xref: /openbmc/linux/drivers/dma/xgene-dma.c (revision d7a3d85e)
1 /*
2  * Applied Micro X-Gene SoC DMA engine Driver
3  *
4  * Copyright (c) 2015, Applied Micro Circuits Corporation
5  * Authors: Rameshwar Prasad Sahu <rsahu@apm.com>
6  *	    Loc Ho <lho@apm.com>
7  *
8  * This program is free software; you can redistribute  it and/or modify it
9  * under  the terms of  the GNU General  Public License as published by the
10  * Free Software Foundation;  either version 2 of the  License, or (at your
11  * option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  *
21  * NOTE: PM support is currently not available.
22  */
23 
24 #include <linux/clk.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmaengine.h>
28 #include <linux/dmapool.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/module.h>
32 #include <linux/of_device.h>
33 
34 #include "dmaengine.h"
35 
36 /* X-Gene DMA ring csr registers and bit definations */
37 #define XGENE_DMA_RING_CONFIG			0x04
38 #define XGENE_DMA_RING_ENABLE			BIT(31)
39 #define XGENE_DMA_RING_ID			0x08
40 #define XGENE_DMA_RING_ID_SETUP(v)		((v) | BIT(31))
41 #define XGENE_DMA_RING_ID_BUF			0x0C
42 #define XGENE_DMA_RING_ID_BUF_SETUP(v)		(((v) << 9) | BIT(21))
43 #define XGENE_DMA_RING_THRESLD0_SET1		0x30
44 #define XGENE_DMA_RING_THRESLD0_SET1_VAL	0X64
45 #define XGENE_DMA_RING_THRESLD1_SET1		0x34
46 #define XGENE_DMA_RING_THRESLD1_SET1_VAL	0xC8
47 #define XGENE_DMA_RING_HYSTERESIS		0x68
48 #define XGENE_DMA_RING_HYSTERESIS_VAL		0xFFFFFFFF
49 #define XGENE_DMA_RING_STATE			0x6C
50 #define XGENE_DMA_RING_STATE_WR_BASE		0x70
51 #define XGENE_DMA_RING_NE_INT_MODE		0x017C
52 #define XGENE_DMA_RING_NE_INT_MODE_SET(m, v)	\
53 	((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v)))
54 #define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v)	\
55 	((m) &= (~BIT(31 - (v))))
56 #define XGENE_DMA_RING_CLKEN			0xC208
57 #define XGENE_DMA_RING_SRST			0xC200
58 #define XGENE_DMA_RING_MEM_RAM_SHUTDOWN		0xD070
59 #define XGENE_DMA_RING_BLK_MEM_RDY		0xD074
60 #define XGENE_DMA_RING_BLK_MEM_RDY_VAL		0xFFFFFFFF
61 #define XGENE_DMA_RING_DESC_CNT(v)		(((v) & 0x0001FFFE) >> 1)
62 #define XGENE_DMA_RING_ID_GET(owner, num)	(((owner) << 6) | (num))
63 #define XGENE_DMA_RING_DST_ID(v)		((1 << 10) | (v))
64 #define XGENE_DMA_RING_CMD_OFFSET		0x2C
65 #define XGENE_DMA_RING_CMD_BASE_OFFSET(v)	((v) << 6)
66 #define XGENE_DMA_RING_COHERENT_SET(m)		\
67 	(((u32 *)(m))[2] |= BIT(4))
68 #define XGENE_DMA_RING_ADDRL_SET(m, v)		\
69 	(((u32 *)(m))[2] |= (((v) >> 8) << 5))
70 #define XGENE_DMA_RING_ADDRH_SET(m, v)		\
71 	(((u32 *)(m))[3] |= ((v) >> 35))
72 #define XGENE_DMA_RING_ACCEPTLERR_SET(m)	\
73 	(((u32 *)(m))[3] |= BIT(19))
74 #define XGENE_DMA_RING_SIZE_SET(m, v)		\
75 	(((u32 *)(m))[3] |= ((v) << 23))
76 #define XGENE_DMA_RING_RECOMBBUF_SET(m)		\
77 	(((u32 *)(m))[3] |= BIT(27))
78 #define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m)	\
79 	(((u32 *)(m))[3] |= (0x7 << 28))
80 #define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m)	\
81 	(((u32 *)(m))[4] |= 0x3)
82 #define XGENE_DMA_RING_SELTHRSH_SET(m)		\
83 	(((u32 *)(m))[4] |= BIT(3))
84 #define XGENE_DMA_RING_TYPE_SET(m, v)		\
85 	(((u32 *)(m))[4] |= ((v) << 19))
86 
87 /* X-Gene DMA device csr registers and bit definitions */
88 #define XGENE_DMA_IPBRR				0x0
89 #define XGENE_DMA_DEV_ID_RD(v)			((v) & 0x00000FFF)
90 #define XGENE_DMA_BUS_ID_RD(v)			(((v) >> 12) & 3)
91 #define XGENE_DMA_REV_NO_RD(v)			(((v) >> 14) & 3)
92 #define XGENE_DMA_GCR				0x10
93 #define XGENE_DMA_CH_SETUP(v)			\
94 	((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF)
95 #define XGENE_DMA_ENABLE(v)			((v) |= BIT(31))
96 #define XGENE_DMA_DISABLE(v)			((v) &= ~BIT(31))
97 #define XGENE_DMA_RAID6_CONT			0x14
98 #define XGENE_DMA_RAID6_MULTI_CTRL(v)		((v) << 24)
99 #define XGENE_DMA_INT				0x70
100 #define XGENE_DMA_INT_MASK			0x74
101 #define XGENE_DMA_INT_ALL_MASK			0xFFFFFFFF
102 #define XGENE_DMA_INT_ALL_UNMASK		0x0
103 #define XGENE_DMA_INT_MASK_SHIFT		0x14
104 #define XGENE_DMA_RING_INT0_MASK		0x90A0
105 #define XGENE_DMA_RING_INT1_MASK		0x90A8
106 #define XGENE_DMA_RING_INT2_MASK		0x90B0
107 #define XGENE_DMA_RING_INT3_MASK		0x90B8
108 #define XGENE_DMA_RING_INT4_MASK		0x90C0
109 #define XGENE_DMA_CFG_RING_WQ_ASSOC		0x90E0
110 #define XGENE_DMA_ASSOC_RING_MNGR1		0xFFFFFFFF
111 #define XGENE_DMA_MEM_RAM_SHUTDOWN		0xD070
112 #define XGENE_DMA_BLK_MEM_RDY			0xD074
113 #define XGENE_DMA_BLK_MEM_RDY_VAL		0xFFFFFFFF
114 
115 /* X-Gene SoC EFUSE csr register and bit defination */
116 #define XGENE_SOC_JTAG1_SHADOW			0x18
117 #define XGENE_DMA_PQ_DISABLE_MASK		BIT(13)
118 
119 /* X-Gene DMA Descriptor format */
120 #define XGENE_DMA_DESC_NV_BIT			BIT_ULL(50)
121 #define XGENE_DMA_DESC_IN_BIT			BIT_ULL(55)
122 #define XGENE_DMA_DESC_C_BIT			BIT_ULL(63)
123 #define XGENE_DMA_DESC_DR_BIT			BIT_ULL(61)
124 #define XGENE_DMA_DESC_ELERR_POS		46
125 #define XGENE_DMA_DESC_RTYPE_POS		56
126 #define XGENE_DMA_DESC_LERR_POS			60
127 #define XGENE_DMA_DESC_FLYBY_POS		4
128 #define XGENE_DMA_DESC_BUFLEN_POS		48
129 #define XGENE_DMA_DESC_HOENQ_NUM_POS		48
130 
131 #define XGENE_DMA_DESC_NV_SET(m)		\
132 	(((u64 *)(m))[0] |= XGENE_DMA_DESC_NV_BIT)
133 #define XGENE_DMA_DESC_IN_SET(m)		\
134 	(((u64 *)(m))[0] |= XGENE_DMA_DESC_IN_BIT)
135 #define XGENE_DMA_DESC_RTYPE_SET(m, v)		\
136 	(((u64 *)(m))[0] |= ((u64)(v) << XGENE_DMA_DESC_RTYPE_POS))
137 #define XGENE_DMA_DESC_BUFADDR_SET(m, v)	\
138 	(((u64 *)(m))[0] |= (v))
139 #define XGENE_DMA_DESC_BUFLEN_SET(m, v)		\
140 	(((u64 *)(m))[0] |= ((u64)(v) << XGENE_DMA_DESC_BUFLEN_POS))
141 #define XGENE_DMA_DESC_C_SET(m)			\
142 	(((u64 *)(m))[1] |= XGENE_DMA_DESC_C_BIT)
143 #define XGENE_DMA_DESC_FLYBY_SET(m, v)		\
144 	(((u64 *)(m))[2] |= ((v) << XGENE_DMA_DESC_FLYBY_POS))
145 #define XGENE_DMA_DESC_MULTI_SET(m, v, i)	\
146 	(((u64 *)(m))[2] |= ((u64)(v) << (((i) + 1) * 8)))
147 #define XGENE_DMA_DESC_DR_SET(m)		\
148 	(((u64 *)(m))[2] |= XGENE_DMA_DESC_DR_BIT)
149 #define XGENE_DMA_DESC_DST_ADDR_SET(m, v)	\
150 	(((u64 *)(m))[3] |= (v))
151 #define XGENE_DMA_DESC_H0ENQ_NUM_SET(m, v)	\
152 	(((u64 *)(m))[3] |= ((u64)(v) << XGENE_DMA_DESC_HOENQ_NUM_POS))
153 #define XGENE_DMA_DESC_ELERR_RD(m)		\
154 	(((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3)
155 #define XGENE_DMA_DESC_LERR_RD(m)		\
156 	(((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7)
157 #define XGENE_DMA_DESC_STATUS(elerr, lerr)	\
158 	(((elerr) << 4) | (lerr))
159 
160 /* X-Gene DMA descriptor empty s/w signature */
161 #define XGENE_DMA_DESC_EMPTY_INDEX		0
162 #define XGENE_DMA_DESC_EMPTY_SIGNATURE		~0ULL
163 #define XGENE_DMA_DESC_SET_EMPTY(m)		\
164 	(((u64 *)(m))[XGENE_DMA_DESC_EMPTY_INDEX] =	\
165 	 XGENE_DMA_DESC_EMPTY_SIGNATURE)
166 #define XGENE_DMA_DESC_IS_EMPTY(m)		\
167 	(((u64 *)(m))[XGENE_DMA_DESC_EMPTY_INDEX] ==	\
168 	 XGENE_DMA_DESC_EMPTY_SIGNATURE)
169 
170 /* X-Gene DMA configurable parameters defines */
171 #define XGENE_DMA_RING_NUM		512
172 #define XGENE_DMA_BUFNUM		0x0
173 #define XGENE_DMA_CPU_BUFNUM		0x18
174 #define XGENE_DMA_RING_OWNER_DMA	0x03
175 #define XGENE_DMA_RING_OWNER_CPU	0x0F
176 #define XGENE_DMA_RING_TYPE_REGULAR	0x01
177 #define XGENE_DMA_RING_WQ_DESC_SIZE	32	/* 32 Bytes */
178 #define XGENE_DMA_RING_NUM_CONFIG	5
179 #define XGENE_DMA_MAX_CHANNEL		4
180 #define XGENE_DMA_XOR_CHANNEL		0
181 #define XGENE_DMA_PQ_CHANNEL		1
182 #define XGENE_DMA_MAX_BYTE_CNT		0x4000	/* 16 KB */
183 #define XGENE_DMA_MAX_64B_DESC_BYTE_CNT	0x14000	/* 80 KB */
184 #define XGENE_DMA_XOR_ALIGNMENT		6	/* 64 Bytes */
185 #define XGENE_DMA_MAX_XOR_SRC		5
186 #define XGENE_DMA_16K_BUFFER_LEN_CODE	0x0
187 #define XGENE_DMA_INVALID_LEN_CODE	0x7800
188 
189 /* X-Gene DMA descriptor error codes */
190 #define ERR_DESC_AXI			0x01
191 #define ERR_BAD_DESC			0x02
192 #define ERR_READ_DATA_AXI		0x03
193 #define ERR_WRITE_DATA_AXI		0x04
194 #define ERR_FBP_TIMEOUT			0x05
195 #define ERR_ECC				0x06
196 #define ERR_DIFF_SIZE			0x08
197 #define ERR_SCT_GAT_LEN			0x09
198 #define ERR_CRC_ERR			0x11
199 #define ERR_CHKSUM			0x12
200 #define ERR_DIF				0x13
201 
202 /* X-Gene DMA error interrupt codes */
203 #define ERR_DIF_SIZE_INT		0x0
204 #define ERR_GS_ERR_INT			0x1
205 #define ERR_FPB_TIMEO_INT		0x2
206 #define ERR_WFIFO_OVF_INT		0x3
207 #define ERR_RFIFO_OVF_INT		0x4
208 #define ERR_WR_TIMEO_INT		0x5
209 #define ERR_RD_TIMEO_INT		0x6
210 #define ERR_WR_ERR_INT			0x7
211 #define ERR_RD_ERR_INT			0x8
212 #define ERR_BAD_DESC_INT		0x9
213 #define ERR_DESC_DST_INT		0xA
214 #define ERR_DESC_SRC_INT		0xB
215 
216 /* X-Gene DMA flyby operation code */
217 #define FLYBY_2SRC_XOR			0x8
218 #define FLYBY_3SRC_XOR			0x9
219 #define FLYBY_4SRC_XOR			0xA
220 #define FLYBY_5SRC_XOR			0xB
221 
222 /* X-Gene DMA SW descriptor flags */
223 #define XGENE_DMA_FLAG_64B_DESC		BIT(0)
224 
225 /* Define to dump X-Gene DMA descriptor */
226 #define XGENE_DMA_DESC_DUMP(desc, m)	\
227 	print_hex_dump(KERN_ERR, (m),	\
228 			DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0)
229 
230 #define to_dma_desc_sw(tx)		\
231 	container_of(tx, struct xgene_dma_desc_sw, tx)
232 #define to_dma_chan(dchan)		\
233 	container_of(dchan, struct xgene_dma_chan, dma_chan)
234 
235 #define chan_dbg(chan, fmt, arg...)	\
236 	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
237 #define chan_err(chan, fmt, arg...)	\
238 	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
239 
240 struct xgene_dma_desc_hw {
241 	u64 m0;
242 	u64 m1;
243 	u64 m2;
244 	u64 m3;
245 };
246 
247 enum xgene_dma_ring_cfgsize {
248 	XGENE_DMA_RING_CFG_SIZE_512B,
249 	XGENE_DMA_RING_CFG_SIZE_2KB,
250 	XGENE_DMA_RING_CFG_SIZE_16KB,
251 	XGENE_DMA_RING_CFG_SIZE_64KB,
252 	XGENE_DMA_RING_CFG_SIZE_512KB,
253 	XGENE_DMA_RING_CFG_SIZE_INVALID
254 };
255 
256 struct xgene_dma_ring {
257 	struct xgene_dma *pdma;
258 	u8 buf_num;
259 	u16 id;
260 	u16 num;
261 	u16 head;
262 	u16 owner;
263 	u16 slots;
264 	u16 dst_ring_num;
265 	u32 size;
266 	void __iomem *cmd;
267 	void __iomem *cmd_base;
268 	dma_addr_t desc_paddr;
269 	u32 state[XGENE_DMA_RING_NUM_CONFIG];
270 	enum xgene_dma_ring_cfgsize cfgsize;
271 	union {
272 		void *desc_vaddr;
273 		struct xgene_dma_desc_hw *desc_hw;
274 	};
275 };
276 
277 struct xgene_dma_desc_sw {
278 	struct xgene_dma_desc_hw desc1;
279 	struct xgene_dma_desc_hw desc2;
280 	u32 flags;
281 	struct list_head node;
282 	struct list_head tx_list;
283 	struct dma_async_tx_descriptor tx;
284 };
285 
286 /**
287  * struct xgene_dma_chan - internal representation of an X-Gene DMA channel
288  * @dma_chan: dmaengine channel object member
289  * @pdma: X-Gene DMA device structure reference
290  * @dev: struct device reference for dma mapping api
291  * @id: raw id of this channel
292  * @rx_irq: channel IRQ
293  * @name: name of X-Gene DMA channel
294  * @lock: serializes enqueue/dequeue operations to the descriptor pool
295  * @pending: number of transaction request pushed to DMA controller for
296  *	execution, but still waiting for completion,
297  * @max_outstanding: max number of outstanding request we can push to channel
298  * @ld_pending: descriptors which are queued to run, but have not yet been
299  *	submitted to the hardware for execution
300  * @ld_running: descriptors which are currently being executing by the hardware
301  * @ld_completed: descriptors which have finished execution by the hardware.
302  *	These descriptors have already had their cleanup actions run. They
303  *	are waiting for the ACK bit to be set by the async tx API.
304  * @desc_pool: descriptor pool for DMA operations
305  * @tasklet: bottom half where all completed descriptors cleans
306  * @tx_ring: transmit ring descriptor that we use to prepare actual
307  *	descriptors for further executions
308  * @rx_ring: receive ring descriptor that we use to get completed DMA
309  *	descriptors during cleanup time
310  */
311 struct xgene_dma_chan {
312 	struct dma_chan dma_chan;
313 	struct xgene_dma *pdma;
314 	struct device *dev;
315 	int id;
316 	int rx_irq;
317 	char name[10];
318 	spinlock_t lock;
319 	int pending;
320 	int max_outstanding;
321 	struct list_head ld_pending;
322 	struct list_head ld_running;
323 	struct list_head ld_completed;
324 	struct dma_pool *desc_pool;
325 	struct tasklet_struct tasklet;
326 	struct xgene_dma_ring tx_ring;
327 	struct xgene_dma_ring rx_ring;
328 };
329 
330 /**
331  * struct xgene_dma - internal representation of an X-Gene DMA device
332  * @err_irq: DMA error irq number
333  * @ring_num: start id number for DMA ring
334  * @csr_dma: base for DMA register access
335  * @csr_ring: base for DMA ring register access
336  * @csr_ring_cmd: base for DMA ring command register access
337  * @csr_efuse: base for efuse register access
338  * @dma_dev: embedded struct dma_device
339  * @chan: reference to X-Gene DMA channels
340  */
341 struct xgene_dma {
342 	struct device *dev;
343 	struct clk *clk;
344 	int err_irq;
345 	int ring_num;
346 	void __iomem *csr_dma;
347 	void __iomem *csr_ring;
348 	void __iomem *csr_ring_cmd;
349 	void __iomem *csr_efuse;
350 	struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL];
351 	struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL];
352 };
353 
354 static const char * const xgene_dma_desc_err[] = {
355 	[ERR_DESC_AXI] = "AXI error when reading src/dst link list",
356 	[ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc",
357 	[ERR_READ_DATA_AXI] = "AXI error when reading data",
358 	[ERR_WRITE_DATA_AXI] = "AXI error when writing data",
359 	[ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch",
360 	[ERR_ECC] = "ECC double bit error",
361 	[ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result",
362 	[ERR_SCT_GAT_LEN] = "Gather and scatter data length not same",
363 	[ERR_CRC_ERR] = "CRC error",
364 	[ERR_CHKSUM] = "Checksum error",
365 	[ERR_DIF] = "DIF error",
366 };
367 
368 static const char * const xgene_dma_err[] = {
369 	[ERR_DIF_SIZE_INT] = "DIF size error",
370 	[ERR_GS_ERR_INT] = "Gather scatter not same size error",
371 	[ERR_FPB_TIMEO_INT] = "Free pool time out error",
372 	[ERR_WFIFO_OVF_INT] = "Write FIFO over flow error",
373 	[ERR_RFIFO_OVF_INT] = "Read FIFO over flow error",
374 	[ERR_WR_TIMEO_INT] = "Write time out error",
375 	[ERR_RD_TIMEO_INT] = "Read time out error",
376 	[ERR_WR_ERR_INT] = "HBF bus write error",
377 	[ERR_RD_ERR_INT] = "HBF bus read error",
378 	[ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error",
379 	[ERR_DESC_DST_INT] = "HFB reading dst link address error",
380 	[ERR_DESC_SRC_INT] = "HFB reading src link address error",
381 };
382 
383 static bool is_pq_enabled(struct xgene_dma *pdma)
384 {
385 	u32 val;
386 
387 	val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW);
388 	return !(val & XGENE_DMA_PQ_DISABLE_MASK);
389 }
390 
391 static void xgene_dma_cpu_to_le64(u64 *desc, int count)
392 {
393 	int i;
394 
395 	for (i = 0; i < count; i++)
396 		desc[i] = cpu_to_le64(desc[i]);
397 }
398 
399 static u16 xgene_dma_encode_len(u32 len)
400 {
401 	return (len < XGENE_DMA_MAX_BYTE_CNT) ?
402 		len : XGENE_DMA_16K_BUFFER_LEN_CODE;
403 }
404 
405 static u8 xgene_dma_encode_xor_flyby(u32 src_cnt)
406 {
407 	static u8 flyby_type[] = {
408 		FLYBY_2SRC_XOR, /* Dummy */
409 		FLYBY_2SRC_XOR, /* Dummy */
410 		FLYBY_2SRC_XOR,
411 		FLYBY_3SRC_XOR,
412 		FLYBY_4SRC_XOR,
413 		FLYBY_5SRC_XOR
414 	};
415 
416 	return flyby_type[src_cnt];
417 }
418 
419 static u32 xgene_dma_ring_desc_cnt(struct xgene_dma_ring *ring)
420 {
421 	u32 __iomem *cmd_base = ring->cmd_base;
422 	u32 ring_state = ioread32(&cmd_base[1]);
423 
424 	return XGENE_DMA_RING_DESC_CNT(ring_state);
425 }
426 
427 static void xgene_dma_set_src_buffer(void *ext8, size_t *len,
428 				     dma_addr_t *paddr)
429 {
430 	size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ?
431 			*len : XGENE_DMA_MAX_BYTE_CNT;
432 
433 	XGENE_DMA_DESC_BUFADDR_SET(ext8, *paddr);
434 	XGENE_DMA_DESC_BUFLEN_SET(ext8, xgene_dma_encode_len(nbytes));
435 	*len -= nbytes;
436 	*paddr += nbytes;
437 }
438 
439 static void xgene_dma_invalidate_buffer(void *ext8)
440 {
441 	XGENE_DMA_DESC_BUFLEN_SET(ext8, XGENE_DMA_INVALID_LEN_CODE);
442 }
443 
444 static void *xgene_dma_lookup_ext8(u64 *desc, int idx)
445 {
446 	return (idx % 2) ? (desc + idx - 1) : (desc + idx + 1);
447 }
448 
449 static void xgene_dma_init_desc(void *desc, u16 dst_ring_num)
450 {
451 	XGENE_DMA_DESC_C_SET(desc); /* Coherent IO */
452 	XGENE_DMA_DESC_IN_SET(desc);
453 	XGENE_DMA_DESC_H0ENQ_NUM_SET(desc, dst_ring_num);
454 	XGENE_DMA_DESC_RTYPE_SET(desc, XGENE_DMA_RING_OWNER_DMA);
455 }
456 
457 static void xgene_dma_prep_cpy_desc(struct xgene_dma_chan *chan,
458 				    struct xgene_dma_desc_sw *desc_sw,
459 				    dma_addr_t dst, dma_addr_t src,
460 				    size_t len)
461 {
462 	void *desc1, *desc2;
463 	int i;
464 
465 	/* Get 1st descriptor */
466 	desc1 = &desc_sw->desc1;
467 	xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
468 
469 	/* Set destination address */
470 	XGENE_DMA_DESC_DR_SET(desc1);
471 	XGENE_DMA_DESC_DST_ADDR_SET(desc1, dst);
472 
473 	/* Set 1st source address */
474 	xgene_dma_set_src_buffer(desc1 + 8, &len, &src);
475 
476 	if (len <= 0) {
477 		desc2 = NULL;
478 		goto skip_additional_src;
479 	}
480 
481 	/*
482 	 * We need to split this source buffer,
483 	 * and need to use 2nd descriptor
484 	 */
485 	desc2 = &desc_sw->desc2;
486 	XGENE_DMA_DESC_NV_SET(desc1);
487 
488 	/* Set 2nd to 5th source address */
489 	for (i = 0; i < 4 && len; i++)
490 		xgene_dma_set_src_buffer(xgene_dma_lookup_ext8(desc2, i),
491 					 &len, &src);
492 
493 	/* Invalidate unused source address field */
494 	for (; i < 4; i++)
495 		xgene_dma_invalidate_buffer(xgene_dma_lookup_ext8(desc2, i));
496 
497 	/* Updated flag that we have prepared 64B descriptor */
498 	desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
499 
500 skip_additional_src:
501 	/* Hardware stores descriptor in little endian format */
502 	xgene_dma_cpu_to_le64(desc1, 4);
503 	if (desc2)
504 		xgene_dma_cpu_to_le64(desc2, 4);
505 }
506 
507 static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan,
508 				    struct xgene_dma_desc_sw *desc_sw,
509 				    dma_addr_t *dst, dma_addr_t *src,
510 				    u32 src_cnt, size_t *nbytes,
511 				    const u8 *scf)
512 {
513 	void *desc1, *desc2;
514 	size_t len = *nbytes;
515 	int i;
516 
517 	desc1 = &desc_sw->desc1;
518 	desc2 = &desc_sw->desc2;
519 
520 	/* Initialize DMA descriptor */
521 	xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
522 
523 	/* Set destination address */
524 	XGENE_DMA_DESC_DR_SET(desc1);
525 	XGENE_DMA_DESC_DST_ADDR_SET(desc1, *dst);
526 
527 	/* We have multiple source addresses, so need to set NV bit*/
528 	XGENE_DMA_DESC_NV_SET(desc1);
529 
530 	/* Set flyby opcode */
531 	XGENE_DMA_DESC_FLYBY_SET(desc1, xgene_dma_encode_xor_flyby(src_cnt));
532 
533 	/* Set 1st to 5th source addresses */
534 	for (i = 0; i < src_cnt; i++) {
535 		len = *nbytes;
536 		xgene_dma_set_src_buffer((i == 0) ? (desc1 + 8) :
537 					 xgene_dma_lookup_ext8(desc2, i - 1),
538 					 &len, &src[i]);
539 		XGENE_DMA_DESC_MULTI_SET(desc1, scf[i], i);
540 	}
541 
542 	/* Hardware stores descriptor in little endian format */
543 	xgene_dma_cpu_to_le64(desc1, 4);
544 	xgene_dma_cpu_to_le64(desc2, 4);
545 
546 	/* Update meta data */
547 	*nbytes = len;
548 	*dst += XGENE_DMA_MAX_BYTE_CNT;
549 
550 	/* We need always 64B descriptor to perform xor or pq operations */
551 	desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
552 }
553 
554 static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx)
555 {
556 	struct xgene_dma_desc_sw *desc;
557 	struct xgene_dma_chan *chan;
558 	dma_cookie_t cookie;
559 
560 	if (unlikely(!tx))
561 		return -EINVAL;
562 
563 	chan = to_dma_chan(tx->chan);
564 	desc = to_dma_desc_sw(tx);
565 
566 	spin_lock_bh(&chan->lock);
567 
568 	cookie = dma_cookie_assign(tx);
569 
570 	/* Add this transaction list onto the tail of the pending queue */
571 	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
572 
573 	spin_unlock_bh(&chan->lock);
574 
575 	return cookie;
576 }
577 
578 static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan,
579 				       struct xgene_dma_desc_sw *desc)
580 {
581 	list_del(&desc->node);
582 	chan_dbg(chan, "LD %p free\n", desc);
583 	dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
584 }
585 
586 static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor(
587 				 struct xgene_dma_chan *chan)
588 {
589 	struct xgene_dma_desc_sw *desc;
590 	dma_addr_t phys;
591 
592 	desc = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &phys);
593 	if (!desc) {
594 		chan_err(chan, "Failed to allocate LDs\n");
595 		return NULL;
596 	}
597 
598 	memset(desc, 0, sizeof(*desc));
599 
600 	INIT_LIST_HEAD(&desc->tx_list);
601 	desc->tx.phys = phys;
602 	desc->tx.tx_submit = xgene_dma_tx_submit;
603 	dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan);
604 
605 	chan_dbg(chan, "LD %p allocated\n", desc);
606 
607 	return desc;
608 }
609 
610 /**
611  * xgene_dma_clean_completed_descriptor - free all descriptors which
612  * has been completed and acked
613  * @chan: X-Gene DMA channel
614  *
615  * This function is used on all completed and acked descriptors.
616  */
617 static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan)
618 {
619 	struct xgene_dma_desc_sw *desc, *_desc;
620 
621 	/* Run the callback for each descriptor, in order */
622 	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) {
623 		if (async_tx_test_ack(&desc->tx))
624 			xgene_dma_clean_descriptor(chan, desc);
625 	}
626 }
627 
628 /**
629  * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor
630  * @chan: X-Gene DMA channel
631  * @desc: descriptor to cleanup and free
632  *
633  * This function is used on a descriptor which has been executed by the DMA
634  * controller. It will run any callbacks, submit any dependencies.
635  */
636 static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan,
637 					      struct xgene_dma_desc_sw *desc)
638 {
639 	struct dma_async_tx_descriptor *tx = &desc->tx;
640 
641 	/*
642 	 * If this is not the last transaction in the group,
643 	 * then no need to complete cookie and run any callback as
644 	 * this is not the tx_descriptor which had been sent to caller
645 	 * of this DMA request
646 	 */
647 
648 	if (tx->cookie == 0)
649 		return;
650 
651 	dma_cookie_complete(tx);
652 
653 	/* Run the link descriptor callback function */
654 	if (tx->callback)
655 		tx->callback(tx->callback_param);
656 
657 	dma_descriptor_unmap(tx);
658 
659 	/* Run any dependencies */
660 	dma_run_dependencies(tx);
661 }
662 
663 /**
664  * xgene_dma_clean_running_descriptor - move the completed descriptor from
665  * ld_running to ld_completed
666  * @chan: X-Gene DMA channel
667  * @desc: the descriptor which is completed
668  *
669  * Free the descriptor directly if acked by async_tx api,
670  * else move it to queue ld_completed.
671  */
672 static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan,
673 					       struct xgene_dma_desc_sw *desc)
674 {
675 	/* Remove from the list of running transactions */
676 	list_del(&desc->node);
677 
678 	/*
679 	 * the client is allowed to attach dependent operations
680 	 * until 'ack' is set
681 	 */
682 	if (!async_tx_test_ack(&desc->tx)) {
683 		/*
684 		 * Move this descriptor to the list of descriptors which is
685 		 * completed, but still awaiting the 'ack' bit to be set.
686 		 */
687 		list_add_tail(&desc->node, &chan->ld_completed);
688 		return;
689 	}
690 
691 	chan_dbg(chan, "LD %p free\n", desc);
692 	dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
693 }
694 
695 static int xgene_chan_xfer_request(struct xgene_dma_ring *ring,
696 				   struct xgene_dma_desc_sw *desc_sw)
697 {
698 	struct xgene_dma_desc_hw *desc_hw;
699 
700 	/* Check if can push more descriptor to hw for execution */
701 	if (xgene_dma_ring_desc_cnt(ring) > (ring->slots - 2))
702 		return -EBUSY;
703 
704 	/* Get hw descriptor from DMA tx ring */
705 	desc_hw = &ring->desc_hw[ring->head];
706 
707 	/*
708 	 * Increment the head count to point next
709 	 * descriptor for next time
710 	 */
711 	if (++ring->head == ring->slots)
712 		ring->head = 0;
713 
714 	/* Copy prepared sw descriptor data to hw descriptor */
715 	memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw));
716 
717 	/*
718 	 * Check if we have prepared 64B descriptor,
719 	 * in this case we need one more hw descriptor
720 	 */
721 	if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) {
722 		desc_hw = &ring->desc_hw[ring->head];
723 
724 		if (++ring->head == ring->slots)
725 			ring->head = 0;
726 
727 		memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw));
728 	}
729 
730 	/* Notify the hw that we have descriptor ready for execution */
731 	iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ?
732 		  2 : 1, ring->cmd);
733 
734 	return 0;
735 }
736 
737 /**
738  * xgene_chan_xfer_ld_pending - push any pending transactions to hw
739  * @chan : X-Gene DMA channel
740  *
741  * LOCKING: must hold chan->desc_lock
742  */
743 static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan)
744 {
745 	struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
746 	int ret;
747 
748 	/*
749 	 * If the list of pending descriptors is empty, then we
750 	 * don't need to do any work at all
751 	 */
752 	if (list_empty(&chan->ld_pending)) {
753 		chan_dbg(chan, "No pending LDs\n");
754 		return;
755 	}
756 
757 	/*
758 	 * Move elements from the queue of pending transactions onto the list
759 	 * of running transactions and push it to hw for further executions
760 	 */
761 	list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) {
762 		/*
763 		 * Check if have pushed max number of transactions to hw
764 		 * as capable, so let's stop here and will push remaining
765 		 * elements from pening ld queue after completing some
766 		 * descriptors that we have already pushed
767 		 */
768 		if (chan->pending >= chan->max_outstanding)
769 			return;
770 
771 		ret = xgene_chan_xfer_request(&chan->tx_ring, desc_sw);
772 		if (ret)
773 			return;
774 
775 		/*
776 		 * Delete this element from ld pending queue and append it to
777 		 * ld running queue
778 		 */
779 		list_move_tail(&desc_sw->node, &chan->ld_running);
780 
781 		/* Increment the pending transaction count */
782 		chan->pending++;
783 	}
784 }
785 
786 /**
787  * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed
788  * and move them to ld_completed to free until flag 'ack' is set
789  * @chan: X-Gene DMA channel
790  *
791  * This function is used on descriptors which have been executed by the DMA
792  * controller. It will run any callbacks, submit any dependencies, then
793  * free these descriptors if flag 'ack' is set.
794  */
795 static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan)
796 {
797 	struct xgene_dma_ring *ring = &chan->rx_ring;
798 	struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
799 	struct xgene_dma_desc_hw *desc_hw;
800 	u8 status;
801 
802 	/* Clean already completed and acked descriptors */
803 	xgene_dma_clean_completed_descriptor(chan);
804 
805 	/* Run the callback for each descriptor, in order */
806 	list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) {
807 		/* Get subsequent hw descriptor from DMA rx ring */
808 		desc_hw = &ring->desc_hw[ring->head];
809 
810 		/* Check if this descriptor has been completed */
811 		if (unlikely(XGENE_DMA_DESC_IS_EMPTY(desc_hw)))
812 			break;
813 
814 		if (++ring->head == ring->slots)
815 			ring->head = 0;
816 
817 		/* Check if we have any error with DMA transactions */
818 		status = XGENE_DMA_DESC_STATUS(
819 				XGENE_DMA_DESC_ELERR_RD(le64_to_cpu(
820 							desc_hw->m0)),
821 				XGENE_DMA_DESC_LERR_RD(le64_to_cpu(
822 						       desc_hw->m0)));
823 		if (status) {
824 			/* Print the DMA error type */
825 			chan_err(chan, "%s\n", xgene_dma_desc_err[status]);
826 
827 			/*
828 			 * We have DMA transactions error here. Dump DMA Tx
829 			 * and Rx descriptors for this request */
830 			XGENE_DMA_DESC_DUMP(&desc_sw->desc1,
831 					    "X-Gene DMA TX DESC1: ");
832 
833 			if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC)
834 				XGENE_DMA_DESC_DUMP(&desc_sw->desc2,
835 						    "X-Gene DMA TX DESC2: ");
836 
837 			XGENE_DMA_DESC_DUMP(desc_hw,
838 					    "X-Gene DMA RX ERR DESC: ");
839 		}
840 
841 		/* Notify the hw about this completed descriptor */
842 		iowrite32(-1, ring->cmd);
843 
844 		/* Mark this hw descriptor as processed */
845 		XGENE_DMA_DESC_SET_EMPTY(desc_hw);
846 
847 		xgene_dma_run_tx_complete_actions(chan, desc_sw);
848 
849 		xgene_dma_clean_running_descriptor(chan, desc_sw);
850 
851 		/*
852 		 * Decrement the pending transaction count
853 		 * as we have processed one
854 		 */
855 		chan->pending--;
856 	}
857 
858 	/*
859 	 * Start any pending transactions automatically
860 	 * In the ideal case, we keep the DMA controller busy while we go
861 	 * ahead and free the descriptors below.
862 	 */
863 	xgene_chan_xfer_ld_pending(chan);
864 }
865 
866 static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan)
867 {
868 	struct xgene_dma_chan *chan = to_dma_chan(dchan);
869 
870 	/* Has this channel already been allocated? */
871 	if (chan->desc_pool)
872 		return 1;
873 
874 	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
875 					  sizeof(struct xgene_dma_desc_sw),
876 					  0, 0);
877 	if (!chan->desc_pool) {
878 		chan_err(chan, "Failed to allocate descriptor pool\n");
879 		return -ENOMEM;
880 	}
881 
882 	chan_dbg(chan, "Allocate descripto pool\n");
883 
884 	return 1;
885 }
886 
887 /**
888  * xgene_dma_free_desc_list - Free all descriptors in a queue
889  * @chan: X-Gene DMA channel
890  * @list: the list to free
891  *
892  * LOCKING: must hold chan->desc_lock
893  */
894 static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan,
895 				     struct list_head *list)
896 {
897 	struct xgene_dma_desc_sw *desc, *_desc;
898 
899 	list_for_each_entry_safe(desc, _desc, list, node)
900 		xgene_dma_clean_descriptor(chan, desc);
901 }
902 
903 static void xgene_dma_free_tx_desc_list(struct xgene_dma_chan *chan,
904 					struct list_head *list)
905 {
906 	struct xgene_dma_desc_sw *desc, *_desc;
907 
908 	list_for_each_entry_safe(desc, _desc, list, node)
909 		xgene_dma_clean_descriptor(chan, desc);
910 }
911 
912 static void xgene_dma_free_chan_resources(struct dma_chan *dchan)
913 {
914 	struct xgene_dma_chan *chan = to_dma_chan(dchan);
915 
916 	chan_dbg(chan, "Free all resources\n");
917 
918 	if (!chan->desc_pool)
919 		return;
920 
921 	spin_lock_bh(&chan->lock);
922 
923 	/* Process all running descriptor */
924 	xgene_dma_cleanup_descriptors(chan);
925 
926 	/* Clean all link descriptor queues */
927 	xgene_dma_free_desc_list(chan, &chan->ld_pending);
928 	xgene_dma_free_desc_list(chan, &chan->ld_running);
929 	xgene_dma_free_desc_list(chan, &chan->ld_completed);
930 
931 	spin_unlock_bh(&chan->lock);
932 
933 	/* Delete this channel DMA pool */
934 	dma_pool_destroy(chan->desc_pool);
935 	chan->desc_pool = NULL;
936 }
937 
938 static struct dma_async_tx_descriptor *xgene_dma_prep_memcpy(
939 	struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
940 	size_t len, unsigned long flags)
941 {
942 	struct xgene_dma_desc_sw *first = NULL, *new;
943 	struct xgene_dma_chan *chan;
944 	size_t copy;
945 
946 	if (unlikely(!dchan || !len))
947 		return NULL;
948 
949 	chan = to_dma_chan(dchan);
950 
951 	do {
952 		/* Allocate the link descriptor from DMA pool */
953 		new = xgene_dma_alloc_descriptor(chan);
954 		if (!new)
955 			goto fail;
956 
957 		/* Create the largest transaction possible */
958 		copy = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT);
959 
960 		/* Prepare DMA descriptor */
961 		xgene_dma_prep_cpy_desc(chan, new, dst, src, copy);
962 
963 		if (!first)
964 			first = new;
965 
966 		new->tx.cookie = 0;
967 		async_tx_ack(&new->tx);
968 
969 		/* Update metadata */
970 		len -= copy;
971 		dst += copy;
972 		src += copy;
973 
974 		/* Insert the link descriptor to the LD ring */
975 		list_add_tail(&new->node, &first->tx_list);
976 	} while (len);
977 
978 	new->tx.flags = flags; /* client is in control of this ack */
979 	new->tx.cookie = -EBUSY;
980 	list_splice(&first->tx_list, &new->tx_list);
981 
982 	return &new->tx;
983 
984 fail:
985 	if (!first)
986 		return NULL;
987 
988 	xgene_dma_free_tx_desc_list(chan, &first->tx_list);
989 	return NULL;
990 }
991 
992 static struct dma_async_tx_descriptor *xgene_dma_prep_sg(
993 	struct dma_chan *dchan, struct scatterlist *dst_sg,
994 	u32 dst_nents, struct scatterlist *src_sg,
995 	u32 src_nents, unsigned long flags)
996 {
997 	struct xgene_dma_desc_sw *first = NULL, *new = NULL;
998 	struct xgene_dma_chan *chan;
999 	size_t dst_avail, src_avail;
1000 	dma_addr_t dst, src;
1001 	size_t len;
1002 
1003 	if (unlikely(!dchan))
1004 		return NULL;
1005 
1006 	if (unlikely(!dst_nents || !src_nents))
1007 		return NULL;
1008 
1009 	if (unlikely(!dst_sg || !src_sg))
1010 		return NULL;
1011 
1012 	chan = to_dma_chan(dchan);
1013 
1014 	/* Get prepared for the loop */
1015 	dst_avail = sg_dma_len(dst_sg);
1016 	src_avail = sg_dma_len(src_sg);
1017 	dst_nents--;
1018 	src_nents--;
1019 
1020 	/* Run until we are out of scatterlist entries */
1021 	while (true) {
1022 		/* Create the largest transaction possible */
1023 		len = min_t(size_t, src_avail, dst_avail);
1024 		len = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT);
1025 		if (len == 0)
1026 			goto fetch;
1027 
1028 		dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
1029 		src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
1030 
1031 		/* Allocate the link descriptor from DMA pool */
1032 		new = xgene_dma_alloc_descriptor(chan);
1033 		if (!new)
1034 			goto fail;
1035 
1036 		/* Prepare DMA descriptor */
1037 		xgene_dma_prep_cpy_desc(chan, new, dst, src, len);
1038 
1039 		if (!first)
1040 			first = new;
1041 
1042 		new->tx.cookie = 0;
1043 		async_tx_ack(&new->tx);
1044 
1045 		/* update metadata */
1046 		dst_avail -= len;
1047 		src_avail -= len;
1048 
1049 		/* Insert the link descriptor to the LD ring */
1050 		list_add_tail(&new->node, &first->tx_list);
1051 
1052 fetch:
1053 		/* fetch the next dst scatterlist entry */
1054 		if (dst_avail == 0) {
1055 			/* no more entries: we're done */
1056 			if (dst_nents == 0)
1057 				break;
1058 
1059 			/* fetch the next entry: if there are no more: done */
1060 			dst_sg = sg_next(dst_sg);
1061 			if (!dst_sg)
1062 				break;
1063 
1064 			dst_nents--;
1065 			dst_avail = sg_dma_len(dst_sg);
1066 		}
1067 
1068 		/* fetch the next src scatterlist entry */
1069 		if (src_avail == 0) {
1070 			/* no more entries: we're done */
1071 			if (src_nents == 0)
1072 				break;
1073 
1074 			/* fetch the next entry: if there are no more: done */
1075 			src_sg = sg_next(src_sg);
1076 			if (!src_sg)
1077 				break;
1078 
1079 			src_nents--;
1080 			src_avail = sg_dma_len(src_sg);
1081 		}
1082 	}
1083 
1084 	if (!new)
1085 		return NULL;
1086 
1087 	new->tx.flags = flags; /* client is in control of this ack */
1088 	new->tx.cookie = -EBUSY;
1089 	list_splice(&first->tx_list, &new->tx_list);
1090 
1091 	return &new->tx;
1092 fail:
1093 	if (!first)
1094 		return NULL;
1095 
1096 	xgene_dma_free_tx_desc_list(chan, &first->tx_list);
1097 	return NULL;
1098 }
1099 
1100 static struct dma_async_tx_descriptor *xgene_dma_prep_xor(
1101 	struct dma_chan *dchan, dma_addr_t dst,	dma_addr_t *src,
1102 	u32 src_cnt, size_t len, unsigned long flags)
1103 {
1104 	struct xgene_dma_desc_sw *first = NULL, *new;
1105 	struct xgene_dma_chan *chan;
1106 	static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {
1107 				0x01, 0x01, 0x01, 0x01, 0x01};
1108 
1109 	if (unlikely(!dchan || !len))
1110 		return NULL;
1111 
1112 	chan = to_dma_chan(dchan);
1113 
1114 	do {
1115 		/* Allocate the link descriptor from DMA pool */
1116 		new = xgene_dma_alloc_descriptor(chan);
1117 		if (!new)
1118 			goto fail;
1119 
1120 		/* Prepare xor DMA descriptor */
1121 		xgene_dma_prep_xor_desc(chan, new, &dst, src,
1122 					src_cnt, &len, multi);
1123 
1124 		if (!first)
1125 			first = new;
1126 
1127 		new->tx.cookie = 0;
1128 		async_tx_ack(&new->tx);
1129 
1130 		/* Insert the link descriptor to the LD ring */
1131 		list_add_tail(&new->node, &first->tx_list);
1132 	} while (len);
1133 
1134 	new->tx.flags = flags; /* client is in control of this ack */
1135 	new->tx.cookie = -EBUSY;
1136 	list_splice(&first->tx_list, &new->tx_list);
1137 
1138 	return &new->tx;
1139 
1140 fail:
1141 	if (!first)
1142 		return NULL;
1143 
1144 	xgene_dma_free_tx_desc_list(chan, &first->tx_list);
1145 	return NULL;
1146 }
1147 
1148 static struct dma_async_tx_descriptor *xgene_dma_prep_pq(
1149 	struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src,
1150 	u32 src_cnt, const u8 *scf, size_t len, unsigned long flags)
1151 {
1152 	struct xgene_dma_desc_sw *first = NULL, *new;
1153 	struct xgene_dma_chan *chan;
1154 	size_t _len = len;
1155 	dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC];
1156 	static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01};
1157 
1158 	if (unlikely(!dchan || !len))
1159 		return NULL;
1160 
1161 	chan = to_dma_chan(dchan);
1162 
1163 	/*
1164 	 * Save source addresses on local variable, may be we have to
1165 	 * prepare two descriptor to generate P and Q if both enabled
1166 	 * in the flags by client
1167 	 */
1168 	memcpy(_src, src, sizeof(*src) * src_cnt);
1169 
1170 	if (flags & DMA_PREP_PQ_DISABLE_P)
1171 		len = 0;
1172 
1173 	if (flags & DMA_PREP_PQ_DISABLE_Q)
1174 		_len = 0;
1175 
1176 	do {
1177 		/* Allocate the link descriptor from DMA pool */
1178 		new = xgene_dma_alloc_descriptor(chan);
1179 		if (!new)
1180 			goto fail;
1181 
1182 		if (!first)
1183 			first = new;
1184 
1185 		new->tx.cookie = 0;
1186 		async_tx_ack(&new->tx);
1187 
1188 		/* Insert the link descriptor to the LD ring */
1189 		list_add_tail(&new->node, &first->tx_list);
1190 
1191 		/*
1192 		 * Prepare DMA descriptor to generate P,
1193 		 * if DMA_PREP_PQ_DISABLE_P flag is not set
1194 		 */
1195 		if (len) {
1196 			xgene_dma_prep_xor_desc(chan, new, &dst[0], src,
1197 						src_cnt, &len, multi);
1198 			continue;
1199 		}
1200 
1201 		/*
1202 		 * Prepare DMA descriptor to generate Q,
1203 		 * if DMA_PREP_PQ_DISABLE_Q flag is not set
1204 		 */
1205 		if (_len) {
1206 			xgene_dma_prep_xor_desc(chan, new, &dst[1], _src,
1207 						src_cnt, &_len, scf);
1208 		}
1209 	} while (len || _len);
1210 
1211 	new->tx.flags = flags; /* client is in control of this ack */
1212 	new->tx.cookie = -EBUSY;
1213 	list_splice(&first->tx_list, &new->tx_list);
1214 
1215 	return &new->tx;
1216 
1217 fail:
1218 	if (!first)
1219 		return NULL;
1220 
1221 	xgene_dma_free_tx_desc_list(chan, &first->tx_list);
1222 	return NULL;
1223 }
1224 
1225 static void xgene_dma_issue_pending(struct dma_chan *dchan)
1226 {
1227 	struct xgene_dma_chan *chan = to_dma_chan(dchan);
1228 
1229 	spin_lock_bh(&chan->lock);
1230 	xgene_chan_xfer_ld_pending(chan);
1231 	spin_unlock_bh(&chan->lock);
1232 }
1233 
1234 static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan,
1235 					   dma_cookie_t cookie,
1236 					   struct dma_tx_state *txstate)
1237 {
1238 	return dma_cookie_status(dchan, cookie, txstate);
1239 }
1240 
1241 static void xgene_dma_tasklet_cb(unsigned long data)
1242 {
1243 	struct xgene_dma_chan *chan = (struct xgene_dma_chan *)data;
1244 
1245 	spin_lock_bh(&chan->lock);
1246 
1247 	/* Run all cleanup for descriptors which have been completed */
1248 	xgene_dma_cleanup_descriptors(chan);
1249 
1250 	/* Re-enable DMA channel IRQ */
1251 	enable_irq(chan->rx_irq);
1252 
1253 	spin_unlock_bh(&chan->lock);
1254 }
1255 
1256 static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id)
1257 {
1258 	struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id;
1259 
1260 	BUG_ON(!chan);
1261 
1262 	/*
1263 	 * Disable DMA channel IRQ until we process completed
1264 	 * descriptors
1265 	 */
1266 	disable_irq_nosync(chan->rx_irq);
1267 
1268 	/*
1269 	 * Schedule the tasklet to handle all cleanup of the current
1270 	 * transaction. It will start a new transaction if there is
1271 	 * one pending.
1272 	 */
1273 	tasklet_schedule(&chan->tasklet);
1274 
1275 	return IRQ_HANDLED;
1276 }
1277 
1278 static irqreturn_t xgene_dma_err_isr(int irq, void *id)
1279 {
1280 	struct xgene_dma *pdma = (struct xgene_dma *)id;
1281 	unsigned long int_mask;
1282 	u32 val, i;
1283 
1284 	val = ioread32(pdma->csr_dma + XGENE_DMA_INT);
1285 
1286 	/* Clear DMA interrupts */
1287 	iowrite32(val, pdma->csr_dma + XGENE_DMA_INT);
1288 
1289 	/* Print DMA error info */
1290 	int_mask = val >> XGENE_DMA_INT_MASK_SHIFT;
1291 	for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err))
1292 		dev_err(pdma->dev,
1293 			"Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]);
1294 
1295 	return IRQ_HANDLED;
1296 }
1297 
1298 static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring)
1299 {
1300 	int i;
1301 
1302 	iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE);
1303 
1304 	for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++)
1305 		iowrite32(ring->state[i], ring->pdma->csr_ring +
1306 			  XGENE_DMA_RING_STATE_WR_BASE + (i * 4));
1307 }
1308 
1309 static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring)
1310 {
1311 	memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG);
1312 	xgene_dma_wr_ring_state(ring);
1313 }
1314 
1315 static void xgene_dma_setup_ring(struct xgene_dma_ring *ring)
1316 {
1317 	void *ring_cfg = ring->state;
1318 	u64 addr = ring->desc_paddr;
1319 	void *desc;
1320 	u32 i, val;
1321 
1322 	ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE;
1323 
1324 	/* Clear DMA ring state */
1325 	xgene_dma_clr_ring_state(ring);
1326 
1327 	/* Set DMA ring type */
1328 	XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR);
1329 
1330 	if (ring->owner == XGENE_DMA_RING_OWNER_DMA) {
1331 		/* Set recombination buffer and timeout */
1332 		XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg);
1333 		XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg);
1334 		XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg);
1335 	}
1336 
1337 	/* Initialize DMA ring state */
1338 	XGENE_DMA_RING_SELTHRSH_SET(ring_cfg);
1339 	XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg);
1340 	XGENE_DMA_RING_COHERENT_SET(ring_cfg);
1341 	XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr);
1342 	XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr);
1343 	XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize);
1344 
1345 	/* Write DMA ring configurations */
1346 	xgene_dma_wr_ring_state(ring);
1347 
1348 	/* Set DMA ring id */
1349 	iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id),
1350 		  ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1351 
1352 	/* Set DMA ring buffer */
1353 	iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num),
1354 		  ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1355 
1356 	if (ring->owner != XGENE_DMA_RING_OWNER_CPU)
1357 		return;
1358 
1359 	/* Set empty signature to DMA Rx ring descriptors */
1360 	for (i = 0; i < ring->slots; i++) {
1361 		desc = &ring->desc_hw[i];
1362 		XGENE_DMA_DESC_SET_EMPTY(desc);
1363 	}
1364 
1365 	/* Enable DMA Rx ring interrupt */
1366 	val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1367 	XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num);
1368 	iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1369 }
1370 
1371 static void xgene_dma_clear_ring(struct xgene_dma_ring *ring)
1372 {
1373 	u32 ring_id, val;
1374 
1375 	if (ring->owner == XGENE_DMA_RING_OWNER_CPU) {
1376 		/* Disable DMA Rx ring interrupt */
1377 		val = ioread32(ring->pdma->csr_ring +
1378 			       XGENE_DMA_RING_NE_INT_MODE);
1379 		XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num);
1380 		iowrite32(val, ring->pdma->csr_ring +
1381 			  XGENE_DMA_RING_NE_INT_MODE);
1382 	}
1383 
1384 	/* Clear DMA ring state */
1385 	ring_id = XGENE_DMA_RING_ID_SETUP(ring->id);
1386 	iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1387 
1388 	iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1389 	xgene_dma_clr_ring_state(ring);
1390 }
1391 
1392 static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring)
1393 {
1394 	ring->cmd_base = ring->pdma->csr_ring_cmd +
1395 				XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num -
1396 							  XGENE_DMA_RING_NUM));
1397 
1398 	ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET;
1399 }
1400 
1401 static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan,
1402 				   enum xgene_dma_ring_cfgsize cfgsize)
1403 {
1404 	int size;
1405 
1406 	switch (cfgsize) {
1407 	case XGENE_DMA_RING_CFG_SIZE_512B:
1408 		size = 0x200;
1409 		break;
1410 	case XGENE_DMA_RING_CFG_SIZE_2KB:
1411 		size = 0x800;
1412 		break;
1413 	case XGENE_DMA_RING_CFG_SIZE_16KB:
1414 		size = 0x4000;
1415 		break;
1416 	case XGENE_DMA_RING_CFG_SIZE_64KB:
1417 		size = 0x10000;
1418 		break;
1419 	case XGENE_DMA_RING_CFG_SIZE_512KB:
1420 		size = 0x80000;
1421 		break;
1422 	default:
1423 		chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize);
1424 		return -EINVAL;
1425 	}
1426 
1427 	return size;
1428 }
1429 
1430 static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring)
1431 {
1432 	/* Clear DMA ring configurations */
1433 	xgene_dma_clear_ring(ring);
1434 
1435 	/* De-allocate DMA ring descriptor */
1436 	if (ring->desc_vaddr) {
1437 		dma_free_coherent(ring->pdma->dev, ring->size,
1438 				  ring->desc_vaddr, ring->desc_paddr);
1439 		ring->desc_vaddr = NULL;
1440 	}
1441 }
1442 
1443 static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan)
1444 {
1445 	xgene_dma_delete_ring_one(&chan->rx_ring);
1446 	xgene_dma_delete_ring_one(&chan->tx_ring);
1447 }
1448 
1449 static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan,
1450 				     struct xgene_dma_ring *ring,
1451 				     enum xgene_dma_ring_cfgsize cfgsize)
1452 {
1453 	/* Setup DMA ring descriptor variables */
1454 	ring->pdma = chan->pdma;
1455 	ring->cfgsize = cfgsize;
1456 	ring->num = chan->pdma->ring_num++;
1457 	ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num);
1458 
1459 	ring->size = xgene_dma_get_ring_size(chan, cfgsize);
1460 	if (ring->size <= 0)
1461 		return ring->size;
1462 
1463 	/* Allocate memory for DMA ring descriptor */
1464 	ring->desc_vaddr = dma_zalloc_coherent(chan->dev, ring->size,
1465 					       &ring->desc_paddr, GFP_KERNEL);
1466 	if (!ring->desc_vaddr) {
1467 		chan_err(chan, "Failed to allocate ring desc\n");
1468 		return -ENOMEM;
1469 	}
1470 
1471 	/* Configure and enable DMA ring */
1472 	xgene_dma_set_ring_cmd(ring);
1473 	xgene_dma_setup_ring(ring);
1474 
1475 	return 0;
1476 }
1477 
1478 static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan)
1479 {
1480 	struct xgene_dma_ring *rx_ring = &chan->rx_ring;
1481 	struct xgene_dma_ring *tx_ring = &chan->tx_ring;
1482 	int ret;
1483 
1484 	/* Create DMA Rx ring descriptor */
1485 	rx_ring->owner = XGENE_DMA_RING_OWNER_CPU;
1486 	rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id;
1487 
1488 	ret = xgene_dma_create_ring_one(chan, rx_ring,
1489 					XGENE_DMA_RING_CFG_SIZE_64KB);
1490 	if (ret)
1491 		return ret;
1492 
1493 	chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n",
1494 		 rx_ring->id, rx_ring->num, rx_ring->desc_vaddr);
1495 
1496 	/* Create DMA Tx ring descriptor */
1497 	tx_ring->owner = XGENE_DMA_RING_OWNER_DMA;
1498 	tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id;
1499 
1500 	ret = xgene_dma_create_ring_one(chan, tx_ring,
1501 					XGENE_DMA_RING_CFG_SIZE_64KB);
1502 	if (ret) {
1503 		xgene_dma_delete_ring_one(rx_ring);
1504 		return ret;
1505 	}
1506 
1507 	tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num);
1508 
1509 	chan_dbg(chan,
1510 		 "Tx ring id 0x%X num %d desc 0x%p\n",
1511 		 tx_ring->id, tx_ring->num, tx_ring->desc_vaddr);
1512 
1513 	/* Set the max outstanding request possible to this channel */
1514 	chan->max_outstanding = rx_ring->slots;
1515 
1516 	return ret;
1517 }
1518 
1519 static int xgene_dma_init_rings(struct xgene_dma *pdma)
1520 {
1521 	int ret, i, j;
1522 
1523 	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1524 		ret = xgene_dma_create_chan_rings(&pdma->chan[i]);
1525 		if (ret) {
1526 			for (j = 0; j < i; j++)
1527 				xgene_dma_delete_chan_rings(&pdma->chan[j]);
1528 			return ret;
1529 		}
1530 	}
1531 
1532 	return ret;
1533 }
1534 
1535 static void xgene_dma_enable(struct xgene_dma *pdma)
1536 {
1537 	u32 val;
1538 
1539 	/* Configure and enable DMA engine */
1540 	val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1541 	XGENE_DMA_CH_SETUP(val);
1542 	XGENE_DMA_ENABLE(val);
1543 	iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1544 }
1545 
1546 static void xgene_dma_disable(struct xgene_dma *pdma)
1547 {
1548 	u32 val;
1549 
1550 	val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1551 	XGENE_DMA_DISABLE(val);
1552 	iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1553 }
1554 
1555 static void xgene_dma_mask_interrupts(struct xgene_dma *pdma)
1556 {
1557 	/*
1558 	 * Mask DMA ring overflow, underflow and
1559 	 * AXI write/read error interrupts
1560 	 */
1561 	iowrite32(XGENE_DMA_INT_ALL_MASK,
1562 		  pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1563 	iowrite32(XGENE_DMA_INT_ALL_MASK,
1564 		  pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1565 	iowrite32(XGENE_DMA_INT_ALL_MASK,
1566 		  pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1567 	iowrite32(XGENE_DMA_INT_ALL_MASK,
1568 		  pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1569 	iowrite32(XGENE_DMA_INT_ALL_MASK,
1570 		  pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1571 
1572 	/* Mask DMA error interrupts */
1573 	iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK);
1574 }
1575 
1576 static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma)
1577 {
1578 	/*
1579 	 * Unmask DMA ring overflow, underflow and
1580 	 * AXI write/read error interrupts
1581 	 */
1582 	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1583 		  pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1584 	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1585 		  pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1586 	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1587 		  pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1588 	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1589 		  pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1590 	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1591 		  pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1592 
1593 	/* Unmask DMA error interrupts */
1594 	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1595 		  pdma->csr_dma + XGENE_DMA_INT_MASK);
1596 }
1597 
1598 static void xgene_dma_init_hw(struct xgene_dma *pdma)
1599 {
1600 	u32 val;
1601 
1602 	/* Associate DMA ring to corresponding ring HW */
1603 	iowrite32(XGENE_DMA_ASSOC_RING_MNGR1,
1604 		  pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC);
1605 
1606 	/* Configure RAID6 polynomial control setting */
1607 	if (is_pq_enabled(pdma))
1608 		iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D),
1609 			  pdma->csr_dma + XGENE_DMA_RAID6_CONT);
1610 	else
1611 		dev_info(pdma->dev, "PQ is disabled in HW\n");
1612 
1613 	xgene_dma_enable(pdma);
1614 	xgene_dma_unmask_interrupts(pdma);
1615 
1616 	/* Get DMA id and version info */
1617 	val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR);
1618 
1619 	/* DMA device info */
1620 	dev_info(pdma->dev,
1621 		 "X-Gene DMA v%d.%02d.%02d driver registered %d channels",
1622 		 XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val),
1623 		 XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL);
1624 }
1625 
1626 static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma)
1627 {
1628 	if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) &&
1629 	    (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST)))
1630 		return 0;
1631 
1632 	iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN);
1633 	iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST);
1634 
1635 	/* Bring up memory */
1636 	iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1637 
1638 	/* Force a barrier */
1639 	ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1640 
1641 	/* reset may take up to 1ms */
1642 	usleep_range(1000, 1100);
1643 
1644 	if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY)
1645 		!= XGENE_DMA_RING_BLK_MEM_RDY_VAL) {
1646 		dev_err(pdma->dev,
1647 			"Failed to release ring mngr memory from shutdown\n");
1648 		return -ENODEV;
1649 	}
1650 
1651 	/* program threshold set 1 and all hysteresis */
1652 	iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL,
1653 		  pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1);
1654 	iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL,
1655 		  pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1);
1656 	iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL,
1657 		  pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS);
1658 
1659 	/* Enable QPcore and assign error queue */
1660 	iowrite32(XGENE_DMA_RING_ENABLE,
1661 		  pdma->csr_ring + XGENE_DMA_RING_CONFIG);
1662 
1663 	return 0;
1664 }
1665 
1666 static int xgene_dma_init_mem(struct xgene_dma *pdma)
1667 {
1668 	int ret;
1669 
1670 	ret = xgene_dma_init_ring_mngr(pdma);
1671 	if (ret)
1672 		return ret;
1673 
1674 	/* Bring up memory */
1675 	iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1676 
1677 	/* Force a barrier */
1678 	ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1679 
1680 	/* reset may take up to 1ms */
1681 	usleep_range(1000, 1100);
1682 
1683 	if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY)
1684 		!= XGENE_DMA_BLK_MEM_RDY_VAL) {
1685 		dev_err(pdma->dev,
1686 			"Failed to release DMA memory from shutdown\n");
1687 		return -ENODEV;
1688 	}
1689 
1690 	return 0;
1691 }
1692 
1693 static int xgene_dma_request_irqs(struct xgene_dma *pdma)
1694 {
1695 	struct xgene_dma_chan *chan;
1696 	int ret, i, j;
1697 
1698 	/* Register DMA error irq */
1699 	ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr,
1700 			       0, "dma_error", pdma);
1701 	if (ret) {
1702 		dev_err(pdma->dev,
1703 			"Failed to register error IRQ %d\n", pdma->err_irq);
1704 		return ret;
1705 	}
1706 
1707 	/* Register DMA channel rx irq */
1708 	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1709 		chan = &pdma->chan[i];
1710 		ret = devm_request_irq(chan->dev, chan->rx_irq,
1711 				       xgene_dma_chan_ring_isr,
1712 				       0, chan->name, chan);
1713 		if (ret) {
1714 			chan_err(chan, "Failed to register Rx IRQ %d\n",
1715 				 chan->rx_irq);
1716 			devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1717 
1718 			for (j = 0; j < i; j++) {
1719 				chan = &pdma->chan[i];
1720 				devm_free_irq(chan->dev, chan->rx_irq, chan);
1721 			}
1722 
1723 			return ret;
1724 		}
1725 	}
1726 
1727 	return 0;
1728 }
1729 
1730 static void xgene_dma_free_irqs(struct xgene_dma *pdma)
1731 {
1732 	struct xgene_dma_chan *chan;
1733 	int i;
1734 
1735 	/* Free DMA device error irq */
1736 	devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1737 
1738 	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1739 		chan = &pdma->chan[i];
1740 		devm_free_irq(chan->dev, chan->rx_irq, chan);
1741 	}
1742 }
1743 
1744 static void xgene_dma_set_caps(struct xgene_dma_chan *chan,
1745 			       struct dma_device *dma_dev)
1746 {
1747 	/* Initialize DMA device capability mask */
1748 	dma_cap_zero(dma_dev->cap_mask);
1749 
1750 	/* Set DMA device capability */
1751 	dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1752 	dma_cap_set(DMA_SG, dma_dev->cap_mask);
1753 
1754 	/* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR
1755 	 * and channel 1 supports XOR, PQ both. First thing here is we have
1756 	 * mechanism in hw to enable/disable PQ/XOR supports on channel 1,
1757 	 * we can make sure this by reading SoC Efuse register.
1758 	 * Second thing, we have hw errata that if we run channel 0 and
1759 	 * channel 1 simultaneously with executing XOR and PQ request,
1760 	 * suddenly DMA engine hangs, So here we enable XOR on channel 0 only
1761 	 * if XOR and PQ supports on channel 1 is disabled.
1762 	 */
1763 	if ((chan->id == XGENE_DMA_PQ_CHANNEL) &&
1764 	    is_pq_enabled(chan->pdma)) {
1765 		dma_cap_set(DMA_PQ, dma_dev->cap_mask);
1766 		dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1767 	} else if ((chan->id == XGENE_DMA_XOR_CHANNEL) &&
1768 		   !is_pq_enabled(chan->pdma)) {
1769 		dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1770 	}
1771 
1772 	/* Set base and prep routines */
1773 	dma_dev->dev = chan->dev;
1774 	dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources;
1775 	dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources;
1776 	dma_dev->device_issue_pending = xgene_dma_issue_pending;
1777 	dma_dev->device_tx_status = xgene_dma_tx_status;
1778 	dma_dev->device_prep_dma_memcpy = xgene_dma_prep_memcpy;
1779 	dma_dev->device_prep_dma_sg = xgene_dma_prep_sg;
1780 
1781 	if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1782 		dma_dev->device_prep_dma_xor = xgene_dma_prep_xor;
1783 		dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC;
1784 		dma_dev->xor_align = XGENE_DMA_XOR_ALIGNMENT;
1785 	}
1786 
1787 	if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1788 		dma_dev->device_prep_dma_pq = xgene_dma_prep_pq;
1789 		dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC;
1790 		dma_dev->pq_align = XGENE_DMA_XOR_ALIGNMENT;
1791 	}
1792 }
1793 
1794 static int xgene_dma_async_register(struct xgene_dma *pdma, int id)
1795 {
1796 	struct xgene_dma_chan *chan = &pdma->chan[id];
1797 	struct dma_device *dma_dev = &pdma->dma_dev[id];
1798 	int ret;
1799 
1800 	chan->dma_chan.device = dma_dev;
1801 
1802 	spin_lock_init(&chan->lock);
1803 	INIT_LIST_HEAD(&chan->ld_pending);
1804 	INIT_LIST_HEAD(&chan->ld_running);
1805 	INIT_LIST_HEAD(&chan->ld_completed);
1806 	tasklet_init(&chan->tasklet, xgene_dma_tasklet_cb,
1807 		     (unsigned long)chan);
1808 
1809 	chan->pending = 0;
1810 	chan->desc_pool = NULL;
1811 	dma_cookie_init(&chan->dma_chan);
1812 
1813 	/* Setup dma device capabilities and prep routines */
1814 	xgene_dma_set_caps(chan, dma_dev);
1815 
1816 	/* Initialize DMA device list head */
1817 	INIT_LIST_HEAD(&dma_dev->channels);
1818 	list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels);
1819 
1820 	/* Register with Linux async DMA framework*/
1821 	ret = dma_async_device_register(dma_dev);
1822 	if (ret) {
1823 		chan_err(chan, "Failed to register async device %d", ret);
1824 		tasklet_kill(&chan->tasklet);
1825 
1826 		return ret;
1827 	}
1828 
1829 	/* DMA capability info */
1830 	dev_info(pdma->dev,
1831 		 "%s: CAPABILITY ( %s%s%s%s)\n", dma_chan_name(&chan->dma_chan),
1832 		 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "MEMCPY " : "",
1833 		 dma_has_cap(DMA_SG, dma_dev->cap_mask) ? "SGCPY " : "",
1834 		 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "",
1835 		 dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : "");
1836 
1837 	return 0;
1838 }
1839 
1840 static int xgene_dma_init_async(struct xgene_dma *pdma)
1841 {
1842 	int ret, i, j;
1843 
1844 	for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) {
1845 		ret = xgene_dma_async_register(pdma, i);
1846 		if (ret) {
1847 			for (j = 0; j < i; j++) {
1848 				dma_async_device_unregister(&pdma->dma_dev[j]);
1849 				tasklet_kill(&pdma->chan[j].tasklet);
1850 			}
1851 
1852 			return ret;
1853 		}
1854 	}
1855 
1856 	return ret;
1857 }
1858 
1859 static void xgene_dma_async_unregister(struct xgene_dma *pdma)
1860 {
1861 	int i;
1862 
1863 	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1864 		dma_async_device_unregister(&pdma->dma_dev[i]);
1865 }
1866 
1867 static void xgene_dma_init_channels(struct xgene_dma *pdma)
1868 {
1869 	struct xgene_dma_chan *chan;
1870 	int i;
1871 
1872 	pdma->ring_num = XGENE_DMA_RING_NUM;
1873 
1874 	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1875 		chan = &pdma->chan[i];
1876 		chan->dev = pdma->dev;
1877 		chan->pdma = pdma;
1878 		chan->id = i;
1879 		snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id);
1880 	}
1881 }
1882 
1883 static int xgene_dma_get_resources(struct platform_device *pdev,
1884 				   struct xgene_dma *pdma)
1885 {
1886 	struct resource *res;
1887 	int irq, i;
1888 
1889 	/* Get DMA csr region */
1890 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1891 	if (!res) {
1892 		dev_err(&pdev->dev, "Failed to get csr region\n");
1893 		return -ENXIO;
1894 	}
1895 
1896 	pdma->csr_dma = devm_ioremap(&pdev->dev, res->start,
1897 				     resource_size(res));
1898 	if (!pdma->csr_dma) {
1899 		dev_err(&pdev->dev, "Failed to ioremap csr region");
1900 		return -ENOMEM;
1901 	}
1902 
1903 	/* Get DMA ring csr region */
1904 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1905 	if (!res) {
1906 		dev_err(&pdev->dev, "Failed to get ring csr region\n");
1907 		return -ENXIO;
1908 	}
1909 
1910 	pdma->csr_ring =  devm_ioremap(&pdev->dev, res->start,
1911 				       resource_size(res));
1912 	if (!pdma->csr_ring) {
1913 		dev_err(&pdev->dev, "Failed to ioremap ring csr region");
1914 		return -ENOMEM;
1915 	}
1916 
1917 	/* Get DMA ring cmd csr region */
1918 	res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1919 	if (!res) {
1920 		dev_err(&pdev->dev, "Failed to get ring cmd csr region\n");
1921 		return -ENXIO;
1922 	}
1923 
1924 	pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start,
1925 					  resource_size(res));
1926 	if (!pdma->csr_ring_cmd) {
1927 		dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region");
1928 		return -ENOMEM;
1929 	}
1930 
1931 	/* Get efuse csr region */
1932 	res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1933 	if (!res) {
1934 		dev_err(&pdev->dev, "Failed to get efuse csr region\n");
1935 		return -ENXIO;
1936 	}
1937 
1938 	pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start,
1939 				       resource_size(res));
1940 	if (!pdma->csr_efuse) {
1941 		dev_err(&pdev->dev, "Failed to ioremap efuse csr region");
1942 		return -ENOMEM;
1943 	}
1944 
1945 	/* Get DMA error interrupt */
1946 	irq = platform_get_irq(pdev, 0);
1947 	if (irq <= 0) {
1948 		dev_err(&pdev->dev, "Failed to get Error IRQ\n");
1949 		return -ENXIO;
1950 	}
1951 
1952 	pdma->err_irq = irq;
1953 
1954 	/* Get DMA Rx ring descriptor interrupts for all DMA channels */
1955 	for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) {
1956 		irq = platform_get_irq(pdev, i);
1957 		if (irq <= 0) {
1958 			dev_err(&pdev->dev, "Failed to get Rx IRQ\n");
1959 			return -ENXIO;
1960 		}
1961 
1962 		pdma->chan[i - 1].rx_irq = irq;
1963 	}
1964 
1965 	return 0;
1966 }
1967 
1968 static int xgene_dma_probe(struct platform_device *pdev)
1969 {
1970 	struct xgene_dma *pdma;
1971 	int ret, i;
1972 
1973 	pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL);
1974 	if (!pdma)
1975 		return -ENOMEM;
1976 
1977 	pdma->dev = &pdev->dev;
1978 	platform_set_drvdata(pdev, pdma);
1979 
1980 	ret = xgene_dma_get_resources(pdev, pdma);
1981 	if (ret)
1982 		return ret;
1983 
1984 	pdma->clk = devm_clk_get(&pdev->dev, NULL);
1985 	if (IS_ERR(pdma->clk)) {
1986 		dev_err(&pdev->dev, "Failed to get clk\n");
1987 		return PTR_ERR(pdma->clk);
1988 	}
1989 
1990 	/* Enable clk before accessing registers */
1991 	ret = clk_prepare_enable(pdma->clk);
1992 	if (ret) {
1993 		dev_err(&pdev->dev, "Failed to enable clk %d\n", ret);
1994 		return ret;
1995 	}
1996 
1997 	/* Remove DMA RAM out of shutdown */
1998 	ret = xgene_dma_init_mem(pdma);
1999 	if (ret)
2000 		goto err_clk_enable;
2001 
2002 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42));
2003 	if (ret) {
2004 		dev_err(&pdev->dev, "No usable DMA configuration\n");
2005 		goto err_dma_mask;
2006 	}
2007 
2008 	/* Initialize DMA channels software state */
2009 	xgene_dma_init_channels(pdma);
2010 
2011 	/* Configue DMA rings */
2012 	ret = xgene_dma_init_rings(pdma);
2013 	if (ret)
2014 		goto err_clk_enable;
2015 
2016 	ret = xgene_dma_request_irqs(pdma);
2017 	if (ret)
2018 		goto err_request_irq;
2019 
2020 	/* Configure and enable DMA engine */
2021 	xgene_dma_init_hw(pdma);
2022 
2023 	/* Register DMA device with linux async framework */
2024 	ret = xgene_dma_init_async(pdma);
2025 	if (ret)
2026 		goto err_async_init;
2027 
2028 	return 0;
2029 
2030 err_async_init:
2031 	xgene_dma_free_irqs(pdma);
2032 
2033 err_request_irq:
2034 	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
2035 		xgene_dma_delete_chan_rings(&pdma->chan[i]);
2036 
2037 err_dma_mask:
2038 err_clk_enable:
2039 	clk_disable_unprepare(pdma->clk);
2040 
2041 	return ret;
2042 }
2043 
2044 static int xgene_dma_remove(struct platform_device *pdev)
2045 {
2046 	struct xgene_dma *pdma = platform_get_drvdata(pdev);
2047 	struct xgene_dma_chan *chan;
2048 	int i;
2049 
2050 	xgene_dma_async_unregister(pdma);
2051 
2052 	/* Mask interrupts and disable DMA engine */
2053 	xgene_dma_mask_interrupts(pdma);
2054 	xgene_dma_disable(pdma);
2055 	xgene_dma_free_irqs(pdma);
2056 
2057 	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
2058 		chan = &pdma->chan[i];
2059 		tasklet_kill(&chan->tasklet);
2060 		xgene_dma_delete_chan_rings(chan);
2061 	}
2062 
2063 	clk_disable_unprepare(pdma->clk);
2064 
2065 	return 0;
2066 }
2067 
2068 static const struct of_device_id xgene_dma_of_match_ptr[] = {
2069 	{.compatible = "apm,xgene-storm-dma",},
2070 	{},
2071 };
2072 MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr);
2073 
2074 static struct platform_driver xgene_dma_driver = {
2075 	.probe = xgene_dma_probe,
2076 	.remove = xgene_dma_remove,
2077 	.driver = {
2078 		.name = "X-Gene-DMA",
2079 		.of_match_table = xgene_dma_of_match_ptr,
2080 	},
2081 };
2082 
2083 module_platform_driver(xgene_dma_driver);
2084 
2085 MODULE_DESCRIPTION("APM X-Gene SoC DMA driver");
2086 MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>");
2087 MODULE_AUTHOR("Loc Ho <lho@apm.com>");
2088 MODULE_LICENSE("GPL");
2089 MODULE_VERSION("1.0");
2090