1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Applied Micro X-Gene SoC DMA engine Driver 4 * 5 * Copyright (c) 2015, Applied Micro Circuits Corporation 6 * Authors: Rameshwar Prasad Sahu <rsahu@apm.com> 7 * Loc Ho <lho@apm.com> 8 * 9 * NOTE: PM support is currently not available. 10 */ 11 12 #include <linux/acpi.h> 13 #include <linux/clk.h> 14 #include <linux/delay.h> 15 #include <linux/dma-mapping.h> 16 #include <linux/dmaengine.h> 17 #include <linux/dmapool.h> 18 #include <linux/interrupt.h> 19 #include <linux/io.h> 20 #include <linux/irq.h> 21 #include <linux/module.h> 22 #include <linux/of_device.h> 23 24 #include "dmaengine.h" 25 26 /* X-Gene DMA ring csr registers and bit definations */ 27 #define XGENE_DMA_RING_CONFIG 0x04 28 #define XGENE_DMA_RING_ENABLE BIT(31) 29 #define XGENE_DMA_RING_ID 0x08 30 #define XGENE_DMA_RING_ID_SETUP(v) ((v) | BIT(31)) 31 #define XGENE_DMA_RING_ID_BUF 0x0C 32 #define XGENE_DMA_RING_ID_BUF_SETUP(v) (((v) << 9) | BIT(21)) 33 #define XGENE_DMA_RING_THRESLD0_SET1 0x30 34 #define XGENE_DMA_RING_THRESLD0_SET1_VAL 0X64 35 #define XGENE_DMA_RING_THRESLD1_SET1 0x34 36 #define XGENE_DMA_RING_THRESLD1_SET1_VAL 0xC8 37 #define XGENE_DMA_RING_HYSTERESIS 0x68 38 #define XGENE_DMA_RING_HYSTERESIS_VAL 0xFFFFFFFF 39 #define XGENE_DMA_RING_STATE 0x6C 40 #define XGENE_DMA_RING_STATE_WR_BASE 0x70 41 #define XGENE_DMA_RING_NE_INT_MODE 0x017C 42 #define XGENE_DMA_RING_NE_INT_MODE_SET(m, v) \ 43 ((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v))) 44 #define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v) \ 45 ((m) &= (~BIT(31 - (v)))) 46 #define XGENE_DMA_RING_CLKEN 0xC208 47 #define XGENE_DMA_RING_SRST 0xC200 48 #define XGENE_DMA_RING_MEM_RAM_SHUTDOWN 0xD070 49 #define XGENE_DMA_RING_BLK_MEM_RDY 0xD074 50 #define XGENE_DMA_RING_BLK_MEM_RDY_VAL 0xFFFFFFFF 51 #define XGENE_DMA_RING_ID_GET(owner, num) (((owner) << 6) | (num)) 52 #define XGENE_DMA_RING_DST_ID(v) ((1 << 10) | (v)) 53 #define XGENE_DMA_RING_CMD_OFFSET 0x2C 54 #define XGENE_DMA_RING_CMD_BASE_OFFSET(v) ((v) << 6) 55 #define XGENE_DMA_RING_COHERENT_SET(m) \ 56 (((u32 *)(m))[2] |= BIT(4)) 57 #define XGENE_DMA_RING_ADDRL_SET(m, v) \ 58 (((u32 *)(m))[2] |= (((v) >> 8) << 5)) 59 #define XGENE_DMA_RING_ADDRH_SET(m, v) \ 60 (((u32 *)(m))[3] |= ((v) >> 35)) 61 #define XGENE_DMA_RING_ACCEPTLERR_SET(m) \ 62 (((u32 *)(m))[3] |= BIT(19)) 63 #define XGENE_DMA_RING_SIZE_SET(m, v) \ 64 (((u32 *)(m))[3] |= ((v) << 23)) 65 #define XGENE_DMA_RING_RECOMBBUF_SET(m) \ 66 (((u32 *)(m))[3] |= BIT(27)) 67 #define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m) \ 68 (((u32 *)(m))[3] |= (0x7 << 28)) 69 #define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m) \ 70 (((u32 *)(m))[4] |= 0x3) 71 #define XGENE_DMA_RING_SELTHRSH_SET(m) \ 72 (((u32 *)(m))[4] |= BIT(3)) 73 #define XGENE_DMA_RING_TYPE_SET(m, v) \ 74 (((u32 *)(m))[4] |= ((v) << 19)) 75 76 /* X-Gene DMA device csr registers and bit definitions */ 77 #define XGENE_DMA_IPBRR 0x0 78 #define XGENE_DMA_DEV_ID_RD(v) ((v) & 0x00000FFF) 79 #define XGENE_DMA_BUS_ID_RD(v) (((v) >> 12) & 3) 80 #define XGENE_DMA_REV_NO_RD(v) (((v) >> 14) & 3) 81 #define XGENE_DMA_GCR 0x10 82 #define XGENE_DMA_CH_SETUP(v) \ 83 ((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF) 84 #define XGENE_DMA_ENABLE(v) ((v) |= BIT(31)) 85 #define XGENE_DMA_DISABLE(v) ((v) &= ~BIT(31)) 86 #define XGENE_DMA_RAID6_CONT 0x14 87 #define XGENE_DMA_RAID6_MULTI_CTRL(v) ((v) << 24) 88 #define XGENE_DMA_INT 0x70 89 #define XGENE_DMA_INT_MASK 0x74 90 #define XGENE_DMA_INT_ALL_MASK 0xFFFFFFFF 91 #define XGENE_DMA_INT_ALL_UNMASK 0x0 92 #define XGENE_DMA_INT_MASK_SHIFT 0x14 93 #define XGENE_DMA_RING_INT0_MASK 0x90A0 94 #define XGENE_DMA_RING_INT1_MASK 0x90A8 95 #define XGENE_DMA_RING_INT2_MASK 0x90B0 96 #define XGENE_DMA_RING_INT3_MASK 0x90B8 97 #define XGENE_DMA_RING_INT4_MASK 0x90C0 98 #define XGENE_DMA_CFG_RING_WQ_ASSOC 0x90E0 99 #define XGENE_DMA_ASSOC_RING_MNGR1 0xFFFFFFFF 100 #define XGENE_DMA_MEM_RAM_SHUTDOWN 0xD070 101 #define XGENE_DMA_BLK_MEM_RDY 0xD074 102 #define XGENE_DMA_BLK_MEM_RDY_VAL 0xFFFFFFFF 103 #define XGENE_DMA_RING_CMD_SM_OFFSET 0x8000 104 105 /* X-Gene SoC EFUSE csr register and bit defination */ 106 #define XGENE_SOC_JTAG1_SHADOW 0x18 107 #define XGENE_DMA_PQ_DISABLE_MASK BIT(13) 108 109 /* X-Gene DMA Descriptor format */ 110 #define XGENE_DMA_DESC_NV_BIT BIT_ULL(50) 111 #define XGENE_DMA_DESC_IN_BIT BIT_ULL(55) 112 #define XGENE_DMA_DESC_C_BIT BIT_ULL(63) 113 #define XGENE_DMA_DESC_DR_BIT BIT_ULL(61) 114 #define XGENE_DMA_DESC_ELERR_POS 46 115 #define XGENE_DMA_DESC_RTYPE_POS 56 116 #define XGENE_DMA_DESC_LERR_POS 60 117 #define XGENE_DMA_DESC_BUFLEN_POS 48 118 #define XGENE_DMA_DESC_HOENQ_NUM_POS 48 119 #define XGENE_DMA_DESC_ELERR_RD(m) \ 120 (((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3) 121 #define XGENE_DMA_DESC_LERR_RD(m) \ 122 (((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7) 123 #define XGENE_DMA_DESC_STATUS(elerr, lerr) \ 124 (((elerr) << 4) | (lerr)) 125 126 /* X-Gene DMA descriptor empty s/w signature */ 127 #define XGENE_DMA_DESC_EMPTY_SIGNATURE ~0ULL 128 129 /* X-Gene DMA configurable parameters defines */ 130 #define XGENE_DMA_RING_NUM 512 131 #define XGENE_DMA_BUFNUM 0x0 132 #define XGENE_DMA_CPU_BUFNUM 0x18 133 #define XGENE_DMA_RING_OWNER_DMA 0x03 134 #define XGENE_DMA_RING_OWNER_CPU 0x0F 135 #define XGENE_DMA_RING_TYPE_REGULAR 0x01 136 #define XGENE_DMA_RING_WQ_DESC_SIZE 32 /* 32 Bytes */ 137 #define XGENE_DMA_RING_NUM_CONFIG 5 138 #define XGENE_DMA_MAX_CHANNEL 4 139 #define XGENE_DMA_XOR_CHANNEL 0 140 #define XGENE_DMA_PQ_CHANNEL 1 141 #define XGENE_DMA_MAX_BYTE_CNT 0x4000 /* 16 KB */ 142 #define XGENE_DMA_MAX_64B_DESC_BYTE_CNT 0x14000 /* 80 KB */ 143 #define XGENE_DMA_MAX_XOR_SRC 5 144 #define XGENE_DMA_16K_BUFFER_LEN_CODE 0x0 145 #define XGENE_DMA_INVALID_LEN_CODE 0x7800000000000000ULL 146 147 /* X-Gene DMA descriptor error codes */ 148 #define ERR_DESC_AXI 0x01 149 #define ERR_BAD_DESC 0x02 150 #define ERR_READ_DATA_AXI 0x03 151 #define ERR_WRITE_DATA_AXI 0x04 152 #define ERR_FBP_TIMEOUT 0x05 153 #define ERR_ECC 0x06 154 #define ERR_DIFF_SIZE 0x08 155 #define ERR_SCT_GAT_LEN 0x09 156 #define ERR_CRC_ERR 0x11 157 #define ERR_CHKSUM 0x12 158 #define ERR_DIF 0x13 159 160 /* X-Gene DMA error interrupt codes */ 161 #define ERR_DIF_SIZE_INT 0x0 162 #define ERR_GS_ERR_INT 0x1 163 #define ERR_FPB_TIMEO_INT 0x2 164 #define ERR_WFIFO_OVF_INT 0x3 165 #define ERR_RFIFO_OVF_INT 0x4 166 #define ERR_WR_TIMEO_INT 0x5 167 #define ERR_RD_TIMEO_INT 0x6 168 #define ERR_WR_ERR_INT 0x7 169 #define ERR_RD_ERR_INT 0x8 170 #define ERR_BAD_DESC_INT 0x9 171 #define ERR_DESC_DST_INT 0xA 172 #define ERR_DESC_SRC_INT 0xB 173 174 /* X-Gene DMA flyby operation code */ 175 #define FLYBY_2SRC_XOR 0x80 176 #define FLYBY_3SRC_XOR 0x90 177 #define FLYBY_4SRC_XOR 0xA0 178 #define FLYBY_5SRC_XOR 0xB0 179 180 /* X-Gene DMA SW descriptor flags */ 181 #define XGENE_DMA_FLAG_64B_DESC BIT(0) 182 183 /* Define to dump X-Gene DMA descriptor */ 184 #define XGENE_DMA_DESC_DUMP(desc, m) \ 185 print_hex_dump(KERN_ERR, (m), \ 186 DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0) 187 188 #define to_dma_desc_sw(tx) \ 189 container_of(tx, struct xgene_dma_desc_sw, tx) 190 #define to_dma_chan(dchan) \ 191 container_of(dchan, struct xgene_dma_chan, dma_chan) 192 193 #define chan_dbg(chan, fmt, arg...) \ 194 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg) 195 #define chan_err(chan, fmt, arg...) \ 196 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg) 197 198 struct xgene_dma_desc_hw { 199 __le64 m0; 200 __le64 m1; 201 __le64 m2; 202 __le64 m3; 203 }; 204 205 enum xgene_dma_ring_cfgsize { 206 XGENE_DMA_RING_CFG_SIZE_512B, 207 XGENE_DMA_RING_CFG_SIZE_2KB, 208 XGENE_DMA_RING_CFG_SIZE_16KB, 209 XGENE_DMA_RING_CFG_SIZE_64KB, 210 XGENE_DMA_RING_CFG_SIZE_512KB, 211 XGENE_DMA_RING_CFG_SIZE_INVALID 212 }; 213 214 struct xgene_dma_ring { 215 struct xgene_dma *pdma; 216 u8 buf_num; 217 u16 id; 218 u16 num; 219 u16 head; 220 u16 owner; 221 u16 slots; 222 u16 dst_ring_num; 223 u32 size; 224 void __iomem *cmd; 225 void __iomem *cmd_base; 226 dma_addr_t desc_paddr; 227 u32 state[XGENE_DMA_RING_NUM_CONFIG]; 228 enum xgene_dma_ring_cfgsize cfgsize; 229 union { 230 void *desc_vaddr; 231 struct xgene_dma_desc_hw *desc_hw; 232 }; 233 }; 234 235 struct xgene_dma_desc_sw { 236 struct xgene_dma_desc_hw desc1; 237 struct xgene_dma_desc_hw desc2; 238 u32 flags; 239 struct list_head node; 240 struct list_head tx_list; 241 struct dma_async_tx_descriptor tx; 242 }; 243 244 /** 245 * struct xgene_dma_chan - internal representation of an X-Gene DMA channel 246 * @dma_chan: dmaengine channel object member 247 * @pdma: X-Gene DMA device structure reference 248 * @dev: struct device reference for dma mapping api 249 * @id: raw id of this channel 250 * @rx_irq: channel IRQ 251 * @name: name of X-Gene DMA channel 252 * @lock: serializes enqueue/dequeue operations to the descriptor pool 253 * @pending: number of transaction request pushed to DMA controller for 254 * execution, but still waiting for completion, 255 * @max_outstanding: max number of outstanding request we can push to channel 256 * @ld_pending: descriptors which are queued to run, but have not yet been 257 * submitted to the hardware for execution 258 * @ld_running: descriptors which are currently being executing by the hardware 259 * @ld_completed: descriptors which have finished execution by the hardware. 260 * These descriptors have already had their cleanup actions run. They 261 * are waiting for the ACK bit to be set by the async tx API. 262 * @desc_pool: descriptor pool for DMA operations 263 * @tasklet: bottom half where all completed descriptors cleans 264 * @tx_ring: transmit ring descriptor that we use to prepare actual 265 * descriptors for further executions 266 * @rx_ring: receive ring descriptor that we use to get completed DMA 267 * descriptors during cleanup time 268 */ 269 struct xgene_dma_chan { 270 struct dma_chan dma_chan; 271 struct xgene_dma *pdma; 272 struct device *dev; 273 int id; 274 int rx_irq; 275 char name[10]; 276 spinlock_t lock; 277 int pending; 278 int max_outstanding; 279 struct list_head ld_pending; 280 struct list_head ld_running; 281 struct list_head ld_completed; 282 struct dma_pool *desc_pool; 283 struct tasklet_struct tasklet; 284 struct xgene_dma_ring tx_ring; 285 struct xgene_dma_ring rx_ring; 286 }; 287 288 /** 289 * struct xgene_dma - internal representation of an X-Gene DMA device 290 * @err_irq: DMA error irq number 291 * @ring_num: start id number for DMA ring 292 * @csr_dma: base for DMA register access 293 * @csr_ring: base for DMA ring register access 294 * @csr_ring_cmd: base for DMA ring command register access 295 * @csr_efuse: base for efuse register access 296 * @dma_dev: embedded struct dma_device 297 * @chan: reference to X-Gene DMA channels 298 */ 299 struct xgene_dma { 300 struct device *dev; 301 struct clk *clk; 302 int err_irq; 303 int ring_num; 304 void __iomem *csr_dma; 305 void __iomem *csr_ring; 306 void __iomem *csr_ring_cmd; 307 void __iomem *csr_efuse; 308 struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL]; 309 struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL]; 310 }; 311 312 static const char * const xgene_dma_desc_err[] = { 313 [ERR_DESC_AXI] = "AXI error when reading src/dst link list", 314 [ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc", 315 [ERR_READ_DATA_AXI] = "AXI error when reading data", 316 [ERR_WRITE_DATA_AXI] = "AXI error when writing data", 317 [ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch", 318 [ERR_ECC] = "ECC double bit error", 319 [ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result", 320 [ERR_SCT_GAT_LEN] = "Gather and scatter data length not same", 321 [ERR_CRC_ERR] = "CRC error", 322 [ERR_CHKSUM] = "Checksum error", 323 [ERR_DIF] = "DIF error", 324 }; 325 326 static const char * const xgene_dma_err[] = { 327 [ERR_DIF_SIZE_INT] = "DIF size error", 328 [ERR_GS_ERR_INT] = "Gather scatter not same size error", 329 [ERR_FPB_TIMEO_INT] = "Free pool time out error", 330 [ERR_WFIFO_OVF_INT] = "Write FIFO over flow error", 331 [ERR_RFIFO_OVF_INT] = "Read FIFO over flow error", 332 [ERR_WR_TIMEO_INT] = "Write time out error", 333 [ERR_RD_TIMEO_INT] = "Read time out error", 334 [ERR_WR_ERR_INT] = "HBF bus write error", 335 [ERR_RD_ERR_INT] = "HBF bus read error", 336 [ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error", 337 [ERR_DESC_DST_INT] = "HFB reading dst link address error", 338 [ERR_DESC_SRC_INT] = "HFB reading src link address error", 339 }; 340 341 static bool is_pq_enabled(struct xgene_dma *pdma) 342 { 343 u32 val; 344 345 val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW); 346 return !(val & XGENE_DMA_PQ_DISABLE_MASK); 347 } 348 349 static u64 xgene_dma_encode_len(size_t len) 350 { 351 return (len < XGENE_DMA_MAX_BYTE_CNT) ? 352 ((u64)len << XGENE_DMA_DESC_BUFLEN_POS) : 353 XGENE_DMA_16K_BUFFER_LEN_CODE; 354 } 355 356 static u8 xgene_dma_encode_xor_flyby(u32 src_cnt) 357 { 358 static u8 flyby_type[] = { 359 FLYBY_2SRC_XOR, /* Dummy */ 360 FLYBY_2SRC_XOR, /* Dummy */ 361 FLYBY_2SRC_XOR, 362 FLYBY_3SRC_XOR, 363 FLYBY_4SRC_XOR, 364 FLYBY_5SRC_XOR 365 }; 366 367 return flyby_type[src_cnt]; 368 } 369 370 static void xgene_dma_set_src_buffer(__le64 *ext8, size_t *len, 371 dma_addr_t *paddr) 372 { 373 size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ? 374 *len : XGENE_DMA_MAX_BYTE_CNT; 375 376 *ext8 |= cpu_to_le64(*paddr); 377 *ext8 |= cpu_to_le64(xgene_dma_encode_len(nbytes)); 378 *len -= nbytes; 379 *paddr += nbytes; 380 } 381 382 static __le64 *xgene_dma_lookup_ext8(struct xgene_dma_desc_hw *desc, int idx) 383 { 384 switch (idx) { 385 case 0: 386 return &desc->m1; 387 case 1: 388 return &desc->m0; 389 case 2: 390 return &desc->m3; 391 case 3: 392 return &desc->m2; 393 default: 394 pr_err("Invalid dma descriptor index\n"); 395 } 396 397 return NULL; 398 } 399 400 static void xgene_dma_init_desc(struct xgene_dma_desc_hw *desc, 401 u16 dst_ring_num) 402 { 403 desc->m0 |= cpu_to_le64(XGENE_DMA_DESC_IN_BIT); 404 desc->m0 |= cpu_to_le64((u64)XGENE_DMA_RING_OWNER_DMA << 405 XGENE_DMA_DESC_RTYPE_POS); 406 desc->m1 |= cpu_to_le64(XGENE_DMA_DESC_C_BIT); 407 desc->m3 |= cpu_to_le64((u64)dst_ring_num << 408 XGENE_DMA_DESC_HOENQ_NUM_POS); 409 } 410 411 static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan, 412 struct xgene_dma_desc_sw *desc_sw, 413 dma_addr_t *dst, dma_addr_t *src, 414 u32 src_cnt, size_t *nbytes, 415 const u8 *scf) 416 { 417 struct xgene_dma_desc_hw *desc1, *desc2; 418 size_t len = *nbytes; 419 int i; 420 421 desc1 = &desc_sw->desc1; 422 desc2 = &desc_sw->desc2; 423 424 /* Initialize DMA descriptor */ 425 xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num); 426 427 /* Set destination address */ 428 desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT); 429 desc1->m3 |= cpu_to_le64(*dst); 430 431 /* We have multiple source addresses, so need to set NV bit*/ 432 desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT); 433 434 /* Set flyby opcode */ 435 desc1->m2 |= cpu_to_le64(xgene_dma_encode_xor_flyby(src_cnt)); 436 437 /* Set 1st to 5th source addresses */ 438 for (i = 0; i < src_cnt; i++) { 439 len = *nbytes; 440 xgene_dma_set_src_buffer((i == 0) ? &desc1->m1 : 441 xgene_dma_lookup_ext8(desc2, i - 1), 442 &len, &src[i]); 443 desc1->m2 |= cpu_to_le64((scf[i] << ((i + 1) * 8))); 444 } 445 446 /* Update meta data */ 447 *nbytes = len; 448 *dst += XGENE_DMA_MAX_BYTE_CNT; 449 450 /* We need always 64B descriptor to perform xor or pq operations */ 451 desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC; 452 } 453 454 static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx) 455 { 456 struct xgene_dma_desc_sw *desc; 457 struct xgene_dma_chan *chan; 458 dma_cookie_t cookie; 459 460 if (unlikely(!tx)) 461 return -EINVAL; 462 463 chan = to_dma_chan(tx->chan); 464 desc = to_dma_desc_sw(tx); 465 466 spin_lock_bh(&chan->lock); 467 468 cookie = dma_cookie_assign(tx); 469 470 /* Add this transaction list onto the tail of the pending queue */ 471 list_splice_tail_init(&desc->tx_list, &chan->ld_pending); 472 473 spin_unlock_bh(&chan->lock); 474 475 return cookie; 476 } 477 478 static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan, 479 struct xgene_dma_desc_sw *desc) 480 { 481 list_del(&desc->node); 482 chan_dbg(chan, "LD %p free\n", desc); 483 dma_pool_free(chan->desc_pool, desc, desc->tx.phys); 484 } 485 486 static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor( 487 struct xgene_dma_chan *chan) 488 { 489 struct xgene_dma_desc_sw *desc; 490 dma_addr_t phys; 491 492 desc = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys); 493 if (!desc) { 494 chan_err(chan, "Failed to allocate LDs\n"); 495 return NULL; 496 } 497 498 INIT_LIST_HEAD(&desc->tx_list); 499 desc->tx.phys = phys; 500 desc->tx.tx_submit = xgene_dma_tx_submit; 501 dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan); 502 503 chan_dbg(chan, "LD %p allocated\n", desc); 504 505 return desc; 506 } 507 508 /** 509 * xgene_dma_clean_completed_descriptor - free all descriptors which 510 * has been completed and acked 511 * @chan: X-Gene DMA channel 512 * 513 * This function is used on all completed and acked descriptors. 514 */ 515 static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan) 516 { 517 struct xgene_dma_desc_sw *desc, *_desc; 518 519 /* Run the callback for each descriptor, in order */ 520 list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) { 521 if (async_tx_test_ack(&desc->tx)) 522 xgene_dma_clean_descriptor(chan, desc); 523 } 524 } 525 526 /** 527 * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor 528 * @chan: X-Gene DMA channel 529 * @desc: descriptor to cleanup and free 530 * 531 * This function is used on a descriptor which has been executed by the DMA 532 * controller. It will run any callbacks, submit any dependencies. 533 */ 534 static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan, 535 struct xgene_dma_desc_sw *desc) 536 { 537 struct dma_async_tx_descriptor *tx = &desc->tx; 538 539 /* 540 * If this is not the last transaction in the group, 541 * then no need to complete cookie and run any callback as 542 * this is not the tx_descriptor which had been sent to caller 543 * of this DMA request 544 */ 545 546 if (tx->cookie == 0) 547 return; 548 549 dma_cookie_complete(tx); 550 dma_descriptor_unmap(tx); 551 552 /* Run the link descriptor callback function */ 553 dmaengine_desc_get_callback_invoke(tx, NULL); 554 555 /* Run any dependencies */ 556 dma_run_dependencies(tx); 557 } 558 559 /** 560 * xgene_dma_clean_running_descriptor - move the completed descriptor from 561 * ld_running to ld_completed 562 * @chan: X-Gene DMA channel 563 * @desc: the descriptor which is completed 564 * 565 * Free the descriptor directly if acked by async_tx api, 566 * else move it to queue ld_completed. 567 */ 568 static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan, 569 struct xgene_dma_desc_sw *desc) 570 { 571 /* Remove from the list of running transactions */ 572 list_del(&desc->node); 573 574 /* 575 * the client is allowed to attach dependent operations 576 * until 'ack' is set 577 */ 578 if (!async_tx_test_ack(&desc->tx)) { 579 /* 580 * Move this descriptor to the list of descriptors which is 581 * completed, but still awaiting the 'ack' bit to be set. 582 */ 583 list_add_tail(&desc->node, &chan->ld_completed); 584 return; 585 } 586 587 chan_dbg(chan, "LD %p free\n", desc); 588 dma_pool_free(chan->desc_pool, desc, desc->tx.phys); 589 } 590 591 static void xgene_chan_xfer_request(struct xgene_dma_chan *chan, 592 struct xgene_dma_desc_sw *desc_sw) 593 { 594 struct xgene_dma_ring *ring = &chan->tx_ring; 595 struct xgene_dma_desc_hw *desc_hw; 596 597 /* Get hw descriptor from DMA tx ring */ 598 desc_hw = &ring->desc_hw[ring->head]; 599 600 /* 601 * Increment the head count to point next 602 * descriptor for next time 603 */ 604 if (++ring->head == ring->slots) 605 ring->head = 0; 606 607 /* Copy prepared sw descriptor data to hw descriptor */ 608 memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw)); 609 610 /* 611 * Check if we have prepared 64B descriptor, 612 * in this case we need one more hw descriptor 613 */ 614 if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) { 615 desc_hw = &ring->desc_hw[ring->head]; 616 617 if (++ring->head == ring->slots) 618 ring->head = 0; 619 620 memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw)); 621 } 622 623 /* Increment the pending transaction count */ 624 chan->pending += ((desc_sw->flags & 625 XGENE_DMA_FLAG_64B_DESC) ? 2 : 1); 626 627 /* Notify the hw that we have descriptor ready for execution */ 628 iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ? 629 2 : 1, ring->cmd); 630 } 631 632 /** 633 * xgene_chan_xfer_ld_pending - push any pending transactions to hw 634 * @chan : X-Gene DMA channel 635 * 636 * LOCKING: must hold chan->lock 637 */ 638 static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan) 639 { 640 struct xgene_dma_desc_sw *desc_sw, *_desc_sw; 641 642 /* 643 * If the list of pending descriptors is empty, then we 644 * don't need to do any work at all 645 */ 646 if (list_empty(&chan->ld_pending)) { 647 chan_dbg(chan, "No pending LDs\n"); 648 return; 649 } 650 651 /* 652 * Move elements from the queue of pending transactions onto the list 653 * of running transactions and push it to hw for further executions 654 */ 655 list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) { 656 /* 657 * Check if have pushed max number of transactions to hw 658 * as capable, so let's stop here and will push remaining 659 * elements from pening ld queue after completing some 660 * descriptors that we have already pushed 661 */ 662 if (chan->pending >= chan->max_outstanding) 663 return; 664 665 xgene_chan_xfer_request(chan, desc_sw); 666 667 /* 668 * Delete this element from ld pending queue and append it to 669 * ld running queue 670 */ 671 list_move_tail(&desc_sw->node, &chan->ld_running); 672 } 673 } 674 675 /** 676 * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed 677 * and move them to ld_completed to free until flag 'ack' is set 678 * @chan: X-Gene DMA channel 679 * 680 * This function is used on descriptors which have been executed by the DMA 681 * controller. It will run any callbacks, submit any dependencies, then 682 * free these descriptors if flag 'ack' is set. 683 */ 684 static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan) 685 { 686 struct xgene_dma_ring *ring = &chan->rx_ring; 687 struct xgene_dma_desc_sw *desc_sw, *_desc_sw; 688 struct xgene_dma_desc_hw *desc_hw; 689 struct list_head ld_completed; 690 u8 status; 691 692 INIT_LIST_HEAD(&ld_completed); 693 694 spin_lock(&chan->lock); 695 696 /* Clean already completed and acked descriptors */ 697 xgene_dma_clean_completed_descriptor(chan); 698 699 /* Move all completed descriptors to ld completed queue, in order */ 700 list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) { 701 /* Get subsequent hw descriptor from DMA rx ring */ 702 desc_hw = &ring->desc_hw[ring->head]; 703 704 /* Check if this descriptor has been completed */ 705 if (unlikely(le64_to_cpu(desc_hw->m0) == 706 XGENE_DMA_DESC_EMPTY_SIGNATURE)) 707 break; 708 709 if (++ring->head == ring->slots) 710 ring->head = 0; 711 712 /* Check if we have any error with DMA transactions */ 713 status = XGENE_DMA_DESC_STATUS( 714 XGENE_DMA_DESC_ELERR_RD(le64_to_cpu( 715 desc_hw->m0)), 716 XGENE_DMA_DESC_LERR_RD(le64_to_cpu( 717 desc_hw->m0))); 718 if (status) { 719 /* Print the DMA error type */ 720 chan_err(chan, "%s\n", xgene_dma_desc_err[status]); 721 722 /* 723 * We have DMA transactions error here. Dump DMA Tx 724 * and Rx descriptors for this request */ 725 XGENE_DMA_DESC_DUMP(&desc_sw->desc1, 726 "X-Gene DMA TX DESC1: "); 727 728 if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) 729 XGENE_DMA_DESC_DUMP(&desc_sw->desc2, 730 "X-Gene DMA TX DESC2: "); 731 732 XGENE_DMA_DESC_DUMP(desc_hw, 733 "X-Gene DMA RX ERR DESC: "); 734 } 735 736 /* Notify the hw about this completed descriptor */ 737 iowrite32(-1, ring->cmd); 738 739 /* Mark this hw descriptor as processed */ 740 desc_hw->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE); 741 742 /* 743 * Decrement the pending transaction count 744 * as we have processed one 745 */ 746 chan->pending -= ((desc_sw->flags & 747 XGENE_DMA_FLAG_64B_DESC) ? 2 : 1); 748 749 /* 750 * Delete this node from ld running queue and append it to 751 * ld completed queue for further processing 752 */ 753 list_move_tail(&desc_sw->node, &ld_completed); 754 } 755 756 /* 757 * Start any pending transactions automatically 758 * In the ideal case, we keep the DMA controller busy while we go 759 * ahead and free the descriptors below. 760 */ 761 xgene_chan_xfer_ld_pending(chan); 762 763 spin_unlock(&chan->lock); 764 765 /* Run the callback for each descriptor, in order */ 766 list_for_each_entry_safe(desc_sw, _desc_sw, &ld_completed, node) { 767 xgene_dma_run_tx_complete_actions(chan, desc_sw); 768 xgene_dma_clean_running_descriptor(chan, desc_sw); 769 } 770 } 771 772 static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan) 773 { 774 struct xgene_dma_chan *chan = to_dma_chan(dchan); 775 776 /* Has this channel already been allocated? */ 777 if (chan->desc_pool) 778 return 1; 779 780 chan->desc_pool = dma_pool_create(chan->name, chan->dev, 781 sizeof(struct xgene_dma_desc_sw), 782 0, 0); 783 if (!chan->desc_pool) { 784 chan_err(chan, "Failed to allocate descriptor pool\n"); 785 return -ENOMEM; 786 } 787 788 chan_dbg(chan, "Allocate descriptor pool\n"); 789 790 return 1; 791 } 792 793 /** 794 * xgene_dma_free_desc_list - Free all descriptors in a queue 795 * @chan: X-Gene DMA channel 796 * @list: the list to free 797 * 798 * LOCKING: must hold chan->lock 799 */ 800 static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan, 801 struct list_head *list) 802 { 803 struct xgene_dma_desc_sw *desc, *_desc; 804 805 list_for_each_entry_safe(desc, _desc, list, node) 806 xgene_dma_clean_descriptor(chan, desc); 807 } 808 809 static void xgene_dma_free_chan_resources(struct dma_chan *dchan) 810 { 811 struct xgene_dma_chan *chan = to_dma_chan(dchan); 812 813 chan_dbg(chan, "Free all resources\n"); 814 815 if (!chan->desc_pool) 816 return; 817 818 /* Process all running descriptor */ 819 xgene_dma_cleanup_descriptors(chan); 820 821 spin_lock_bh(&chan->lock); 822 823 /* Clean all link descriptor queues */ 824 xgene_dma_free_desc_list(chan, &chan->ld_pending); 825 xgene_dma_free_desc_list(chan, &chan->ld_running); 826 xgene_dma_free_desc_list(chan, &chan->ld_completed); 827 828 spin_unlock_bh(&chan->lock); 829 830 /* Delete this channel DMA pool */ 831 dma_pool_destroy(chan->desc_pool); 832 chan->desc_pool = NULL; 833 } 834 835 static struct dma_async_tx_descriptor *xgene_dma_prep_xor( 836 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t *src, 837 u32 src_cnt, size_t len, unsigned long flags) 838 { 839 struct xgene_dma_desc_sw *first = NULL, *new; 840 struct xgene_dma_chan *chan; 841 static u8 multi[XGENE_DMA_MAX_XOR_SRC] = { 842 0x01, 0x01, 0x01, 0x01, 0x01}; 843 844 if (unlikely(!dchan || !len)) 845 return NULL; 846 847 chan = to_dma_chan(dchan); 848 849 do { 850 /* Allocate the link descriptor from DMA pool */ 851 new = xgene_dma_alloc_descriptor(chan); 852 if (!new) 853 goto fail; 854 855 /* Prepare xor DMA descriptor */ 856 xgene_dma_prep_xor_desc(chan, new, &dst, src, 857 src_cnt, &len, multi); 858 859 if (!first) 860 first = new; 861 862 new->tx.cookie = 0; 863 async_tx_ack(&new->tx); 864 865 /* Insert the link descriptor to the LD ring */ 866 list_add_tail(&new->node, &first->tx_list); 867 } while (len); 868 869 new->tx.flags = flags; /* client is in control of this ack */ 870 new->tx.cookie = -EBUSY; 871 list_splice(&first->tx_list, &new->tx_list); 872 873 return &new->tx; 874 875 fail: 876 if (!first) 877 return NULL; 878 879 xgene_dma_free_desc_list(chan, &first->tx_list); 880 return NULL; 881 } 882 883 static struct dma_async_tx_descriptor *xgene_dma_prep_pq( 884 struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src, 885 u32 src_cnt, const u8 *scf, size_t len, unsigned long flags) 886 { 887 struct xgene_dma_desc_sw *first = NULL, *new; 888 struct xgene_dma_chan *chan; 889 size_t _len = len; 890 dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC]; 891 static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01}; 892 893 if (unlikely(!dchan || !len)) 894 return NULL; 895 896 chan = to_dma_chan(dchan); 897 898 /* 899 * Save source addresses on local variable, may be we have to 900 * prepare two descriptor to generate P and Q if both enabled 901 * in the flags by client 902 */ 903 memcpy(_src, src, sizeof(*src) * src_cnt); 904 905 if (flags & DMA_PREP_PQ_DISABLE_P) 906 len = 0; 907 908 if (flags & DMA_PREP_PQ_DISABLE_Q) 909 _len = 0; 910 911 do { 912 /* Allocate the link descriptor from DMA pool */ 913 new = xgene_dma_alloc_descriptor(chan); 914 if (!new) 915 goto fail; 916 917 if (!first) 918 first = new; 919 920 new->tx.cookie = 0; 921 async_tx_ack(&new->tx); 922 923 /* Insert the link descriptor to the LD ring */ 924 list_add_tail(&new->node, &first->tx_list); 925 926 /* 927 * Prepare DMA descriptor to generate P, 928 * if DMA_PREP_PQ_DISABLE_P flag is not set 929 */ 930 if (len) { 931 xgene_dma_prep_xor_desc(chan, new, &dst[0], src, 932 src_cnt, &len, multi); 933 continue; 934 } 935 936 /* 937 * Prepare DMA descriptor to generate Q, 938 * if DMA_PREP_PQ_DISABLE_Q flag is not set 939 */ 940 if (_len) { 941 xgene_dma_prep_xor_desc(chan, new, &dst[1], _src, 942 src_cnt, &_len, scf); 943 } 944 } while (len || _len); 945 946 new->tx.flags = flags; /* client is in control of this ack */ 947 new->tx.cookie = -EBUSY; 948 list_splice(&first->tx_list, &new->tx_list); 949 950 return &new->tx; 951 952 fail: 953 if (!first) 954 return NULL; 955 956 xgene_dma_free_desc_list(chan, &first->tx_list); 957 return NULL; 958 } 959 960 static void xgene_dma_issue_pending(struct dma_chan *dchan) 961 { 962 struct xgene_dma_chan *chan = to_dma_chan(dchan); 963 964 spin_lock_bh(&chan->lock); 965 xgene_chan_xfer_ld_pending(chan); 966 spin_unlock_bh(&chan->lock); 967 } 968 969 static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan, 970 dma_cookie_t cookie, 971 struct dma_tx_state *txstate) 972 { 973 return dma_cookie_status(dchan, cookie, txstate); 974 } 975 976 static void xgene_dma_tasklet_cb(unsigned long data) 977 { 978 struct xgene_dma_chan *chan = (struct xgene_dma_chan *)data; 979 980 /* Run all cleanup for descriptors which have been completed */ 981 xgene_dma_cleanup_descriptors(chan); 982 983 /* Re-enable DMA channel IRQ */ 984 enable_irq(chan->rx_irq); 985 } 986 987 static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id) 988 { 989 struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id; 990 991 BUG_ON(!chan); 992 993 /* 994 * Disable DMA channel IRQ until we process completed 995 * descriptors 996 */ 997 disable_irq_nosync(chan->rx_irq); 998 999 /* 1000 * Schedule the tasklet to handle all cleanup of the current 1001 * transaction. It will start a new transaction if there is 1002 * one pending. 1003 */ 1004 tasklet_schedule(&chan->tasklet); 1005 1006 return IRQ_HANDLED; 1007 } 1008 1009 static irqreturn_t xgene_dma_err_isr(int irq, void *id) 1010 { 1011 struct xgene_dma *pdma = (struct xgene_dma *)id; 1012 unsigned long int_mask; 1013 u32 val, i; 1014 1015 val = ioread32(pdma->csr_dma + XGENE_DMA_INT); 1016 1017 /* Clear DMA interrupts */ 1018 iowrite32(val, pdma->csr_dma + XGENE_DMA_INT); 1019 1020 /* Print DMA error info */ 1021 int_mask = val >> XGENE_DMA_INT_MASK_SHIFT; 1022 for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err)) 1023 dev_err(pdma->dev, 1024 "Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]); 1025 1026 return IRQ_HANDLED; 1027 } 1028 1029 static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring) 1030 { 1031 int i; 1032 1033 iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE); 1034 1035 for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++) 1036 iowrite32(ring->state[i], ring->pdma->csr_ring + 1037 XGENE_DMA_RING_STATE_WR_BASE + (i * 4)); 1038 } 1039 1040 static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring) 1041 { 1042 memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG); 1043 xgene_dma_wr_ring_state(ring); 1044 } 1045 1046 static void xgene_dma_setup_ring(struct xgene_dma_ring *ring) 1047 { 1048 void *ring_cfg = ring->state; 1049 u64 addr = ring->desc_paddr; 1050 u32 i, val; 1051 1052 ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE; 1053 1054 /* Clear DMA ring state */ 1055 xgene_dma_clr_ring_state(ring); 1056 1057 /* Set DMA ring type */ 1058 XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR); 1059 1060 if (ring->owner == XGENE_DMA_RING_OWNER_DMA) { 1061 /* Set recombination buffer and timeout */ 1062 XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg); 1063 XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg); 1064 XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg); 1065 } 1066 1067 /* Initialize DMA ring state */ 1068 XGENE_DMA_RING_SELTHRSH_SET(ring_cfg); 1069 XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg); 1070 XGENE_DMA_RING_COHERENT_SET(ring_cfg); 1071 XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr); 1072 XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr); 1073 XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize); 1074 1075 /* Write DMA ring configurations */ 1076 xgene_dma_wr_ring_state(ring); 1077 1078 /* Set DMA ring id */ 1079 iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id), 1080 ring->pdma->csr_ring + XGENE_DMA_RING_ID); 1081 1082 /* Set DMA ring buffer */ 1083 iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num), 1084 ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF); 1085 1086 if (ring->owner != XGENE_DMA_RING_OWNER_CPU) 1087 return; 1088 1089 /* Set empty signature to DMA Rx ring descriptors */ 1090 for (i = 0; i < ring->slots; i++) { 1091 struct xgene_dma_desc_hw *desc; 1092 1093 desc = &ring->desc_hw[i]; 1094 desc->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE); 1095 } 1096 1097 /* Enable DMA Rx ring interrupt */ 1098 val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE); 1099 XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num); 1100 iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE); 1101 } 1102 1103 static void xgene_dma_clear_ring(struct xgene_dma_ring *ring) 1104 { 1105 u32 ring_id, val; 1106 1107 if (ring->owner == XGENE_DMA_RING_OWNER_CPU) { 1108 /* Disable DMA Rx ring interrupt */ 1109 val = ioread32(ring->pdma->csr_ring + 1110 XGENE_DMA_RING_NE_INT_MODE); 1111 XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num); 1112 iowrite32(val, ring->pdma->csr_ring + 1113 XGENE_DMA_RING_NE_INT_MODE); 1114 } 1115 1116 /* Clear DMA ring state */ 1117 ring_id = XGENE_DMA_RING_ID_SETUP(ring->id); 1118 iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID); 1119 1120 iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF); 1121 xgene_dma_clr_ring_state(ring); 1122 } 1123 1124 static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring) 1125 { 1126 ring->cmd_base = ring->pdma->csr_ring_cmd + 1127 XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num - 1128 XGENE_DMA_RING_NUM)); 1129 1130 ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET; 1131 } 1132 1133 static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan, 1134 enum xgene_dma_ring_cfgsize cfgsize) 1135 { 1136 int size; 1137 1138 switch (cfgsize) { 1139 case XGENE_DMA_RING_CFG_SIZE_512B: 1140 size = 0x200; 1141 break; 1142 case XGENE_DMA_RING_CFG_SIZE_2KB: 1143 size = 0x800; 1144 break; 1145 case XGENE_DMA_RING_CFG_SIZE_16KB: 1146 size = 0x4000; 1147 break; 1148 case XGENE_DMA_RING_CFG_SIZE_64KB: 1149 size = 0x10000; 1150 break; 1151 case XGENE_DMA_RING_CFG_SIZE_512KB: 1152 size = 0x80000; 1153 break; 1154 default: 1155 chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize); 1156 return -EINVAL; 1157 } 1158 1159 return size; 1160 } 1161 1162 static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring) 1163 { 1164 /* Clear DMA ring configurations */ 1165 xgene_dma_clear_ring(ring); 1166 1167 /* De-allocate DMA ring descriptor */ 1168 if (ring->desc_vaddr) { 1169 dma_free_coherent(ring->pdma->dev, ring->size, 1170 ring->desc_vaddr, ring->desc_paddr); 1171 ring->desc_vaddr = NULL; 1172 } 1173 } 1174 1175 static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan) 1176 { 1177 xgene_dma_delete_ring_one(&chan->rx_ring); 1178 xgene_dma_delete_ring_one(&chan->tx_ring); 1179 } 1180 1181 static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan, 1182 struct xgene_dma_ring *ring, 1183 enum xgene_dma_ring_cfgsize cfgsize) 1184 { 1185 int ret; 1186 1187 /* Setup DMA ring descriptor variables */ 1188 ring->pdma = chan->pdma; 1189 ring->cfgsize = cfgsize; 1190 ring->num = chan->pdma->ring_num++; 1191 ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num); 1192 1193 ret = xgene_dma_get_ring_size(chan, cfgsize); 1194 if (ret <= 0) 1195 return ret; 1196 ring->size = ret; 1197 1198 /* Allocate memory for DMA ring descriptor */ 1199 ring->desc_vaddr = dma_alloc_coherent(chan->dev, ring->size, 1200 &ring->desc_paddr, GFP_KERNEL); 1201 if (!ring->desc_vaddr) { 1202 chan_err(chan, "Failed to allocate ring desc\n"); 1203 return -ENOMEM; 1204 } 1205 1206 /* Configure and enable DMA ring */ 1207 xgene_dma_set_ring_cmd(ring); 1208 xgene_dma_setup_ring(ring); 1209 1210 return 0; 1211 } 1212 1213 static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan) 1214 { 1215 struct xgene_dma_ring *rx_ring = &chan->rx_ring; 1216 struct xgene_dma_ring *tx_ring = &chan->tx_ring; 1217 int ret; 1218 1219 /* Create DMA Rx ring descriptor */ 1220 rx_ring->owner = XGENE_DMA_RING_OWNER_CPU; 1221 rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id; 1222 1223 ret = xgene_dma_create_ring_one(chan, rx_ring, 1224 XGENE_DMA_RING_CFG_SIZE_64KB); 1225 if (ret) 1226 return ret; 1227 1228 chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n", 1229 rx_ring->id, rx_ring->num, rx_ring->desc_vaddr); 1230 1231 /* Create DMA Tx ring descriptor */ 1232 tx_ring->owner = XGENE_DMA_RING_OWNER_DMA; 1233 tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id; 1234 1235 ret = xgene_dma_create_ring_one(chan, tx_ring, 1236 XGENE_DMA_RING_CFG_SIZE_64KB); 1237 if (ret) { 1238 xgene_dma_delete_ring_one(rx_ring); 1239 return ret; 1240 } 1241 1242 tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num); 1243 1244 chan_dbg(chan, 1245 "Tx ring id 0x%X num %d desc 0x%p\n", 1246 tx_ring->id, tx_ring->num, tx_ring->desc_vaddr); 1247 1248 /* Set the max outstanding request possible to this channel */ 1249 chan->max_outstanding = tx_ring->slots; 1250 1251 return ret; 1252 } 1253 1254 static int xgene_dma_init_rings(struct xgene_dma *pdma) 1255 { 1256 int ret, i, j; 1257 1258 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) { 1259 ret = xgene_dma_create_chan_rings(&pdma->chan[i]); 1260 if (ret) { 1261 for (j = 0; j < i; j++) 1262 xgene_dma_delete_chan_rings(&pdma->chan[j]); 1263 return ret; 1264 } 1265 } 1266 1267 return ret; 1268 } 1269 1270 static void xgene_dma_enable(struct xgene_dma *pdma) 1271 { 1272 u32 val; 1273 1274 /* Configure and enable DMA engine */ 1275 val = ioread32(pdma->csr_dma + XGENE_DMA_GCR); 1276 XGENE_DMA_CH_SETUP(val); 1277 XGENE_DMA_ENABLE(val); 1278 iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR); 1279 } 1280 1281 static void xgene_dma_disable(struct xgene_dma *pdma) 1282 { 1283 u32 val; 1284 1285 val = ioread32(pdma->csr_dma + XGENE_DMA_GCR); 1286 XGENE_DMA_DISABLE(val); 1287 iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR); 1288 } 1289 1290 static void xgene_dma_mask_interrupts(struct xgene_dma *pdma) 1291 { 1292 /* 1293 * Mask DMA ring overflow, underflow and 1294 * AXI write/read error interrupts 1295 */ 1296 iowrite32(XGENE_DMA_INT_ALL_MASK, 1297 pdma->csr_dma + XGENE_DMA_RING_INT0_MASK); 1298 iowrite32(XGENE_DMA_INT_ALL_MASK, 1299 pdma->csr_dma + XGENE_DMA_RING_INT1_MASK); 1300 iowrite32(XGENE_DMA_INT_ALL_MASK, 1301 pdma->csr_dma + XGENE_DMA_RING_INT2_MASK); 1302 iowrite32(XGENE_DMA_INT_ALL_MASK, 1303 pdma->csr_dma + XGENE_DMA_RING_INT3_MASK); 1304 iowrite32(XGENE_DMA_INT_ALL_MASK, 1305 pdma->csr_dma + XGENE_DMA_RING_INT4_MASK); 1306 1307 /* Mask DMA error interrupts */ 1308 iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK); 1309 } 1310 1311 static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma) 1312 { 1313 /* 1314 * Unmask DMA ring overflow, underflow and 1315 * AXI write/read error interrupts 1316 */ 1317 iowrite32(XGENE_DMA_INT_ALL_UNMASK, 1318 pdma->csr_dma + XGENE_DMA_RING_INT0_MASK); 1319 iowrite32(XGENE_DMA_INT_ALL_UNMASK, 1320 pdma->csr_dma + XGENE_DMA_RING_INT1_MASK); 1321 iowrite32(XGENE_DMA_INT_ALL_UNMASK, 1322 pdma->csr_dma + XGENE_DMA_RING_INT2_MASK); 1323 iowrite32(XGENE_DMA_INT_ALL_UNMASK, 1324 pdma->csr_dma + XGENE_DMA_RING_INT3_MASK); 1325 iowrite32(XGENE_DMA_INT_ALL_UNMASK, 1326 pdma->csr_dma + XGENE_DMA_RING_INT4_MASK); 1327 1328 /* Unmask DMA error interrupts */ 1329 iowrite32(XGENE_DMA_INT_ALL_UNMASK, 1330 pdma->csr_dma + XGENE_DMA_INT_MASK); 1331 } 1332 1333 static void xgene_dma_init_hw(struct xgene_dma *pdma) 1334 { 1335 u32 val; 1336 1337 /* Associate DMA ring to corresponding ring HW */ 1338 iowrite32(XGENE_DMA_ASSOC_RING_MNGR1, 1339 pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC); 1340 1341 /* Configure RAID6 polynomial control setting */ 1342 if (is_pq_enabled(pdma)) 1343 iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D), 1344 pdma->csr_dma + XGENE_DMA_RAID6_CONT); 1345 else 1346 dev_info(pdma->dev, "PQ is disabled in HW\n"); 1347 1348 xgene_dma_enable(pdma); 1349 xgene_dma_unmask_interrupts(pdma); 1350 1351 /* Get DMA id and version info */ 1352 val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR); 1353 1354 /* DMA device info */ 1355 dev_info(pdma->dev, 1356 "X-Gene DMA v%d.%02d.%02d driver registered %d channels", 1357 XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val), 1358 XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL); 1359 } 1360 1361 static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma) 1362 { 1363 if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) && 1364 (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST))) 1365 return 0; 1366 1367 iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN); 1368 iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST); 1369 1370 /* Bring up memory */ 1371 iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN); 1372 1373 /* Force a barrier */ 1374 ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN); 1375 1376 /* reset may take up to 1ms */ 1377 usleep_range(1000, 1100); 1378 1379 if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY) 1380 != XGENE_DMA_RING_BLK_MEM_RDY_VAL) { 1381 dev_err(pdma->dev, 1382 "Failed to release ring mngr memory from shutdown\n"); 1383 return -ENODEV; 1384 } 1385 1386 /* program threshold set 1 and all hysteresis */ 1387 iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL, 1388 pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1); 1389 iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL, 1390 pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1); 1391 iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL, 1392 pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS); 1393 1394 /* Enable QPcore and assign error queue */ 1395 iowrite32(XGENE_DMA_RING_ENABLE, 1396 pdma->csr_ring + XGENE_DMA_RING_CONFIG); 1397 1398 return 0; 1399 } 1400 1401 static int xgene_dma_init_mem(struct xgene_dma *pdma) 1402 { 1403 int ret; 1404 1405 ret = xgene_dma_init_ring_mngr(pdma); 1406 if (ret) 1407 return ret; 1408 1409 /* Bring up memory */ 1410 iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN); 1411 1412 /* Force a barrier */ 1413 ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN); 1414 1415 /* reset may take up to 1ms */ 1416 usleep_range(1000, 1100); 1417 1418 if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY) 1419 != XGENE_DMA_BLK_MEM_RDY_VAL) { 1420 dev_err(pdma->dev, 1421 "Failed to release DMA memory from shutdown\n"); 1422 return -ENODEV; 1423 } 1424 1425 return 0; 1426 } 1427 1428 static int xgene_dma_request_irqs(struct xgene_dma *pdma) 1429 { 1430 struct xgene_dma_chan *chan; 1431 int ret, i, j; 1432 1433 /* Register DMA error irq */ 1434 ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr, 1435 0, "dma_error", pdma); 1436 if (ret) { 1437 dev_err(pdma->dev, 1438 "Failed to register error IRQ %d\n", pdma->err_irq); 1439 return ret; 1440 } 1441 1442 /* Register DMA channel rx irq */ 1443 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) { 1444 chan = &pdma->chan[i]; 1445 irq_set_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY); 1446 ret = devm_request_irq(chan->dev, chan->rx_irq, 1447 xgene_dma_chan_ring_isr, 1448 0, chan->name, chan); 1449 if (ret) { 1450 chan_err(chan, "Failed to register Rx IRQ %d\n", 1451 chan->rx_irq); 1452 devm_free_irq(pdma->dev, pdma->err_irq, pdma); 1453 1454 for (j = 0; j < i; j++) { 1455 chan = &pdma->chan[i]; 1456 irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY); 1457 devm_free_irq(chan->dev, chan->rx_irq, chan); 1458 } 1459 1460 return ret; 1461 } 1462 } 1463 1464 return 0; 1465 } 1466 1467 static void xgene_dma_free_irqs(struct xgene_dma *pdma) 1468 { 1469 struct xgene_dma_chan *chan; 1470 int i; 1471 1472 /* Free DMA device error irq */ 1473 devm_free_irq(pdma->dev, pdma->err_irq, pdma); 1474 1475 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) { 1476 chan = &pdma->chan[i]; 1477 irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY); 1478 devm_free_irq(chan->dev, chan->rx_irq, chan); 1479 } 1480 } 1481 1482 static void xgene_dma_set_caps(struct xgene_dma_chan *chan, 1483 struct dma_device *dma_dev) 1484 { 1485 /* Initialize DMA device capability mask */ 1486 dma_cap_zero(dma_dev->cap_mask); 1487 1488 /* Set DMA device capability */ 1489 1490 /* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR 1491 * and channel 1 supports XOR, PQ both. First thing here is we have 1492 * mechanism in hw to enable/disable PQ/XOR supports on channel 1, 1493 * we can make sure this by reading SoC Efuse register. 1494 * Second thing, we have hw errata that if we run channel 0 and 1495 * channel 1 simultaneously with executing XOR and PQ request, 1496 * suddenly DMA engine hangs, So here we enable XOR on channel 0 only 1497 * if XOR and PQ supports on channel 1 is disabled. 1498 */ 1499 if ((chan->id == XGENE_DMA_PQ_CHANNEL) && 1500 is_pq_enabled(chan->pdma)) { 1501 dma_cap_set(DMA_PQ, dma_dev->cap_mask); 1502 dma_cap_set(DMA_XOR, dma_dev->cap_mask); 1503 } else if ((chan->id == XGENE_DMA_XOR_CHANNEL) && 1504 !is_pq_enabled(chan->pdma)) { 1505 dma_cap_set(DMA_XOR, dma_dev->cap_mask); 1506 } 1507 1508 /* Set base and prep routines */ 1509 dma_dev->dev = chan->dev; 1510 dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources; 1511 dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources; 1512 dma_dev->device_issue_pending = xgene_dma_issue_pending; 1513 dma_dev->device_tx_status = xgene_dma_tx_status; 1514 1515 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) { 1516 dma_dev->device_prep_dma_xor = xgene_dma_prep_xor; 1517 dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC; 1518 dma_dev->xor_align = DMAENGINE_ALIGN_64_BYTES; 1519 } 1520 1521 if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) { 1522 dma_dev->device_prep_dma_pq = xgene_dma_prep_pq; 1523 dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC; 1524 dma_dev->pq_align = DMAENGINE_ALIGN_64_BYTES; 1525 } 1526 } 1527 1528 static int xgene_dma_async_register(struct xgene_dma *pdma, int id) 1529 { 1530 struct xgene_dma_chan *chan = &pdma->chan[id]; 1531 struct dma_device *dma_dev = &pdma->dma_dev[id]; 1532 int ret; 1533 1534 chan->dma_chan.device = dma_dev; 1535 1536 spin_lock_init(&chan->lock); 1537 INIT_LIST_HEAD(&chan->ld_pending); 1538 INIT_LIST_HEAD(&chan->ld_running); 1539 INIT_LIST_HEAD(&chan->ld_completed); 1540 tasklet_init(&chan->tasklet, xgene_dma_tasklet_cb, 1541 (unsigned long)chan); 1542 1543 chan->pending = 0; 1544 chan->desc_pool = NULL; 1545 dma_cookie_init(&chan->dma_chan); 1546 1547 /* Setup dma device capabilities and prep routines */ 1548 xgene_dma_set_caps(chan, dma_dev); 1549 1550 /* Initialize DMA device list head */ 1551 INIT_LIST_HEAD(&dma_dev->channels); 1552 list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels); 1553 1554 /* Register with Linux async DMA framework*/ 1555 ret = dma_async_device_register(dma_dev); 1556 if (ret) { 1557 chan_err(chan, "Failed to register async device %d", ret); 1558 tasklet_kill(&chan->tasklet); 1559 1560 return ret; 1561 } 1562 1563 /* DMA capability info */ 1564 dev_info(pdma->dev, 1565 "%s: CAPABILITY ( %s%s)\n", dma_chan_name(&chan->dma_chan), 1566 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "", 1567 dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : ""); 1568 1569 return 0; 1570 } 1571 1572 static int xgene_dma_init_async(struct xgene_dma *pdma) 1573 { 1574 int ret, i, j; 1575 1576 for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) { 1577 ret = xgene_dma_async_register(pdma, i); 1578 if (ret) { 1579 for (j = 0; j < i; j++) { 1580 dma_async_device_unregister(&pdma->dma_dev[j]); 1581 tasklet_kill(&pdma->chan[j].tasklet); 1582 } 1583 1584 return ret; 1585 } 1586 } 1587 1588 return ret; 1589 } 1590 1591 static void xgene_dma_async_unregister(struct xgene_dma *pdma) 1592 { 1593 int i; 1594 1595 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) 1596 dma_async_device_unregister(&pdma->dma_dev[i]); 1597 } 1598 1599 static void xgene_dma_init_channels(struct xgene_dma *pdma) 1600 { 1601 struct xgene_dma_chan *chan; 1602 int i; 1603 1604 pdma->ring_num = XGENE_DMA_RING_NUM; 1605 1606 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) { 1607 chan = &pdma->chan[i]; 1608 chan->dev = pdma->dev; 1609 chan->pdma = pdma; 1610 chan->id = i; 1611 snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id); 1612 } 1613 } 1614 1615 static int xgene_dma_get_resources(struct platform_device *pdev, 1616 struct xgene_dma *pdma) 1617 { 1618 struct resource *res; 1619 int irq, i; 1620 1621 /* Get DMA csr region */ 1622 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1623 if (!res) { 1624 dev_err(&pdev->dev, "Failed to get csr region\n"); 1625 return -ENXIO; 1626 } 1627 1628 pdma->csr_dma = devm_ioremap(&pdev->dev, res->start, 1629 resource_size(res)); 1630 if (!pdma->csr_dma) { 1631 dev_err(&pdev->dev, "Failed to ioremap csr region"); 1632 return -ENOMEM; 1633 } 1634 1635 /* Get DMA ring csr region */ 1636 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1637 if (!res) { 1638 dev_err(&pdev->dev, "Failed to get ring csr region\n"); 1639 return -ENXIO; 1640 } 1641 1642 pdma->csr_ring = devm_ioremap(&pdev->dev, res->start, 1643 resource_size(res)); 1644 if (!pdma->csr_ring) { 1645 dev_err(&pdev->dev, "Failed to ioremap ring csr region"); 1646 return -ENOMEM; 1647 } 1648 1649 /* Get DMA ring cmd csr region */ 1650 res = platform_get_resource(pdev, IORESOURCE_MEM, 2); 1651 if (!res) { 1652 dev_err(&pdev->dev, "Failed to get ring cmd csr region\n"); 1653 return -ENXIO; 1654 } 1655 1656 pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start, 1657 resource_size(res)); 1658 if (!pdma->csr_ring_cmd) { 1659 dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region"); 1660 return -ENOMEM; 1661 } 1662 1663 pdma->csr_ring_cmd += XGENE_DMA_RING_CMD_SM_OFFSET; 1664 1665 /* Get efuse csr region */ 1666 res = platform_get_resource(pdev, IORESOURCE_MEM, 3); 1667 if (!res) { 1668 dev_err(&pdev->dev, "Failed to get efuse csr region\n"); 1669 return -ENXIO; 1670 } 1671 1672 pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start, 1673 resource_size(res)); 1674 if (!pdma->csr_efuse) { 1675 dev_err(&pdev->dev, "Failed to ioremap efuse csr region"); 1676 return -ENOMEM; 1677 } 1678 1679 /* Get DMA error interrupt */ 1680 irq = platform_get_irq(pdev, 0); 1681 if (irq <= 0) 1682 return -ENXIO; 1683 1684 pdma->err_irq = irq; 1685 1686 /* Get DMA Rx ring descriptor interrupts for all DMA channels */ 1687 for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) { 1688 irq = platform_get_irq(pdev, i); 1689 if (irq <= 0) 1690 return -ENXIO; 1691 1692 pdma->chan[i - 1].rx_irq = irq; 1693 } 1694 1695 return 0; 1696 } 1697 1698 static int xgene_dma_probe(struct platform_device *pdev) 1699 { 1700 struct xgene_dma *pdma; 1701 int ret, i; 1702 1703 pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL); 1704 if (!pdma) 1705 return -ENOMEM; 1706 1707 pdma->dev = &pdev->dev; 1708 platform_set_drvdata(pdev, pdma); 1709 1710 ret = xgene_dma_get_resources(pdev, pdma); 1711 if (ret) 1712 return ret; 1713 1714 pdma->clk = devm_clk_get(&pdev->dev, NULL); 1715 if (IS_ERR(pdma->clk) && !ACPI_COMPANION(&pdev->dev)) { 1716 dev_err(&pdev->dev, "Failed to get clk\n"); 1717 return PTR_ERR(pdma->clk); 1718 } 1719 1720 /* Enable clk before accessing registers */ 1721 if (!IS_ERR(pdma->clk)) { 1722 ret = clk_prepare_enable(pdma->clk); 1723 if (ret) { 1724 dev_err(&pdev->dev, "Failed to enable clk %d\n", ret); 1725 return ret; 1726 } 1727 } 1728 1729 /* Remove DMA RAM out of shutdown */ 1730 ret = xgene_dma_init_mem(pdma); 1731 if (ret) 1732 goto err_clk_enable; 1733 1734 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42)); 1735 if (ret) { 1736 dev_err(&pdev->dev, "No usable DMA configuration\n"); 1737 goto err_dma_mask; 1738 } 1739 1740 /* Initialize DMA channels software state */ 1741 xgene_dma_init_channels(pdma); 1742 1743 /* Configue DMA rings */ 1744 ret = xgene_dma_init_rings(pdma); 1745 if (ret) 1746 goto err_clk_enable; 1747 1748 ret = xgene_dma_request_irqs(pdma); 1749 if (ret) 1750 goto err_request_irq; 1751 1752 /* Configure and enable DMA engine */ 1753 xgene_dma_init_hw(pdma); 1754 1755 /* Register DMA device with linux async framework */ 1756 ret = xgene_dma_init_async(pdma); 1757 if (ret) 1758 goto err_async_init; 1759 1760 return 0; 1761 1762 err_async_init: 1763 xgene_dma_free_irqs(pdma); 1764 1765 err_request_irq: 1766 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) 1767 xgene_dma_delete_chan_rings(&pdma->chan[i]); 1768 1769 err_dma_mask: 1770 err_clk_enable: 1771 if (!IS_ERR(pdma->clk)) 1772 clk_disable_unprepare(pdma->clk); 1773 1774 return ret; 1775 } 1776 1777 static int xgene_dma_remove(struct platform_device *pdev) 1778 { 1779 struct xgene_dma *pdma = platform_get_drvdata(pdev); 1780 struct xgene_dma_chan *chan; 1781 int i; 1782 1783 xgene_dma_async_unregister(pdma); 1784 1785 /* Mask interrupts and disable DMA engine */ 1786 xgene_dma_mask_interrupts(pdma); 1787 xgene_dma_disable(pdma); 1788 xgene_dma_free_irqs(pdma); 1789 1790 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) { 1791 chan = &pdma->chan[i]; 1792 tasklet_kill(&chan->tasklet); 1793 xgene_dma_delete_chan_rings(chan); 1794 } 1795 1796 if (!IS_ERR(pdma->clk)) 1797 clk_disable_unprepare(pdma->clk); 1798 1799 return 0; 1800 } 1801 1802 #ifdef CONFIG_ACPI 1803 static const struct acpi_device_id xgene_dma_acpi_match_ptr[] = { 1804 {"APMC0D43", 0}, 1805 {}, 1806 }; 1807 MODULE_DEVICE_TABLE(acpi, xgene_dma_acpi_match_ptr); 1808 #endif 1809 1810 static const struct of_device_id xgene_dma_of_match_ptr[] = { 1811 {.compatible = "apm,xgene-storm-dma",}, 1812 {}, 1813 }; 1814 MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr); 1815 1816 static struct platform_driver xgene_dma_driver = { 1817 .probe = xgene_dma_probe, 1818 .remove = xgene_dma_remove, 1819 .driver = { 1820 .name = "X-Gene-DMA", 1821 .of_match_table = xgene_dma_of_match_ptr, 1822 .acpi_match_table = ACPI_PTR(xgene_dma_acpi_match_ptr), 1823 }, 1824 }; 1825 1826 module_platform_driver(xgene_dma_driver); 1827 1828 MODULE_DESCRIPTION("APM X-Gene SoC DMA driver"); 1829 MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>"); 1830 MODULE_AUTHOR("Loc Ho <lho@apm.com>"); 1831 MODULE_LICENSE("GPL"); 1832 MODULE_VERSION("1.0"); 1833