1 /* 2 * Applied Micro X-Gene SoC DMA engine Driver 3 * 4 * Copyright (c) 2015, Applied Micro Circuits Corporation 5 * Authors: Rameshwar Prasad Sahu <rsahu@apm.com> 6 * Loc Ho <lho@apm.com> 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License as published by the 10 * Free Software Foundation; either version 2 of the License, or (at your 11 * option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program. If not, see <http://www.gnu.org/licenses/>. 20 * 21 * NOTE: PM support is currently not available. 22 */ 23 24 #include <linux/clk.h> 25 #include <linux/delay.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/dmaengine.h> 28 #include <linux/dmapool.h> 29 #include <linux/interrupt.h> 30 #include <linux/io.h> 31 #include <linux/module.h> 32 #include <linux/of_device.h> 33 34 #include "dmaengine.h" 35 36 /* X-Gene DMA ring csr registers and bit definations */ 37 #define XGENE_DMA_RING_CONFIG 0x04 38 #define XGENE_DMA_RING_ENABLE BIT(31) 39 #define XGENE_DMA_RING_ID 0x08 40 #define XGENE_DMA_RING_ID_SETUP(v) ((v) | BIT(31)) 41 #define XGENE_DMA_RING_ID_BUF 0x0C 42 #define XGENE_DMA_RING_ID_BUF_SETUP(v) (((v) << 9) | BIT(21)) 43 #define XGENE_DMA_RING_THRESLD0_SET1 0x30 44 #define XGENE_DMA_RING_THRESLD0_SET1_VAL 0X64 45 #define XGENE_DMA_RING_THRESLD1_SET1 0x34 46 #define XGENE_DMA_RING_THRESLD1_SET1_VAL 0xC8 47 #define XGENE_DMA_RING_HYSTERESIS 0x68 48 #define XGENE_DMA_RING_HYSTERESIS_VAL 0xFFFFFFFF 49 #define XGENE_DMA_RING_STATE 0x6C 50 #define XGENE_DMA_RING_STATE_WR_BASE 0x70 51 #define XGENE_DMA_RING_NE_INT_MODE 0x017C 52 #define XGENE_DMA_RING_NE_INT_MODE_SET(m, v) \ 53 ((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v))) 54 #define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v) \ 55 ((m) &= (~BIT(31 - (v)))) 56 #define XGENE_DMA_RING_CLKEN 0xC208 57 #define XGENE_DMA_RING_SRST 0xC200 58 #define XGENE_DMA_RING_MEM_RAM_SHUTDOWN 0xD070 59 #define XGENE_DMA_RING_BLK_MEM_RDY 0xD074 60 #define XGENE_DMA_RING_BLK_MEM_RDY_VAL 0xFFFFFFFF 61 #define XGENE_DMA_RING_DESC_CNT(v) (((v) & 0x0001FFFE) >> 1) 62 #define XGENE_DMA_RING_ID_GET(owner, num) (((owner) << 6) | (num)) 63 #define XGENE_DMA_RING_DST_ID(v) ((1 << 10) | (v)) 64 #define XGENE_DMA_RING_CMD_OFFSET 0x2C 65 #define XGENE_DMA_RING_CMD_BASE_OFFSET(v) ((v) << 6) 66 #define XGENE_DMA_RING_COHERENT_SET(m) \ 67 (((u32 *)(m))[2] |= BIT(4)) 68 #define XGENE_DMA_RING_ADDRL_SET(m, v) \ 69 (((u32 *)(m))[2] |= (((v) >> 8) << 5)) 70 #define XGENE_DMA_RING_ADDRH_SET(m, v) \ 71 (((u32 *)(m))[3] |= ((v) >> 35)) 72 #define XGENE_DMA_RING_ACCEPTLERR_SET(m) \ 73 (((u32 *)(m))[3] |= BIT(19)) 74 #define XGENE_DMA_RING_SIZE_SET(m, v) \ 75 (((u32 *)(m))[3] |= ((v) << 23)) 76 #define XGENE_DMA_RING_RECOMBBUF_SET(m) \ 77 (((u32 *)(m))[3] |= BIT(27)) 78 #define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m) \ 79 (((u32 *)(m))[3] |= (0x7 << 28)) 80 #define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m) \ 81 (((u32 *)(m))[4] |= 0x3) 82 #define XGENE_DMA_RING_SELTHRSH_SET(m) \ 83 (((u32 *)(m))[4] |= BIT(3)) 84 #define XGENE_DMA_RING_TYPE_SET(m, v) \ 85 (((u32 *)(m))[4] |= ((v) << 19)) 86 87 /* X-Gene DMA device csr registers and bit definitions */ 88 #define XGENE_DMA_IPBRR 0x0 89 #define XGENE_DMA_DEV_ID_RD(v) ((v) & 0x00000FFF) 90 #define XGENE_DMA_BUS_ID_RD(v) (((v) >> 12) & 3) 91 #define XGENE_DMA_REV_NO_RD(v) (((v) >> 14) & 3) 92 #define XGENE_DMA_GCR 0x10 93 #define XGENE_DMA_CH_SETUP(v) \ 94 ((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF) 95 #define XGENE_DMA_ENABLE(v) ((v) |= BIT(31)) 96 #define XGENE_DMA_DISABLE(v) ((v) &= ~BIT(31)) 97 #define XGENE_DMA_RAID6_CONT 0x14 98 #define XGENE_DMA_RAID6_MULTI_CTRL(v) ((v) << 24) 99 #define XGENE_DMA_INT 0x70 100 #define XGENE_DMA_INT_MASK 0x74 101 #define XGENE_DMA_INT_ALL_MASK 0xFFFFFFFF 102 #define XGENE_DMA_INT_ALL_UNMASK 0x0 103 #define XGENE_DMA_INT_MASK_SHIFT 0x14 104 #define XGENE_DMA_RING_INT0_MASK 0x90A0 105 #define XGENE_DMA_RING_INT1_MASK 0x90A8 106 #define XGENE_DMA_RING_INT2_MASK 0x90B0 107 #define XGENE_DMA_RING_INT3_MASK 0x90B8 108 #define XGENE_DMA_RING_INT4_MASK 0x90C0 109 #define XGENE_DMA_CFG_RING_WQ_ASSOC 0x90E0 110 #define XGENE_DMA_ASSOC_RING_MNGR1 0xFFFFFFFF 111 #define XGENE_DMA_MEM_RAM_SHUTDOWN 0xD070 112 #define XGENE_DMA_BLK_MEM_RDY 0xD074 113 #define XGENE_DMA_BLK_MEM_RDY_VAL 0xFFFFFFFF 114 115 /* X-Gene SoC EFUSE csr register and bit defination */ 116 #define XGENE_SOC_JTAG1_SHADOW 0x18 117 #define XGENE_DMA_PQ_DISABLE_MASK BIT(13) 118 119 /* X-Gene DMA Descriptor format */ 120 #define XGENE_DMA_DESC_NV_BIT BIT_ULL(50) 121 #define XGENE_DMA_DESC_IN_BIT BIT_ULL(55) 122 #define XGENE_DMA_DESC_C_BIT BIT_ULL(63) 123 #define XGENE_DMA_DESC_DR_BIT BIT_ULL(61) 124 #define XGENE_DMA_DESC_ELERR_POS 46 125 #define XGENE_DMA_DESC_RTYPE_POS 56 126 #define XGENE_DMA_DESC_LERR_POS 60 127 #define XGENE_DMA_DESC_FLYBY_POS 4 128 #define XGENE_DMA_DESC_BUFLEN_POS 48 129 #define XGENE_DMA_DESC_HOENQ_NUM_POS 48 130 131 #define XGENE_DMA_DESC_NV_SET(m) \ 132 (((u64 *)(m))[0] |= XGENE_DMA_DESC_NV_BIT) 133 #define XGENE_DMA_DESC_IN_SET(m) \ 134 (((u64 *)(m))[0] |= XGENE_DMA_DESC_IN_BIT) 135 #define XGENE_DMA_DESC_RTYPE_SET(m, v) \ 136 (((u64 *)(m))[0] |= ((u64)(v) << XGENE_DMA_DESC_RTYPE_POS)) 137 #define XGENE_DMA_DESC_BUFADDR_SET(m, v) \ 138 (((u64 *)(m))[0] |= (v)) 139 #define XGENE_DMA_DESC_BUFLEN_SET(m, v) \ 140 (((u64 *)(m))[0] |= ((u64)(v) << XGENE_DMA_DESC_BUFLEN_POS)) 141 #define XGENE_DMA_DESC_C_SET(m) \ 142 (((u64 *)(m))[1] |= XGENE_DMA_DESC_C_BIT) 143 #define XGENE_DMA_DESC_FLYBY_SET(m, v) \ 144 (((u64 *)(m))[2] |= ((v) << XGENE_DMA_DESC_FLYBY_POS)) 145 #define XGENE_DMA_DESC_MULTI_SET(m, v, i) \ 146 (((u64 *)(m))[2] |= ((u64)(v) << (((i) + 1) * 8))) 147 #define XGENE_DMA_DESC_DR_SET(m) \ 148 (((u64 *)(m))[2] |= XGENE_DMA_DESC_DR_BIT) 149 #define XGENE_DMA_DESC_DST_ADDR_SET(m, v) \ 150 (((u64 *)(m))[3] |= (v)) 151 #define XGENE_DMA_DESC_H0ENQ_NUM_SET(m, v) \ 152 (((u64 *)(m))[3] |= ((u64)(v) << XGENE_DMA_DESC_HOENQ_NUM_POS)) 153 #define XGENE_DMA_DESC_ELERR_RD(m) \ 154 (((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3) 155 #define XGENE_DMA_DESC_LERR_RD(m) \ 156 (((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7) 157 #define XGENE_DMA_DESC_STATUS(elerr, lerr) \ 158 (((elerr) << 4) | (lerr)) 159 160 /* X-Gene DMA descriptor empty s/w signature */ 161 #define XGENE_DMA_DESC_EMPTY_INDEX 0 162 #define XGENE_DMA_DESC_EMPTY_SIGNATURE ~0ULL 163 #define XGENE_DMA_DESC_SET_EMPTY(m) \ 164 (((u64 *)(m))[XGENE_DMA_DESC_EMPTY_INDEX] = \ 165 XGENE_DMA_DESC_EMPTY_SIGNATURE) 166 #define XGENE_DMA_DESC_IS_EMPTY(m) \ 167 (((u64 *)(m))[XGENE_DMA_DESC_EMPTY_INDEX] == \ 168 XGENE_DMA_DESC_EMPTY_SIGNATURE) 169 170 /* X-Gene DMA configurable parameters defines */ 171 #define XGENE_DMA_RING_NUM 512 172 #define XGENE_DMA_BUFNUM 0x0 173 #define XGENE_DMA_CPU_BUFNUM 0x18 174 #define XGENE_DMA_RING_OWNER_DMA 0x03 175 #define XGENE_DMA_RING_OWNER_CPU 0x0F 176 #define XGENE_DMA_RING_TYPE_REGULAR 0x01 177 #define XGENE_DMA_RING_WQ_DESC_SIZE 32 /* 32 Bytes */ 178 #define XGENE_DMA_RING_NUM_CONFIG 5 179 #define XGENE_DMA_MAX_CHANNEL 4 180 #define XGENE_DMA_XOR_CHANNEL 0 181 #define XGENE_DMA_PQ_CHANNEL 1 182 #define XGENE_DMA_MAX_BYTE_CNT 0x4000 /* 16 KB */ 183 #define XGENE_DMA_MAX_64B_DESC_BYTE_CNT 0x14000 /* 80 KB */ 184 #define XGENE_DMA_XOR_ALIGNMENT 6 /* 64 Bytes */ 185 #define XGENE_DMA_MAX_XOR_SRC 5 186 #define XGENE_DMA_16K_BUFFER_LEN_CODE 0x0 187 #define XGENE_DMA_INVALID_LEN_CODE 0x7800 188 189 /* X-Gene DMA descriptor error codes */ 190 #define ERR_DESC_AXI 0x01 191 #define ERR_BAD_DESC 0x02 192 #define ERR_READ_DATA_AXI 0x03 193 #define ERR_WRITE_DATA_AXI 0x04 194 #define ERR_FBP_TIMEOUT 0x05 195 #define ERR_ECC 0x06 196 #define ERR_DIFF_SIZE 0x08 197 #define ERR_SCT_GAT_LEN 0x09 198 #define ERR_CRC_ERR 0x11 199 #define ERR_CHKSUM 0x12 200 #define ERR_DIF 0x13 201 202 /* X-Gene DMA error interrupt codes */ 203 #define ERR_DIF_SIZE_INT 0x0 204 #define ERR_GS_ERR_INT 0x1 205 #define ERR_FPB_TIMEO_INT 0x2 206 #define ERR_WFIFO_OVF_INT 0x3 207 #define ERR_RFIFO_OVF_INT 0x4 208 #define ERR_WR_TIMEO_INT 0x5 209 #define ERR_RD_TIMEO_INT 0x6 210 #define ERR_WR_ERR_INT 0x7 211 #define ERR_RD_ERR_INT 0x8 212 #define ERR_BAD_DESC_INT 0x9 213 #define ERR_DESC_DST_INT 0xA 214 #define ERR_DESC_SRC_INT 0xB 215 216 /* X-Gene DMA flyby operation code */ 217 #define FLYBY_2SRC_XOR 0x8 218 #define FLYBY_3SRC_XOR 0x9 219 #define FLYBY_4SRC_XOR 0xA 220 #define FLYBY_5SRC_XOR 0xB 221 222 /* X-Gene DMA SW descriptor flags */ 223 #define XGENE_DMA_FLAG_64B_DESC BIT(0) 224 225 /* Define to dump X-Gene DMA descriptor */ 226 #define XGENE_DMA_DESC_DUMP(desc, m) \ 227 print_hex_dump(KERN_ERR, (m), \ 228 DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0) 229 230 #define to_dma_desc_sw(tx) \ 231 container_of(tx, struct xgene_dma_desc_sw, tx) 232 #define to_dma_chan(dchan) \ 233 container_of(dchan, struct xgene_dma_chan, dma_chan) 234 235 #define chan_dbg(chan, fmt, arg...) \ 236 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg) 237 #define chan_err(chan, fmt, arg...) \ 238 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg) 239 240 struct xgene_dma_desc_hw { 241 u64 m0; 242 u64 m1; 243 u64 m2; 244 u64 m3; 245 }; 246 247 enum xgene_dma_ring_cfgsize { 248 XGENE_DMA_RING_CFG_SIZE_512B, 249 XGENE_DMA_RING_CFG_SIZE_2KB, 250 XGENE_DMA_RING_CFG_SIZE_16KB, 251 XGENE_DMA_RING_CFG_SIZE_64KB, 252 XGENE_DMA_RING_CFG_SIZE_512KB, 253 XGENE_DMA_RING_CFG_SIZE_INVALID 254 }; 255 256 struct xgene_dma_ring { 257 struct xgene_dma *pdma; 258 u8 buf_num; 259 u16 id; 260 u16 num; 261 u16 head; 262 u16 owner; 263 u16 slots; 264 u16 dst_ring_num; 265 u32 size; 266 void __iomem *cmd; 267 void __iomem *cmd_base; 268 dma_addr_t desc_paddr; 269 u32 state[XGENE_DMA_RING_NUM_CONFIG]; 270 enum xgene_dma_ring_cfgsize cfgsize; 271 union { 272 void *desc_vaddr; 273 struct xgene_dma_desc_hw *desc_hw; 274 }; 275 }; 276 277 struct xgene_dma_desc_sw { 278 struct xgene_dma_desc_hw desc1; 279 struct xgene_dma_desc_hw desc2; 280 u32 flags; 281 struct list_head node; 282 struct list_head tx_list; 283 struct dma_async_tx_descriptor tx; 284 }; 285 286 /** 287 * struct xgene_dma_chan - internal representation of an X-Gene DMA channel 288 * @dma_chan: dmaengine channel object member 289 * @pdma: X-Gene DMA device structure reference 290 * @dev: struct device reference for dma mapping api 291 * @id: raw id of this channel 292 * @rx_irq: channel IRQ 293 * @name: name of X-Gene DMA channel 294 * @lock: serializes enqueue/dequeue operations to the descriptor pool 295 * @pending: number of transaction request pushed to DMA controller for 296 * execution, but still waiting for completion, 297 * @max_outstanding: max number of outstanding request we can push to channel 298 * @ld_pending: descriptors which are queued to run, but have not yet been 299 * submitted to the hardware for execution 300 * @ld_running: descriptors which are currently being executing by the hardware 301 * @ld_completed: descriptors which have finished execution by the hardware. 302 * These descriptors have already had their cleanup actions run. They 303 * are waiting for the ACK bit to be set by the async tx API. 304 * @desc_pool: descriptor pool for DMA operations 305 * @tasklet: bottom half where all completed descriptors cleans 306 * @tx_ring: transmit ring descriptor that we use to prepare actual 307 * descriptors for further executions 308 * @rx_ring: receive ring descriptor that we use to get completed DMA 309 * descriptors during cleanup time 310 */ 311 struct xgene_dma_chan { 312 struct dma_chan dma_chan; 313 struct xgene_dma *pdma; 314 struct device *dev; 315 int id; 316 int rx_irq; 317 char name[10]; 318 spinlock_t lock; 319 int pending; 320 int max_outstanding; 321 struct list_head ld_pending; 322 struct list_head ld_running; 323 struct list_head ld_completed; 324 struct dma_pool *desc_pool; 325 struct tasklet_struct tasklet; 326 struct xgene_dma_ring tx_ring; 327 struct xgene_dma_ring rx_ring; 328 }; 329 330 /** 331 * struct xgene_dma - internal representation of an X-Gene DMA device 332 * @err_irq: DMA error irq number 333 * @ring_num: start id number for DMA ring 334 * @csr_dma: base for DMA register access 335 * @csr_ring: base for DMA ring register access 336 * @csr_ring_cmd: base for DMA ring command register access 337 * @csr_efuse: base for efuse register access 338 * @dma_dev: embedded struct dma_device 339 * @chan: reference to X-Gene DMA channels 340 */ 341 struct xgene_dma { 342 struct device *dev; 343 struct clk *clk; 344 int err_irq; 345 int ring_num; 346 void __iomem *csr_dma; 347 void __iomem *csr_ring; 348 void __iomem *csr_ring_cmd; 349 void __iomem *csr_efuse; 350 struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL]; 351 struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL]; 352 }; 353 354 static const char * const xgene_dma_desc_err[] = { 355 [ERR_DESC_AXI] = "AXI error when reading src/dst link list", 356 [ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc", 357 [ERR_READ_DATA_AXI] = "AXI error when reading data", 358 [ERR_WRITE_DATA_AXI] = "AXI error when writing data", 359 [ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch", 360 [ERR_ECC] = "ECC double bit error", 361 [ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result", 362 [ERR_SCT_GAT_LEN] = "Gather and scatter data length not same", 363 [ERR_CRC_ERR] = "CRC error", 364 [ERR_CHKSUM] = "Checksum error", 365 [ERR_DIF] = "DIF error", 366 }; 367 368 static const char * const xgene_dma_err[] = { 369 [ERR_DIF_SIZE_INT] = "DIF size error", 370 [ERR_GS_ERR_INT] = "Gather scatter not same size error", 371 [ERR_FPB_TIMEO_INT] = "Free pool time out error", 372 [ERR_WFIFO_OVF_INT] = "Write FIFO over flow error", 373 [ERR_RFIFO_OVF_INT] = "Read FIFO over flow error", 374 [ERR_WR_TIMEO_INT] = "Write time out error", 375 [ERR_RD_TIMEO_INT] = "Read time out error", 376 [ERR_WR_ERR_INT] = "HBF bus write error", 377 [ERR_RD_ERR_INT] = "HBF bus read error", 378 [ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error", 379 [ERR_DESC_DST_INT] = "HFB reading dst link address error", 380 [ERR_DESC_SRC_INT] = "HFB reading src link address error", 381 }; 382 383 static bool is_pq_enabled(struct xgene_dma *pdma) 384 { 385 u32 val; 386 387 val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW); 388 return !(val & XGENE_DMA_PQ_DISABLE_MASK); 389 } 390 391 static void xgene_dma_cpu_to_le64(u64 *desc, int count) 392 { 393 int i; 394 395 for (i = 0; i < count; i++) 396 desc[i] = cpu_to_le64(desc[i]); 397 } 398 399 static u16 xgene_dma_encode_len(u32 len) 400 { 401 return (len < XGENE_DMA_MAX_BYTE_CNT) ? 402 len : XGENE_DMA_16K_BUFFER_LEN_CODE; 403 } 404 405 static u8 xgene_dma_encode_xor_flyby(u32 src_cnt) 406 { 407 static u8 flyby_type[] = { 408 FLYBY_2SRC_XOR, /* Dummy */ 409 FLYBY_2SRC_XOR, /* Dummy */ 410 FLYBY_2SRC_XOR, 411 FLYBY_3SRC_XOR, 412 FLYBY_4SRC_XOR, 413 FLYBY_5SRC_XOR 414 }; 415 416 return flyby_type[src_cnt]; 417 } 418 419 static u32 xgene_dma_ring_desc_cnt(struct xgene_dma_ring *ring) 420 { 421 u32 __iomem *cmd_base = ring->cmd_base; 422 u32 ring_state = ioread32(&cmd_base[1]); 423 424 return XGENE_DMA_RING_DESC_CNT(ring_state); 425 } 426 427 static void xgene_dma_set_src_buffer(void *ext8, size_t *len, 428 dma_addr_t *paddr) 429 { 430 size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ? 431 *len : XGENE_DMA_MAX_BYTE_CNT; 432 433 XGENE_DMA_DESC_BUFADDR_SET(ext8, *paddr); 434 XGENE_DMA_DESC_BUFLEN_SET(ext8, xgene_dma_encode_len(nbytes)); 435 *len -= nbytes; 436 *paddr += nbytes; 437 } 438 439 static void xgene_dma_invalidate_buffer(void *ext8) 440 { 441 XGENE_DMA_DESC_BUFLEN_SET(ext8, XGENE_DMA_INVALID_LEN_CODE); 442 } 443 444 static void *xgene_dma_lookup_ext8(u64 *desc, int idx) 445 { 446 return (idx % 2) ? (desc + idx - 1) : (desc + idx + 1); 447 } 448 449 static void xgene_dma_init_desc(void *desc, u16 dst_ring_num) 450 { 451 XGENE_DMA_DESC_C_SET(desc); /* Coherent IO */ 452 XGENE_DMA_DESC_IN_SET(desc); 453 XGENE_DMA_DESC_H0ENQ_NUM_SET(desc, dst_ring_num); 454 XGENE_DMA_DESC_RTYPE_SET(desc, XGENE_DMA_RING_OWNER_DMA); 455 } 456 457 static void xgene_dma_prep_cpy_desc(struct xgene_dma_chan *chan, 458 struct xgene_dma_desc_sw *desc_sw, 459 dma_addr_t dst, dma_addr_t src, 460 size_t len) 461 { 462 void *desc1, *desc2; 463 int i; 464 465 /* Get 1st descriptor */ 466 desc1 = &desc_sw->desc1; 467 xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num); 468 469 /* Set destination address */ 470 XGENE_DMA_DESC_DR_SET(desc1); 471 XGENE_DMA_DESC_DST_ADDR_SET(desc1, dst); 472 473 /* Set 1st source address */ 474 xgene_dma_set_src_buffer(desc1 + 8, &len, &src); 475 476 if (len <= 0) { 477 desc2 = NULL; 478 goto skip_additional_src; 479 } 480 481 /* 482 * We need to split this source buffer, 483 * and need to use 2nd descriptor 484 */ 485 desc2 = &desc_sw->desc2; 486 XGENE_DMA_DESC_NV_SET(desc1); 487 488 /* Set 2nd to 5th source address */ 489 for (i = 0; i < 4 && len; i++) 490 xgene_dma_set_src_buffer(xgene_dma_lookup_ext8(desc2, i), 491 &len, &src); 492 493 /* Invalidate unused source address field */ 494 for (; i < 4; i++) 495 xgene_dma_invalidate_buffer(xgene_dma_lookup_ext8(desc2, i)); 496 497 /* Updated flag that we have prepared 64B descriptor */ 498 desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC; 499 500 skip_additional_src: 501 /* Hardware stores descriptor in little endian format */ 502 xgene_dma_cpu_to_le64(desc1, 4); 503 if (desc2) 504 xgene_dma_cpu_to_le64(desc2, 4); 505 } 506 507 static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan, 508 struct xgene_dma_desc_sw *desc_sw, 509 dma_addr_t *dst, dma_addr_t *src, 510 u32 src_cnt, size_t *nbytes, 511 const u8 *scf) 512 { 513 void *desc1, *desc2; 514 size_t len = *nbytes; 515 int i; 516 517 desc1 = &desc_sw->desc1; 518 desc2 = &desc_sw->desc2; 519 520 /* Initialize DMA descriptor */ 521 xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num); 522 523 /* Set destination address */ 524 XGENE_DMA_DESC_DR_SET(desc1); 525 XGENE_DMA_DESC_DST_ADDR_SET(desc1, *dst); 526 527 /* We have multiple source addresses, so need to set NV bit*/ 528 XGENE_DMA_DESC_NV_SET(desc1); 529 530 /* Set flyby opcode */ 531 XGENE_DMA_DESC_FLYBY_SET(desc1, xgene_dma_encode_xor_flyby(src_cnt)); 532 533 /* Set 1st to 5th source addresses */ 534 for (i = 0; i < src_cnt; i++) { 535 len = *nbytes; 536 xgene_dma_set_src_buffer((i == 0) ? (desc1 + 8) : 537 xgene_dma_lookup_ext8(desc2, i - 1), 538 &len, &src[i]); 539 XGENE_DMA_DESC_MULTI_SET(desc1, scf[i], i); 540 } 541 542 /* Hardware stores descriptor in little endian format */ 543 xgene_dma_cpu_to_le64(desc1, 4); 544 xgene_dma_cpu_to_le64(desc2, 4); 545 546 /* Update meta data */ 547 *nbytes = len; 548 *dst += XGENE_DMA_MAX_BYTE_CNT; 549 550 /* We need always 64B descriptor to perform xor or pq operations */ 551 desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC; 552 } 553 554 static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx) 555 { 556 struct xgene_dma_desc_sw *desc; 557 struct xgene_dma_chan *chan; 558 dma_cookie_t cookie; 559 560 if (unlikely(!tx)) 561 return -EINVAL; 562 563 chan = to_dma_chan(tx->chan); 564 desc = to_dma_desc_sw(tx); 565 566 spin_lock_bh(&chan->lock); 567 568 cookie = dma_cookie_assign(tx); 569 570 /* Add this transaction list onto the tail of the pending queue */ 571 list_splice_tail_init(&desc->tx_list, &chan->ld_pending); 572 573 spin_unlock_bh(&chan->lock); 574 575 return cookie; 576 } 577 578 static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan, 579 struct xgene_dma_desc_sw *desc) 580 { 581 list_del(&desc->node); 582 chan_dbg(chan, "LD %p free\n", desc); 583 dma_pool_free(chan->desc_pool, desc, desc->tx.phys); 584 } 585 586 static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor( 587 struct xgene_dma_chan *chan) 588 { 589 struct xgene_dma_desc_sw *desc; 590 dma_addr_t phys; 591 592 desc = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &phys); 593 if (!desc) { 594 chan_err(chan, "Failed to allocate LDs\n"); 595 return NULL; 596 } 597 598 memset(desc, 0, sizeof(*desc)); 599 600 INIT_LIST_HEAD(&desc->tx_list); 601 desc->tx.phys = phys; 602 desc->tx.tx_submit = xgene_dma_tx_submit; 603 dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan); 604 605 chan_dbg(chan, "LD %p allocated\n", desc); 606 607 return desc; 608 } 609 610 /** 611 * xgene_dma_clean_completed_descriptor - free all descriptors which 612 * has been completed and acked 613 * @chan: X-Gene DMA channel 614 * 615 * This function is used on all completed and acked descriptors. 616 */ 617 static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan) 618 { 619 struct xgene_dma_desc_sw *desc, *_desc; 620 621 /* Run the callback for each descriptor, in order */ 622 list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) { 623 if (async_tx_test_ack(&desc->tx)) 624 xgene_dma_clean_descriptor(chan, desc); 625 } 626 } 627 628 /** 629 * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor 630 * @chan: X-Gene DMA channel 631 * @desc: descriptor to cleanup and free 632 * 633 * This function is used on a descriptor which has been executed by the DMA 634 * controller. It will run any callbacks, submit any dependencies. 635 */ 636 static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan, 637 struct xgene_dma_desc_sw *desc) 638 { 639 struct dma_async_tx_descriptor *tx = &desc->tx; 640 641 /* 642 * If this is not the last transaction in the group, 643 * then no need to complete cookie and run any callback as 644 * this is not the tx_descriptor which had been sent to caller 645 * of this DMA request 646 */ 647 648 if (tx->cookie == 0) 649 return; 650 651 dma_cookie_complete(tx); 652 653 /* Run the link descriptor callback function */ 654 if (tx->callback) 655 tx->callback(tx->callback_param); 656 657 dma_descriptor_unmap(tx); 658 659 /* Run any dependencies */ 660 dma_run_dependencies(tx); 661 } 662 663 /** 664 * xgene_dma_clean_running_descriptor - move the completed descriptor from 665 * ld_running to ld_completed 666 * @chan: X-Gene DMA channel 667 * @desc: the descriptor which is completed 668 * 669 * Free the descriptor directly if acked by async_tx api, 670 * else move it to queue ld_completed. 671 */ 672 static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan, 673 struct xgene_dma_desc_sw *desc) 674 { 675 /* Remove from the list of running transactions */ 676 list_del(&desc->node); 677 678 /* 679 * the client is allowed to attach dependent operations 680 * until 'ack' is set 681 */ 682 if (!async_tx_test_ack(&desc->tx)) { 683 /* 684 * Move this descriptor to the list of descriptors which is 685 * completed, but still awaiting the 'ack' bit to be set. 686 */ 687 list_add_tail(&desc->node, &chan->ld_completed); 688 return; 689 } 690 691 chan_dbg(chan, "LD %p free\n", desc); 692 dma_pool_free(chan->desc_pool, desc, desc->tx.phys); 693 } 694 695 static int xgene_chan_xfer_request(struct xgene_dma_ring *ring, 696 struct xgene_dma_desc_sw *desc_sw) 697 { 698 struct xgene_dma_desc_hw *desc_hw; 699 700 /* Check if can push more descriptor to hw for execution */ 701 if (xgene_dma_ring_desc_cnt(ring) > (ring->slots - 2)) 702 return -EBUSY; 703 704 /* Get hw descriptor from DMA tx ring */ 705 desc_hw = &ring->desc_hw[ring->head]; 706 707 /* 708 * Increment the head count to point next 709 * descriptor for next time 710 */ 711 if (++ring->head == ring->slots) 712 ring->head = 0; 713 714 /* Copy prepared sw descriptor data to hw descriptor */ 715 memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw)); 716 717 /* 718 * Check if we have prepared 64B descriptor, 719 * in this case we need one more hw descriptor 720 */ 721 if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) { 722 desc_hw = &ring->desc_hw[ring->head]; 723 724 if (++ring->head == ring->slots) 725 ring->head = 0; 726 727 memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw)); 728 } 729 730 /* Notify the hw that we have descriptor ready for execution */ 731 iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ? 732 2 : 1, ring->cmd); 733 734 return 0; 735 } 736 737 /** 738 * xgene_chan_xfer_ld_pending - push any pending transactions to hw 739 * @chan : X-Gene DMA channel 740 * 741 * LOCKING: must hold chan->desc_lock 742 */ 743 static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan) 744 { 745 struct xgene_dma_desc_sw *desc_sw, *_desc_sw; 746 int ret; 747 748 /* 749 * If the list of pending descriptors is empty, then we 750 * don't need to do any work at all 751 */ 752 if (list_empty(&chan->ld_pending)) { 753 chan_dbg(chan, "No pending LDs\n"); 754 return; 755 } 756 757 /* 758 * Move elements from the queue of pending transactions onto the list 759 * of running transactions and push it to hw for further executions 760 */ 761 list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) { 762 /* 763 * Check if have pushed max number of transactions to hw 764 * as capable, so let's stop here and will push remaining 765 * elements from pening ld queue after completing some 766 * descriptors that we have already pushed 767 */ 768 if (chan->pending >= chan->max_outstanding) 769 return; 770 771 ret = xgene_chan_xfer_request(&chan->tx_ring, desc_sw); 772 if (ret) 773 return; 774 775 /* 776 * Delete this element from ld pending queue and append it to 777 * ld running queue 778 */ 779 list_move_tail(&desc_sw->node, &chan->ld_running); 780 781 /* Increment the pending transaction count */ 782 chan->pending++; 783 } 784 } 785 786 /** 787 * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed 788 * and move them to ld_completed to free until flag 'ack' is set 789 * @chan: X-Gene DMA channel 790 * 791 * This function is used on descriptors which have been executed by the DMA 792 * controller. It will run any callbacks, submit any dependencies, then 793 * free these descriptors if flag 'ack' is set. 794 */ 795 static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan) 796 { 797 struct xgene_dma_ring *ring = &chan->rx_ring; 798 struct xgene_dma_desc_sw *desc_sw, *_desc_sw; 799 struct xgene_dma_desc_hw *desc_hw; 800 u8 status; 801 802 /* Clean already completed and acked descriptors */ 803 xgene_dma_clean_completed_descriptor(chan); 804 805 /* Run the callback for each descriptor, in order */ 806 list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) { 807 /* Get subsequent hw descriptor from DMA rx ring */ 808 desc_hw = &ring->desc_hw[ring->head]; 809 810 /* Check if this descriptor has been completed */ 811 if (unlikely(XGENE_DMA_DESC_IS_EMPTY(desc_hw))) 812 break; 813 814 if (++ring->head == ring->slots) 815 ring->head = 0; 816 817 /* Check if we have any error with DMA transactions */ 818 status = XGENE_DMA_DESC_STATUS( 819 XGENE_DMA_DESC_ELERR_RD(le64_to_cpu( 820 desc_hw->m0)), 821 XGENE_DMA_DESC_LERR_RD(le64_to_cpu( 822 desc_hw->m0))); 823 if (status) { 824 /* Print the DMA error type */ 825 chan_err(chan, "%s\n", xgene_dma_desc_err[status]); 826 827 /* 828 * We have DMA transactions error here. Dump DMA Tx 829 * and Rx descriptors for this request */ 830 XGENE_DMA_DESC_DUMP(&desc_sw->desc1, 831 "X-Gene DMA TX DESC1: "); 832 833 if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) 834 XGENE_DMA_DESC_DUMP(&desc_sw->desc2, 835 "X-Gene DMA TX DESC2: "); 836 837 XGENE_DMA_DESC_DUMP(desc_hw, 838 "X-Gene DMA RX ERR DESC: "); 839 } 840 841 /* Notify the hw about this completed descriptor */ 842 iowrite32(-1, ring->cmd); 843 844 /* Mark this hw descriptor as processed */ 845 XGENE_DMA_DESC_SET_EMPTY(desc_hw); 846 847 xgene_dma_run_tx_complete_actions(chan, desc_sw); 848 849 xgene_dma_clean_running_descriptor(chan, desc_sw); 850 851 /* 852 * Decrement the pending transaction count 853 * as we have processed one 854 */ 855 chan->pending--; 856 } 857 858 /* 859 * Start any pending transactions automatically 860 * In the ideal case, we keep the DMA controller busy while we go 861 * ahead and free the descriptors below. 862 */ 863 xgene_chan_xfer_ld_pending(chan); 864 } 865 866 static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan) 867 { 868 struct xgene_dma_chan *chan = to_dma_chan(dchan); 869 870 /* Has this channel already been allocated? */ 871 if (chan->desc_pool) 872 return 1; 873 874 chan->desc_pool = dma_pool_create(chan->name, chan->dev, 875 sizeof(struct xgene_dma_desc_sw), 876 0, 0); 877 if (!chan->desc_pool) { 878 chan_err(chan, "Failed to allocate descriptor pool\n"); 879 return -ENOMEM; 880 } 881 882 chan_dbg(chan, "Allocate descripto pool\n"); 883 884 return 1; 885 } 886 887 /** 888 * xgene_dma_free_desc_list - Free all descriptors in a queue 889 * @chan: X-Gene DMA channel 890 * @list: the list to free 891 * 892 * LOCKING: must hold chan->desc_lock 893 */ 894 static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan, 895 struct list_head *list) 896 { 897 struct xgene_dma_desc_sw *desc, *_desc; 898 899 list_for_each_entry_safe(desc, _desc, list, node) 900 xgene_dma_clean_descriptor(chan, desc); 901 } 902 903 static void xgene_dma_free_tx_desc_list(struct xgene_dma_chan *chan, 904 struct list_head *list) 905 { 906 struct xgene_dma_desc_sw *desc, *_desc; 907 908 list_for_each_entry_safe(desc, _desc, list, node) 909 xgene_dma_clean_descriptor(chan, desc); 910 } 911 912 static void xgene_dma_free_chan_resources(struct dma_chan *dchan) 913 { 914 struct xgene_dma_chan *chan = to_dma_chan(dchan); 915 916 chan_dbg(chan, "Free all resources\n"); 917 918 if (!chan->desc_pool) 919 return; 920 921 spin_lock_bh(&chan->lock); 922 923 /* Process all running descriptor */ 924 xgene_dma_cleanup_descriptors(chan); 925 926 /* Clean all link descriptor queues */ 927 xgene_dma_free_desc_list(chan, &chan->ld_pending); 928 xgene_dma_free_desc_list(chan, &chan->ld_running); 929 xgene_dma_free_desc_list(chan, &chan->ld_completed); 930 931 spin_unlock_bh(&chan->lock); 932 933 /* Delete this channel DMA pool */ 934 dma_pool_destroy(chan->desc_pool); 935 chan->desc_pool = NULL; 936 } 937 938 static struct dma_async_tx_descriptor *xgene_dma_prep_memcpy( 939 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src, 940 size_t len, unsigned long flags) 941 { 942 struct xgene_dma_desc_sw *first = NULL, *new; 943 struct xgene_dma_chan *chan; 944 size_t copy; 945 946 if (unlikely(!dchan || !len)) 947 return NULL; 948 949 chan = to_dma_chan(dchan); 950 951 do { 952 /* Allocate the link descriptor from DMA pool */ 953 new = xgene_dma_alloc_descriptor(chan); 954 if (!new) 955 goto fail; 956 957 /* Create the largest transaction possible */ 958 copy = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT); 959 960 /* Prepare DMA descriptor */ 961 xgene_dma_prep_cpy_desc(chan, new, dst, src, copy); 962 963 if (!first) 964 first = new; 965 966 new->tx.cookie = 0; 967 async_tx_ack(&new->tx); 968 969 /* Update metadata */ 970 len -= copy; 971 dst += copy; 972 src += copy; 973 974 /* Insert the link descriptor to the LD ring */ 975 list_add_tail(&new->node, &first->tx_list); 976 } while (len); 977 978 new->tx.flags = flags; /* client is in control of this ack */ 979 new->tx.cookie = -EBUSY; 980 list_splice(&first->tx_list, &new->tx_list); 981 982 return &new->tx; 983 984 fail: 985 if (!first) 986 return NULL; 987 988 xgene_dma_free_tx_desc_list(chan, &first->tx_list); 989 return NULL; 990 } 991 992 static struct dma_async_tx_descriptor *xgene_dma_prep_sg( 993 struct dma_chan *dchan, struct scatterlist *dst_sg, 994 u32 dst_nents, struct scatterlist *src_sg, 995 u32 src_nents, unsigned long flags) 996 { 997 struct xgene_dma_desc_sw *first = NULL, *new = NULL; 998 struct xgene_dma_chan *chan; 999 size_t dst_avail, src_avail; 1000 dma_addr_t dst, src; 1001 size_t len; 1002 1003 if (unlikely(!dchan)) 1004 return NULL; 1005 1006 if (unlikely(!dst_nents || !src_nents)) 1007 return NULL; 1008 1009 if (unlikely(!dst_sg || !src_sg)) 1010 return NULL; 1011 1012 chan = to_dma_chan(dchan); 1013 1014 /* Get prepared for the loop */ 1015 dst_avail = sg_dma_len(dst_sg); 1016 src_avail = sg_dma_len(src_sg); 1017 dst_nents--; 1018 src_nents--; 1019 1020 /* Run until we are out of scatterlist entries */ 1021 while (true) { 1022 /* Create the largest transaction possible */ 1023 len = min_t(size_t, src_avail, dst_avail); 1024 len = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT); 1025 if (len == 0) 1026 goto fetch; 1027 1028 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail; 1029 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail; 1030 1031 /* Allocate the link descriptor from DMA pool */ 1032 new = xgene_dma_alloc_descriptor(chan); 1033 if (!new) 1034 goto fail; 1035 1036 /* Prepare DMA descriptor */ 1037 xgene_dma_prep_cpy_desc(chan, new, dst, src, len); 1038 1039 if (!first) 1040 first = new; 1041 1042 new->tx.cookie = 0; 1043 async_tx_ack(&new->tx); 1044 1045 /* update metadata */ 1046 dst_avail -= len; 1047 src_avail -= len; 1048 1049 /* Insert the link descriptor to the LD ring */ 1050 list_add_tail(&new->node, &first->tx_list); 1051 1052 fetch: 1053 /* fetch the next dst scatterlist entry */ 1054 if (dst_avail == 0) { 1055 /* no more entries: we're done */ 1056 if (dst_nents == 0) 1057 break; 1058 1059 /* fetch the next entry: if there are no more: done */ 1060 dst_sg = sg_next(dst_sg); 1061 if (!dst_sg) 1062 break; 1063 1064 dst_nents--; 1065 dst_avail = sg_dma_len(dst_sg); 1066 } 1067 1068 /* fetch the next src scatterlist entry */ 1069 if (src_avail == 0) { 1070 /* no more entries: we're done */ 1071 if (src_nents == 0) 1072 break; 1073 1074 /* fetch the next entry: if there are no more: done */ 1075 src_sg = sg_next(src_sg); 1076 if (!src_sg) 1077 break; 1078 1079 src_nents--; 1080 src_avail = sg_dma_len(src_sg); 1081 } 1082 } 1083 1084 if (!new) 1085 return NULL; 1086 1087 new->tx.flags = flags; /* client is in control of this ack */ 1088 new->tx.cookie = -EBUSY; 1089 list_splice(&first->tx_list, &new->tx_list); 1090 1091 return &new->tx; 1092 fail: 1093 if (!first) 1094 return NULL; 1095 1096 xgene_dma_free_tx_desc_list(chan, &first->tx_list); 1097 return NULL; 1098 } 1099 1100 static struct dma_async_tx_descriptor *xgene_dma_prep_xor( 1101 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t *src, 1102 u32 src_cnt, size_t len, unsigned long flags) 1103 { 1104 struct xgene_dma_desc_sw *first = NULL, *new; 1105 struct xgene_dma_chan *chan; 1106 static u8 multi[XGENE_DMA_MAX_XOR_SRC] = { 1107 0x01, 0x01, 0x01, 0x01, 0x01}; 1108 1109 if (unlikely(!dchan || !len)) 1110 return NULL; 1111 1112 chan = to_dma_chan(dchan); 1113 1114 do { 1115 /* Allocate the link descriptor from DMA pool */ 1116 new = xgene_dma_alloc_descriptor(chan); 1117 if (!new) 1118 goto fail; 1119 1120 /* Prepare xor DMA descriptor */ 1121 xgene_dma_prep_xor_desc(chan, new, &dst, src, 1122 src_cnt, &len, multi); 1123 1124 if (!first) 1125 first = new; 1126 1127 new->tx.cookie = 0; 1128 async_tx_ack(&new->tx); 1129 1130 /* Insert the link descriptor to the LD ring */ 1131 list_add_tail(&new->node, &first->tx_list); 1132 } while (len); 1133 1134 new->tx.flags = flags; /* client is in control of this ack */ 1135 new->tx.cookie = -EBUSY; 1136 list_splice(&first->tx_list, &new->tx_list); 1137 1138 return &new->tx; 1139 1140 fail: 1141 if (!first) 1142 return NULL; 1143 1144 xgene_dma_free_tx_desc_list(chan, &first->tx_list); 1145 return NULL; 1146 } 1147 1148 static struct dma_async_tx_descriptor *xgene_dma_prep_pq( 1149 struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src, 1150 u32 src_cnt, const u8 *scf, size_t len, unsigned long flags) 1151 { 1152 struct xgene_dma_desc_sw *first = NULL, *new; 1153 struct xgene_dma_chan *chan; 1154 size_t _len = len; 1155 dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC]; 1156 static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01}; 1157 1158 if (unlikely(!dchan || !len)) 1159 return NULL; 1160 1161 chan = to_dma_chan(dchan); 1162 1163 /* 1164 * Save source addresses on local variable, may be we have to 1165 * prepare two descriptor to generate P and Q if both enabled 1166 * in the flags by client 1167 */ 1168 memcpy(_src, src, sizeof(*src) * src_cnt); 1169 1170 if (flags & DMA_PREP_PQ_DISABLE_P) 1171 len = 0; 1172 1173 if (flags & DMA_PREP_PQ_DISABLE_Q) 1174 _len = 0; 1175 1176 do { 1177 /* Allocate the link descriptor from DMA pool */ 1178 new = xgene_dma_alloc_descriptor(chan); 1179 if (!new) 1180 goto fail; 1181 1182 if (!first) 1183 first = new; 1184 1185 new->tx.cookie = 0; 1186 async_tx_ack(&new->tx); 1187 1188 /* Insert the link descriptor to the LD ring */ 1189 list_add_tail(&new->node, &first->tx_list); 1190 1191 /* 1192 * Prepare DMA descriptor to generate P, 1193 * if DMA_PREP_PQ_DISABLE_P flag is not set 1194 */ 1195 if (len) { 1196 xgene_dma_prep_xor_desc(chan, new, &dst[0], src, 1197 src_cnt, &len, multi); 1198 continue; 1199 } 1200 1201 /* 1202 * Prepare DMA descriptor to generate Q, 1203 * if DMA_PREP_PQ_DISABLE_Q flag is not set 1204 */ 1205 if (_len) { 1206 xgene_dma_prep_xor_desc(chan, new, &dst[1], _src, 1207 src_cnt, &_len, scf); 1208 } 1209 } while (len || _len); 1210 1211 new->tx.flags = flags; /* client is in control of this ack */ 1212 new->tx.cookie = -EBUSY; 1213 list_splice(&first->tx_list, &new->tx_list); 1214 1215 return &new->tx; 1216 1217 fail: 1218 if (!first) 1219 return NULL; 1220 1221 xgene_dma_free_tx_desc_list(chan, &first->tx_list); 1222 return NULL; 1223 } 1224 1225 static void xgene_dma_issue_pending(struct dma_chan *dchan) 1226 { 1227 struct xgene_dma_chan *chan = to_dma_chan(dchan); 1228 1229 spin_lock_bh(&chan->lock); 1230 xgene_chan_xfer_ld_pending(chan); 1231 spin_unlock_bh(&chan->lock); 1232 } 1233 1234 static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan, 1235 dma_cookie_t cookie, 1236 struct dma_tx_state *txstate) 1237 { 1238 return dma_cookie_status(dchan, cookie, txstate); 1239 } 1240 1241 static void xgene_dma_tasklet_cb(unsigned long data) 1242 { 1243 struct xgene_dma_chan *chan = (struct xgene_dma_chan *)data; 1244 1245 spin_lock_bh(&chan->lock); 1246 1247 /* Run all cleanup for descriptors which have been completed */ 1248 xgene_dma_cleanup_descriptors(chan); 1249 1250 /* Re-enable DMA channel IRQ */ 1251 enable_irq(chan->rx_irq); 1252 1253 spin_unlock_bh(&chan->lock); 1254 } 1255 1256 static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id) 1257 { 1258 struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id; 1259 1260 BUG_ON(!chan); 1261 1262 /* 1263 * Disable DMA channel IRQ until we process completed 1264 * descriptors 1265 */ 1266 disable_irq_nosync(chan->rx_irq); 1267 1268 /* 1269 * Schedule the tasklet to handle all cleanup of the current 1270 * transaction. It will start a new transaction if there is 1271 * one pending. 1272 */ 1273 tasklet_schedule(&chan->tasklet); 1274 1275 return IRQ_HANDLED; 1276 } 1277 1278 static irqreturn_t xgene_dma_err_isr(int irq, void *id) 1279 { 1280 struct xgene_dma *pdma = (struct xgene_dma *)id; 1281 unsigned long int_mask; 1282 u32 val, i; 1283 1284 val = ioread32(pdma->csr_dma + XGENE_DMA_INT); 1285 1286 /* Clear DMA interrupts */ 1287 iowrite32(val, pdma->csr_dma + XGENE_DMA_INT); 1288 1289 /* Print DMA error info */ 1290 int_mask = val >> XGENE_DMA_INT_MASK_SHIFT; 1291 for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err)) 1292 dev_err(pdma->dev, 1293 "Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]); 1294 1295 return IRQ_HANDLED; 1296 } 1297 1298 static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring) 1299 { 1300 int i; 1301 1302 iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE); 1303 1304 for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++) 1305 iowrite32(ring->state[i], ring->pdma->csr_ring + 1306 XGENE_DMA_RING_STATE_WR_BASE + (i * 4)); 1307 } 1308 1309 static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring) 1310 { 1311 memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG); 1312 xgene_dma_wr_ring_state(ring); 1313 } 1314 1315 static void xgene_dma_setup_ring(struct xgene_dma_ring *ring) 1316 { 1317 void *ring_cfg = ring->state; 1318 u64 addr = ring->desc_paddr; 1319 void *desc; 1320 u32 i, val; 1321 1322 ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE; 1323 1324 /* Clear DMA ring state */ 1325 xgene_dma_clr_ring_state(ring); 1326 1327 /* Set DMA ring type */ 1328 XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR); 1329 1330 if (ring->owner == XGENE_DMA_RING_OWNER_DMA) { 1331 /* Set recombination buffer and timeout */ 1332 XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg); 1333 XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg); 1334 XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg); 1335 } 1336 1337 /* Initialize DMA ring state */ 1338 XGENE_DMA_RING_SELTHRSH_SET(ring_cfg); 1339 XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg); 1340 XGENE_DMA_RING_COHERENT_SET(ring_cfg); 1341 XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr); 1342 XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr); 1343 XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize); 1344 1345 /* Write DMA ring configurations */ 1346 xgene_dma_wr_ring_state(ring); 1347 1348 /* Set DMA ring id */ 1349 iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id), 1350 ring->pdma->csr_ring + XGENE_DMA_RING_ID); 1351 1352 /* Set DMA ring buffer */ 1353 iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num), 1354 ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF); 1355 1356 if (ring->owner != XGENE_DMA_RING_OWNER_CPU) 1357 return; 1358 1359 /* Set empty signature to DMA Rx ring descriptors */ 1360 for (i = 0; i < ring->slots; i++) { 1361 desc = &ring->desc_hw[i]; 1362 XGENE_DMA_DESC_SET_EMPTY(desc); 1363 } 1364 1365 /* Enable DMA Rx ring interrupt */ 1366 val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE); 1367 XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num); 1368 iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE); 1369 } 1370 1371 static void xgene_dma_clear_ring(struct xgene_dma_ring *ring) 1372 { 1373 u32 ring_id, val; 1374 1375 if (ring->owner == XGENE_DMA_RING_OWNER_CPU) { 1376 /* Disable DMA Rx ring interrupt */ 1377 val = ioread32(ring->pdma->csr_ring + 1378 XGENE_DMA_RING_NE_INT_MODE); 1379 XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num); 1380 iowrite32(val, ring->pdma->csr_ring + 1381 XGENE_DMA_RING_NE_INT_MODE); 1382 } 1383 1384 /* Clear DMA ring state */ 1385 ring_id = XGENE_DMA_RING_ID_SETUP(ring->id); 1386 iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID); 1387 1388 iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF); 1389 xgene_dma_clr_ring_state(ring); 1390 } 1391 1392 static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring) 1393 { 1394 ring->cmd_base = ring->pdma->csr_ring_cmd + 1395 XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num - 1396 XGENE_DMA_RING_NUM)); 1397 1398 ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET; 1399 } 1400 1401 static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan, 1402 enum xgene_dma_ring_cfgsize cfgsize) 1403 { 1404 int size; 1405 1406 switch (cfgsize) { 1407 case XGENE_DMA_RING_CFG_SIZE_512B: 1408 size = 0x200; 1409 break; 1410 case XGENE_DMA_RING_CFG_SIZE_2KB: 1411 size = 0x800; 1412 break; 1413 case XGENE_DMA_RING_CFG_SIZE_16KB: 1414 size = 0x4000; 1415 break; 1416 case XGENE_DMA_RING_CFG_SIZE_64KB: 1417 size = 0x10000; 1418 break; 1419 case XGENE_DMA_RING_CFG_SIZE_512KB: 1420 size = 0x80000; 1421 break; 1422 default: 1423 chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize); 1424 return -EINVAL; 1425 } 1426 1427 return size; 1428 } 1429 1430 static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring) 1431 { 1432 /* Clear DMA ring configurations */ 1433 xgene_dma_clear_ring(ring); 1434 1435 /* De-allocate DMA ring descriptor */ 1436 if (ring->desc_vaddr) { 1437 dma_free_coherent(ring->pdma->dev, ring->size, 1438 ring->desc_vaddr, ring->desc_paddr); 1439 ring->desc_vaddr = NULL; 1440 } 1441 } 1442 1443 static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan) 1444 { 1445 xgene_dma_delete_ring_one(&chan->rx_ring); 1446 xgene_dma_delete_ring_one(&chan->tx_ring); 1447 } 1448 1449 static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan, 1450 struct xgene_dma_ring *ring, 1451 enum xgene_dma_ring_cfgsize cfgsize) 1452 { 1453 /* Setup DMA ring descriptor variables */ 1454 ring->pdma = chan->pdma; 1455 ring->cfgsize = cfgsize; 1456 ring->num = chan->pdma->ring_num++; 1457 ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num); 1458 1459 ring->size = xgene_dma_get_ring_size(chan, cfgsize); 1460 if (ring->size <= 0) 1461 return ring->size; 1462 1463 /* Allocate memory for DMA ring descriptor */ 1464 ring->desc_vaddr = dma_zalloc_coherent(chan->dev, ring->size, 1465 &ring->desc_paddr, GFP_KERNEL); 1466 if (!ring->desc_vaddr) { 1467 chan_err(chan, "Failed to allocate ring desc\n"); 1468 return -ENOMEM; 1469 } 1470 1471 /* Configure and enable DMA ring */ 1472 xgene_dma_set_ring_cmd(ring); 1473 xgene_dma_setup_ring(ring); 1474 1475 return 0; 1476 } 1477 1478 static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan) 1479 { 1480 struct xgene_dma_ring *rx_ring = &chan->rx_ring; 1481 struct xgene_dma_ring *tx_ring = &chan->tx_ring; 1482 int ret; 1483 1484 /* Create DMA Rx ring descriptor */ 1485 rx_ring->owner = XGENE_DMA_RING_OWNER_CPU; 1486 rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id; 1487 1488 ret = xgene_dma_create_ring_one(chan, rx_ring, 1489 XGENE_DMA_RING_CFG_SIZE_64KB); 1490 if (ret) 1491 return ret; 1492 1493 chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n", 1494 rx_ring->id, rx_ring->num, rx_ring->desc_vaddr); 1495 1496 /* Create DMA Tx ring descriptor */ 1497 tx_ring->owner = XGENE_DMA_RING_OWNER_DMA; 1498 tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id; 1499 1500 ret = xgene_dma_create_ring_one(chan, tx_ring, 1501 XGENE_DMA_RING_CFG_SIZE_64KB); 1502 if (ret) { 1503 xgene_dma_delete_ring_one(rx_ring); 1504 return ret; 1505 } 1506 1507 tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num); 1508 1509 chan_dbg(chan, 1510 "Tx ring id 0x%X num %d desc 0x%p\n", 1511 tx_ring->id, tx_ring->num, tx_ring->desc_vaddr); 1512 1513 /* Set the max outstanding request possible to this channel */ 1514 chan->max_outstanding = rx_ring->slots; 1515 1516 return ret; 1517 } 1518 1519 static int xgene_dma_init_rings(struct xgene_dma *pdma) 1520 { 1521 int ret, i, j; 1522 1523 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) { 1524 ret = xgene_dma_create_chan_rings(&pdma->chan[i]); 1525 if (ret) { 1526 for (j = 0; j < i; j++) 1527 xgene_dma_delete_chan_rings(&pdma->chan[j]); 1528 return ret; 1529 } 1530 } 1531 1532 return ret; 1533 } 1534 1535 static void xgene_dma_enable(struct xgene_dma *pdma) 1536 { 1537 u32 val; 1538 1539 /* Configure and enable DMA engine */ 1540 val = ioread32(pdma->csr_dma + XGENE_DMA_GCR); 1541 XGENE_DMA_CH_SETUP(val); 1542 XGENE_DMA_ENABLE(val); 1543 iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR); 1544 } 1545 1546 static void xgene_dma_disable(struct xgene_dma *pdma) 1547 { 1548 u32 val; 1549 1550 val = ioread32(pdma->csr_dma + XGENE_DMA_GCR); 1551 XGENE_DMA_DISABLE(val); 1552 iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR); 1553 } 1554 1555 static void xgene_dma_mask_interrupts(struct xgene_dma *pdma) 1556 { 1557 /* 1558 * Mask DMA ring overflow, underflow and 1559 * AXI write/read error interrupts 1560 */ 1561 iowrite32(XGENE_DMA_INT_ALL_MASK, 1562 pdma->csr_dma + XGENE_DMA_RING_INT0_MASK); 1563 iowrite32(XGENE_DMA_INT_ALL_MASK, 1564 pdma->csr_dma + XGENE_DMA_RING_INT1_MASK); 1565 iowrite32(XGENE_DMA_INT_ALL_MASK, 1566 pdma->csr_dma + XGENE_DMA_RING_INT2_MASK); 1567 iowrite32(XGENE_DMA_INT_ALL_MASK, 1568 pdma->csr_dma + XGENE_DMA_RING_INT3_MASK); 1569 iowrite32(XGENE_DMA_INT_ALL_MASK, 1570 pdma->csr_dma + XGENE_DMA_RING_INT4_MASK); 1571 1572 /* Mask DMA error interrupts */ 1573 iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK); 1574 } 1575 1576 static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma) 1577 { 1578 /* 1579 * Unmask DMA ring overflow, underflow and 1580 * AXI write/read error interrupts 1581 */ 1582 iowrite32(XGENE_DMA_INT_ALL_UNMASK, 1583 pdma->csr_dma + XGENE_DMA_RING_INT0_MASK); 1584 iowrite32(XGENE_DMA_INT_ALL_UNMASK, 1585 pdma->csr_dma + XGENE_DMA_RING_INT1_MASK); 1586 iowrite32(XGENE_DMA_INT_ALL_UNMASK, 1587 pdma->csr_dma + XGENE_DMA_RING_INT2_MASK); 1588 iowrite32(XGENE_DMA_INT_ALL_UNMASK, 1589 pdma->csr_dma + XGENE_DMA_RING_INT3_MASK); 1590 iowrite32(XGENE_DMA_INT_ALL_UNMASK, 1591 pdma->csr_dma + XGENE_DMA_RING_INT4_MASK); 1592 1593 /* Unmask DMA error interrupts */ 1594 iowrite32(XGENE_DMA_INT_ALL_UNMASK, 1595 pdma->csr_dma + XGENE_DMA_INT_MASK); 1596 } 1597 1598 static void xgene_dma_init_hw(struct xgene_dma *pdma) 1599 { 1600 u32 val; 1601 1602 /* Associate DMA ring to corresponding ring HW */ 1603 iowrite32(XGENE_DMA_ASSOC_RING_MNGR1, 1604 pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC); 1605 1606 /* Configure RAID6 polynomial control setting */ 1607 if (is_pq_enabled(pdma)) 1608 iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D), 1609 pdma->csr_dma + XGENE_DMA_RAID6_CONT); 1610 else 1611 dev_info(pdma->dev, "PQ is disabled in HW\n"); 1612 1613 xgene_dma_enable(pdma); 1614 xgene_dma_unmask_interrupts(pdma); 1615 1616 /* Get DMA id and version info */ 1617 val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR); 1618 1619 /* DMA device info */ 1620 dev_info(pdma->dev, 1621 "X-Gene DMA v%d.%02d.%02d driver registered %d channels", 1622 XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val), 1623 XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL); 1624 } 1625 1626 static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma) 1627 { 1628 if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) && 1629 (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST))) 1630 return 0; 1631 1632 iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN); 1633 iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST); 1634 1635 /* Bring up memory */ 1636 iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN); 1637 1638 /* Force a barrier */ 1639 ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN); 1640 1641 /* reset may take up to 1ms */ 1642 usleep_range(1000, 1100); 1643 1644 if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY) 1645 != XGENE_DMA_RING_BLK_MEM_RDY_VAL) { 1646 dev_err(pdma->dev, 1647 "Failed to release ring mngr memory from shutdown\n"); 1648 return -ENODEV; 1649 } 1650 1651 /* program threshold set 1 and all hysteresis */ 1652 iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL, 1653 pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1); 1654 iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL, 1655 pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1); 1656 iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL, 1657 pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS); 1658 1659 /* Enable QPcore and assign error queue */ 1660 iowrite32(XGENE_DMA_RING_ENABLE, 1661 pdma->csr_ring + XGENE_DMA_RING_CONFIG); 1662 1663 return 0; 1664 } 1665 1666 static int xgene_dma_init_mem(struct xgene_dma *pdma) 1667 { 1668 int ret; 1669 1670 ret = xgene_dma_init_ring_mngr(pdma); 1671 if (ret) 1672 return ret; 1673 1674 /* Bring up memory */ 1675 iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN); 1676 1677 /* Force a barrier */ 1678 ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN); 1679 1680 /* reset may take up to 1ms */ 1681 usleep_range(1000, 1100); 1682 1683 if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY) 1684 != XGENE_DMA_BLK_MEM_RDY_VAL) { 1685 dev_err(pdma->dev, 1686 "Failed to release DMA memory from shutdown\n"); 1687 return -ENODEV; 1688 } 1689 1690 return 0; 1691 } 1692 1693 static int xgene_dma_request_irqs(struct xgene_dma *pdma) 1694 { 1695 struct xgene_dma_chan *chan; 1696 int ret, i, j; 1697 1698 /* Register DMA error irq */ 1699 ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr, 1700 0, "dma_error", pdma); 1701 if (ret) { 1702 dev_err(pdma->dev, 1703 "Failed to register error IRQ %d\n", pdma->err_irq); 1704 return ret; 1705 } 1706 1707 /* Register DMA channel rx irq */ 1708 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) { 1709 chan = &pdma->chan[i]; 1710 ret = devm_request_irq(chan->dev, chan->rx_irq, 1711 xgene_dma_chan_ring_isr, 1712 0, chan->name, chan); 1713 if (ret) { 1714 chan_err(chan, "Failed to register Rx IRQ %d\n", 1715 chan->rx_irq); 1716 devm_free_irq(pdma->dev, pdma->err_irq, pdma); 1717 1718 for (j = 0; j < i; j++) { 1719 chan = &pdma->chan[i]; 1720 devm_free_irq(chan->dev, chan->rx_irq, chan); 1721 } 1722 1723 return ret; 1724 } 1725 } 1726 1727 return 0; 1728 } 1729 1730 static void xgene_dma_free_irqs(struct xgene_dma *pdma) 1731 { 1732 struct xgene_dma_chan *chan; 1733 int i; 1734 1735 /* Free DMA device error irq */ 1736 devm_free_irq(pdma->dev, pdma->err_irq, pdma); 1737 1738 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) { 1739 chan = &pdma->chan[i]; 1740 devm_free_irq(chan->dev, chan->rx_irq, chan); 1741 } 1742 } 1743 1744 static void xgene_dma_set_caps(struct xgene_dma_chan *chan, 1745 struct dma_device *dma_dev) 1746 { 1747 /* Initialize DMA device capability mask */ 1748 dma_cap_zero(dma_dev->cap_mask); 1749 1750 /* Set DMA device capability */ 1751 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); 1752 dma_cap_set(DMA_SG, dma_dev->cap_mask); 1753 1754 /* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR 1755 * and channel 1 supports XOR, PQ both. First thing here is we have 1756 * mechanism in hw to enable/disable PQ/XOR supports on channel 1, 1757 * we can make sure this by reading SoC Efuse register. 1758 * Second thing, we have hw errata that if we run channel 0 and 1759 * channel 1 simultaneously with executing XOR and PQ request, 1760 * suddenly DMA engine hangs, So here we enable XOR on channel 0 only 1761 * if XOR and PQ supports on channel 1 is disabled. 1762 */ 1763 if ((chan->id == XGENE_DMA_PQ_CHANNEL) && 1764 is_pq_enabled(chan->pdma)) { 1765 dma_cap_set(DMA_PQ, dma_dev->cap_mask); 1766 dma_cap_set(DMA_XOR, dma_dev->cap_mask); 1767 } else if ((chan->id == XGENE_DMA_XOR_CHANNEL) && 1768 !is_pq_enabled(chan->pdma)) { 1769 dma_cap_set(DMA_XOR, dma_dev->cap_mask); 1770 } 1771 1772 /* Set base and prep routines */ 1773 dma_dev->dev = chan->dev; 1774 dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources; 1775 dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources; 1776 dma_dev->device_issue_pending = xgene_dma_issue_pending; 1777 dma_dev->device_tx_status = xgene_dma_tx_status; 1778 dma_dev->device_prep_dma_memcpy = xgene_dma_prep_memcpy; 1779 dma_dev->device_prep_dma_sg = xgene_dma_prep_sg; 1780 1781 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) { 1782 dma_dev->device_prep_dma_xor = xgene_dma_prep_xor; 1783 dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC; 1784 dma_dev->xor_align = XGENE_DMA_XOR_ALIGNMENT; 1785 } 1786 1787 if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) { 1788 dma_dev->device_prep_dma_pq = xgene_dma_prep_pq; 1789 dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC; 1790 dma_dev->pq_align = XGENE_DMA_XOR_ALIGNMENT; 1791 } 1792 } 1793 1794 static int xgene_dma_async_register(struct xgene_dma *pdma, int id) 1795 { 1796 struct xgene_dma_chan *chan = &pdma->chan[id]; 1797 struct dma_device *dma_dev = &pdma->dma_dev[id]; 1798 int ret; 1799 1800 chan->dma_chan.device = dma_dev; 1801 1802 spin_lock_init(&chan->lock); 1803 INIT_LIST_HEAD(&chan->ld_pending); 1804 INIT_LIST_HEAD(&chan->ld_running); 1805 INIT_LIST_HEAD(&chan->ld_completed); 1806 tasklet_init(&chan->tasklet, xgene_dma_tasklet_cb, 1807 (unsigned long)chan); 1808 1809 chan->pending = 0; 1810 chan->desc_pool = NULL; 1811 dma_cookie_init(&chan->dma_chan); 1812 1813 /* Setup dma device capabilities and prep routines */ 1814 xgene_dma_set_caps(chan, dma_dev); 1815 1816 /* Initialize DMA device list head */ 1817 INIT_LIST_HEAD(&dma_dev->channels); 1818 list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels); 1819 1820 /* Register with Linux async DMA framework*/ 1821 ret = dma_async_device_register(dma_dev); 1822 if (ret) { 1823 chan_err(chan, "Failed to register async device %d", ret); 1824 tasklet_kill(&chan->tasklet); 1825 1826 return ret; 1827 } 1828 1829 /* DMA capability info */ 1830 dev_info(pdma->dev, 1831 "%s: CAPABILITY ( %s%s%s%s)\n", dma_chan_name(&chan->dma_chan), 1832 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "MEMCPY " : "", 1833 dma_has_cap(DMA_SG, dma_dev->cap_mask) ? "SGCPY " : "", 1834 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "", 1835 dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : ""); 1836 1837 return 0; 1838 } 1839 1840 static int xgene_dma_init_async(struct xgene_dma *pdma) 1841 { 1842 int ret, i, j; 1843 1844 for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) { 1845 ret = xgene_dma_async_register(pdma, i); 1846 if (ret) { 1847 for (j = 0; j < i; j++) { 1848 dma_async_device_unregister(&pdma->dma_dev[j]); 1849 tasklet_kill(&pdma->chan[j].tasklet); 1850 } 1851 1852 return ret; 1853 } 1854 } 1855 1856 return ret; 1857 } 1858 1859 static void xgene_dma_async_unregister(struct xgene_dma *pdma) 1860 { 1861 int i; 1862 1863 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) 1864 dma_async_device_unregister(&pdma->dma_dev[i]); 1865 } 1866 1867 static void xgene_dma_init_channels(struct xgene_dma *pdma) 1868 { 1869 struct xgene_dma_chan *chan; 1870 int i; 1871 1872 pdma->ring_num = XGENE_DMA_RING_NUM; 1873 1874 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) { 1875 chan = &pdma->chan[i]; 1876 chan->dev = pdma->dev; 1877 chan->pdma = pdma; 1878 chan->id = i; 1879 snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id); 1880 } 1881 } 1882 1883 static int xgene_dma_get_resources(struct platform_device *pdev, 1884 struct xgene_dma *pdma) 1885 { 1886 struct resource *res; 1887 int irq, i; 1888 1889 /* Get DMA csr region */ 1890 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1891 if (!res) { 1892 dev_err(&pdev->dev, "Failed to get csr region\n"); 1893 return -ENXIO; 1894 } 1895 1896 pdma->csr_dma = devm_ioremap(&pdev->dev, res->start, 1897 resource_size(res)); 1898 if (!pdma->csr_dma) { 1899 dev_err(&pdev->dev, "Failed to ioremap csr region"); 1900 return -ENOMEM; 1901 } 1902 1903 /* Get DMA ring csr region */ 1904 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1905 if (!res) { 1906 dev_err(&pdev->dev, "Failed to get ring csr region\n"); 1907 return -ENXIO; 1908 } 1909 1910 pdma->csr_ring = devm_ioremap(&pdev->dev, res->start, 1911 resource_size(res)); 1912 if (!pdma->csr_ring) { 1913 dev_err(&pdev->dev, "Failed to ioremap ring csr region"); 1914 return -ENOMEM; 1915 } 1916 1917 /* Get DMA ring cmd csr region */ 1918 res = platform_get_resource(pdev, IORESOURCE_MEM, 2); 1919 if (!res) { 1920 dev_err(&pdev->dev, "Failed to get ring cmd csr region\n"); 1921 return -ENXIO; 1922 } 1923 1924 pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start, 1925 resource_size(res)); 1926 if (!pdma->csr_ring_cmd) { 1927 dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region"); 1928 return -ENOMEM; 1929 } 1930 1931 /* Get efuse csr region */ 1932 res = platform_get_resource(pdev, IORESOURCE_MEM, 3); 1933 if (!res) { 1934 dev_err(&pdev->dev, "Failed to get efuse csr region\n"); 1935 return -ENXIO; 1936 } 1937 1938 pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start, 1939 resource_size(res)); 1940 if (!pdma->csr_efuse) { 1941 dev_err(&pdev->dev, "Failed to ioremap efuse csr region"); 1942 return -ENOMEM; 1943 } 1944 1945 /* Get DMA error interrupt */ 1946 irq = platform_get_irq(pdev, 0); 1947 if (irq <= 0) { 1948 dev_err(&pdev->dev, "Failed to get Error IRQ\n"); 1949 return -ENXIO; 1950 } 1951 1952 pdma->err_irq = irq; 1953 1954 /* Get DMA Rx ring descriptor interrupts for all DMA channels */ 1955 for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) { 1956 irq = platform_get_irq(pdev, i); 1957 if (irq <= 0) { 1958 dev_err(&pdev->dev, "Failed to get Rx IRQ\n"); 1959 return -ENXIO; 1960 } 1961 1962 pdma->chan[i - 1].rx_irq = irq; 1963 } 1964 1965 return 0; 1966 } 1967 1968 static int xgene_dma_probe(struct platform_device *pdev) 1969 { 1970 struct xgene_dma *pdma; 1971 int ret, i; 1972 1973 pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL); 1974 if (!pdma) 1975 return -ENOMEM; 1976 1977 pdma->dev = &pdev->dev; 1978 platform_set_drvdata(pdev, pdma); 1979 1980 ret = xgene_dma_get_resources(pdev, pdma); 1981 if (ret) 1982 return ret; 1983 1984 pdma->clk = devm_clk_get(&pdev->dev, NULL); 1985 if (IS_ERR(pdma->clk)) { 1986 dev_err(&pdev->dev, "Failed to get clk\n"); 1987 return PTR_ERR(pdma->clk); 1988 } 1989 1990 /* Enable clk before accessing registers */ 1991 ret = clk_prepare_enable(pdma->clk); 1992 if (ret) { 1993 dev_err(&pdev->dev, "Failed to enable clk %d\n", ret); 1994 return ret; 1995 } 1996 1997 /* Remove DMA RAM out of shutdown */ 1998 ret = xgene_dma_init_mem(pdma); 1999 if (ret) 2000 goto err_clk_enable; 2001 2002 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42)); 2003 if (ret) { 2004 dev_err(&pdev->dev, "No usable DMA configuration\n"); 2005 goto err_dma_mask; 2006 } 2007 2008 /* Initialize DMA channels software state */ 2009 xgene_dma_init_channels(pdma); 2010 2011 /* Configue DMA rings */ 2012 ret = xgene_dma_init_rings(pdma); 2013 if (ret) 2014 goto err_clk_enable; 2015 2016 ret = xgene_dma_request_irqs(pdma); 2017 if (ret) 2018 goto err_request_irq; 2019 2020 /* Configure and enable DMA engine */ 2021 xgene_dma_init_hw(pdma); 2022 2023 /* Register DMA device with linux async framework */ 2024 ret = xgene_dma_init_async(pdma); 2025 if (ret) 2026 goto err_async_init; 2027 2028 return 0; 2029 2030 err_async_init: 2031 xgene_dma_free_irqs(pdma); 2032 2033 err_request_irq: 2034 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) 2035 xgene_dma_delete_chan_rings(&pdma->chan[i]); 2036 2037 err_dma_mask: 2038 err_clk_enable: 2039 clk_disable_unprepare(pdma->clk); 2040 2041 return ret; 2042 } 2043 2044 static int xgene_dma_remove(struct platform_device *pdev) 2045 { 2046 struct xgene_dma *pdma = platform_get_drvdata(pdev); 2047 struct xgene_dma_chan *chan; 2048 int i; 2049 2050 xgene_dma_async_unregister(pdma); 2051 2052 /* Mask interrupts and disable DMA engine */ 2053 xgene_dma_mask_interrupts(pdma); 2054 xgene_dma_disable(pdma); 2055 xgene_dma_free_irqs(pdma); 2056 2057 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) { 2058 chan = &pdma->chan[i]; 2059 tasklet_kill(&chan->tasklet); 2060 xgene_dma_delete_chan_rings(chan); 2061 } 2062 2063 clk_disable_unprepare(pdma->clk); 2064 2065 return 0; 2066 } 2067 2068 static const struct of_device_id xgene_dma_of_match_ptr[] = { 2069 {.compatible = "apm,xgene-storm-dma",}, 2070 {}, 2071 }; 2072 MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr); 2073 2074 static struct platform_driver xgene_dma_driver = { 2075 .probe = xgene_dma_probe, 2076 .remove = xgene_dma_remove, 2077 .driver = { 2078 .name = "X-Gene-DMA", 2079 .of_match_table = xgene_dma_of_match_ptr, 2080 }, 2081 }; 2082 2083 module_platform_driver(xgene_dma_driver); 2084 2085 MODULE_DESCRIPTION("APM X-Gene SoC DMA driver"); 2086 MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>"); 2087 MODULE_AUTHOR("Loc Ho <lho@apm.com>"); 2088 MODULE_LICENSE("GPL"); 2089 MODULE_VERSION("1.0"); 2090