->cyclic) { 2455 reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR); 2456 reg &= ~XILINX_DMA_CR_CYCLIC_BD_EN_MASK; 2457 dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg); 2458 chan->cyclic = false; 2459 } 2460 2461 if ((chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) && chan->has_sg) 2462 dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR, 2463 XILINX_CDMA_CR_SGMODE); 2464 2465 return 0; 2466 } 2467 2468 static void xilinx_dma_synchronize(struct dma_chan *dchan) 2469 { 2470 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 2471 2472 tasklet_kill(&chan->tasklet); 2473 } 2474 2475 /** 2476 * xilinx_dma_channel_set_config - Configure VDMA channel 2477 * Run-time configuration for Axi VDMA, supports: 2478 * . halt the channel 2479 * . configure interrupt coalescing and inter-packet delay threshold 2480 * . start/stop parking 2481 * . enable genlock 2482 * 2483 * @dchan: DMA channel 2484 * @cfg: VDMA device configuration pointer 2485 * 2486 * Return: '0' on success and failure value on error 2487 */ 2488 int xilinx_vdma_channel_set_config(struct dma_chan *dchan, 2489 struct xilinx_vdma_config *cfg) 2490 { 2491 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 2492 u32 dmacr; 2493 2494 if (cfg->reset) 2495 return xilinx_dma_chan_reset(chan); 2496 2497 dmacr = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR); 2498 2499 chan->config.frm_dly = cfg->frm_dly; 2500 chan->config.park = cfg->park; 2501 2502 /* genlock settings */ 2503 chan->config.gen_lock = cfg->gen_lock; 2504 chan->config.master = cfg->master; 2505 2506 dmacr &= ~XILINX_DMA_DMACR_GENLOCK_EN; 2507 if (cfg->gen_lock && chan->genlock) { 2508 dmacr |= XILINX_DMA_DMACR_GENLOCK_EN; 2509 dmacr &= ~XILINX_DMA_DMACR_MASTER_MASK; 2510 dmacr |= cfg->master << XILINX_DMA_DMACR_MASTER_SHIFT; 2511 } 2512 2513 chan->config.frm_cnt_en = cfg->frm_cnt_en; 2514 chan->config.vflip_en = cfg->vflip_en; 2515 2516 if (cfg->park) 2517 chan->config.park_frm = cfg->park_frm; 2518 else 2519 chan->config.park_frm = -1; 2520 2521 chan->config.coalesc = cfg->coalesc; 2522 chan->config.delay = cfg->delay; 2523 2524 if (cfg->coalesc <= XILINX_DMA_DMACR_FRAME_COUNT_MAX) { 2525 dmacr &= ~XILINX_DMA_DMACR_FRAME_COUNT_MASK; 2526 dmacr |= cfg->coalesc << XILINX_DMA_DMACR_FRAME_COUNT_SHIFT; 2527 chan->config.coalesc = cfg->coalesc; 2528 } 2529 2530 if (cfg->delay <= XILINX_DMA_DMACR_DELAY_MAX) { 2531 dmacr &= ~XILINX_DMA_DMACR_DELAY_MASK; 2532 dmacr |= cfg->delay << XILINX_DMA_DMACR_DELAY_SHIFT; 2533 chan->config.delay = cfg->delay; 2534 } 2535 2536 /* FSync Source selection */ 2537 dmacr &= ~XILINX_DMA_DMACR_FSYNCSRC_MASK; 2538 dmacr |= cfg->ext_fsync << XILINX_DMA_DMACR_FSYNCSRC_SHIFT; 2539 2540 dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, dmacr); 2541 2542 return 0; 2543 } 2544 EXPORT_SYMBOL(xilinx_vdma_channel_set_config); 2545 2546 /* ----------------------------------------------------------------------------- 2547 * Probe and remove 2548 */ 2549 2550 /** 2551 * xilinx_dma_chan_remove - Per Channel remove function 2552 * @chan: Driver specific DMA channel 2553 */ 2554 static void xilinx_dma_chan_remove(struct xilinx_dma_chan *chan) 2555 { 2556 /* Disable all interrupts */ 2557 dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR, 2558 XILINX_DMA_DMAXR_ALL_IRQ_MASK); 2559 2560 if (chan->irq > 0) 2561 free_irq(chan->irq, chan); 2562 2563 tasklet_kill(&chan->tasklet); 2564 2565 list_del(&chan->common.device_node); 2566 } 2567 2568 static int axidma_clk_init(struct platform_device *pdev, struct clk **axi_clk, 2569 struct clk **tx_clk, struct clk **rx_clk, 2570 struct clk **sg_clk, struct clk **tmp_clk) 2571 { 2572 int err; 2573 2574 *tmp_clk = NULL; 2575 2576 *axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk"); 2577 if (IS_ERR(*axi_clk)) 2578 return dev_err_probe(&pdev->dev, PTR_ERR(*axi_clk), "failed to get axi_aclk\n"); 2579 2580 *tx_clk = devm_clk_get(&pdev->dev, "m_axi_mm2s_aclk"); 2581 if (IS_ERR(*tx_clk)) 2582 *tx_clk = NULL; 2583 2584 *rx_clk = devm_clk_get(&pdev->dev, "m_axi_s2mm_aclk"); 2585 if (IS_ERR(*rx_clk)) 2586 *rx_clk = NULL; 2587 2588 *sg_clk = devm_clk_get(&pdev->dev, "m_axi_sg_aclk"); 2589 if (IS_ERR(*sg_clk)) 2590 *sg_clk = NULL; 2591 2592 err = clk_prepare_enable(*axi_clk); 2593 if (err) { 2594 dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", err); 2595 return err; 2596 } 2597 2598 err = clk_prepare_enable(*tx_clk); 2599 if (err) { 2600 dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err); 2601 goto err_disable_axiclk; 2602 } 2603 2604 err = clk_prepare_enable(*rx_clk); 2605 if (err) { 2606 dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err); 2607 goto err_disable_txclk; 2608 } 2609 2610 err = clk_prepare_enable(*sg_clk); 2611 if (err) { 2612 dev_err(&pdev->dev, "failed to enable sg_clk (%d)\n", err); 2613 goto err_disable_rxclk; 2614 } 2615 2616 return 0; 2617 2618 err_disable_rxclk: 2619 clk_disable_unprepare(*rx_clk); 2620 err_disable_txclk: 2621 clk_disable_unprepare(*tx_clk); 2622 err_disable_axiclk: 2623 clk_disable_unprepare(*axi_clk); 2624 2625 return err; 2626 } 2627 2628 static int axicdma_clk_init(struct platform_device *pdev, struct clk **axi_clk, 2629 struct clk **dev_clk, struct clk **tmp_clk, 2630 struct clk **tmp1_clk, struct clk **tmp2_clk) 2631 { 2632 int err; 2633 2634 *tmp_clk = NULL; 2635 *tmp1_clk = NULL; 2636 *tmp2_clk = NULL; 2637 2638 *axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk"); 2639 if (IS_ERR(*axi_clk)) 2640 return dev_err_probe(&pdev->dev, PTR_ERR(*axi_clk), "failed to get axi_aclk\n"); 2641 2642 *dev_clk = devm_clk_get(&pdev->dev, "m_axi_aclk"); 2643 if (IS_ERR(*dev_clk)) 2644 return dev_err_probe(&pdev->dev, PTR_ERR(*dev_clk), "failed to get dev_clk\n"); 2645 2646 err = clk_prepare_enable(*axi_clk); 2647 if (err) { 2648 dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", err); 2649 return err; 2650 } 2651 2652 err = clk_prepare_enable(*dev_clk); 2653 if (err) { 2654 dev_err(&pdev->dev, "failed to enable dev_clk (%d)\n", err); 2655 goto err_disable_axiclk; 2656 } 2657 2658 return 0; 2659 2660 err_disable_axiclk: 2661 clk_disable_unprepare(*axi_clk); 2662 2663 return err; 2664 } 2665 2666 static int axivdma_clk_init(struct platform_device *pdev, struct clk **axi_clk, 2667 struct clk **tx_clk, struct clk **txs_clk, 2668 struct clk **rx_clk, struct clk **rxs_clk) 2669 { 2670 int err; 2671 2672 *axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk"); 2673 if (IS_ERR(*axi_clk)) 2674 return dev_err_probe(&pdev->dev, PTR_ERR(*axi_clk), "failed to get axi_aclk\n"); 2675 2676 *tx_clk = devm_clk_get(&pdev->dev, "m_axi_mm2s_aclk"); 2677 if (IS_ERR(*tx_clk)) 2678 *tx_clk = NULL; 2679 2680 *txs_clk = devm_clk_get(&pdev->dev, "m_axis_mm2s_aclk"); 2681 if (IS_ERR(*txs_clk)) 2682 *txs_clk = NULL; 2683 2684 *rx_clk = devm_clk_get(&pdev->dev, "m_axi_s2mm_aclk"); 2685 if (IS_ERR(*rx_clk)) 2686 *rx_clk = NULL; 2687 2688 *rxs_clk = devm_clk_get(&pdev->dev, "s_axis_s2mm_aclk"); 2689 if (IS_ERR(*rxs_clk)) 2690 *rxs_clk = NULL; 2691 2692 err = clk_prepare_enable(*axi_clk); 2693 if (err) { 2694 dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", 2695 err); 2696 return err; 2697 } 2698 2699 err = clk_prepare_enable(*tx_clk); 2700 if (err) { 2701 dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err); 2702 goto err_disable_axiclk; 2703 } 2704 2705 err = clk_prepare_enable(*txs_clk); 2706 if (err) { 2707 dev_err(&pdev->dev, "failed to enable txs_clk (%d)\n", err); 2708 goto err_disable_txclk; 2709 } 2710 2711 err = clk_prepare_enable(*rx_clk); 2712 if (err) { 2713 dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err); 2714 goto err_disable_txsclk; 2715 } 2716 2717 err = clk_prepare_enable(*rxs_clk); 2718 if (err) { 2719 dev_err(&pdev->dev, "failed to enable rxs_clk (%d)\n", err); 2720 goto err_disable_rxclk; 2721 } 2722 2723 return 0; 2724 2725 err_disable_rxclk: 2726 clk_disable_unprepare(*rx_clk); 2727 err_disable_txsclk: 2728 clk_disable_unprepare(*txs_clk); 2729 err_disable_txclk: 2730 clk_disable_unprepare(*tx_clk); 2731 err_disable_axiclk: 2732 clk_disable_unprepare(*axi_clk); 2733 2734 return err; 2735 } 2736 2737 static void xdma_disable_allclks(struct xilinx_dma_device *xdev) 2738 { 2739 clk_disable_unprepare(xdev->rxs_clk); 2740 clk_disable_unprepare(xdev->rx_clk); 2741 clk_disable_unprepare(xdev->txs_clk); 2742 clk_disable_unprepare(xdev->tx_clk); 2743 clk_disable_unprepare(xdev->axi_clk); 2744 } 2745 2746 /** 2747 * xilinx_dma_chan_probe - Per Channel Probing 2748 * It get channel features from the device tree entry and 2749 * initialize special channel handling routines 2750 * 2751 * @xdev: Driver specific device structure 2752 * @node: Device node 2753 * 2754 * Return: '0' on success and failure value on error 2755 */ 2756 static int xilinx_dma_chan_probe(struct xilinx_dma_device *xdev, 2757 struct device_node *node) 2758 { 2759 struct xilinx_dma_chan *chan; 2760 bool has_dre = false; 2761 u32 value, width; 2762 int err; 2763 2764 /* Allocate and initialize the channel structure */ 2765 chan = devm_kzalloc(xdev->dev, sizeof(*chan), GFP_KERNEL); 2766 if (!chan) 2767 return -ENOMEM; 2768 2769 chan->dev = xdev->dev; 2770 chan->xdev = xdev; 2771 chan->desc_pendingcount = 0x0; 2772 chan->ext_addr = xdev->ext_addr; 2773 /* This variable ensures that descriptors are not 2774 * Submitted when dma engine is in progress. This variable is 2775 * Added to avoid polling for a bit in the status register to 2776 * Know dma state in the driver hot path. 2777 */ 2778 chan->idle = true; 2779 2780 spin_lock_init(&chan->lock); 2781 INIT_LIST_HEAD(&chan->pending_list); 2782 INIT_LIST_HEAD(&chan->done_list); 2783 INIT_LIST_HEAD(&chan->active_list); 2784 INIT_LIST_HEAD(&chan->free_seg_list); 2785 2786 /* Retrieve the channel properties from the device tree */ 2787 has_dre = of_property_read_bool(node, "xlnx,include-dre"); 2788 2789 chan->genlock = of_property_read_bool(node, "xlnx,genlock-mode"); 2790 2791 err = of_property_read_u32(node, "xlnx,datawidth", &value); 2792 if (err) { 2793 dev_err(xdev->dev, "missing xlnx,datawidth property\n"); 2794 return err; 2795 } 2796 width = value >> 3; /* Convert bits to bytes */ 2797 2798 /* If data width is greater than 8 bytes, DRE is not in hw */ 2799 if (width > 8) 2800 has_dre = false; 2801 2802 if (!has_dre) 2803 xdev->common.copy_align = (enum dmaengine_alignment)fls(width - 1); 2804 2805 if (of_device_is_compatible(node, "xlnx,axi-vdma-mm2s-channel") || 2806 of_device_is_compatible(node, "xlnx,axi-dma-mm2s-channel") || 2807 of_device_is_compatible(node, "xlnx,axi-cdma-channel")) { 2808 chan->direction = DMA_MEM_TO_DEV; 2809 chan->id = xdev->mm2s_chan_id++; 2810 chan->tdest = chan->id; 2811 2812 chan->ctrl_offset = XILINX_DMA_MM2S_CTRL_OFFSET; 2813 if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { 2814 chan->desc_offset = XILINX_VDMA_MM2S_DESC_OFFSET; 2815 chan->config.park = 1; 2816 2817 if (xdev->flush_on_fsync == XILINX_DMA_FLUSH_BOTH || 2818 xdev->flush_on_fsync == XILINX_DMA_FLUSH_MM2S) 2819 chan->flush_on_fsync = true; 2820 } 2821 } else if (of_device_is_compatible(node, 2822 "xlnx,axi-vdma-s2mm-channel") || 2823 of_device_is_compatible(node, 2824 "xlnx,axi-dma-s2mm-channel")) { 2825 chan->direction = DMA_DEV_TO_MEM; 2826 chan->id = xdev->s2mm_chan_id++; 2827 chan->tdest = chan->id - xdev->dma_config->max_channels / 2; 2828 chan->has_vflip = of_property_read_bool(node, 2829 "xlnx,enable-vert-flip"); 2830 if (chan->has_vflip) { 2831 chan->config.vflip_en = dma_read(chan, 2832 XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP) & 2833 XILINX_VDMA_ENABLE_VERTICAL_FLIP; 2834 } 2835 2836 if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) 2837 chan->ctrl_offset = XILINX_MCDMA_S2MM_CTRL_OFFSET; 2838 else 2839 chan->ctrl_offset = XILINX_DMA_S2MM_CTRL_OFFSET; 2840 2841 if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { 2842 chan->desc_offset = XILINX_VDMA_S2MM_DESC_OFFSET; 2843 chan->config.park = 1; 2844 2845 if (xdev->flush_on_fsync == XILINX_DMA_FLUSH_BOTH || 2846 xdev->flush_on_fsync == XILINX_DMA_FLUSH_S2MM) 2847 chan->flush_on_fsync = true; 2848 } 2849 } else { 2850 dev_err(xdev->dev, "Invalid channel compatible node\n"); 2851 return -EINVAL; 2852 } 2853 2854 /* Request the interrupt */ 2855 chan->irq = irq_of_parse_and_map(node, chan->tdest); 2856 err = request_irq(chan->irq, xdev->dma_config->irq_handler, 2857 IRQF_SHARED, "xilinx-dma-controller", chan); 2858 if (err) { 2859 dev_err(xdev->dev, "unable to request IRQ %d\n", chan->irq); 2860 return err; 2861 } 2862 2863 if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { 2864 chan->start_transfer = xilinx_dma_start_transfer; 2865 chan->stop_transfer = xilinx_dma_stop_transfer; 2866 } else if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) { 2867 chan->start_transfer = xilinx_mcdma_start_transfer; 2868 chan->stop_transfer = xilinx_dma_stop_transfer; 2869 } else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { 2870 chan->start_transfer = xilinx_cdma_start_transfer; 2871 chan->stop_transfer = xilinx_cdma_stop_transfer; 2872 } else { 2873 chan->start_transfer = xilinx_vdma_start_transfer; 2874 chan->stop_transfer = xilinx_dma_stop_transfer; 2875 } 2876 2877 /* check if SG is enabled (only for AXIDMA, AXIMCDMA, and CDMA) */ 2878 if (xdev->dma_config->dmatype != XDMA_TYPE_VDMA) { 2879 if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA || 2880 dma_ctrl_read(chan, XILINX_DMA_REG_DMASR) & 2881 XILINX_DMA_DMASR_SG_MASK) 2882 chan->has_sg = true; 2883 dev_dbg(chan->dev, "ch %d: SG %s\n", chan->id, 2884 chan->has_sg ? "enabled" : "disabled"); 2885 } 2886 2887 /* Initialize the tasklet */ 2888 tasklet_setup(&chan->tasklet, xilinx_dma_do_tasklet); 2889 2890 /* 2891 * Initialize the DMA channel and add it to the DMA engine channels 2892 * list. 2893 */ 2894 chan->common.device = &xdev->common; 2895 2896 list_add_tail(&chan->common.device_node, &xdev->common.channels); 2897 xdev->chan[chan->id] = chan; 2898 2899 /* Reset the channel */ 2900 err = xilinx_dma_chan_reset(chan); 2901 if (err < 0) { 2902 dev_err(xdev->dev, "Reset channel failed\n"); 2903 return err; 2904 } 2905 2906 return 0; 2907 } 2908 2909 /** 2910 * xilinx_dma_child_probe - Per child node probe 2911 * It get number of dma-channels per child node from 2912 * device-tree and initializes all the channels. 2913 * 2914 * @xdev: Driver specific device structure 2915 * @node: Device node 2916 * 2917 * Return: 0 always. 2918 */ 2919 static int xilinx_dma_child_probe(struct xilinx_dma_device *xdev, 2920 struct device_node *node) 2921 { 2922 int ret, i; 2923 u32 nr_channels = 1; 2924 2925 ret = of_property_read_u32(node, "dma-channels", &nr_channels); 2926 if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA && ret < 0) 2927 dev_warn(xdev->dev, "missing dma-channels property\n"); 2928 2929 for (i = 0; i < nr_channels; i++) 2930 xilinx_dma_chan_probe(xdev, node); 2931 2932 return 0; 2933 } 2934 2935 /** 2936 * of_dma_xilinx_xlate - Translation function 2937 * @dma_spec: Pointer to DMA specifier as found in the device tree 2938 * @ofdma: Pointer to DMA controller data 2939 * 2940 * Return: DMA channel pointer on success and NULL on error 2941 */ 2942 static struct dma_chan *of_dma_xilinx_xlate(struct of_phandle_args *dma_spec, 2943 struct of_dma *ofdma) 2944 { 2945 struct xilinx_dma_device *xdev = ofdma->of_dma_data; 2946 int chan_id = dma_spec->args[0]; 2947 2948 if (chan_id >= xdev->dma_config->max_channels || !xdev->chan[chan_id]) 2949 return NULL; 2950 2951 return dma_get_slave_channel(&xdev->chan[chan_id]->common); 2952 } 2953 2954 static const struct xilinx_dma_config axidma_config = { 2955 .dmatype = XDMA_TYPE_AXIDMA, 2956 .clk_init = axidma_clk_init, 2957 .irq_handler = xilinx_dma_irq_handler, 2958 .max_channels = XILINX_DMA_MAX_CHANS_PER_DEVICE, 2959 }; 2960 2961 static const struct xilinx_dma_config aximcdma_config = { 2962 .dmatype = XDMA_TYPE_AXIMCDMA, 2963 .clk_init = axidma_clk_init, 2964 .irq_handler = xilinx_mcdma_irq_handler, 2965 .max_channels = XILINX_MCDMA_MAX_CHANS_PER_DEVICE, 2966 }; 2967 static const struct xilinx_dma_config axicdma_config = { 2968 .dmatype = XDMA_TYPE_CDMA, 2969 .clk_init = axicdma_clk_init, 2970 .irq_handler = xilinx_dma_irq_handler, 2971 .max_channels = XILINX_CDMA_MAX_CHANS_PER_DEVICE, 2972 }; 2973 2974 static const struct xilinx_dma_config axivdma_config = { 2975 .dmatype = XDMA_TYPE_VDMA, 2976 .clk_init = axivdma_clk_init, 2977 .irq_handler = xilinx_dma_irq_handler, 2978 .max_channels = XILINX_DMA_MAX_CHANS_PER_DEVICE, 2979 }; 2980 2981 static const struct of_device_id xilinx_dma_of_ids[] = { 2982 { .compatible = "xlnx,axi-dma-1.00.a", .data = &axidma_config }, 2983 { .compatible = "xlnx,axi-cdma-1.00.a", .data = &axicdma_config }, 2984 { .compatible = "xlnx,axi-vdma-1.00.a", .data = &axivdma_config }, 2985 { .compatible = "xlnx,axi-mcdma-1.00.a", .data = &aximcdma_config }, 2986 {} 2987 }; 2988 MODULE_DEVICE_TABLE(of, xilinx_dma_of_ids); 2989 2990 /** 2991 * xilinx_dma_probe - Driver probe function 2992 * @pdev: Pointer to the platform_device structure 2993 * 2994 * Return: '0' on success and failure value on error 2995 */ 2996 static int xilinx_dma_probe(struct platform_device *pdev) 2997 { 2998 int (*clk_init)(struct platform_device *, struct clk **, struct clk **, 2999 struct clk **, struct clk **, struct clk **) 3000 = axivdma_clk_init; 3001 struct device_node *node = pdev->dev.of_node; 3002 struct xilinx_dma_device *xdev; 3003 struct device_node *child, *np = pdev->dev.of_node; 3004 u32 num_frames, addr_width, len_width; 3005 int i, err; 3006 3007 /* Allocate and initialize the DMA engine structure */ 3008 xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL); 3009 if (!xdev) 3010 return -ENOMEM; 3011 3012 xdev->dev = &pdev->dev; 3013 if (np) { 3014 const struct of_device_id *match; 3015 3016 match = of_match_node(xilinx_dma_of_ids, np); 3017 if (match && match->data) { 3018 xdev->dma_config = match->data; 3019 clk_init = xdev->dma_config->clk_init; 3020 } 3021 } 3022 3023 err = clk_init(pdev, &xdev->axi_clk, &xdev->tx_clk, &xdev->txs_clk, 3024 &xdev->rx_clk, &xdev->rxs_clk); 3025 if (err) 3026 return err; 3027 3028 /* Request and map I/O memory */ 3029 xdev->regs = devm_platform_ioremap_resource(pdev, 0); 3030 if (IS_ERR(xdev->regs)) 3031 return PTR_ERR(xdev->regs); 3032 3033 /* Retrieve the DMA engine properties from the device tree */ 3034 xdev->max_buffer_len = GENMASK(XILINX_DMA_MAX_TRANS_LEN_MAX - 1, 0); 3035 xdev->s2mm_chan_id = xdev->dma_config->max_channels / 2; 3036 3037 if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA || 3038 xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) { 3039 if (!of_property_read_u32(node, "xlnx,sg-length-width", 3040 &len_width)) { 3041 if (len_width < XILINX_DMA_MAX_TRANS_LEN_MIN || 3042 len_width > XILINX_DMA_V2_MAX_TRANS_LEN_MAX) { 3043 dev_warn(xdev->dev, 3044 "invalid xlnx,sg-length-width property value. Using default width\n"); 3045 } else { 3046 if (len_width > XILINX_DMA_MAX_TRANS_LEN_MAX) 3047 dev_warn(xdev->dev, "Please ensure that IP supports buffer length > 23 bits\n"); 3048 xdev->max_buffer_len = 3049 GENMASK(len_width - 1, 0); 3050 } 3051 } 3052 } 3053 3054 if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { 3055 err = of_property_read_u32(node, "xlnx,num-fstores", 3056 &num_frames); 3057 if (err < 0) { 3058 dev_err(xdev->dev, 3059 "missing xlnx,num-fstores property\n"); 3060 return err; 3061 } 3062 3063 err = of_property_read_u32(node, "xlnx,flush-fsync", 3064 &xdev->flush_on_fsync); 3065 if (err < 0) 3066 dev_warn(xdev->dev, 3067 "missing xlnx,flush-fsync property\n"); 3068 } 3069 3070 err = of_property_read_u32(node, "xlnx,addrwidth", &addr_width); 3071 if (err < 0) 3072 dev_warn(xdev->dev, "missing xlnx,addrwidth property\n"); 3073 3074 if (addr_width > 32) 3075 xdev->ext_addr = true; 3076 else 3077 xdev->ext_addr = false; 3078 3079 /* Set the dma mask bits */ 3080 dma_set_mask(xdev->dev, DMA_BIT_MASK(addr_width)); 3081 3082 /* Initialize the DMA engine */ 3083 xdev->common.dev = &pdev->dev; 3084 3085 INIT_LIST_HEAD(&xdev->common.channels); 3086 if (!(xdev->dma_config->dmatype == XDMA_TYPE_CDMA)) { 3087 dma_cap_set(DMA_SLAVE, xdev->common.cap_mask); 3088 dma_cap_set(DMA_PRIVATE, xdev->common.cap_mask); 3089 } 3090 3091 xdev->common.device_alloc_chan_resources = 3092 xilinx_dma_alloc_chan_resources; 3093 xdev->common.device_free_chan_resources = 3094 xilinx_dma_free_chan_resources; 3095 xdev->common.device_terminate_all = xilinx_dma_terminate_all; 3096 xdev->common.device_synchronize = xilinx_dma_synchronize; 3097 xdev->common.device_tx_status = xilinx_dma_tx_status; 3098 xdev->common.device_issue_pending = xilinx_dma_issue_pending; 3099 if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { 3100 dma_cap_set(DMA_CYCLIC, xdev->common.cap_mask); 3101 xdev->common.device_prep_slave_sg = xilinx_dma_prep_slave_sg; 3102 xdev->common.device_prep_dma_cyclic = 3103 xilinx_dma_prep_dma_cyclic; 3104 /* Residue calculation is supported by only AXI DMA and CDMA */ 3105 xdev->common.residue_granularity = 3106 DMA_RESIDUE_GRANULARITY_SEGMENT; 3107 } else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { 3108 dma_cap_set(DMA_MEMCPY, xdev->common.cap_mask); 3109 xdev->common.device_prep_dma_memcpy = xilinx_cdma_prep_memcpy; 3110 /* Residue calculation is supported by only AXI DMA and CDMA */ 3111 xdev->common.residue_granularity = 3112 DMA_RESIDUE_GRANULARITY_SEGMENT; 3113 } else if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) { 3114 xdev->common.device_prep_slave_sg = xilinx_mcdma_prep_slave_sg; 3115 } else { 3116 xdev->common.device_prep_interleaved_dma = 3117 xilinx_vdma_dma_prep_interleaved; 3118 } 3119 3120 platform_set_drvdata(pdev, xdev); 3121 3122 /* Initialize the channels */ 3123 for_each_child_of_node(node, child) { 3124 err = xilinx_dma_child_probe(xdev, child); 3125 if (err < 0) 3126 goto disable_clks; 3127 } 3128 3129 if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { 3130 for (i = 0; i < xdev->dma_config->max_channels; i++) 3131 if (xdev->chan[i]) 3132 xdev->chan[i]->num_frms = num_frames; 3133 } 3134 3135 /* Register the DMA engine with the core */ 3136 err = dma_async_device_register(&xdev->common); 3137 if (err) { 3138 dev_err(xdev->dev, "failed to register the dma device\n"); 3139 goto error; 3140 } 3141 3142 err = of_dma_controller_register(node, of_dma_xilinx_xlate, 3143 xdev); 3144 if (err < 0) { 3145 dev_err(&pdev->dev, "Unable to register DMA to DT\n"); 3146 dma_async_device_unregister(&xdev->common); 3147 goto error; 3148 } 3149 3150 if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) 3151 dev_info(&pdev->dev, "Xilinx AXI DMA Engine Driver Probed!!\n"); 3152 else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) 3153 dev_info(&pdev->dev, "Xilinx AXI CDMA Engine Driver Probed!!\n"); 3154 else if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) 3155 dev_info(&pdev->dev, "Xilinx AXI MCDMA Engine Driver Probed!!\n"); 3156 else 3157 dev_info(&pdev->dev, "Xilinx AXI VDMA Engine Driver Probed!!\n"); 3158 3159 return 0; 3160 3161 disable_clks: 3162 xdma_disable_allclks(xdev); 3163 error: 3164 for (i = 0; i < xdev->dma_config->max_channels; i++) 3165 if (xdev->chan[i]) 3166 xilinx_dma_chan_remove(xdev->chan[i]); 3167 3168 return err; 3169 } 3170 3171 /** 3172 * xilinx_dma_remove - Driver remove function 3173 * @pdev: Pointer to the platform_device structure 3174 * 3175 * Return: Always '0' 3176 */ 3177 static int xilinx_dma_remove(struct platform_device *pdev) 3178 { 3179 struct xilinx_dma_device *xdev = platform_get_drvdata(pdev); 3180 int i; 3181 3182 of_dma_controller_free(pdev->dev.of_node); 3183 3184 dma_async_device_unregister(&xdev->common); 3185 3186 for (i = 0; i < xdev->dma_config->max_channels; i++) 3187 if (xdev->chan[i]) 3188 xilinx_dma_chan_remove(xdev->chan[i]); 3189 3190 xdma_disable_allclks(xdev); 3191 3192 return 0; 3193 } 3194 3195 static struct platform_driver xilinx_vdma_driver = { 3196 .driver = { 3197 .name = "xilinx-vdma", 3198 .of_match_table = xilinx_dma_of_ids, 3199 }, 3200 .probe = xilinx_dma_probe, 3201 .remove = xilinx_dma_remove, 3202 }; 3203 3204 module_platform_driver(xilinx_vdma_driver); 3205 3206 MODULE_AUTHOR("Xilinx, Inc."); 3207 MODULE_DESCRIPTION("Xilinx VDMA driver"); 3208 MODULE_LICENSE("GPL v2"); 3209