xref: /openbmc/linux/drivers/dma/ti/k3-udma.c (revision ca5999fd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com
4  *  Author: Peter Ujfalusi <peter.ujfalusi@ti.com>
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmapool.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/list.h>
16 #include <linux/platform_device.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_device.h>
22 #include <linux/of_irq.h>
23 #include <linux/workqueue.h>
24 #include <linux/completion.h>
25 #include <linux/soc/ti/k3-ringacc.h>
26 #include <linux/soc/ti/ti_sci_protocol.h>
27 #include <linux/soc/ti/ti_sci_inta_msi.h>
28 #include <linux/dma/ti-cppi5.h>
29 
30 #include "../virt-dma.h"
31 #include "k3-udma.h"
32 #include "k3-psil-priv.h"
33 
34 struct udma_static_tr {
35 	u8 elsize; /* RPSTR0 */
36 	u16 elcnt; /* RPSTR0 */
37 	u16 bstcnt; /* RPSTR1 */
38 };
39 
40 #define K3_UDMA_MAX_RFLOWS		1024
41 #define K3_UDMA_DEFAULT_RING_SIZE	16
42 
43 /* How SRC/DST tag should be updated by UDMA in the descriptor's Word 3 */
44 #define UDMA_RFLOW_SRCTAG_NONE		0
45 #define UDMA_RFLOW_SRCTAG_CFG_TAG	1
46 #define UDMA_RFLOW_SRCTAG_FLOW_ID	2
47 #define UDMA_RFLOW_SRCTAG_SRC_TAG	4
48 
49 #define UDMA_RFLOW_DSTTAG_NONE		0
50 #define UDMA_RFLOW_DSTTAG_CFG_TAG	1
51 #define UDMA_RFLOW_DSTTAG_FLOW_ID	2
52 #define UDMA_RFLOW_DSTTAG_DST_TAG_LO	4
53 #define UDMA_RFLOW_DSTTAG_DST_TAG_HI	5
54 
55 struct udma_chan;
56 
57 enum udma_mmr {
58 	MMR_GCFG = 0,
59 	MMR_RCHANRT,
60 	MMR_TCHANRT,
61 	MMR_LAST,
62 };
63 
64 static const char * const mmr_names[] = { "gcfg", "rchanrt", "tchanrt" };
65 
66 struct udma_tchan {
67 	void __iomem *reg_rt;
68 
69 	int id;
70 	struct k3_ring *t_ring; /* Transmit ring */
71 	struct k3_ring *tc_ring; /* Transmit Completion ring */
72 };
73 
74 struct udma_rflow {
75 	int id;
76 	struct k3_ring *fd_ring; /* Free Descriptor ring */
77 	struct k3_ring *r_ring; /* Receive ring */
78 };
79 
80 struct udma_rchan {
81 	void __iomem *reg_rt;
82 
83 	int id;
84 };
85 
86 #define UDMA_FLAG_PDMA_ACC32		BIT(0)
87 #define UDMA_FLAG_PDMA_BURST		BIT(1)
88 
89 struct udma_match_data {
90 	u32 psil_base;
91 	bool enable_memcpy_support;
92 	u32 flags;
93 	u32 statictr_z_mask;
94 	u32 rchan_oes_offset;
95 
96 	u8 tpl_levels;
97 	u32 level_start_idx[];
98 };
99 
100 struct udma_hwdesc {
101 	size_t cppi5_desc_size;
102 	void *cppi5_desc_vaddr;
103 	dma_addr_t cppi5_desc_paddr;
104 
105 	/* TR descriptor internal pointers */
106 	void *tr_req_base;
107 	struct cppi5_tr_resp_t *tr_resp_base;
108 };
109 
110 struct udma_rx_flush {
111 	struct udma_hwdesc hwdescs[2];
112 
113 	size_t buffer_size;
114 	void *buffer_vaddr;
115 	dma_addr_t buffer_paddr;
116 };
117 
118 struct udma_dev {
119 	struct dma_device ddev;
120 	struct device *dev;
121 	void __iomem *mmrs[MMR_LAST];
122 	const struct udma_match_data *match_data;
123 
124 	size_t desc_align; /* alignment to use for descriptors */
125 
126 	struct udma_tisci_rm tisci_rm;
127 
128 	struct k3_ringacc *ringacc;
129 
130 	struct work_struct purge_work;
131 	struct list_head desc_to_purge;
132 	spinlock_t lock;
133 
134 	struct udma_rx_flush rx_flush;
135 
136 	int tchan_cnt;
137 	int echan_cnt;
138 	int rchan_cnt;
139 	int rflow_cnt;
140 	unsigned long *tchan_map;
141 	unsigned long *rchan_map;
142 	unsigned long *rflow_gp_map;
143 	unsigned long *rflow_gp_map_allocated;
144 	unsigned long *rflow_in_use;
145 
146 	struct udma_tchan *tchans;
147 	struct udma_rchan *rchans;
148 	struct udma_rflow *rflows;
149 
150 	struct udma_chan *channels;
151 	u32 psil_base;
152 	u32 atype;
153 };
154 
155 struct udma_desc {
156 	struct virt_dma_desc vd;
157 
158 	bool terminated;
159 
160 	enum dma_transfer_direction dir;
161 
162 	struct udma_static_tr static_tr;
163 	u32 residue;
164 
165 	unsigned int sglen;
166 	unsigned int desc_idx; /* Only used for cyclic in packet mode */
167 	unsigned int tr_idx;
168 
169 	u32 metadata_size;
170 	void *metadata; /* pointer to provided metadata buffer (EPIP, PSdata) */
171 
172 	unsigned int hwdesc_count;
173 	struct udma_hwdesc hwdesc[0];
174 };
175 
176 enum udma_chan_state {
177 	UDMA_CHAN_IS_IDLE = 0, /* not active, no teardown is in progress */
178 	UDMA_CHAN_IS_ACTIVE, /* Normal operation */
179 	UDMA_CHAN_IS_TERMINATING, /* channel is being terminated */
180 };
181 
182 struct udma_tx_drain {
183 	struct delayed_work work;
184 	ktime_t tstamp;
185 	u32 residue;
186 };
187 
188 struct udma_chan_config {
189 	bool pkt_mode; /* TR or packet */
190 	bool needs_epib; /* EPIB is needed for the communication or not */
191 	u32 psd_size; /* size of Protocol Specific Data */
192 	u32 metadata_size; /* (needs_epib ? 16:0) + psd_size */
193 	u32 hdesc_size; /* Size of a packet descriptor in packet mode */
194 	bool notdpkt; /* Suppress sending TDC packet */
195 	int remote_thread_id;
196 	u32 atype;
197 	u32 src_thread;
198 	u32 dst_thread;
199 	enum psil_endpoint_type ep_type;
200 	bool enable_acc32;
201 	bool enable_burst;
202 	enum udma_tp_level channel_tpl; /* Channel Throughput Level */
203 
204 	enum dma_transfer_direction dir;
205 };
206 
207 struct udma_chan {
208 	struct virt_dma_chan vc;
209 	struct dma_slave_config	cfg;
210 	struct udma_dev *ud;
211 	struct udma_desc *desc;
212 	struct udma_desc *terminated_desc;
213 	struct udma_static_tr static_tr;
214 	char *name;
215 
216 	struct udma_tchan *tchan;
217 	struct udma_rchan *rchan;
218 	struct udma_rflow *rflow;
219 
220 	bool psil_paired;
221 
222 	int irq_num_ring;
223 	int irq_num_udma;
224 
225 	bool cyclic;
226 	bool paused;
227 
228 	enum udma_chan_state state;
229 	struct completion teardown_completed;
230 
231 	struct udma_tx_drain tx_drain;
232 
233 	u32 bcnt; /* number of bytes completed since the start of the channel */
234 	u32 in_ring_cnt; /* number of descriptors in flight */
235 
236 	/* Channel configuration parameters */
237 	struct udma_chan_config config;
238 
239 	/* dmapool for packet mode descriptors */
240 	bool use_dma_pool;
241 	struct dma_pool *hdesc_pool;
242 
243 	u32 id;
244 };
245 
246 static inline struct udma_dev *to_udma_dev(struct dma_device *d)
247 {
248 	return container_of(d, struct udma_dev, ddev);
249 }
250 
251 static inline struct udma_chan *to_udma_chan(struct dma_chan *c)
252 {
253 	return container_of(c, struct udma_chan, vc.chan);
254 }
255 
256 static inline struct udma_desc *to_udma_desc(struct dma_async_tx_descriptor *t)
257 {
258 	return container_of(t, struct udma_desc, vd.tx);
259 }
260 
261 /* Generic register access functions */
262 static inline u32 udma_read(void __iomem *base, int reg)
263 {
264 	return readl(base + reg);
265 }
266 
267 static inline void udma_write(void __iomem *base, int reg, u32 val)
268 {
269 	writel(val, base + reg);
270 }
271 
272 static inline void udma_update_bits(void __iomem *base, int reg,
273 				    u32 mask, u32 val)
274 {
275 	u32 tmp, orig;
276 
277 	orig = readl(base + reg);
278 	tmp = orig & ~mask;
279 	tmp |= (val & mask);
280 
281 	if (tmp != orig)
282 		writel(tmp, base + reg);
283 }
284 
285 /* TCHANRT */
286 static inline u32 udma_tchanrt_read(struct udma_tchan *tchan, int reg)
287 {
288 	if (!tchan)
289 		return 0;
290 	return udma_read(tchan->reg_rt, reg);
291 }
292 
293 static inline void udma_tchanrt_write(struct udma_tchan *tchan, int reg,
294 				      u32 val)
295 {
296 	if (!tchan)
297 		return;
298 	udma_write(tchan->reg_rt, reg, val);
299 }
300 
301 static inline void udma_tchanrt_update_bits(struct udma_tchan *tchan, int reg,
302 					    u32 mask, u32 val)
303 {
304 	if (!tchan)
305 		return;
306 	udma_update_bits(tchan->reg_rt, reg, mask, val);
307 }
308 
309 /* RCHANRT */
310 static inline u32 udma_rchanrt_read(struct udma_rchan *rchan, int reg)
311 {
312 	if (!rchan)
313 		return 0;
314 	return udma_read(rchan->reg_rt, reg);
315 }
316 
317 static inline void udma_rchanrt_write(struct udma_rchan *rchan, int reg,
318 				      u32 val)
319 {
320 	if (!rchan)
321 		return;
322 	udma_write(rchan->reg_rt, reg, val);
323 }
324 
325 static inline void udma_rchanrt_update_bits(struct udma_rchan *rchan, int reg,
326 					    u32 mask, u32 val)
327 {
328 	if (!rchan)
329 		return;
330 	udma_update_bits(rchan->reg_rt, reg, mask, val);
331 }
332 
333 static int navss_psil_pair(struct udma_dev *ud, u32 src_thread, u32 dst_thread)
334 {
335 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
336 
337 	dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET;
338 	return tisci_rm->tisci_psil_ops->pair(tisci_rm->tisci,
339 					      tisci_rm->tisci_navss_dev_id,
340 					      src_thread, dst_thread);
341 }
342 
343 static int navss_psil_unpair(struct udma_dev *ud, u32 src_thread,
344 			     u32 dst_thread)
345 {
346 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
347 
348 	dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET;
349 	return tisci_rm->tisci_psil_ops->unpair(tisci_rm->tisci,
350 						tisci_rm->tisci_navss_dev_id,
351 						src_thread, dst_thread);
352 }
353 
354 static void udma_reset_uchan(struct udma_chan *uc)
355 {
356 	memset(&uc->config, 0, sizeof(uc->config));
357 	uc->config.remote_thread_id = -1;
358 	uc->state = UDMA_CHAN_IS_IDLE;
359 }
360 
361 static void udma_dump_chan_stdata(struct udma_chan *uc)
362 {
363 	struct device *dev = uc->ud->dev;
364 	u32 offset;
365 	int i;
366 
367 	if (uc->config.dir == DMA_MEM_TO_DEV || uc->config.dir == DMA_MEM_TO_MEM) {
368 		dev_dbg(dev, "TCHAN State data:\n");
369 		for (i = 0; i < 32; i++) {
370 			offset = UDMA_TCHAN_RT_STDATA_REG + i * 4;
371 			dev_dbg(dev, "TRT_STDATA[%02d]: 0x%08x\n", i,
372 				udma_tchanrt_read(uc->tchan, offset));
373 		}
374 	}
375 
376 	if (uc->config.dir == DMA_DEV_TO_MEM || uc->config.dir == DMA_MEM_TO_MEM) {
377 		dev_dbg(dev, "RCHAN State data:\n");
378 		for (i = 0; i < 32; i++) {
379 			offset = UDMA_RCHAN_RT_STDATA_REG + i * 4;
380 			dev_dbg(dev, "RRT_STDATA[%02d]: 0x%08x\n", i,
381 				udma_rchanrt_read(uc->rchan, offset));
382 		}
383 	}
384 }
385 
386 static inline dma_addr_t udma_curr_cppi5_desc_paddr(struct udma_desc *d,
387 						    int idx)
388 {
389 	return d->hwdesc[idx].cppi5_desc_paddr;
390 }
391 
392 static inline void *udma_curr_cppi5_desc_vaddr(struct udma_desc *d, int idx)
393 {
394 	return d->hwdesc[idx].cppi5_desc_vaddr;
395 }
396 
397 static struct udma_desc *udma_udma_desc_from_paddr(struct udma_chan *uc,
398 						   dma_addr_t paddr)
399 {
400 	struct udma_desc *d = uc->terminated_desc;
401 
402 	if (d) {
403 		dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d,
404 								   d->desc_idx);
405 
406 		if (desc_paddr != paddr)
407 			d = NULL;
408 	}
409 
410 	if (!d) {
411 		d = uc->desc;
412 		if (d) {
413 			dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d,
414 								d->desc_idx);
415 
416 			if (desc_paddr != paddr)
417 				d = NULL;
418 		}
419 	}
420 
421 	return d;
422 }
423 
424 static void udma_free_hwdesc(struct udma_chan *uc, struct udma_desc *d)
425 {
426 	if (uc->use_dma_pool) {
427 		int i;
428 
429 		for (i = 0; i < d->hwdesc_count; i++) {
430 			if (!d->hwdesc[i].cppi5_desc_vaddr)
431 				continue;
432 
433 			dma_pool_free(uc->hdesc_pool,
434 				      d->hwdesc[i].cppi5_desc_vaddr,
435 				      d->hwdesc[i].cppi5_desc_paddr);
436 
437 			d->hwdesc[i].cppi5_desc_vaddr = NULL;
438 		}
439 	} else if (d->hwdesc[0].cppi5_desc_vaddr) {
440 		struct udma_dev *ud = uc->ud;
441 
442 		dma_free_coherent(ud->dev, d->hwdesc[0].cppi5_desc_size,
443 				  d->hwdesc[0].cppi5_desc_vaddr,
444 				  d->hwdesc[0].cppi5_desc_paddr);
445 
446 		d->hwdesc[0].cppi5_desc_vaddr = NULL;
447 	}
448 }
449 
450 static void udma_purge_desc_work(struct work_struct *work)
451 {
452 	struct udma_dev *ud = container_of(work, typeof(*ud), purge_work);
453 	struct virt_dma_desc *vd, *_vd;
454 	unsigned long flags;
455 	LIST_HEAD(head);
456 
457 	spin_lock_irqsave(&ud->lock, flags);
458 	list_splice_tail_init(&ud->desc_to_purge, &head);
459 	spin_unlock_irqrestore(&ud->lock, flags);
460 
461 	list_for_each_entry_safe(vd, _vd, &head, node) {
462 		struct udma_chan *uc = to_udma_chan(vd->tx.chan);
463 		struct udma_desc *d = to_udma_desc(&vd->tx);
464 
465 		udma_free_hwdesc(uc, d);
466 		list_del(&vd->node);
467 		kfree(d);
468 	}
469 
470 	/* If more to purge, schedule the work again */
471 	if (!list_empty(&ud->desc_to_purge))
472 		schedule_work(&ud->purge_work);
473 }
474 
475 static void udma_desc_free(struct virt_dma_desc *vd)
476 {
477 	struct udma_dev *ud = to_udma_dev(vd->tx.chan->device);
478 	struct udma_chan *uc = to_udma_chan(vd->tx.chan);
479 	struct udma_desc *d = to_udma_desc(&vd->tx);
480 	unsigned long flags;
481 
482 	if (uc->terminated_desc == d)
483 		uc->terminated_desc = NULL;
484 
485 	if (uc->use_dma_pool) {
486 		udma_free_hwdesc(uc, d);
487 		kfree(d);
488 		return;
489 	}
490 
491 	spin_lock_irqsave(&ud->lock, flags);
492 	list_add_tail(&vd->node, &ud->desc_to_purge);
493 	spin_unlock_irqrestore(&ud->lock, flags);
494 
495 	schedule_work(&ud->purge_work);
496 }
497 
498 static bool udma_is_chan_running(struct udma_chan *uc)
499 {
500 	u32 trt_ctl = 0;
501 	u32 rrt_ctl = 0;
502 
503 	if (uc->tchan)
504 		trt_ctl = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_CTL_REG);
505 	if (uc->rchan)
506 		rrt_ctl = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_CTL_REG);
507 
508 	if (trt_ctl & UDMA_CHAN_RT_CTL_EN || rrt_ctl & UDMA_CHAN_RT_CTL_EN)
509 		return true;
510 
511 	return false;
512 }
513 
514 static bool udma_is_chan_paused(struct udma_chan *uc)
515 {
516 	u32 val, pause_mask;
517 
518 	switch (uc->config.dir) {
519 	case DMA_DEV_TO_MEM:
520 		val = udma_rchanrt_read(uc->rchan,
521 					UDMA_RCHAN_RT_PEER_RT_EN_REG);
522 		pause_mask = UDMA_PEER_RT_EN_PAUSE;
523 		break;
524 	case DMA_MEM_TO_DEV:
525 		val = udma_tchanrt_read(uc->tchan,
526 					UDMA_TCHAN_RT_PEER_RT_EN_REG);
527 		pause_mask = UDMA_PEER_RT_EN_PAUSE;
528 		break;
529 	case DMA_MEM_TO_MEM:
530 		val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_CTL_REG);
531 		pause_mask = UDMA_CHAN_RT_CTL_PAUSE;
532 		break;
533 	default:
534 		return false;
535 	}
536 
537 	if (val & pause_mask)
538 		return true;
539 
540 	return false;
541 }
542 
543 static void udma_sync_for_device(struct udma_chan *uc, int idx)
544 {
545 	struct udma_desc *d = uc->desc;
546 
547 	if (uc->cyclic && uc->config.pkt_mode) {
548 		dma_sync_single_for_device(uc->ud->dev,
549 					   d->hwdesc[idx].cppi5_desc_paddr,
550 					   d->hwdesc[idx].cppi5_desc_size,
551 					   DMA_TO_DEVICE);
552 	} else {
553 		int i;
554 
555 		for (i = 0; i < d->hwdesc_count; i++) {
556 			if (!d->hwdesc[i].cppi5_desc_vaddr)
557 				continue;
558 
559 			dma_sync_single_for_device(uc->ud->dev,
560 						d->hwdesc[i].cppi5_desc_paddr,
561 						d->hwdesc[i].cppi5_desc_size,
562 						DMA_TO_DEVICE);
563 		}
564 	}
565 }
566 
567 static inline dma_addr_t udma_get_rx_flush_hwdesc_paddr(struct udma_chan *uc)
568 {
569 	return uc->ud->rx_flush.hwdescs[uc->config.pkt_mode].cppi5_desc_paddr;
570 }
571 
572 static int udma_push_to_ring(struct udma_chan *uc, int idx)
573 {
574 	struct udma_desc *d = uc->desc;
575 	struct k3_ring *ring = NULL;
576 	dma_addr_t paddr;
577 	int ret;
578 
579 	switch (uc->config.dir) {
580 	case DMA_DEV_TO_MEM:
581 		ring = uc->rflow->fd_ring;
582 		break;
583 	case DMA_MEM_TO_DEV:
584 	case DMA_MEM_TO_MEM:
585 		ring = uc->tchan->t_ring;
586 		break;
587 	default:
588 		return -EINVAL;
589 	}
590 
591 	/* RX flush packet: idx == -1 is only passed in case of DEV_TO_MEM */
592 	if (idx == -1) {
593 		paddr = udma_get_rx_flush_hwdesc_paddr(uc);
594 	} else {
595 		paddr = udma_curr_cppi5_desc_paddr(d, idx);
596 
597 		wmb(); /* Ensure that writes are not moved over this point */
598 		udma_sync_for_device(uc, idx);
599 	}
600 
601 	ret = k3_ringacc_ring_push(ring, &paddr);
602 	if (!ret)
603 		uc->in_ring_cnt++;
604 
605 	return ret;
606 }
607 
608 static bool udma_desc_is_rx_flush(struct udma_chan *uc, dma_addr_t addr)
609 {
610 	if (uc->config.dir != DMA_DEV_TO_MEM)
611 		return false;
612 
613 	if (addr == udma_get_rx_flush_hwdesc_paddr(uc))
614 		return true;
615 
616 	return false;
617 }
618 
619 static int udma_pop_from_ring(struct udma_chan *uc, dma_addr_t *addr)
620 {
621 	struct k3_ring *ring = NULL;
622 	int ret = -ENOENT;
623 
624 	switch (uc->config.dir) {
625 	case DMA_DEV_TO_MEM:
626 		ring = uc->rflow->r_ring;
627 		break;
628 	case DMA_MEM_TO_DEV:
629 	case DMA_MEM_TO_MEM:
630 		ring = uc->tchan->tc_ring;
631 		break;
632 	default:
633 		break;
634 	}
635 
636 	if (ring && k3_ringacc_ring_get_occ(ring)) {
637 		struct udma_desc *d = NULL;
638 
639 		ret = k3_ringacc_ring_pop(ring, addr);
640 		if (ret)
641 			return ret;
642 
643 		/* Teardown completion */
644 		if (cppi5_desc_is_tdcm(*addr))
645 			return ret;
646 
647 		/* Check for flush descriptor */
648 		if (udma_desc_is_rx_flush(uc, *addr))
649 			return -ENOENT;
650 
651 		d = udma_udma_desc_from_paddr(uc, *addr);
652 
653 		if (d)
654 			dma_sync_single_for_cpu(uc->ud->dev, *addr,
655 						d->hwdesc[0].cppi5_desc_size,
656 						DMA_FROM_DEVICE);
657 		rmb(); /* Ensure that reads are not moved before this point */
658 
659 		if (!ret)
660 			uc->in_ring_cnt--;
661 	}
662 
663 	return ret;
664 }
665 
666 static void udma_reset_rings(struct udma_chan *uc)
667 {
668 	struct k3_ring *ring1 = NULL;
669 	struct k3_ring *ring2 = NULL;
670 
671 	switch (uc->config.dir) {
672 	case DMA_DEV_TO_MEM:
673 		if (uc->rchan) {
674 			ring1 = uc->rflow->fd_ring;
675 			ring2 = uc->rflow->r_ring;
676 		}
677 		break;
678 	case DMA_MEM_TO_DEV:
679 	case DMA_MEM_TO_MEM:
680 		if (uc->tchan) {
681 			ring1 = uc->tchan->t_ring;
682 			ring2 = uc->tchan->tc_ring;
683 		}
684 		break;
685 	default:
686 		break;
687 	}
688 
689 	if (ring1)
690 		k3_ringacc_ring_reset_dma(ring1,
691 					  k3_ringacc_ring_get_occ(ring1));
692 	if (ring2)
693 		k3_ringacc_ring_reset(ring2);
694 
695 	/* make sure we are not leaking memory by stalled descriptor */
696 	if (uc->terminated_desc) {
697 		udma_desc_free(&uc->terminated_desc->vd);
698 		uc->terminated_desc = NULL;
699 	}
700 
701 	uc->in_ring_cnt = 0;
702 }
703 
704 static void udma_reset_counters(struct udma_chan *uc)
705 {
706 	u32 val;
707 
708 	if (uc->tchan) {
709 		val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_BCNT_REG);
710 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_BCNT_REG, val);
711 
712 		val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_SBCNT_REG);
713 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_SBCNT_REG, val);
714 
715 		val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_PCNT_REG);
716 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PCNT_REG, val);
717 
718 		val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_PEER_BCNT_REG);
719 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PEER_BCNT_REG, val);
720 	}
721 
722 	if (uc->rchan) {
723 		val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_BCNT_REG);
724 		udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_BCNT_REG, val);
725 
726 		val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_SBCNT_REG);
727 		udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_SBCNT_REG, val);
728 
729 		val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_PCNT_REG);
730 		udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PCNT_REG, val);
731 
732 		val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_PEER_BCNT_REG);
733 		udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PEER_BCNT_REG, val);
734 	}
735 
736 	uc->bcnt = 0;
737 }
738 
739 static int udma_reset_chan(struct udma_chan *uc, bool hard)
740 {
741 	switch (uc->config.dir) {
742 	case DMA_DEV_TO_MEM:
743 		udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PEER_RT_EN_REG, 0);
744 		udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG, 0);
745 		break;
746 	case DMA_MEM_TO_DEV:
747 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG, 0);
748 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PEER_RT_EN_REG, 0);
749 		break;
750 	case DMA_MEM_TO_MEM:
751 		udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG, 0);
752 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG, 0);
753 		break;
754 	default:
755 		return -EINVAL;
756 	}
757 
758 	/* Reset all counters */
759 	udma_reset_counters(uc);
760 
761 	/* Hard reset: re-initialize the channel to reset */
762 	if (hard) {
763 		struct udma_chan_config ucc_backup;
764 		int ret;
765 
766 		memcpy(&ucc_backup, &uc->config, sizeof(uc->config));
767 		uc->ud->ddev.device_free_chan_resources(&uc->vc.chan);
768 
769 		/* restore the channel configuration */
770 		memcpy(&uc->config, &ucc_backup, sizeof(uc->config));
771 		ret = uc->ud->ddev.device_alloc_chan_resources(&uc->vc.chan);
772 		if (ret)
773 			return ret;
774 
775 		/*
776 		 * Setting forced teardown after forced reset helps recovering
777 		 * the rchan.
778 		 */
779 		if (uc->config.dir == DMA_DEV_TO_MEM)
780 			udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG,
781 					   UDMA_CHAN_RT_CTL_EN |
782 					   UDMA_CHAN_RT_CTL_TDOWN |
783 					   UDMA_CHAN_RT_CTL_FTDOWN);
784 	}
785 	uc->state = UDMA_CHAN_IS_IDLE;
786 
787 	return 0;
788 }
789 
790 static void udma_start_desc(struct udma_chan *uc)
791 {
792 	struct udma_chan_config *ucc = &uc->config;
793 
794 	if (ucc->pkt_mode && (uc->cyclic || ucc->dir == DMA_DEV_TO_MEM)) {
795 		int i;
796 
797 		/* Push all descriptors to ring for packet mode cyclic or RX */
798 		for (i = 0; i < uc->desc->sglen; i++)
799 			udma_push_to_ring(uc, i);
800 	} else {
801 		udma_push_to_ring(uc, 0);
802 	}
803 }
804 
805 static bool udma_chan_needs_reconfiguration(struct udma_chan *uc)
806 {
807 	/* Only PDMAs have staticTR */
808 	if (uc->config.ep_type == PSIL_EP_NATIVE)
809 		return false;
810 
811 	/* Check if the staticTR configuration has changed for TX */
812 	if (memcmp(&uc->static_tr, &uc->desc->static_tr, sizeof(uc->static_tr)))
813 		return true;
814 
815 	return false;
816 }
817 
818 static int udma_start(struct udma_chan *uc)
819 {
820 	struct virt_dma_desc *vd = vchan_next_desc(&uc->vc);
821 
822 	if (!vd) {
823 		uc->desc = NULL;
824 		return -ENOENT;
825 	}
826 
827 	list_del(&vd->node);
828 
829 	uc->desc = to_udma_desc(&vd->tx);
830 
831 	/* Channel is already running and does not need reconfiguration */
832 	if (udma_is_chan_running(uc) && !udma_chan_needs_reconfiguration(uc)) {
833 		udma_start_desc(uc);
834 		goto out;
835 	}
836 
837 	/* Make sure that we clear the teardown bit, if it is set */
838 	udma_reset_chan(uc, false);
839 
840 	/* Push descriptors before we start the channel */
841 	udma_start_desc(uc);
842 
843 	switch (uc->desc->dir) {
844 	case DMA_DEV_TO_MEM:
845 		/* Config remote TR */
846 		if (uc->config.ep_type == PSIL_EP_PDMA_XY) {
847 			u32 val = PDMA_STATIC_TR_Y(uc->desc->static_tr.elcnt) |
848 				  PDMA_STATIC_TR_X(uc->desc->static_tr.elsize);
849 			const struct udma_match_data *match_data =
850 							uc->ud->match_data;
851 
852 			if (uc->config.enable_acc32)
853 				val |= PDMA_STATIC_TR_XY_ACC32;
854 			if (uc->config.enable_burst)
855 				val |= PDMA_STATIC_TR_XY_BURST;
856 
857 			udma_rchanrt_write(uc->rchan,
858 				UDMA_RCHAN_RT_PEER_STATIC_TR_XY_REG, val);
859 
860 			udma_rchanrt_write(uc->rchan,
861 				UDMA_RCHAN_RT_PEER_STATIC_TR_Z_REG,
862 				PDMA_STATIC_TR_Z(uc->desc->static_tr.bstcnt,
863 						 match_data->statictr_z_mask));
864 
865 			/* save the current staticTR configuration */
866 			memcpy(&uc->static_tr, &uc->desc->static_tr,
867 			       sizeof(uc->static_tr));
868 		}
869 
870 		udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG,
871 				   UDMA_CHAN_RT_CTL_EN);
872 
873 		/* Enable remote */
874 		udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PEER_RT_EN_REG,
875 				   UDMA_PEER_RT_EN_ENABLE);
876 
877 		break;
878 	case DMA_MEM_TO_DEV:
879 		/* Config remote TR */
880 		if (uc->config.ep_type == PSIL_EP_PDMA_XY) {
881 			u32 val = PDMA_STATIC_TR_Y(uc->desc->static_tr.elcnt) |
882 				  PDMA_STATIC_TR_X(uc->desc->static_tr.elsize);
883 
884 			if (uc->config.enable_acc32)
885 				val |= PDMA_STATIC_TR_XY_ACC32;
886 			if (uc->config.enable_burst)
887 				val |= PDMA_STATIC_TR_XY_BURST;
888 
889 			udma_tchanrt_write(uc->tchan,
890 				UDMA_TCHAN_RT_PEER_STATIC_TR_XY_REG, val);
891 
892 			/* save the current staticTR configuration */
893 			memcpy(&uc->static_tr, &uc->desc->static_tr,
894 			       sizeof(uc->static_tr));
895 		}
896 
897 		/* Enable remote */
898 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PEER_RT_EN_REG,
899 				   UDMA_PEER_RT_EN_ENABLE);
900 
901 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG,
902 				   UDMA_CHAN_RT_CTL_EN);
903 
904 		break;
905 	case DMA_MEM_TO_MEM:
906 		udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG,
907 				   UDMA_CHAN_RT_CTL_EN);
908 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG,
909 				   UDMA_CHAN_RT_CTL_EN);
910 
911 		break;
912 	default:
913 		return -EINVAL;
914 	}
915 
916 	uc->state = UDMA_CHAN_IS_ACTIVE;
917 out:
918 
919 	return 0;
920 }
921 
922 static int udma_stop(struct udma_chan *uc)
923 {
924 	enum udma_chan_state old_state = uc->state;
925 
926 	uc->state = UDMA_CHAN_IS_TERMINATING;
927 	reinit_completion(&uc->teardown_completed);
928 
929 	switch (uc->config.dir) {
930 	case DMA_DEV_TO_MEM:
931 		if (!uc->cyclic && !uc->desc)
932 			udma_push_to_ring(uc, -1);
933 
934 		udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PEER_RT_EN_REG,
935 				   UDMA_PEER_RT_EN_ENABLE |
936 				   UDMA_PEER_RT_EN_TEARDOWN);
937 		break;
938 	case DMA_MEM_TO_DEV:
939 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PEER_RT_EN_REG,
940 				   UDMA_PEER_RT_EN_ENABLE |
941 				   UDMA_PEER_RT_EN_FLUSH);
942 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG,
943 				   UDMA_CHAN_RT_CTL_EN |
944 				   UDMA_CHAN_RT_CTL_TDOWN);
945 		break;
946 	case DMA_MEM_TO_MEM:
947 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG,
948 				   UDMA_CHAN_RT_CTL_EN |
949 				   UDMA_CHAN_RT_CTL_TDOWN);
950 		break;
951 	default:
952 		uc->state = old_state;
953 		complete_all(&uc->teardown_completed);
954 		return -EINVAL;
955 	}
956 
957 	return 0;
958 }
959 
960 static void udma_cyclic_packet_elapsed(struct udma_chan *uc)
961 {
962 	struct udma_desc *d = uc->desc;
963 	struct cppi5_host_desc_t *h_desc;
964 
965 	h_desc = d->hwdesc[d->desc_idx].cppi5_desc_vaddr;
966 	cppi5_hdesc_reset_to_original(h_desc);
967 	udma_push_to_ring(uc, d->desc_idx);
968 	d->desc_idx = (d->desc_idx + 1) % d->sglen;
969 }
970 
971 static inline void udma_fetch_epib(struct udma_chan *uc, struct udma_desc *d)
972 {
973 	struct cppi5_host_desc_t *h_desc = d->hwdesc[0].cppi5_desc_vaddr;
974 
975 	memcpy(d->metadata, h_desc->epib, d->metadata_size);
976 }
977 
978 static bool udma_is_desc_really_done(struct udma_chan *uc, struct udma_desc *d)
979 {
980 	u32 peer_bcnt, bcnt;
981 
982 	/* Only TX towards PDMA is affected */
983 	if (uc->config.ep_type == PSIL_EP_NATIVE ||
984 	    uc->config.dir != DMA_MEM_TO_DEV)
985 		return true;
986 
987 	peer_bcnt = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_PEER_BCNT_REG);
988 	bcnt = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_BCNT_REG);
989 
990 	/* Transfer is incomplete, store current residue and time stamp */
991 	if (peer_bcnt < bcnt) {
992 		uc->tx_drain.residue = bcnt - peer_bcnt;
993 		uc->tx_drain.tstamp = ktime_get();
994 		return false;
995 	}
996 
997 	return true;
998 }
999 
1000 static void udma_check_tx_completion(struct work_struct *work)
1001 {
1002 	struct udma_chan *uc = container_of(work, typeof(*uc),
1003 					    tx_drain.work.work);
1004 	bool desc_done = true;
1005 	u32 residue_diff;
1006 	ktime_t time_diff;
1007 	unsigned long delay;
1008 
1009 	while (1) {
1010 		if (uc->desc) {
1011 			/* Get previous residue and time stamp */
1012 			residue_diff = uc->tx_drain.residue;
1013 			time_diff = uc->tx_drain.tstamp;
1014 			/*
1015 			 * Get current residue and time stamp or see if
1016 			 * transfer is complete
1017 			 */
1018 			desc_done = udma_is_desc_really_done(uc, uc->desc);
1019 		}
1020 
1021 		if (!desc_done) {
1022 			/*
1023 			 * Find the time delta and residue delta w.r.t
1024 			 * previous poll
1025 			 */
1026 			time_diff = ktime_sub(uc->tx_drain.tstamp,
1027 					      time_diff) + 1;
1028 			residue_diff -= uc->tx_drain.residue;
1029 			if (residue_diff) {
1030 				/*
1031 				 * Try to guess when we should check
1032 				 * next time by calculating rate at
1033 				 * which data is being drained at the
1034 				 * peer device
1035 				 */
1036 				delay = (time_diff / residue_diff) *
1037 					uc->tx_drain.residue;
1038 			} else {
1039 				/* No progress, check again in 1 second  */
1040 				schedule_delayed_work(&uc->tx_drain.work, HZ);
1041 				break;
1042 			}
1043 
1044 			usleep_range(ktime_to_us(delay),
1045 				     ktime_to_us(delay) + 10);
1046 			continue;
1047 		}
1048 
1049 		if (uc->desc) {
1050 			struct udma_desc *d = uc->desc;
1051 
1052 			uc->bcnt += d->residue;
1053 			udma_start(uc);
1054 			vchan_cookie_complete(&d->vd);
1055 			break;
1056 		}
1057 
1058 		break;
1059 	}
1060 }
1061 
1062 static irqreturn_t udma_ring_irq_handler(int irq, void *data)
1063 {
1064 	struct udma_chan *uc = data;
1065 	struct udma_desc *d;
1066 	unsigned long flags;
1067 	dma_addr_t paddr = 0;
1068 
1069 	if (udma_pop_from_ring(uc, &paddr) || !paddr)
1070 		return IRQ_HANDLED;
1071 
1072 	spin_lock_irqsave(&uc->vc.lock, flags);
1073 
1074 	/* Teardown completion message */
1075 	if (cppi5_desc_is_tdcm(paddr)) {
1076 		/* Compensate our internal pop/push counter */
1077 		uc->in_ring_cnt++;
1078 
1079 		complete_all(&uc->teardown_completed);
1080 
1081 		if (uc->terminated_desc) {
1082 			udma_desc_free(&uc->terminated_desc->vd);
1083 			uc->terminated_desc = NULL;
1084 		}
1085 
1086 		if (!uc->desc)
1087 			udma_start(uc);
1088 
1089 		goto out;
1090 	}
1091 
1092 	d = udma_udma_desc_from_paddr(uc, paddr);
1093 
1094 	if (d) {
1095 		dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d,
1096 								   d->desc_idx);
1097 		if (desc_paddr != paddr) {
1098 			dev_err(uc->ud->dev, "not matching descriptors!\n");
1099 			goto out;
1100 		}
1101 
1102 		if (d == uc->desc) {
1103 			/* active descriptor */
1104 			if (uc->cyclic) {
1105 				udma_cyclic_packet_elapsed(uc);
1106 				vchan_cyclic_callback(&d->vd);
1107 			} else {
1108 				if (udma_is_desc_really_done(uc, d)) {
1109 					uc->bcnt += d->residue;
1110 					udma_start(uc);
1111 					vchan_cookie_complete(&d->vd);
1112 				} else {
1113 					schedule_delayed_work(&uc->tx_drain.work,
1114 							      0);
1115 				}
1116 			}
1117 		} else {
1118 			/*
1119 			 * terminated descriptor, mark the descriptor as
1120 			 * completed to update the channel's cookie marker
1121 			 */
1122 			dma_cookie_complete(&d->vd.tx);
1123 		}
1124 	}
1125 out:
1126 	spin_unlock_irqrestore(&uc->vc.lock, flags);
1127 
1128 	return IRQ_HANDLED;
1129 }
1130 
1131 static irqreturn_t udma_udma_irq_handler(int irq, void *data)
1132 {
1133 	struct udma_chan *uc = data;
1134 	struct udma_desc *d;
1135 	unsigned long flags;
1136 
1137 	spin_lock_irqsave(&uc->vc.lock, flags);
1138 	d = uc->desc;
1139 	if (d) {
1140 		d->tr_idx = (d->tr_idx + 1) % d->sglen;
1141 
1142 		if (uc->cyclic) {
1143 			vchan_cyclic_callback(&d->vd);
1144 		} else {
1145 			/* TODO: figure out the real amount of data */
1146 			uc->bcnt += d->residue;
1147 			udma_start(uc);
1148 			vchan_cookie_complete(&d->vd);
1149 		}
1150 	}
1151 
1152 	spin_unlock_irqrestore(&uc->vc.lock, flags);
1153 
1154 	return IRQ_HANDLED;
1155 }
1156 
1157 /**
1158  * __udma_alloc_gp_rflow_range - alloc range of GP RX flows
1159  * @ud: UDMA device
1160  * @from: Start the search from this flow id number
1161  * @cnt: Number of consecutive flow ids to allocate
1162  *
1163  * Allocate range of RX flow ids for future use, those flows can be requested
1164  * only using explicit flow id number. if @from is set to -1 it will try to find
1165  * first free range. if @from is positive value it will force allocation only
1166  * of the specified range of flows.
1167  *
1168  * Returns -ENOMEM if can't find free range.
1169  * -EEXIST if requested range is busy.
1170  * -EINVAL if wrong input values passed.
1171  * Returns flow id on success.
1172  */
1173 static int __udma_alloc_gp_rflow_range(struct udma_dev *ud, int from, int cnt)
1174 {
1175 	int start, tmp_from;
1176 	DECLARE_BITMAP(tmp, K3_UDMA_MAX_RFLOWS);
1177 
1178 	tmp_from = from;
1179 	if (tmp_from < 0)
1180 		tmp_from = ud->rchan_cnt;
1181 	/* default flows can't be allocated and accessible only by id */
1182 	if (tmp_from < ud->rchan_cnt)
1183 		return -EINVAL;
1184 
1185 	if (tmp_from + cnt > ud->rflow_cnt)
1186 		return -EINVAL;
1187 
1188 	bitmap_or(tmp, ud->rflow_gp_map, ud->rflow_gp_map_allocated,
1189 		  ud->rflow_cnt);
1190 
1191 	start = bitmap_find_next_zero_area(tmp,
1192 					   ud->rflow_cnt,
1193 					   tmp_from, cnt, 0);
1194 	if (start >= ud->rflow_cnt)
1195 		return -ENOMEM;
1196 
1197 	if (from >= 0 && start != from)
1198 		return -EEXIST;
1199 
1200 	bitmap_set(ud->rflow_gp_map_allocated, start, cnt);
1201 	return start;
1202 }
1203 
1204 static int __udma_free_gp_rflow_range(struct udma_dev *ud, int from, int cnt)
1205 {
1206 	if (from < ud->rchan_cnt)
1207 		return -EINVAL;
1208 	if (from + cnt > ud->rflow_cnt)
1209 		return -EINVAL;
1210 
1211 	bitmap_clear(ud->rflow_gp_map_allocated, from, cnt);
1212 	return 0;
1213 }
1214 
1215 static struct udma_rflow *__udma_get_rflow(struct udma_dev *ud, int id)
1216 {
1217 	/*
1218 	 * Attempt to request rflow by ID can be made for any rflow
1219 	 * if not in use with assumption that caller knows what's doing.
1220 	 * TI-SCI FW will perform additional permission check ant way, it's
1221 	 * safe
1222 	 */
1223 
1224 	if (id < 0 || id >= ud->rflow_cnt)
1225 		return ERR_PTR(-ENOENT);
1226 
1227 	if (test_bit(id, ud->rflow_in_use))
1228 		return ERR_PTR(-ENOENT);
1229 
1230 	/* GP rflow has to be allocated first */
1231 	if (!test_bit(id, ud->rflow_gp_map) &&
1232 	    !test_bit(id, ud->rflow_gp_map_allocated))
1233 		return ERR_PTR(-EINVAL);
1234 
1235 	dev_dbg(ud->dev, "get rflow%d\n", id);
1236 	set_bit(id, ud->rflow_in_use);
1237 	return &ud->rflows[id];
1238 }
1239 
1240 static void __udma_put_rflow(struct udma_dev *ud, struct udma_rflow *rflow)
1241 {
1242 	if (!test_bit(rflow->id, ud->rflow_in_use)) {
1243 		dev_err(ud->dev, "attempt to put unused rflow%d\n", rflow->id);
1244 		return;
1245 	}
1246 
1247 	dev_dbg(ud->dev, "put rflow%d\n", rflow->id);
1248 	clear_bit(rflow->id, ud->rflow_in_use);
1249 }
1250 
1251 #define UDMA_RESERVE_RESOURCE(res)					\
1252 static struct udma_##res *__udma_reserve_##res(struct udma_dev *ud,	\
1253 					       enum udma_tp_level tpl,	\
1254 					       int id)			\
1255 {									\
1256 	if (id >= 0) {							\
1257 		if (test_bit(id, ud->res##_map)) {			\
1258 			dev_err(ud->dev, "res##%d is in use\n", id);	\
1259 			return ERR_PTR(-ENOENT);			\
1260 		}							\
1261 	} else {							\
1262 		int start;						\
1263 									\
1264 		if (tpl >= ud->match_data->tpl_levels)			\
1265 			tpl = ud->match_data->tpl_levels - 1;		\
1266 									\
1267 		start = ud->match_data->level_start_idx[tpl];		\
1268 									\
1269 		id = find_next_zero_bit(ud->res##_map, ud->res##_cnt,	\
1270 					start);				\
1271 		if (id == ud->res##_cnt) {				\
1272 			return ERR_PTR(-ENOENT);			\
1273 		}							\
1274 	}								\
1275 									\
1276 	set_bit(id, ud->res##_map);					\
1277 	return &ud->res##s[id];						\
1278 }
1279 
1280 UDMA_RESERVE_RESOURCE(tchan);
1281 UDMA_RESERVE_RESOURCE(rchan);
1282 
1283 static int udma_get_tchan(struct udma_chan *uc)
1284 {
1285 	struct udma_dev *ud = uc->ud;
1286 
1287 	if (uc->tchan) {
1288 		dev_dbg(ud->dev, "chan%d: already have tchan%d allocated\n",
1289 			uc->id, uc->tchan->id);
1290 		return 0;
1291 	}
1292 
1293 	uc->tchan = __udma_reserve_tchan(ud, uc->config.channel_tpl, -1);
1294 	if (IS_ERR(uc->tchan))
1295 		return PTR_ERR(uc->tchan);
1296 
1297 	return 0;
1298 }
1299 
1300 static int udma_get_rchan(struct udma_chan *uc)
1301 {
1302 	struct udma_dev *ud = uc->ud;
1303 
1304 	if (uc->rchan) {
1305 		dev_dbg(ud->dev, "chan%d: already have rchan%d allocated\n",
1306 			uc->id, uc->rchan->id);
1307 		return 0;
1308 	}
1309 
1310 	uc->rchan = __udma_reserve_rchan(ud, uc->config.channel_tpl, -1);
1311 	if (IS_ERR(uc->rchan))
1312 		return PTR_ERR(uc->rchan);
1313 
1314 	return 0;
1315 }
1316 
1317 static int udma_get_chan_pair(struct udma_chan *uc)
1318 {
1319 	struct udma_dev *ud = uc->ud;
1320 	const struct udma_match_data *match_data = ud->match_data;
1321 	int chan_id, end;
1322 
1323 	if ((uc->tchan && uc->rchan) && uc->tchan->id == uc->rchan->id) {
1324 		dev_info(ud->dev, "chan%d: already have %d pair allocated\n",
1325 			 uc->id, uc->tchan->id);
1326 		return 0;
1327 	}
1328 
1329 	if (uc->tchan) {
1330 		dev_err(ud->dev, "chan%d: already have tchan%d allocated\n",
1331 			uc->id, uc->tchan->id);
1332 		return -EBUSY;
1333 	} else if (uc->rchan) {
1334 		dev_err(ud->dev, "chan%d: already have rchan%d allocated\n",
1335 			uc->id, uc->rchan->id);
1336 		return -EBUSY;
1337 	}
1338 
1339 	/* Can be optimized, but let's have it like this for now */
1340 	end = min(ud->tchan_cnt, ud->rchan_cnt);
1341 	/* Try to use the highest TPL channel pair for MEM_TO_MEM channels */
1342 	chan_id = match_data->level_start_idx[match_data->tpl_levels - 1];
1343 	for (; chan_id < end; chan_id++) {
1344 		if (!test_bit(chan_id, ud->tchan_map) &&
1345 		    !test_bit(chan_id, ud->rchan_map))
1346 			break;
1347 	}
1348 
1349 	if (chan_id == end)
1350 		return -ENOENT;
1351 
1352 	set_bit(chan_id, ud->tchan_map);
1353 	set_bit(chan_id, ud->rchan_map);
1354 	uc->tchan = &ud->tchans[chan_id];
1355 	uc->rchan = &ud->rchans[chan_id];
1356 
1357 	return 0;
1358 }
1359 
1360 static int udma_get_rflow(struct udma_chan *uc, int flow_id)
1361 {
1362 	struct udma_dev *ud = uc->ud;
1363 
1364 	if (!uc->rchan) {
1365 		dev_err(ud->dev, "chan%d: does not have rchan??\n", uc->id);
1366 		return -EINVAL;
1367 	}
1368 
1369 	if (uc->rflow) {
1370 		dev_dbg(ud->dev, "chan%d: already have rflow%d allocated\n",
1371 			uc->id, uc->rflow->id);
1372 		return 0;
1373 	}
1374 
1375 	uc->rflow = __udma_get_rflow(ud, flow_id);
1376 	if (IS_ERR(uc->rflow))
1377 		return PTR_ERR(uc->rflow);
1378 
1379 	return 0;
1380 }
1381 
1382 static void udma_put_rchan(struct udma_chan *uc)
1383 {
1384 	struct udma_dev *ud = uc->ud;
1385 
1386 	if (uc->rchan) {
1387 		dev_dbg(ud->dev, "chan%d: put rchan%d\n", uc->id,
1388 			uc->rchan->id);
1389 		clear_bit(uc->rchan->id, ud->rchan_map);
1390 		uc->rchan = NULL;
1391 	}
1392 }
1393 
1394 static void udma_put_tchan(struct udma_chan *uc)
1395 {
1396 	struct udma_dev *ud = uc->ud;
1397 
1398 	if (uc->tchan) {
1399 		dev_dbg(ud->dev, "chan%d: put tchan%d\n", uc->id,
1400 			uc->tchan->id);
1401 		clear_bit(uc->tchan->id, ud->tchan_map);
1402 		uc->tchan = NULL;
1403 	}
1404 }
1405 
1406 static void udma_put_rflow(struct udma_chan *uc)
1407 {
1408 	struct udma_dev *ud = uc->ud;
1409 
1410 	if (uc->rflow) {
1411 		dev_dbg(ud->dev, "chan%d: put rflow%d\n", uc->id,
1412 			uc->rflow->id);
1413 		__udma_put_rflow(ud, uc->rflow);
1414 		uc->rflow = NULL;
1415 	}
1416 }
1417 
1418 static void udma_free_tx_resources(struct udma_chan *uc)
1419 {
1420 	if (!uc->tchan)
1421 		return;
1422 
1423 	k3_ringacc_ring_free(uc->tchan->t_ring);
1424 	k3_ringacc_ring_free(uc->tchan->tc_ring);
1425 	uc->tchan->t_ring = NULL;
1426 	uc->tchan->tc_ring = NULL;
1427 
1428 	udma_put_tchan(uc);
1429 }
1430 
1431 static int udma_alloc_tx_resources(struct udma_chan *uc)
1432 {
1433 	struct k3_ring_cfg ring_cfg;
1434 	struct udma_dev *ud = uc->ud;
1435 	int ret;
1436 
1437 	ret = udma_get_tchan(uc);
1438 	if (ret)
1439 		return ret;
1440 
1441 	uc->tchan->t_ring = k3_ringacc_request_ring(ud->ringacc,
1442 						    uc->tchan->id, 0);
1443 	if (!uc->tchan->t_ring) {
1444 		ret = -EBUSY;
1445 		goto err_tx_ring;
1446 	}
1447 
1448 	uc->tchan->tc_ring = k3_ringacc_request_ring(ud->ringacc, -1, 0);
1449 	if (!uc->tchan->tc_ring) {
1450 		ret = -EBUSY;
1451 		goto err_txc_ring;
1452 	}
1453 
1454 	memset(&ring_cfg, 0, sizeof(ring_cfg));
1455 	ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE;
1456 	ring_cfg.elm_size = K3_RINGACC_RING_ELSIZE_8;
1457 	ring_cfg.mode = K3_RINGACC_RING_MODE_MESSAGE;
1458 
1459 	ret = k3_ringacc_ring_cfg(uc->tchan->t_ring, &ring_cfg);
1460 	ret |= k3_ringacc_ring_cfg(uc->tchan->tc_ring, &ring_cfg);
1461 
1462 	if (ret)
1463 		goto err_ringcfg;
1464 
1465 	return 0;
1466 
1467 err_ringcfg:
1468 	k3_ringacc_ring_free(uc->tchan->tc_ring);
1469 	uc->tchan->tc_ring = NULL;
1470 err_txc_ring:
1471 	k3_ringacc_ring_free(uc->tchan->t_ring);
1472 	uc->tchan->t_ring = NULL;
1473 err_tx_ring:
1474 	udma_put_tchan(uc);
1475 
1476 	return ret;
1477 }
1478 
1479 static void udma_free_rx_resources(struct udma_chan *uc)
1480 {
1481 	if (!uc->rchan)
1482 		return;
1483 
1484 	if (uc->rflow) {
1485 		struct udma_rflow *rflow = uc->rflow;
1486 
1487 		k3_ringacc_ring_free(rflow->fd_ring);
1488 		k3_ringacc_ring_free(rflow->r_ring);
1489 		rflow->fd_ring = NULL;
1490 		rflow->r_ring = NULL;
1491 
1492 		udma_put_rflow(uc);
1493 	}
1494 
1495 	udma_put_rchan(uc);
1496 }
1497 
1498 static int udma_alloc_rx_resources(struct udma_chan *uc)
1499 {
1500 	struct udma_dev *ud = uc->ud;
1501 	struct k3_ring_cfg ring_cfg;
1502 	struct udma_rflow *rflow;
1503 	int fd_ring_id;
1504 	int ret;
1505 
1506 	ret = udma_get_rchan(uc);
1507 	if (ret)
1508 		return ret;
1509 
1510 	/* For MEM_TO_MEM we don't need rflow or rings */
1511 	if (uc->config.dir == DMA_MEM_TO_MEM)
1512 		return 0;
1513 
1514 	ret = udma_get_rflow(uc, uc->rchan->id);
1515 	if (ret) {
1516 		ret = -EBUSY;
1517 		goto err_rflow;
1518 	}
1519 
1520 	rflow = uc->rflow;
1521 	fd_ring_id = ud->tchan_cnt + ud->echan_cnt + uc->rchan->id;
1522 	rflow->fd_ring = k3_ringacc_request_ring(ud->ringacc, fd_ring_id, 0);
1523 	if (!rflow->fd_ring) {
1524 		ret = -EBUSY;
1525 		goto err_rx_ring;
1526 	}
1527 
1528 	rflow->r_ring = k3_ringacc_request_ring(ud->ringacc, -1, 0);
1529 	if (!rflow->r_ring) {
1530 		ret = -EBUSY;
1531 		goto err_rxc_ring;
1532 	}
1533 
1534 	memset(&ring_cfg, 0, sizeof(ring_cfg));
1535 
1536 	if (uc->config.pkt_mode)
1537 		ring_cfg.size = SG_MAX_SEGMENTS;
1538 	else
1539 		ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE;
1540 
1541 	ring_cfg.elm_size = K3_RINGACC_RING_ELSIZE_8;
1542 	ring_cfg.mode = K3_RINGACC_RING_MODE_MESSAGE;
1543 
1544 	ret = k3_ringacc_ring_cfg(rflow->fd_ring, &ring_cfg);
1545 	ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE;
1546 	ret |= k3_ringacc_ring_cfg(rflow->r_ring, &ring_cfg);
1547 
1548 	if (ret)
1549 		goto err_ringcfg;
1550 
1551 	return 0;
1552 
1553 err_ringcfg:
1554 	k3_ringacc_ring_free(rflow->r_ring);
1555 	rflow->r_ring = NULL;
1556 err_rxc_ring:
1557 	k3_ringacc_ring_free(rflow->fd_ring);
1558 	rflow->fd_ring = NULL;
1559 err_rx_ring:
1560 	udma_put_rflow(uc);
1561 err_rflow:
1562 	udma_put_rchan(uc);
1563 
1564 	return ret;
1565 }
1566 
1567 #define TISCI_TCHAN_VALID_PARAMS (				\
1568 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_PAUSE_ON_ERR_VALID |	\
1569 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_FILT_EINFO_VALID |	\
1570 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_FILT_PSWORDS_VALID |	\
1571 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_CHAN_TYPE_VALID |		\
1572 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_SUPR_TDPKT_VALID |	\
1573 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_FETCH_SIZE_VALID |		\
1574 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_CQ_QNUM_VALID |		\
1575 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_ATYPE_VALID)
1576 
1577 #define TISCI_RCHAN_VALID_PARAMS (				\
1578 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_PAUSE_ON_ERR_VALID |	\
1579 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_FETCH_SIZE_VALID |		\
1580 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_CQ_QNUM_VALID |		\
1581 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_CHAN_TYPE_VALID |		\
1582 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_IGNORE_SHORT_VALID |	\
1583 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_IGNORE_LONG_VALID |	\
1584 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_FLOWID_START_VALID |	\
1585 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_FLOWID_CNT_VALID |	\
1586 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_ATYPE_VALID)
1587 
1588 static int udma_tisci_m2m_channel_config(struct udma_chan *uc)
1589 {
1590 	struct udma_dev *ud = uc->ud;
1591 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
1592 	const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops;
1593 	struct udma_tchan *tchan = uc->tchan;
1594 	struct udma_rchan *rchan = uc->rchan;
1595 	int ret = 0;
1596 
1597 	/* Non synchronized - mem to mem type of transfer */
1598 	int tc_ring = k3_ringacc_get_ring_id(tchan->tc_ring);
1599 	struct ti_sci_msg_rm_udmap_tx_ch_cfg req_tx = { 0 };
1600 	struct ti_sci_msg_rm_udmap_rx_ch_cfg req_rx = { 0 };
1601 
1602 	req_tx.valid_params = TISCI_TCHAN_VALID_PARAMS;
1603 	req_tx.nav_id = tisci_rm->tisci_dev_id;
1604 	req_tx.index = tchan->id;
1605 	req_tx.tx_chan_type = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_BCOPY_PBRR;
1606 	req_tx.tx_fetch_size = sizeof(struct cppi5_desc_hdr_t) >> 2;
1607 	req_tx.txcq_qnum = tc_ring;
1608 	req_tx.tx_atype = ud->atype;
1609 
1610 	ret = tisci_ops->tx_ch_cfg(tisci_rm->tisci, &req_tx);
1611 	if (ret) {
1612 		dev_err(ud->dev, "tchan%d cfg failed %d\n", tchan->id, ret);
1613 		return ret;
1614 	}
1615 
1616 	req_rx.valid_params = TISCI_RCHAN_VALID_PARAMS;
1617 	req_rx.nav_id = tisci_rm->tisci_dev_id;
1618 	req_rx.index = rchan->id;
1619 	req_rx.rx_fetch_size = sizeof(struct cppi5_desc_hdr_t) >> 2;
1620 	req_rx.rxcq_qnum = tc_ring;
1621 	req_rx.rx_chan_type = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_BCOPY_PBRR;
1622 	req_rx.rx_atype = ud->atype;
1623 
1624 	ret = tisci_ops->rx_ch_cfg(tisci_rm->tisci, &req_rx);
1625 	if (ret)
1626 		dev_err(ud->dev, "rchan%d alloc failed %d\n", rchan->id, ret);
1627 
1628 	return ret;
1629 }
1630 
1631 static int udma_tisci_tx_channel_config(struct udma_chan *uc)
1632 {
1633 	struct udma_dev *ud = uc->ud;
1634 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
1635 	const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops;
1636 	struct udma_tchan *tchan = uc->tchan;
1637 	int tc_ring = k3_ringacc_get_ring_id(tchan->tc_ring);
1638 	struct ti_sci_msg_rm_udmap_tx_ch_cfg req_tx = { 0 };
1639 	u32 mode, fetch_size;
1640 	int ret = 0;
1641 
1642 	if (uc->config.pkt_mode) {
1643 		mode = TI_SCI_RM_UDMAP_CHAN_TYPE_PKT_PBRR;
1644 		fetch_size = cppi5_hdesc_calc_size(uc->config.needs_epib,
1645 						   uc->config.psd_size, 0);
1646 	} else {
1647 		mode = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_PBRR;
1648 		fetch_size = sizeof(struct cppi5_desc_hdr_t);
1649 	}
1650 
1651 	req_tx.valid_params = TISCI_TCHAN_VALID_PARAMS;
1652 	req_tx.nav_id = tisci_rm->tisci_dev_id;
1653 	req_tx.index = tchan->id;
1654 	req_tx.tx_chan_type = mode;
1655 	req_tx.tx_supr_tdpkt = uc->config.notdpkt;
1656 	req_tx.tx_fetch_size = fetch_size >> 2;
1657 	req_tx.txcq_qnum = tc_ring;
1658 	req_tx.tx_atype = uc->config.atype;
1659 
1660 	ret = tisci_ops->tx_ch_cfg(tisci_rm->tisci, &req_tx);
1661 	if (ret)
1662 		dev_err(ud->dev, "tchan%d cfg failed %d\n", tchan->id, ret);
1663 
1664 	return ret;
1665 }
1666 
1667 static int udma_tisci_rx_channel_config(struct udma_chan *uc)
1668 {
1669 	struct udma_dev *ud = uc->ud;
1670 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
1671 	const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops;
1672 	struct udma_rchan *rchan = uc->rchan;
1673 	int fd_ring = k3_ringacc_get_ring_id(uc->rflow->fd_ring);
1674 	int rx_ring = k3_ringacc_get_ring_id(uc->rflow->r_ring);
1675 	struct ti_sci_msg_rm_udmap_rx_ch_cfg req_rx = { 0 };
1676 	struct ti_sci_msg_rm_udmap_flow_cfg flow_req = { 0 };
1677 	u32 mode, fetch_size;
1678 	int ret = 0;
1679 
1680 	if (uc->config.pkt_mode) {
1681 		mode = TI_SCI_RM_UDMAP_CHAN_TYPE_PKT_PBRR;
1682 		fetch_size = cppi5_hdesc_calc_size(uc->config.needs_epib,
1683 						   uc->config.psd_size, 0);
1684 	} else {
1685 		mode = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_PBRR;
1686 		fetch_size = sizeof(struct cppi5_desc_hdr_t);
1687 	}
1688 
1689 	req_rx.valid_params = TISCI_RCHAN_VALID_PARAMS;
1690 	req_rx.nav_id = tisci_rm->tisci_dev_id;
1691 	req_rx.index = rchan->id;
1692 	req_rx.rx_fetch_size =  fetch_size >> 2;
1693 	req_rx.rxcq_qnum = rx_ring;
1694 	req_rx.rx_chan_type = mode;
1695 	req_rx.rx_atype = uc->config.atype;
1696 
1697 	ret = tisci_ops->rx_ch_cfg(tisci_rm->tisci, &req_rx);
1698 	if (ret) {
1699 		dev_err(ud->dev, "rchan%d cfg failed %d\n", rchan->id, ret);
1700 		return ret;
1701 	}
1702 
1703 	flow_req.valid_params =
1704 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_EINFO_PRESENT_VALID |
1705 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_PSINFO_PRESENT_VALID |
1706 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_ERROR_HANDLING_VALID |
1707 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DESC_TYPE_VALID |
1708 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_QNUM_VALID |
1709 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_SRC_TAG_HI_SEL_VALID |
1710 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_SRC_TAG_LO_SEL_VALID |
1711 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_TAG_HI_SEL_VALID |
1712 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_TAG_LO_SEL_VALID |
1713 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ0_SZ0_QNUM_VALID |
1714 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ1_QNUM_VALID |
1715 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ2_QNUM_VALID |
1716 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ3_QNUM_VALID;
1717 
1718 	flow_req.nav_id = tisci_rm->tisci_dev_id;
1719 	flow_req.flow_index = rchan->id;
1720 
1721 	if (uc->config.needs_epib)
1722 		flow_req.rx_einfo_present = 1;
1723 	else
1724 		flow_req.rx_einfo_present = 0;
1725 	if (uc->config.psd_size)
1726 		flow_req.rx_psinfo_present = 1;
1727 	else
1728 		flow_req.rx_psinfo_present = 0;
1729 	flow_req.rx_error_handling = 1;
1730 	flow_req.rx_dest_qnum = rx_ring;
1731 	flow_req.rx_src_tag_hi_sel = UDMA_RFLOW_SRCTAG_NONE;
1732 	flow_req.rx_src_tag_lo_sel = UDMA_RFLOW_SRCTAG_SRC_TAG;
1733 	flow_req.rx_dest_tag_hi_sel = UDMA_RFLOW_DSTTAG_DST_TAG_HI;
1734 	flow_req.rx_dest_tag_lo_sel = UDMA_RFLOW_DSTTAG_DST_TAG_LO;
1735 	flow_req.rx_fdq0_sz0_qnum = fd_ring;
1736 	flow_req.rx_fdq1_qnum = fd_ring;
1737 	flow_req.rx_fdq2_qnum = fd_ring;
1738 	flow_req.rx_fdq3_qnum = fd_ring;
1739 
1740 	ret = tisci_ops->rx_flow_cfg(tisci_rm->tisci, &flow_req);
1741 
1742 	if (ret)
1743 		dev_err(ud->dev, "flow%d config failed: %d\n", rchan->id, ret);
1744 
1745 	return 0;
1746 }
1747 
1748 static int udma_alloc_chan_resources(struct dma_chan *chan)
1749 {
1750 	struct udma_chan *uc = to_udma_chan(chan);
1751 	struct udma_dev *ud = to_udma_dev(chan->device);
1752 	const struct udma_match_data *match_data = ud->match_data;
1753 	struct k3_ring *irq_ring;
1754 	u32 irq_udma_idx;
1755 	int ret;
1756 
1757 	if (uc->config.pkt_mode || uc->config.dir == DMA_MEM_TO_MEM) {
1758 		uc->use_dma_pool = true;
1759 		/* in case of MEM_TO_MEM we have maximum of two TRs */
1760 		if (uc->config.dir == DMA_MEM_TO_MEM) {
1761 			uc->config.hdesc_size = cppi5_trdesc_calc_size(
1762 					sizeof(struct cppi5_tr_type15_t), 2);
1763 			uc->config.pkt_mode = false;
1764 		}
1765 	}
1766 
1767 	if (uc->use_dma_pool) {
1768 		uc->hdesc_pool = dma_pool_create(uc->name, ud->ddev.dev,
1769 						 uc->config.hdesc_size,
1770 						 ud->desc_align,
1771 						 0);
1772 		if (!uc->hdesc_pool) {
1773 			dev_err(ud->ddev.dev,
1774 				"Descriptor pool allocation failed\n");
1775 			uc->use_dma_pool = false;
1776 			return -ENOMEM;
1777 		}
1778 	}
1779 
1780 	/*
1781 	 * Make sure that the completion is in a known state:
1782 	 * No teardown, the channel is idle
1783 	 */
1784 	reinit_completion(&uc->teardown_completed);
1785 	complete_all(&uc->teardown_completed);
1786 	uc->state = UDMA_CHAN_IS_IDLE;
1787 
1788 	switch (uc->config.dir) {
1789 	case DMA_MEM_TO_MEM:
1790 		/* Non synchronized - mem to mem type of transfer */
1791 		dev_dbg(uc->ud->dev, "%s: chan%d as MEM-to-MEM\n", __func__,
1792 			uc->id);
1793 
1794 		ret = udma_get_chan_pair(uc);
1795 		if (ret)
1796 			return ret;
1797 
1798 		ret = udma_alloc_tx_resources(uc);
1799 		if (ret)
1800 			return ret;
1801 
1802 		ret = udma_alloc_rx_resources(uc);
1803 		if (ret) {
1804 			udma_free_tx_resources(uc);
1805 			return ret;
1806 		}
1807 
1808 		uc->config.src_thread = ud->psil_base + uc->tchan->id;
1809 		uc->config.dst_thread = (ud->psil_base + uc->rchan->id) |
1810 					K3_PSIL_DST_THREAD_ID_OFFSET;
1811 
1812 		irq_ring = uc->tchan->tc_ring;
1813 		irq_udma_idx = uc->tchan->id;
1814 
1815 		ret = udma_tisci_m2m_channel_config(uc);
1816 		break;
1817 	case DMA_MEM_TO_DEV:
1818 		/* Slave transfer synchronized - mem to dev (TX) trasnfer */
1819 		dev_dbg(uc->ud->dev, "%s: chan%d as MEM-to-DEV\n", __func__,
1820 			uc->id);
1821 
1822 		ret = udma_alloc_tx_resources(uc);
1823 		if (ret) {
1824 			uc->config.remote_thread_id = -1;
1825 			return ret;
1826 		}
1827 
1828 		uc->config.src_thread = ud->psil_base + uc->tchan->id;
1829 		uc->config.dst_thread = uc->config.remote_thread_id;
1830 		uc->config.dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET;
1831 
1832 		irq_ring = uc->tchan->tc_ring;
1833 		irq_udma_idx = uc->tchan->id;
1834 
1835 		ret = udma_tisci_tx_channel_config(uc);
1836 		break;
1837 	case DMA_DEV_TO_MEM:
1838 		/* Slave transfer synchronized - dev to mem (RX) trasnfer */
1839 		dev_dbg(uc->ud->dev, "%s: chan%d as DEV-to-MEM\n", __func__,
1840 			uc->id);
1841 
1842 		ret = udma_alloc_rx_resources(uc);
1843 		if (ret) {
1844 			uc->config.remote_thread_id = -1;
1845 			return ret;
1846 		}
1847 
1848 		uc->config.src_thread = uc->config.remote_thread_id;
1849 		uc->config.dst_thread = (ud->psil_base + uc->rchan->id) |
1850 					K3_PSIL_DST_THREAD_ID_OFFSET;
1851 
1852 		irq_ring = uc->rflow->r_ring;
1853 		irq_udma_idx = match_data->rchan_oes_offset + uc->rchan->id;
1854 
1855 		ret = udma_tisci_rx_channel_config(uc);
1856 		break;
1857 	default:
1858 		/* Can not happen */
1859 		dev_err(uc->ud->dev, "%s: chan%d invalid direction (%u)\n",
1860 			__func__, uc->id, uc->config.dir);
1861 		return -EINVAL;
1862 	}
1863 
1864 	/* check if the channel configuration was successful */
1865 	if (ret)
1866 		goto err_res_free;
1867 
1868 	if (udma_is_chan_running(uc)) {
1869 		dev_warn(ud->dev, "chan%d: is running!\n", uc->id);
1870 		udma_stop(uc);
1871 		if (udma_is_chan_running(uc)) {
1872 			dev_err(ud->dev, "chan%d: won't stop!\n", uc->id);
1873 			goto err_res_free;
1874 		}
1875 	}
1876 
1877 	/* PSI-L pairing */
1878 	ret = navss_psil_pair(ud, uc->config.src_thread, uc->config.dst_thread);
1879 	if (ret) {
1880 		dev_err(ud->dev, "PSI-L pairing failed: 0x%04x -> 0x%04x\n",
1881 			uc->config.src_thread, uc->config.dst_thread);
1882 		goto err_res_free;
1883 	}
1884 
1885 	uc->psil_paired = true;
1886 
1887 	uc->irq_num_ring = k3_ringacc_get_ring_irq_num(irq_ring);
1888 	if (uc->irq_num_ring <= 0) {
1889 		dev_err(ud->dev, "Failed to get ring irq (index: %u)\n",
1890 			k3_ringacc_get_ring_id(irq_ring));
1891 		ret = -EINVAL;
1892 		goto err_psi_free;
1893 	}
1894 
1895 	ret = request_irq(uc->irq_num_ring, udma_ring_irq_handler,
1896 			  IRQF_TRIGGER_HIGH, uc->name, uc);
1897 	if (ret) {
1898 		dev_err(ud->dev, "chan%d: ring irq request failed\n", uc->id);
1899 		goto err_irq_free;
1900 	}
1901 
1902 	/* Event from UDMA (TR events) only needed for slave TR mode channels */
1903 	if (is_slave_direction(uc->config.dir) && !uc->config.pkt_mode) {
1904 		uc->irq_num_udma = ti_sci_inta_msi_get_virq(ud->dev,
1905 							    irq_udma_idx);
1906 		if (uc->irq_num_udma <= 0) {
1907 			dev_err(ud->dev, "Failed to get udma irq (index: %u)\n",
1908 				irq_udma_idx);
1909 			free_irq(uc->irq_num_ring, uc);
1910 			ret = -EINVAL;
1911 			goto err_irq_free;
1912 		}
1913 
1914 		ret = request_irq(uc->irq_num_udma, udma_udma_irq_handler, 0,
1915 				  uc->name, uc);
1916 		if (ret) {
1917 			dev_err(ud->dev, "chan%d: UDMA irq request failed\n",
1918 				uc->id);
1919 			free_irq(uc->irq_num_ring, uc);
1920 			goto err_irq_free;
1921 		}
1922 	} else {
1923 		uc->irq_num_udma = 0;
1924 	}
1925 
1926 	udma_reset_rings(uc);
1927 
1928 	INIT_DELAYED_WORK_ONSTACK(&uc->tx_drain.work,
1929 				  udma_check_tx_completion);
1930 	return 0;
1931 
1932 err_irq_free:
1933 	uc->irq_num_ring = 0;
1934 	uc->irq_num_udma = 0;
1935 err_psi_free:
1936 	navss_psil_unpair(ud, uc->config.src_thread, uc->config.dst_thread);
1937 	uc->psil_paired = false;
1938 err_res_free:
1939 	udma_free_tx_resources(uc);
1940 	udma_free_rx_resources(uc);
1941 
1942 	udma_reset_uchan(uc);
1943 
1944 	if (uc->use_dma_pool) {
1945 		dma_pool_destroy(uc->hdesc_pool);
1946 		uc->use_dma_pool = false;
1947 	}
1948 
1949 	return ret;
1950 }
1951 
1952 static int udma_slave_config(struct dma_chan *chan,
1953 			     struct dma_slave_config *cfg)
1954 {
1955 	struct udma_chan *uc = to_udma_chan(chan);
1956 
1957 	memcpy(&uc->cfg, cfg, sizeof(uc->cfg));
1958 
1959 	return 0;
1960 }
1961 
1962 static struct udma_desc *udma_alloc_tr_desc(struct udma_chan *uc,
1963 					    size_t tr_size, int tr_count,
1964 					    enum dma_transfer_direction dir)
1965 {
1966 	struct udma_hwdesc *hwdesc;
1967 	struct cppi5_desc_hdr_t *tr_desc;
1968 	struct udma_desc *d;
1969 	u32 reload_count = 0;
1970 	u32 ring_id;
1971 
1972 	switch (tr_size) {
1973 	case 16:
1974 	case 32:
1975 	case 64:
1976 	case 128:
1977 		break;
1978 	default:
1979 		dev_err(uc->ud->dev, "Unsupported TR size of %zu\n", tr_size);
1980 		return NULL;
1981 	}
1982 
1983 	/* We have only one descriptor containing multiple TRs */
1984 	d = kzalloc(sizeof(*d) + sizeof(d->hwdesc[0]), GFP_NOWAIT);
1985 	if (!d)
1986 		return NULL;
1987 
1988 	d->sglen = tr_count;
1989 
1990 	d->hwdesc_count = 1;
1991 	hwdesc = &d->hwdesc[0];
1992 
1993 	/* Allocate memory for DMA ring descriptor */
1994 	if (uc->use_dma_pool) {
1995 		hwdesc->cppi5_desc_size = uc->config.hdesc_size;
1996 		hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool,
1997 						GFP_NOWAIT,
1998 						&hwdesc->cppi5_desc_paddr);
1999 	} else {
2000 		hwdesc->cppi5_desc_size = cppi5_trdesc_calc_size(tr_size,
2001 								 tr_count);
2002 		hwdesc->cppi5_desc_size = ALIGN(hwdesc->cppi5_desc_size,
2003 						uc->ud->desc_align);
2004 		hwdesc->cppi5_desc_vaddr = dma_alloc_coherent(uc->ud->dev,
2005 						hwdesc->cppi5_desc_size,
2006 						&hwdesc->cppi5_desc_paddr,
2007 						GFP_NOWAIT);
2008 	}
2009 
2010 	if (!hwdesc->cppi5_desc_vaddr) {
2011 		kfree(d);
2012 		return NULL;
2013 	}
2014 
2015 	/* Start of the TR req records */
2016 	hwdesc->tr_req_base = hwdesc->cppi5_desc_vaddr + tr_size;
2017 	/* Start address of the TR response array */
2018 	hwdesc->tr_resp_base = hwdesc->tr_req_base + tr_size * tr_count;
2019 
2020 	tr_desc = hwdesc->cppi5_desc_vaddr;
2021 
2022 	if (uc->cyclic)
2023 		reload_count = CPPI5_INFO0_TRDESC_RLDCNT_INFINITE;
2024 
2025 	if (dir == DMA_DEV_TO_MEM)
2026 		ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring);
2027 	else
2028 		ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring);
2029 
2030 	cppi5_trdesc_init(tr_desc, tr_count, tr_size, 0, reload_count);
2031 	cppi5_desc_set_pktids(tr_desc, uc->id,
2032 			      CPPI5_INFO1_DESC_FLOWID_DEFAULT);
2033 	cppi5_desc_set_retpolicy(tr_desc, 0, ring_id);
2034 
2035 	return d;
2036 }
2037 
2038 /**
2039  * udma_get_tr_counters - calculate TR counters for a given length
2040  * @len: Length of the trasnfer
2041  * @align_to: Preferred alignment
2042  * @tr0_cnt0: First TR icnt0
2043  * @tr0_cnt1: First TR icnt1
2044  * @tr1_cnt0: Second (if used) TR icnt0
2045  *
2046  * For len < SZ_64K only one TR is enough, tr1_cnt0 is not updated
2047  * For len >= SZ_64K two TRs are used in a simple way:
2048  * First TR: SZ_64K-alignment blocks (tr0_cnt0, tr0_cnt1)
2049  * Second TR: the remaining length (tr1_cnt0)
2050  *
2051  * Returns the number of TRs the length needs (1 or 2)
2052  * -EINVAL if the length can not be supported
2053  */
2054 static int udma_get_tr_counters(size_t len, unsigned long align_to,
2055 				u16 *tr0_cnt0, u16 *tr0_cnt1, u16 *tr1_cnt0)
2056 {
2057 	if (len < SZ_64K) {
2058 		*tr0_cnt0 = len;
2059 		*tr0_cnt1 = 1;
2060 
2061 		return 1;
2062 	}
2063 
2064 	if (align_to > 3)
2065 		align_to = 3;
2066 
2067 realign:
2068 	*tr0_cnt0 = SZ_64K - BIT(align_to);
2069 	if (len / *tr0_cnt0 >= SZ_64K) {
2070 		if (align_to) {
2071 			align_to--;
2072 			goto realign;
2073 		}
2074 		return -EINVAL;
2075 	}
2076 
2077 	*tr0_cnt1 = len / *tr0_cnt0;
2078 	*tr1_cnt0 = len % *tr0_cnt0;
2079 
2080 	return 2;
2081 }
2082 
2083 static struct udma_desc *
2084 udma_prep_slave_sg_tr(struct udma_chan *uc, struct scatterlist *sgl,
2085 		      unsigned int sglen, enum dma_transfer_direction dir,
2086 		      unsigned long tx_flags, void *context)
2087 {
2088 	struct scatterlist *sgent;
2089 	struct udma_desc *d;
2090 	struct cppi5_tr_type1_t *tr_req = NULL;
2091 	u16 tr0_cnt0, tr0_cnt1, tr1_cnt0;
2092 	unsigned int i;
2093 	size_t tr_size;
2094 	int num_tr = 0;
2095 	int tr_idx = 0;
2096 
2097 	if (!is_slave_direction(dir)) {
2098 		dev_err(uc->ud->dev, "Only slave cyclic is supported\n");
2099 		return NULL;
2100 	}
2101 
2102 	/* estimate the number of TRs we will need */
2103 	for_each_sg(sgl, sgent, sglen, i) {
2104 		if (sg_dma_len(sgent) < SZ_64K)
2105 			num_tr++;
2106 		else
2107 			num_tr += 2;
2108 	}
2109 
2110 	/* Now allocate and setup the descriptor. */
2111 	tr_size = sizeof(struct cppi5_tr_type1_t);
2112 	d = udma_alloc_tr_desc(uc, tr_size, num_tr, dir);
2113 	if (!d)
2114 		return NULL;
2115 
2116 	d->sglen = sglen;
2117 
2118 	tr_req = d->hwdesc[0].tr_req_base;
2119 	for_each_sg(sgl, sgent, sglen, i) {
2120 		dma_addr_t sg_addr = sg_dma_address(sgent);
2121 
2122 		num_tr = udma_get_tr_counters(sg_dma_len(sgent), __ffs(sg_addr),
2123 					      &tr0_cnt0, &tr0_cnt1, &tr1_cnt0);
2124 		if (num_tr < 0) {
2125 			dev_err(uc->ud->dev, "size %u is not supported\n",
2126 				sg_dma_len(sgent));
2127 			udma_free_hwdesc(uc, d);
2128 			kfree(d);
2129 			return NULL;
2130 		}
2131 
2132 		cppi5_tr_init(&tr_req[i].flags, CPPI5_TR_TYPE1, false, false,
2133 			      CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
2134 		cppi5_tr_csf_set(&tr_req[i].flags, CPPI5_TR_CSF_SUPR_EVT);
2135 
2136 		tr_req[tr_idx].addr = sg_addr;
2137 		tr_req[tr_idx].icnt0 = tr0_cnt0;
2138 		tr_req[tr_idx].icnt1 = tr0_cnt1;
2139 		tr_req[tr_idx].dim1 = tr0_cnt0;
2140 		tr_idx++;
2141 
2142 		if (num_tr == 2) {
2143 			cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1,
2144 				      false, false,
2145 				      CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
2146 			cppi5_tr_csf_set(&tr_req[tr_idx].flags,
2147 					 CPPI5_TR_CSF_SUPR_EVT);
2148 
2149 			tr_req[tr_idx].addr = sg_addr + tr0_cnt1 * tr0_cnt0;
2150 			tr_req[tr_idx].icnt0 = tr1_cnt0;
2151 			tr_req[tr_idx].icnt1 = 1;
2152 			tr_req[tr_idx].dim1 = tr1_cnt0;
2153 			tr_idx++;
2154 		}
2155 
2156 		d->residue += sg_dma_len(sgent);
2157 	}
2158 
2159 	cppi5_tr_csf_set(&tr_req[tr_idx - 1].flags,
2160 			 CPPI5_TR_CSF_SUPR_EVT | CPPI5_TR_CSF_EOP);
2161 
2162 	return d;
2163 }
2164 
2165 static int udma_configure_statictr(struct udma_chan *uc, struct udma_desc *d,
2166 				   enum dma_slave_buswidth dev_width,
2167 				   u16 elcnt)
2168 {
2169 	if (uc->config.ep_type != PSIL_EP_PDMA_XY)
2170 		return 0;
2171 
2172 	/* Bus width translates to the element size (ES) */
2173 	switch (dev_width) {
2174 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
2175 		d->static_tr.elsize = 0;
2176 		break;
2177 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
2178 		d->static_tr.elsize = 1;
2179 		break;
2180 	case DMA_SLAVE_BUSWIDTH_3_BYTES:
2181 		d->static_tr.elsize = 2;
2182 		break;
2183 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
2184 		d->static_tr.elsize = 3;
2185 		break;
2186 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
2187 		d->static_tr.elsize = 4;
2188 		break;
2189 	default: /* not reached */
2190 		return -EINVAL;
2191 	}
2192 
2193 	d->static_tr.elcnt = elcnt;
2194 
2195 	/*
2196 	 * PDMA must to close the packet when the channel is in packet mode.
2197 	 * For TR mode when the channel is not cyclic we also need PDMA to close
2198 	 * the packet otherwise the transfer will stall because PDMA holds on
2199 	 * the data it has received from the peripheral.
2200 	 */
2201 	if (uc->config.pkt_mode || !uc->cyclic) {
2202 		unsigned int div = dev_width * elcnt;
2203 
2204 		if (uc->cyclic)
2205 			d->static_tr.bstcnt = d->residue / d->sglen / div;
2206 		else
2207 			d->static_tr.bstcnt = d->residue / div;
2208 
2209 		if (uc->config.dir == DMA_DEV_TO_MEM &&
2210 		    d->static_tr.bstcnt > uc->ud->match_data->statictr_z_mask)
2211 			return -EINVAL;
2212 	} else {
2213 		d->static_tr.bstcnt = 0;
2214 	}
2215 
2216 	return 0;
2217 }
2218 
2219 static struct udma_desc *
2220 udma_prep_slave_sg_pkt(struct udma_chan *uc, struct scatterlist *sgl,
2221 		       unsigned int sglen, enum dma_transfer_direction dir,
2222 		       unsigned long tx_flags, void *context)
2223 {
2224 	struct scatterlist *sgent;
2225 	struct cppi5_host_desc_t *h_desc = NULL;
2226 	struct udma_desc *d;
2227 	u32 ring_id;
2228 	unsigned int i;
2229 
2230 	d = kzalloc(sizeof(*d) + sglen * sizeof(d->hwdesc[0]), GFP_NOWAIT);
2231 	if (!d)
2232 		return NULL;
2233 
2234 	d->sglen = sglen;
2235 	d->hwdesc_count = sglen;
2236 
2237 	if (dir == DMA_DEV_TO_MEM)
2238 		ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring);
2239 	else
2240 		ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring);
2241 
2242 	for_each_sg(sgl, sgent, sglen, i) {
2243 		struct udma_hwdesc *hwdesc = &d->hwdesc[i];
2244 		dma_addr_t sg_addr = sg_dma_address(sgent);
2245 		struct cppi5_host_desc_t *desc;
2246 		size_t sg_len = sg_dma_len(sgent);
2247 
2248 		hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool,
2249 						GFP_NOWAIT,
2250 						&hwdesc->cppi5_desc_paddr);
2251 		if (!hwdesc->cppi5_desc_vaddr) {
2252 			dev_err(uc->ud->dev,
2253 				"descriptor%d allocation failed\n", i);
2254 
2255 			udma_free_hwdesc(uc, d);
2256 			kfree(d);
2257 			return NULL;
2258 		}
2259 
2260 		d->residue += sg_len;
2261 		hwdesc->cppi5_desc_size = uc->config.hdesc_size;
2262 		desc = hwdesc->cppi5_desc_vaddr;
2263 
2264 		if (i == 0) {
2265 			cppi5_hdesc_init(desc, 0, 0);
2266 			/* Flow and Packed ID */
2267 			cppi5_desc_set_pktids(&desc->hdr, uc->id,
2268 					      CPPI5_INFO1_DESC_FLOWID_DEFAULT);
2269 			cppi5_desc_set_retpolicy(&desc->hdr, 0, ring_id);
2270 		} else {
2271 			cppi5_hdesc_reset_hbdesc(desc);
2272 			cppi5_desc_set_retpolicy(&desc->hdr, 0, 0xffff);
2273 		}
2274 
2275 		/* attach the sg buffer to the descriptor */
2276 		cppi5_hdesc_attach_buf(desc, sg_addr, sg_len, sg_addr, sg_len);
2277 
2278 		/* Attach link as host buffer descriptor */
2279 		if (h_desc)
2280 			cppi5_hdesc_link_hbdesc(h_desc,
2281 						hwdesc->cppi5_desc_paddr);
2282 
2283 		if (dir == DMA_MEM_TO_DEV)
2284 			h_desc = desc;
2285 	}
2286 
2287 	if (d->residue >= SZ_4M) {
2288 		dev_err(uc->ud->dev,
2289 			"%s: Transfer size %u is over the supported 4M range\n",
2290 			__func__, d->residue);
2291 		udma_free_hwdesc(uc, d);
2292 		kfree(d);
2293 		return NULL;
2294 	}
2295 
2296 	h_desc = d->hwdesc[0].cppi5_desc_vaddr;
2297 	cppi5_hdesc_set_pktlen(h_desc, d->residue);
2298 
2299 	return d;
2300 }
2301 
2302 static int udma_attach_metadata(struct dma_async_tx_descriptor *desc,
2303 				void *data, size_t len)
2304 {
2305 	struct udma_desc *d = to_udma_desc(desc);
2306 	struct udma_chan *uc = to_udma_chan(desc->chan);
2307 	struct cppi5_host_desc_t *h_desc;
2308 	u32 psd_size = len;
2309 	u32 flags = 0;
2310 
2311 	if (!uc->config.pkt_mode || !uc->config.metadata_size)
2312 		return -ENOTSUPP;
2313 
2314 	if (!data || len > uc->config.metadata_size)
2315 		return -EINVAL;
2316 
2317 	if (uc->config.needs_epib && len < CPPI5_INFO0_HDESC_EPIB_SIZE)
2318 		return -EINVAL;
2319 
2320 	h_desc = d->hwdesc[0].cppi5_desc_vaddr;
2321 	if (d->dir == DMA_MEM_TO_DEV)
2322 		memcpy(h_desc->epib, data, len);
2323 
2324 	if (uc->config.needs_epib)
2325 		psd_size -= CPPI5_INFO0_HDESC_EPIB_SIZE;
2326 
2327 	d->metadata = data;
2328 	d->metadata_size = len;
2329 	if (uc->config.needs_epib)
2330 		flags |= CPPI5_INFO0_HDESC_EPIB_PRESENT;
2331 
2332 	cppi5_hdesc_update_flags(h_desc, flags);
2333 	cppi5_hdesc_update_psdata_size(h_desc, psd_size);
2334 
2335 	return 0;
2336 }
2337 
2338 static void *udma_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
2339 				   size_t *payload_len, size_t *max_len)
2340 {
2341 	struct udma_desc *d = to_udma_desc(desc);
2342 	struct udma_chan *uc = to_udma_chan(desc->chan);
2343 	struct cppi5_host_desc_t *h_desc;
2344 
2345 	if (!uc->config.pkt_mode || !uc->config.metadata_size)
2346 		return ERR_PTR(-ENOTSUPP);
2347 
2348 	h_desc = d->hwdesc[0].cppi5_desc_vaddr;
2349 
2350 	*max_len = uc->config.metadata_size;
2351 
2352 	*payload_len = cppi5_hdesc_epib_present(&h_desc->hdr) ?
2353 		       CPPI5_INFO0_HDESC_EPIB_SIZE : 0;
2354 	*payload_len += cppi5_hdesc_get_psdata_size(h_desc);
2355 
2356 	return h_desc->epib;
2357 }
2358 
2359 static int udma_set_metadata_len(struct dma_async_tx_descriptor *desc,
2360 				 size_t payload_len)
2361 {
2362 	struct udma_desc *d = to_udma_desc(desc);
2363 	struct udma_chan *uc = to_udma_chan(desc->chan);
2364 	struct cppi5_host_desc_t *h_desc;
2365 	u32 psd_size = payload_len;
2366 	u32 flags = 0;
2367 
2368 	if (!uc->config.pkt_mode || !uc->config.metadata_size)
2369 		return -ENOTSUPP;
2370 
2371 	if (payload_len > uc->config.metadata_size)
2372 		return -EINVAL;
2373 
2374 	if (uc->config.needs_epib && payload_len < CPPI5_INFO0_HDESC_EPIB_SIZE)
2375 		return -EINVAL;
2376 
2377 	h_desc = d->hwdesc[0].cppi5_desc_vaddr;
2378 
2379 	if (uc->config.needs_epib) {
2380 		psd_size -= CPPI5_INFO0_HDESC_EPIB_SIZE;
2381 		flags |= CPPI5_INFO0_HDESC_EPIB_PRESENT;
2382 	}
2383 
2384 	cppi5_hdesc_update_flags(h_desc, flags);
2385 	cppi5_hdesc_update_psdata_size(h_desc, psd_size);
2386 
2387 	return 0;
2388 }
2389 
2390 static struct dma_descriptor_metadata_ops metadata_ops = {
2391 	.attach = udma_attach_metadata,
2392 	.get_ptr = udma_get_metadata_ptr,
2393 	.set_len = udma_set_metadata_len,
2394 };
2395 
2396 static struct dma_async_tx_descriptor *
2397 udma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2398 		   unsigned int sglen, enum dma_transfer_direction dir,
2399 		   unsigned long tx_flags, void *context)
2400 {
2401 	struct udma_chan *uc = to_udma_chan(chan);
2402 	enum dma_slave_buswidth dev_width;
2403 	struct udma_desc *d;
2404 	u32 burst;
2405 
2406 	if (dir != uc->config.dir) {
2407 		dev_err(chan->device->dev,
2408 			"%s: chan%d is for %s, not supporting %s\n",
2409 			__func__, uc->id,
2410 			dmaengine_get_direction_text(uc->config.dir),
2411 			dmaengine_get_direction_text(dir));
2412 		return NULL;
2413 	}
2414 
2415 	if (dir == DMA_DEV_TO_MEM) {
2416 		dev_width = uc->cfg.src_addr_width;
2417 		burst = uc->cfg.src_maxburst;
2418 	} else if (dir == DMA_MEM_TO_DEV) {
2419 		dev_width = uc->cfg.dst_addr_width;
2420 		burst = uc->cfg.dst_maxburst;
2421 	} else {
2422 		dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
2423 		return NULL;
2424 	}
2425 
2426 	if (!burst)
2427 		burst = 1;
2428 
2429 	if (uc->config.pkt_mode)
2430 		d = udma_prep_slave_sg_pkt(uc, sgl, sglen, dir, tx_flags,
2431 					   context);
2432 	else
2433 		d = udma_prep_slave_sg_tr(uc, sgl, sglen, dir, tx_flags,
2434 					  context);
2435 
2436 	if (!d)
2437 		return NULL;
2438 
2439 	d->dir = dir;
2440 	d->desc_idx = 0;
2441 	d->tr_idx = 0;
2442 
2443 	/* static TR for remote PDMA */
2444 	if (udma_configure_statictr(uc, d, dev_width, burst)) {
2445 		dev_err(uc->ud->dev,
2446 			"%s: StaticTR Z is limited to maximum 4095 (%u)\n",
2447 			__func__, d->static_tr.bstcnt);
2448 
2449 		udma_free_hwdesc(uc, d);
2450 		kfree(d);
2451 		return NULL;
2452 	}
2453 
2454 	if (uc->config.metadata_size)
2455 		d->vd.tx.metadata_ops = &metadata_ops;
2456 
2457 	return vchan_tx_prep(&uc->vc, &d->vd, tx_flags);
2458 }
2459 
2460 static struct udma_desc *
2461 udma_prep_dma_cyclic_tr(struct udma_chan *uc, dma_addr_t buf_addr,
2462 			size_t buf_len, size_t period_len,
2463 			enum dma_transfer_direction dir, unsigned long flags)
2464 {
2465 	struct udma_desc *d;
2466 	size_t tr_size, period_addr;
2467 	struct cppi5_tr_type1_t *tr_req;
2468 	unsigned int periods = buf_len / period_len;
2469 	u16 tr0_cnt0, tr0_cnt1, tr1_cnt0;
2470 	unsigned int i;
2471 	int num_tr;
2472 
2473 	if (!is_slave_direction(dir)) {
2474 		dev_err(uc->ud->dev, "Only slave cyclic is supported\n");
2475 		return NULL;
2476 	}
2477 
2478 	num_tr = udma_get_tr_counters(period_len, __ffs(buf_addr), &tr0_cnt0,
2479 				      &tr0_cnt1, &tr1_cnt0);
2480 	if (num_tr < 0) {
2481 		dev_err(uc->ud->dev, "size %zu is not supported\n",
2482 			period_len);
2483 		return NULL;
2484 	}
2485 
2486 	/* Now allocate and setup the descriptor. */
2487 	tr_size = sizeof(struct cppi5_tr_type1_t);
2488 	d = udma_alloc_tr_desc(uc, tr_size, periods * num_tr, dir);
2489 	if (!d)
2490 		return NULL;
2491 
2492 	tr_req = d->hwdesc[0].tr_req_base;
2493 	period_addr = buf_addr;
2494 	for (i = 0; i < periods; i++) {
2495 		int tr_idx = i * num_tr;
2496 
2497 		cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1, false,
2498 			      false, CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
2499 
2500 		tr_req[tr_idx].addr = period_addr;
2501 		tr_req[tr_idx].icnt0 = tr0_cnt0;
2502 		tr_req[tr_idx].icnt1 = tr0_cnt1;
2503 		tr_req[tr_idx].dim1 = tr0_cnt0;
2504 
2505 		if (num_tr == 2) {
2506 			cppi5_tr_csf_set(&tr_req[tr_idx].flags,
2507 					 CPPI5_TR_CSF_SUPR_EVT);
2508 			tr_idx++;
2509 
2510 			cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1,
2511 				      false, false,
2512 				      CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
2513 
2514 			tr_req[tr_idx].addr = period_addr + tr0_cnt1 * tr0_cnt0;
2515 			tr_req[tr_idx].icnt0 = tr1_cnt0;
2516 			tr_req[tr_idx].icnt1 = 1;
2517 			tr_req[tr_idx].dim1 = tr1_cnt0;
2518 		}
2519 
2520 		if (!(flags & DMA_PREP_INTERRUPT))
2521 			cppi5_tr_csf_set(&tr_req[tr_idx].flags,
2522 					 CPPI5_TR_CSF_SUPR_EVT);
2523 
2524 		period_addr += period_len;
2525 	}
2526 
2527 	return d;
2528 }
2529 
2530 static struct udma_desc *
2531 udma_prep_dma_cyclic_pkt(struct udma_chan *uc, dma_addr_t buf_addr,
2532 			 size_t buf_len, size_t period_len,
2533 			 enum dma_transfer_direction dir, unsigned long flags)
2534 {
2535 	struct udma_desc *d;
2536 	u32 ring_id;
2537 	int i;
2538 	int periods = buf_len / period_len;
2539 
2540 	if (periods > (K3_UDMA_DEFAULT_RING_SIZE - 1))
2541 		return NULL;
2542 
2543 	if (period_len >= SZ_4M)
2544 		return NULL;
2545 
2546 	d = kzalloc(sizeof(*d) + periods * sizeof(d->hwdesc[0]), GFP_NOWAIT);
2547 	if (!d)
2548 		return NULL;
2549 
2550 	d->hwdesc_count = periods;
2551 
2552 	/* TODO: re-check this... */
2553 	if (dir == DMA_DEV_TO_MEM)
2554 		ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring);
2555 	else
2556 		ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring);
2557 
2558 	for (i = 0; i < periods; i++) {
2559 		struct udma_hwdesc *hwdesc = &d->hwdesc[i];
2560 		dma_addr_t period_addr = buf_addr + (period_len * i);
2561 		struct cppi5_host_desc_t *h_desc;
2562 
2563 		hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool,
2564 						GFP_NOWAIT,
2565 						&hwdesc->cppi5_desc_paddr);
2566 		if (!hwdesc->cppi5_desc_vaddr) {
2567 			dev_err(uc->ud->dev,
2568 				"descriptor%d allocation failed\n", i);
2569 
2570 			udma_free_hwdesc(uc, d);
2571 			kfree(d);
2572 			return NULL;
2573 		}
2574 
2575 		hwdesc->cppi5_desc_size = uc->config.hdesc_size;
2576 		h_desc = hwdesc->cppi5_desc_vaddr;
2577 
2578 		cppi5_hdesc_init(h_desc, 0, 0);
2579 		cppi5_hdesc_set_pktlen(h_desc, period_len);
2580 
2581 		/* Flow and Packed ID */
2582 		cppi5_desc_set_pktids(&h_desc->hdr, uc->id,
2583 				      CPPI5_INFO1_DESC_FLOWID_DEFAULT);
2584 		cppi5_desc_set_retpolicy(&h_desc->hdr, 0, ring_id);
2585 
2586 		/* attach each period to a new descriptor */
2587 		cppi5_hdesc_attach_buf(h_desc,
2588 				       period_addr, period_len,
2589 				       period_addr, period_len);
2590 	}
2591 
2592 	return d;
2593 }
2594 
2595 static struct dma_async_tx_descriptor *
2596 udma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
2597 		     size_t period_len, enum dma_transfer_direction dir,
2598 		     unsigned long flags)
2599 {
2600 	struct udma_chan *uc = to_udma_chan(chan);
2601 	enum dma_slave_buswidth dev_width;
2602 	struct udma_desc *d;
2603 	u32 burst;
2604 
2605 	if (dir != uc->config.dir) {
2606 		dev_err(chan->device->dev,
2607 			"%s: chan%d is for %s, not supporting %s\n",
2608 			__func__, uc->id,
2609 			dmaengine_get_direction_text(uc->config.dir),
2610 			dmaengine_get_direction_text(dir));
2611 		return NULL;
2612 	}
2613 
2614 	uc->cyclic = true;
2615 
2616 	if (dir == DMA_DEV_TO_MEM) {
2617 		dev_width = uc->cfg.src_addr_width;
2618 		burst = uc->cfg.src_maxburst;
2619 	} else if (dir == DMA_MEM_TO_DEV) {
2620 		dev_width = uc->cfg.dst_addr_width;
2621 		burst = uc->cfg.dst_maxburst;
2622 	} else {
2623 		dev_err(uc->ud->dev, "%s: bad direction?\n", __func__);
2624 		return NULL;
2625 	}
2626 
2627 	if (!burst)
2628 		burst = 1;
2629 
2630 	if (uc->config.pkt_mode)
2631 		d = udma_prep_dma_cyclic_pkt(uc, buf_addr, buf_len, period_len,
2632 					     dir, flags);
2633 	else
2634 		d = udma_prep_dma_cyclic_tr(uc, buf_addr, buf_len, period_len,
2635 					    dir, flags);
2636 
2637 	if (!d)
2638 		return NULL;
2639 
2640 	d->sglen = buf_len / period_len;
2641 
2642 	d->dir = dir;
2643 	d->residue = buf_len;
2644 
2645 	/* static TR for remote PDMA */
2646 	if (udma_configure_statictr(uc, d, dev_width, burst)) {
2647 		dev_err(uc->ud->dev,
2648 			"%s: StaticTR Z is limited to maximum 4095 (%u)\n",
2649 			__func__, d->static_tr.bstcnt);
2650 
2651 		udma_free_hwdesc(uc, d);
2652 		kfree(d);
2653 		return NULL;
2654 	}
2655 
2656 	if (uc->config.metadata_size)
2657 		d->vd.tx.metadata_ops = &metadata_ops;
2658 
2659 	return vchan_tx_prep(&uc->vc, &d->vd, flags);
2660 }
2661 
2662 static struct dma_async_tx_descriptor *
2663 udma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
2664 		     size_t len, unsigned long tx_flags)
2665 {
2666 	struct udma_chan *uc = to_udma_chan(chan);
2667 	struct udma_desc *d;
2668 	struct cppi5_tr_type15_t *tr_req;
2669 	int num_tr;
2670 	size_t tr_size = sizeof(struct cppi5_tr_type15_t);
2671 	u16 tr0_cnt0, tr0_cnt1, tr1_cnt0;
2672 
2673 	if (uc->config.dir != DMA_MEM_TO_MEM) {
2674 		dev_err(chan->device->dev,
2675 			"%s: chan%d is for %s, not supporting %s\n",
2676 			__func__, uc->id,
2677 			dmaengine_get_direction_text(uc->config.dir),
2678 			dmaengine_get_direction_text(DMA_MEM_TO_MEM));
2679 		return NULL;
2680 	}
2681 
2682 	num_tr = udma_get_tr_counters(len, __ffs(src | dest), &tr0_cnt0,
2683 				      &tr0_cnt1, &tr1_cnt0);
2684 	if (num_tr < 0) {
2685 		dev_err(uc->ud->dev, "size %zu is not supported\n",
2686 			len);
2687 		return NULL;
2688 	}
2689 
2690 	d = udma_alloc_tr_desc(uc, tr_size, num_tr, DMA_MEM_TO_MEM);
2691 	if (!d)
2692 		return NULL;
2693 
2694 	d->dir = DMA_MEM_TO_MEM;
2695 	d->desc_idx = 0;
2696 	d->tr_idx = 0;
2697 	d->residue = len;
2698 
2699 	tr_req = d->hwdesc[0].tr_req_base;
2700 
2701 	cppi5_tr_init(&tr_req[0].flags, CPPI5_TR_TYPE15, false, true,
2702 		      CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
2703 	cppi5_tr_csf_set(&tr_req[0].flags, CPPI5_TR_CSF_SUPR_EVT);
2704 
2705 	tr_req[0].addr = src;
2706 	tr_req[0].icnt0 = tr0_cnt0;
2707 	tr_req[0].icnt1 = tr0_cnt1;
2708 	tr_req[0].icnt2 = 1;
2709 	tr_req[0].icnt3 = 1;
2710 	tr_req[0].dim1 = tr0_cnt0;
2711 
2712 	tr_req[0].daddr = dest;
2713 	tr_req[0].dicnt0 = tr0_cnt0;
2714 	tr_req[0].dicnt1 = tr0_cnt1;
2715 	tr_req[0].dicnt2 = 1;
2716 	tr_req[0].dicnt3 = 1;
2717 	tr_req[0].ddim1 = tr0_cnt0;
2718 
2719 	if (num_tr == 2) {
2720 		cppi5_tr_init(&tr_req[1].flags, CPPI5_TR_TYPE15, false, true,
2721 			      CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
2722 		cppi5_tr_csf_set(&tr_req[1].flags, CPPI5_TR_CSF_SUPR_EVT);
2723 
2724 		tr_req[1].addr = src + tr0_cnt1 * tr0_cnt0;
2725 		tr_req[1].icnt0 = tr1_cnt0;
2726 		tr_req[1].icnt1 = 1;
2727 		tr_req[1].icnt2 = 1;
2728 		tr_req[1].icnt3 = 1;
2729 
2730 		tr_req[1].daddr = dest + tr0_cnt1 * tr0_cnt0;
2731 		tr_req[1].dicnt0 = tr1_cnt0;
2732 		tr_req[1].dicnt1 = 1;
2733 		tr_req[1].dicnt2 = 1;
2734 		tr_req[1].dicnt3 = 1;
2735 	}
2736 
2737 	cppi5_tr_csf_set(&tr_req[num_tr - 1].flags,
2738 			 CPPI5_TR_CSF_SUPR_EVT | CPPI5_TR_CSF_EOP);
2739 
2740 	if (uc->config.metadata_size)
2741 		d->vd.tx.metadata_ops = &metadata_ops;
2742 
2743 	return vchan_tx_prep(&uc->vc, &d->vd, tx_flags);
2744 }
2745 
2746 static void udma_issue_pending(struct dma_chan *chan)
2747 {
2748 	struct udma_chan *uc = to_udma_chan(chan);
2749 	unsigned long flags;
2750 
2751 	spin_lock_irqsave(&uc->vc.lock, flags);
2752 
2753 	/* If we have something pending and no active descriptor, then */
2754 	if (vchan_issue_pending(&uc->vc) && !uc->desc) {
2755 		/*
2756 		 * start a descriptor if the channel is NOT [marked as
2757 		 * terminating _and_ it is still running (teardown has not
2758 		 * completed yet)].
2759 		 */
2760 		if (!(uc->state == UDMA_CHAN_IS_TERMINATING &&
2761 		      udma_is_chan_running(uc)))
2762 			udma_start(uc);
2763 	}
2764 
2765 	spin_unlock_irqrestore(&uc->vc.lock, flags);
2766 }
2767 
2768 static enum dma_status udma_tx_status(struct dma_chan *chan,
2769 				      dma_cookie_t cookie,
2770 				      struct dma_tx_state *txstate)
2771 {
2772 	struct udma_chan *uc = to_udma_chan(chan);
2773 	enum dma_status ret;
2774 	unsigned long flags;
2775 
2776 	spin_lock_irqsave(&uc->vc.lock, flags);
2777 
2778 	ret = dma_cookie_status(chan, cookie, txstate);
2779 
2780 	if (!udma_is_chan_running(uc))
2781 		ret = DMA_COMPLETE;
2782 
2783 	if (ret == DMA_IN_PROGRESS && udma_is_chan_paused(uc))
2784 		ret = DMA_PAUSED;
2785 
2786 	if (ret == DMA_COMPLETE || !txstate)
2787 		goto out;
2788 
2789 	if (uc->desc && uc->desc->vd.tx.cookie == cookie) {
2790 		u32 peer_bcnt = 0;
2791 		u32 bcnt = 0;
2792 		u32 residue = uc->desc->residue;
2793 		u32 delay = 0;
2794 
2795 		if (uc->desc->dir == DMA_MEM_TO_DEV) {
2796 			bcnt = udma_tchanrt_read(uc->tchan,
2797 						 UDMA_TCHAN_RT_SBCNT_REG);
2798 
2799 			if (uc->config.ep_type != PSIL_EP_NATIVE) {
2800 				peer_bcnt = udma_tchanrt_read(uc->tchan,
2801 						UDMA_TCHAN_RT_PEER_BCNT_REG);
2802 
2803 				if (bcnt > peer_bcnt)
2804 					delay = bcnt - peer_bcnt;
2805 			}
2806 		} else if (uc->desc->dir == DMA_DEV_TO_MEM) {
2807 			bcnt = udma_rchanrt_read(uc->rchan,
2808 						 UDMA_RCHAN_RT_BCNT_REG);
2809 
2810 			if (uc->config.ep_type != PSIL_EP_NATIVE) {
2811 				peer_bcnt = udma_rchanrt_read(uc->rchan,
2812 						UDMA_RCHAN_RT_PEER_BCNT_REG);
2813 
2814 				if (peer_bcnt > bcnt)
2815 					delay = peer_bcnt - bcnt;
2816 			}
2817 		} else {
2818 			bcnt = udma_tchanrt_read(uc->tchan,
2819 						 UDMA_TCHAN_RT_BCNT_REG);
2820 		}
2821 
2822 		bcnt -= uc->bcnt;
2823 		if (bcnt && !(bcnt % uc->desc->residue))
2824 			residue = 0;
2825 		else
2826 			residue -= bcnt % uc->desc->residue;
2827 
2828 		if (!residue && (uc->config.dir == DMA_DEV_TO_MEM || !delay)) {
2829 			ret = DMA_COMPLETE;
2830 			delay = 0;
2831 		}
2832 
2833 		dma_set_residue(txstate, residue);
2834 		dma_set_in_flight_bytes(txstate, delay);
2835 
2836 	} else {
2837 		ret = DMA_COMPLETE;
2838 	}
2839 
2840 out:
2841 	spin_unlock_irqrestore(&uc->vc.lock, flags);
2842 	return ret;
2843 }
2844 
2845 static int udma_pause(struct dma_chan *chan)
2846 {
2847 	struct udma_chan *uc = to_udma_chan(chan);
2848 
2849 	/* pause the channel */
2850 	switch (uc->config.dir) {
2851 	case DMA_DEV_TO_MEM:
2852 		udma_rchanrt_update_bits(uc->rchan,
2853 					 UDMA_RCHAN_RT_PEER_RT_EN_REG,
2854 					 UDMA_PEER_RT_EN_PAUSE,
2855 					 UDMA_PEER_RT_EN_PAUSE);
2856 		break;
2857 	case DMA_MEM_TO_DEV:
2858 		udma_tchanrt_update_bits(uc->tchan,
2859 					 UDMA_TCHAN_RT_PEER_RT_EN_REG,
2860 					 UDMA_PEER_RT_EN_PAUSE,
2861 					 UDMA_PEER_RT_EN_PAUSE);
2862 		break;
2863 	case DMA_MEM_TO_MEM:
2864 		udma_tchanrt_update_bits(uc->tchan, UDMA_TCHAN_RT_CTL_REG,
2865 					 UDMA_CHAN_RT_CTL_PAUSE,
2866 					 UDMA_CHAN_RT_CTL_PAUSE);
2867 		break;
2868 	default:
2869 		return -EINVAL;
2870 	}
2871 
2872 	return 0;
2873 }
2874 
2875 static int udma_resume(struct dma_chan *chan)
2876 {
2877 	struct udma_chan *uc = to_udma_chan(chan);
2878 
2879 	/* resume the channel */
2880 	switch (uc->config.dir) {
2881 	case DMA_DEV_TO_MEM:
2882 		udma_rchanrt_update_bits(uc->rchan,
2883 					 UDMA_RCHAN_RT_PEER_RT_EN_REG,
2884 					 UDMA_PEER_RT_EN_PAUSE, 0);
2885 
2886 		break;
2887 	case DMA_MEM_TO_DEV:
2888 		udma_tchanrt_update_bits(uc->tchan,
2889 					 UDMA_TCHAN_RT_PEER_RT_EN_REG,
2890 					 UDMA_PEER_RT_EN_PAUSE, 0);
2891 		break;
2892 	case DMA_MEM_TO_MEM:
2893 		udma_tchanrt_update_bits(uc->tchan, UDMA_TCHAN_RT_CTL_REG,
2894 					 UDMA_CHAN_RT_CTL_PAUSE, 0);
2895 		break;
2896 	default:
2897 		return -EINVAL;
2898 	}
2899 
2900 	return 0;
2901 }
2902 
2903 static int udma_terminate_all(struct dma_chan *chan)
2904 {
2905 	struct udma_chan *uc = to_udma_chan(chan);
2906 	unsigned long flags;
2907 	LIST_HEAD(head);
2908 
2909 	spin_lock_irqsave(&uc->vc.lock, flags);
2910 
2911 	if (udma_is_chan_running(uc))
2912 		udma_stop(uc);
2913 
2914 	if (uc->desc) {
2915 		uc->terminated_desc = uc->desc;
2916 		uc->desc = NULL;
2917 		uc->terminated_desc->terminated = true;
2918 		cancel_delayed_work(&uc->tx_drain.work);
2919 	}
2920 
2921 	uc->paused = false;
2922 
2923 	vchan_get_all_descriptors(&uc->vc, &head);
2924 	spin_unlock_irqrestore(&uc->vc.lock, flags);
2925 	vchan_dma_desc_free_list(&uc->vc, &head);
2926 
2927 	return 0;
2928 }
2929 
2930 static void udma_synchronize(struct dma_chan *chan)
2931 {
2932 	struct udma_chan *uc = to_udma_chan(chan);
2933 	unsigned long timeout = msecs_to_jiffies(1000);
2934 
2935 	vchan_synchronize(&uc->vc);
2936 
2937 	if (uc->state == UDMA_CHAN_IS_TERMINATING) {
2938 		timeout = wait_for_completion_timeout(&uc->teardown_completed,
2939 						      timeout);
2940 		if (!timeout) {
2941 			dev_warn(uc->ud->dev, "chan%d teardown timeout!\n",
2942 				 uc->id);
2943 			udma_dump_chan_stdata(uc);
2944 			udma_reset_chan(uc, true);
2945 		}
2946 	}
2947 
2948 	udma_reset_chan(uc, false);
2949 	if (udma_is_chan_running(uc))
2950 		dev_warn(uc->ud->dev, "chan%d refused to stop!\n", uc->id);
2951 
2952 	cancel_delayed_work_sync(&uc->tx_drain.work);
2953 	udma_reset_rings(uc);
2954 }
2955 
2956 static void udma_desc_pre_callback(struct virt_dma_chan *vc,
2957 				   struct virt_dma_desc *vd,
2958 				   struct dmaengine_result *result)
2959 {
2960 	struct udma_chan *uc = to_udma_chan(&vc->chan);
2961 	struct udma_desc *d;
2962 
2963 	if (!vd)
2964 		return;
2965 
2966 	d = to_udma_desc(&vd->tx);
2967 
2968 	if (d->metadata_size)
2969 		udma_fetch_epib(uc, d);
2970 
2971 	/* Provide residue information for the client */
2972 	if (result) {
2973 		void *desc_vaddr = udma_curr_cppi5_desc_vaddr(d, d->desc_idx);
2974 
2975 		if (cppi5_desc_get_type(desc_vaddr) ==
2976 		    CPPI5_INFO0_DESC_TYPE_VAL_HOST) {
2977 			result->residue = d->residue -
2978 					  cppi5_hdesc_get_pktlen(desc_vaddr);
2979 			if (result->residue)
2980 				result->result = DMA_TRANS_ABORTED;
2981 			else
2982 				result->result = DMA_TRANS_NOERROR;
2983 		} else {
2984 			result->residue = 0;
2985 			result->result = DMA_TRANS_NOERROR;
2986 		}
2987 	}
2988 }
2989 
2990 /*
2991  * This tasklet handles the completion of a DMA descriptor by
2992  * calling its callback and freeing it.
2993  */
2994 static void udma_vchan_complete(unsigned long arg)
2995 {
2996 	struct virt_dma_chan *vc = (struct virt_dma_chan *)arg;
2997 	struct virt_dma_desc *vd, *_vd;
2998 	struct dmaengine_desc_callback cb;
2999 	LIST_HEAD(head);
3000 
3001 	spin_lock_irq(&vc->lock);
3002 	list_splice_tail_init(&vc->desc_completed, &head);
3003 	vd = vc->cyclic;
3004 	if (vd) {
3005 		vc->cyclic = NULL;
3006 		dmaengine_desc_get_callback(&vd->tx, &cb);
3007 	} else {
3008 		memset(&cb, 0, sizeof(cb));
3009 	}
3010 	spin_unlock_irq(&vc->lock);
3011 
3012 	udma_desc_pre_callback(vc, vd, NULL);
3013 	dmaengine_desc_callback_invoke(&cb, NULL);
3014 
3015 	list_for_each_entry_safe(vd, _vd, &head, node) {
3016 		struct dmaengine_result result;
3017 
3018 		dmaengine_desc_get_callback(&vd->tx, &cb);
3019 
3020 		list_del(&vd->node);
3021 
3022 		udma_desc_pre_callback(vc, vd, &result);
3023 		dmaengine_desc_callback_invoke(&cb, &result);
3024 
3025 		vchan_vdesc_fini(vd);
3026 	}
3027 }
3028 
3029 static void udma_free_chan_resources(struct dma_chan *chan)
3030 {
3031 	struct udma_chan *uc = to_udma_chan(chan);
3032 	struct udma_dev *ud = to_udma_dev(chan->device);
3033 
3034 	udma_terminate_all(chan);
3035 	if (uc->terminated_desc) {
3036 		udma_reset_chan(uc, false);
3037 		udma_reset_rings(uc);
3038 	}
3039 
3040 	cancel_delayed_work_sync(&uc->tx_drain.work);
3041 	destroy_delayed_work_on_stack(&uc->tx_drain.work);
3042 
3043 	if (uc->irq_num_ring > 0) {
3044 		free_irq(uc->irq_num_ring, uc);
3045 
3046 		uc->irq_num_ring = 0;
3047 	}
3048 	if (uc->irq_num_udma > 0) {
3049 		free_irq(uc->irq_num_udma, uc);
3050 
3051 		uc->irq_num_udma = 0;
3052 	}
3053 
3054 	/* Release PSI-L pairing */
3055 	if (uc->psil_paired) {
3056 		navss_psil_unpair(ud, uc->config.src_thread,
3057 				  uc->config.dst_thread);
3058 		uc->psil_paired = false;
3059 	}
3060 
3061 	vchan_free_chan_resources(&uc->vc);
3062 	tasklet_kill(&uc->vc.task);
3063 
3064 	udma_free_tx_resources(uc);
3065 	udma_free_rx_resources(uc);
3066 	udma_reset_uchan(uc);
3067 
3068 	if (uc->use_dma_pool) {
3069 		dma_pool_destroy(uc->hdesc_pool);
3070 		uc->use_dma_pool = false;
3071 	}
3072 }
3073 
3074 static struct platform_driver udma_driver;
3075 
3076 struct udma_filter_param {
3077 	int remote_thread_id;
3078 	u32 atype;
3079 };
3080 
3081 static bool udma_dma_filter_fn(struct dma_chan *chan, void *param)
3082 {
3083 	struct udma_chan_config *ucc;
3084 	struct psil_endpoint_config *ep_config;
3085 	struct udma_filter_param *filter_param;
3086 	struct udma_chan *uc;
3087 	struct udma_dev *ud;
3088 
3089 	if (chan->device->dev->driver != &udma_driver.driver)
3090 		return false;
3091 
3092 	uc = to_udma_chan(chan);
3093 	ucc = &uc->config;
3094 	ud = uc->ud;
3095 	filter_param = param;
3096 
3097 	if (filter_param->atype > 2) {
3098 		dev_err(ud->dev, "Invalid channel atype: %u\n",
3099 			filter_param->atype);
3100 		return false;
3101 	}
3102 
3103 	ucc->remote_thread_id = filter_param->remote_thread_id;
3104 	ucc->atype = filter_param->atype;
3105 
3106 	if (ucc->remote_thread_id & K3_PSIL_DST_THREAD_ID_OFFSET)
3107 		ucc->dir = DMA_MEM_TO_DEV;
3108 	else
3109 		ucc->dir = DMA_DEV_TO_MEM;
3110 
3111 	ep_config = psil_get_ep_config(ucc->remote_thread_id);
3112 	if (IS_ERR(ep_config)) {
3113 		dev_err(ud->dev, "No configuration for psi-l thread 0x%04x\n",
3114 			ucc->remote_thread_id);
3115 		ucc->dir = DMA_MEM_TO_MEM;
3116 		ucc->remote_thread_id = -1;
3117 		ucc->atype = 0;
3118 		return false;
3119 	}
3120 
3121 	ucc->pkt_mode = ep_config->pkt_mode;
3122 	ucc->channel_tpl = ep_config->channel_tpl;
3123 	ucc->notdpkt = ep_config->notdpkt;
3124 	ucc->ep_type = ep_config->ep_type;
3125 
3126 	if (ucc->ep_type != PSIL_EP_NATIVE) {
3127 		const struct udma_match_data *match_data = ud->match_data;
3128 
3129 		if (match_data->flags & UDMA_FLAG_PDMA_ACC32)
3130 			ucc->enable_acc32 = ep_config->pdma_acc32;
3131 		if (match_data->flags & UDMA_FLAG_PDMA_BURST)
3132 			ucc->enable_burst = ep_config->pdma_burst;
3133 	}
3134 
3135 	ucc->needs_epib = ep_config->needs_epib;
3136 	ucc->psd_size = ep_config->psd_size;
3137 	ucc->metadata_size =
3138 			(ucc->needs_epib ? CPPI5_INFO0_HDESC_EPIB_SIZE : 0) +
3139 			ucc->psd_size;
3140 
3141 	if (ucc->pkt_mode)
3142 		ucc->hdesc_size = ALIGN(sizeof(struct cppi5_host_desc_t) +
3143 				 ucc->metadata_size, ud->desc_align);
3144 
3145 	dev_dbg(ud->dev, "chan%d: Remote thread: 0x%04x (%s)\n", uc->id,
3146 		ucc->remote_thread_id, dmaengine_get_direction_text(ucc->dir));
3147 
3148 	return true;
3149 }
3150 
3151 static struct dma_chan *udma_of_xlate(struct of_phandle_args *dma_spec,
3152 				      struct of_dma *ofdma)
3153 {
3154 	struct udma_dev *ud = ofdma->of_dma_data;
3155 	dma_cap_mask_t mask = ud->ddev.cap_mask;
3156 	struct udma_filter_param filter_param;
3157 	struct dma_chan *chan;
3158 
3159 	if (dma_spec->args_count != 1 && dma_spec->args_count != 2)
3160 		return NULL;
3161 
3162 	filter_param.remote_thread_id = dma_spec->args[0];
3163 	if (dma_spec->args_count == 2)
3164 		filter_param.atype = dma_spec->args[1];
3165 	else
3166 		filter_param.atype = 0;
3167 
3168 	chan = __dma_request_channel(&mask, udma_dma_filter_fn, &filter_param,
3169 				     ofdma->of_node);
3170 	if (!chan) {
3171 		dev_err(ud->dev, "get channel fail in %s.\n", __func__);
3172 		return ERR_PTR(-EINVAL);
3173 	}
3174 
3175 	return chan;
3176 }
3177 
3178 static struct udma_match_data am654_main_data = {
3179 	.psil_base = 0x1000,
3180 	.enable_memcpy_support = true,
3181 	.statictr_z_mask = GENMASK(11, 0),
3182 	.rchan_oes_offset = 0x2000,
3183 	.tpl_levels = 2,
3184 	.level_start_idx = {
3185 		[0] = 8, /* Normal channels */
3186 		[1] = 0, /* High Throughput channels */
3187 	},
3188 };
3189 
3190 static struct udma_match_data am654_mcu_data = {
3191 	.psil_base = 0x6000,
3192 	.enable_memcpy_support = true, /* TEST: DMA domains */
3193 	.statictr_z_mask = GENMASK(11, 0),
3194 	.rchan_oes_offset = 0x2000,
3195 	.tpl_levels = 2,
3196 	.level_start_idx = {
3197 		[0] = 2, /* Normal channels */
3198 		[1] = 0, /* High Throughput channels */
3199 	},
3200 };
3201 
3202 static struct udma_match_data j721e_main_data = {
3203 	.psil_base = 0x1000,
3204 	.enable_memcpy_support = true,
3205 	.flags = UDMA_FLAG_PDMA_ACC32 | UDMA_FLAG_PDMA_BURST,
3206 	.statictr_z_mask = GENMASK(23, 0),
3207 	.rchan_oes_offset = 0x400,
3208 	.tpl_levels = 3,
3209 	.level_start_idx = {
3210 		[0] = 16, /* Normal channels */
3211 		[1] = 4, /* High Throughput channels */
3212 		[2] = 0, /* Ultra High Throughput channels */
3213 	},
3214 };
3215 
3216 static struct udma_match_data j721e_mcu_data = {
3217 	.psil_base = 0x6000,
3218 	.enable_memcpy_support = false, /* MEM_TO_MEM is slow via MCU UDMA */
3219 	.flags = UDMA_FLAG_PDMA_ACC32 | UDMA_FLAG_PDMA_BURST,
3220 	.statictr_z_mask = GENMASK(23, 0),
3221 	.rchan_oes_offset = 0x400,
3222 	.tpl_levels = 2,
3223 	.level_start_idx = {
3224 		[0] = 2, /* Normal channels */
3225 		[1] = 0, /* High Throughput channels */
3226 	},
3227 };
3228 
3229 static const struct of_device_id udma_of_match[] = {
3230 	{
3231 		.compatible = "ti,am654-navss-main-udmap",
3232 		.data = &am654_main_data,
3233 	},
3234 	{
3235 		.compatible = "ti,am654-navss-mcu-udmap",
3236 		.data = &am654_mcu_data,
3237 	}, {
3238 		.compatible = "ti,j721e-navss-main-udmap",
3239 		.data = &j721e_main_data,
3240 	}, {
3241 		.compatible = "ti,j721e-navss-mcu-udmap",
3242 		.data = &j721e_mcu_data,
3243 	},
3244 	{ /* Sentinel */ },
3245 };
3246 
3247 static int udma_get_mmrs(struct platform_device *pdev, struct udma_dev *ud)
3248 {
3249 	struct resource *res;
3250 	int i;
3251 
3252 	for (i = 0; i < MMR_LAST; i++) {
3253 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3254 						   mmr_names[i]);
3255 		ud->mmrs[i] = devm_ioremap_resource(&pdev->dev, res);
3256 		if (IS_ERR(ud->mmrs[i]))
3257 			return PTR_ERR(ud->mmrs[i]);
3258 	}
3259 
3260 	return 0;
3261 }
3262 
3263 static int udma_setup_resources(struct udma_dev *ud)
3264 {
3265 	struct device *dev = ud->dev;
3266 	int ch_count, ret, i, j;
3267 	u32 cap2, cap3;
3268 	struct ti_sci_resource_desc *rm_desc;
3269 	struct ti_sci_resource *rm_res, irq_res;
3270 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
3271 	static const char * const range_names[] = { "ti,sci-rm-range-tchan",
3272 						    "ti,sci-rm-range-rchan",
3273 						    "ti,sci-rm-range-rflow" };
3274 
3275 	cap2 = udma_read(ud->mmrs[MMR_GCFG], 0x28);
3276 	cap3 = udma_read(ud->mmrs[MMR_GCFG], 0x2c);
3277 
3278 	ud->rflow_cnt = cap3 & 0x3fff;
3279 	ud->tchan_cnt = cap2 & 0x1ff;
3280 	ud->echan_cnt = (cap2 >> 9) & 0x1ff;
3281 	ud->rchan_cnt = (cap2 >> 18) & 0x1ff;
3282 	ch_count  = ud->tchan_cnt + ud->rchan_cnt;
3283 
3284 	ud->tchan_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->tchan_cnt),
3285 					   sizeof(unsigned long), GFP_KERNEL);
3286 	ud->tchans = devm_kcalloc(dev, ud->tchan_cnt, sizeof(*ud->tchans),
3287 				  GFP_KERNEL);
3288 	ud->rchan_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->rchan_cnt),
3289 					   sizeof(unsigned long), GFP_KERNEL);
3290 	ud->rchans = devm_kcalloc(dev, ud->rchan_cnt, sizeof(*ud->rchans),
3291 				  GFP_KERNEL);
3292 	ud->rflow_gp_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->rflow_cnt),
3293 					      sizeof(unsigned long),
3294 					      GFP_KERNEL);
3295 	ud->rflow_gp_map_allocated = devm_kcalloc(dev,
3296 						  BITS_TO_LONGS(ud->rflow_cnt),
3297 						  sizeof(unsigned long),
3298 						  GFP_KERNEL);
3299 	ud->rflow_in_use = devm_kcalloc(dev, BITS_TO_LONGS(ud->rflow_cnt),
3300 					sizeof(unsigned long),
3301 					GFP_KERNEL);
3302 	ud->rflows = devm_kcalloc(dev, ud->rflow_cnt, sizeof(*ud->rflows),
3303 				  GFP_KERNEL);
3304 
3305 	if (!ud->tchan_map || !ud->rchan_map || !ud->rflow_gp_map ||
3306 	    !ud->rflow_gp_map_allocated || !ud->tchans || !ud->rchans ||
3307 	    !ud->rflows || !ud->rflow_in_use)
3308 		return -ENOMEM;
3309 
3310 	/*
3311 	 * RX flows with the same Ids as RX channels are reserved to be used
3312 	 * as default flows if remote HW can't generate flow_ids. Those
3313 	 * RX flows can be requested only explicitly by id.
3314 	 */
3315 	bitmap_set(ud->rflow_gp_map_allocated, 0, ud->rchan_cnt);
3316 
3317 	/* by default no GP rflows are assigned to Linux */
3318 	bitmap_set(ud->rflow_gp_map, 0, ud->rflow_cnt);
3319 
3320 	/* Get resource ranges from tisci */
3321 	for (i = 0; i < RM_RANGE_LAST; i++)
3322 		tisci_rm->rm_ranges[i] =
3323 			devm_ti_sci_get_of_resource(tisci_rm->tisci, dev,
3324 						    tisci_rm->tisci_dev_id,
3325 						    (char *)range_names[i]);
3326 
3327 	/* tchan ranges */
3328 	rm_res = tisci_rm->rm_ranges[RM_RANGE_TCHAN];
3329 	if (IS_ERR(rm_res)) {
3330 		bitmap_zero(ud->tchan_map, ud->tchan_cnt);
3331 	} else {
3332 		bitmap_fill(ud->tchan_map, ud->tchan_cnt);
3333 		for (i = 0; i < rm_res->sets; i++) {
3334 			rm_desc = &rm_res->desc[i];
3335 			bitmap_clear(ud->tchan_map, rm_desc->start,
3336 				     rm_desc->num);
3337 			dev_dbg(dev, "ti-sci-res: tchan: %d:%d\n",
3338 				rm_desc->start, rm_desc->num);
3339 		}
3340 	}
3341 	irq_res.sets = rm_res->sets;
3342 
3343 	/* rchan and matching default flow ranges */
3344 	rm_res = tisci_rm->rm_ranges[RM_RANGE_RCHAN];
3345 	if (IS_ERR(rm_res)) {
3346 		bitmap_zero(ud->rchan_map, ud->rchan_cnt);
3347 	} else {
3348 		bitmap_fill(ud->rchan_map, ud->rchan_cnt);
3349 		for (i = 0; i < rm_res->sets; i++) {
3350 			rm_desc = &rm_res->desc[i];
3351 			bitmap_clear(ud->rchan_map, rm_desc->start,
3352 				     rm_desc->num);
3353 			dev_dbg(dev, "ti-sci-res: rchan: %d:%d\n",
3354 				rm_desc->start, rm_desc->num);
3355 		}
3356 	}
3357 
3358 	irq_res.sets += rm_res->sets;
3359 	irq_res.desc = kcalloc(irq_res.sets, sizeof(*irq_res.desc), GFP_KERNEL);
3360 	rm_res = tisci_rm->rm_ranges[RM_RANGE_TCHAN];
3361 	for (i = 0; i < rm_res->sets; i++) {
3362 		irq_res.desc[i].start = rm_res->desc[i].start;
3363 		irq_res.desc[i].num = rm_res->desc[i].num;
3364 	}
3365 	rm_res = tisci_rm->rm_ranges[RM_RANGE_RCHAN];
3366 	for (j = 0; j < rm_res->sets; j++, i++) {
3367 		irq_res.desc[i].start = rm_res->desc[j].start +
3368 					ud->match_data->rchan_oes_offset;
3369 		irq_res.desc[i].num = rm_res->desc[j].num;
3370 	}
3371 	ret = ti_sci_inta_msi_domain_alloc_irqs(ud->dev, &irq_res);
3372 	kfree(irq_res.desc);
3373 	if (ret) {
3374 		dev_err(ud->dev, "Failed to allocate MSI interrupts\n");
3375 		return ret;
3376 	}
3377 
3378 	/* GP rflow ranges */
3379 	rm_res = tisci_rm->rm_ranges[RM_RANGE_RFLOW];
3380 	if (IS_ERR(rm_res)) {
3381 		/* all gp flows are assigned exclusively to Linux */
3382 		bitmap_clear(ud->rflow_gp_map, ud->rchan_cnt,
3383 			     ud->rflow_cnt - ud->rchan_cnt);
3384 	} else {
3385 		for (i = 0; i < rm_res->sets; i++) {
3386 			rm_desc = &rm_res->desc[i];
3387 			bitmap_clear(ud->rflow_gp_map, rm_desc->start,
3388 				     rm_desc->num);
3389 			dev_dbg(dev, "ti-sci-res: rflow: %d:%d\n",
3390 				rm_desc->start, rm_desc->num);
3391 		}
3392 	}
3393 
3394 	ch_count -= bitmap_weight(ud->tchan_map, ud->tchan_cnt);
3395 	ch_count -= bitmap_weight(ud->rchan_map, ud->rchan_cnt);
3396 	if (!ch_count)
3397 		return -ENODEV;
3398 
3399 	ud->channels = devm_kcalloc(dev, ch_count, sizeof(*ud->channels),
3400 				    GFP_KERNEL);
3401 	if (!ud->channels)
3402 		return -ENOMEM;
3403 
3404 	dev_info(dev, "Channels: %d (tchan: %u, rchan: %u, gp-rflow: %u)\n",
3405 		 ch_count,
3406 		 ud->tchan_cnt - bitmap_weight(ud->tchan_map, ud->tchan_cnt),
3407 		 ud->rchan_cnt - bitmap_weight(ud->rchan_map, ud->rchan_cnt),
3408 		 ud->rflow_cnt - bitmap_weight(ud->rflow_gp_map,
3409 					       ud->rflow_cnt));
3410 
3411 	return ch_count;
3412 }
3413 
3414 static int udma_setup_rx_flush(struct udma_dev *ud)
3415 {
3416 	struct udma_rx_flush *rx_flush = &ud->rx_flush;
3417 	struct cppi5_desc_hdr_t *tr_desc;
3418 	struct cppi5_tr_type1_t *tr_req;
3419 	struct cppi5_host_desc_t *desc;
3420 	struct device *dev = ud->dev;
3421 	struct udma_hwdesc *hwdesc;
3422 	size_t tr_size;
3423 
3424 	/* Allocate 1K buffer for discarded data on RX channel teardown */
3425 	rx_flush->buffer_size = SZ_1K;
3426 	rx_flush->buffer_vaddr = devm_kzalloc(dev, rx_flush->buffer_size,
3427 					      GFP_KERNEL);
3428 	if (!rx_flush->buffer_vaddr)
3429 		return -ENOMEM;
3430 
3431 	rx_flush->buffer_paddr = dma_map_single(dev, rx_flush->buffer_vaddr,
3432 						rx_flush->buffer_size,
3433 						DMA_TO_DEVICE);
3434 	if (dma_mapping_error(dev, rx_flush->buffer_paddr))
3435 		return -ENOMEM;
3436 
3437 	/* Set up descriptor to be used for TR mode */
3438 	hwdesc = &rx_flush->hwdescs[0];
3439 	tr_size = sizeof(struct cppi5_tr_type1_t);
3440 	hwdesc->cppi5_desc_size = cppi5_trdesc_calc_size(tr_size, 1);
3441 	hwdesc->cppi5_desc_size = ALIGN(hwdesc->cppi5_desc_size,
3442 					ud->desc_align);
3443 
3444 	hwdesc->cppi5_desc_vaddr = devm_kzalloc(dev, hwdesc->cppi5_desc_size,
3445 						GFP_KERNEL);
3446 	if (!hwdesc->cppi5_desc_vaddr)
3447 		return -ENOMEM;
3448 
3449 	hwdesc->cppi5_desc_paddr = dma_map_single(dev, hwdesc->cppi5_desc_vaddr,
3450 						  hwdesc->cppi5_desc_size,
3451 						  DMA_TO_DEVICE);
3452 	if (dma_mapping_error(dev, hwdesc->cppi5_desc_paddr))
3453 		return -ENOMEM;
3454 
3455 	/* Start of the TR req records */
3456 	hwdesc->tr_req_base = hwdesc->cppi5_desc_vaddr + tr_size;
3457 	/* Start address of the TR response array */
3458 	hwdesc->tr_resp_base = hwdesc->tr_req_base + tr_size;
3459 
3460 	tr_desc = hwdesc->cppi5_desc_vaddr;
3461 	cppi5_trdesc_init(tr_desc, 1, tr_size, 0, 0);
3462 	cppi5_desc_set_pktids(tr_desc, 0, CPPI5_INFO1_DESC_FLOWID_DEFAULT);
3463 	cppi5_desc_set_retpolicy(tr_desc, 0, 0);
3464 
3465 	tr_req = hwdesc->tr_req_base;
3466 	cppi5_tr_init(&tr_req->flags, CPPI5_TR_TYPE1, false, false,
3467 		      CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
3468 	cppi5_tr_csf_set(&tr_req->flags, CPPI5_TR_CSF_SUPR_EVT);
3469 
3470 	tr_req->addr = rx_flush->buffer_paddr;
3471 	tr_req->icnt0 = rx_flush->buffer_size;
3472 	tr_req->icnt1 = 1;
3473 
3474 	/* Set up descriptor to be used for packet mode */
3475 	hwdesc = &rx_flush->hwdescs[1];
3476 	hwdesc->cppi5_desc_size = ALIGN(sizeof(struct cppi5_host_desc_t) +
3477 					CPPI5_INFO0_HDESC_EPIB_SIZE +
3478 					CPPI5_INFO0_HDESC_PSDATA_MAX_SIZE,
3479 					ud->desc_align);
3480 
3481 	hwdesc->cppi5_desc_vaddr = devm_kzalloc(dev, hwdesc->cppi5_desc_size,
3482 						GFP_KERNEL);
3483 	if (!hwdesc->cppi5_desc_vaddr)
3484 		return -ENOMEM;
3485 
3486 	hwdesc->cppi5_desc_paddr = dma_map_single(dev, hwdesc->cppi5_desc_vaddr,
3487 						  hwdesc->cppi5_desc_size,
3488 						  DMA_TO_DEVICE);
3489 	if (dma_mapping_error(dev, hwdesc->cppi5_desc_paddr))
3490 		return -ENOMEM;
3491 
3492 	desc = hwdesc->cppi5_desc_vaddr;
3493 	cppi5_hdesc_init(desc, 0, 0);
3494 	cppi5_desc_set_pktids(&desc->hdr, 0, CPPI5_INFO1_DESC_FLOWID_DEFAULT);
3495 	cppi5_desc_set_retpolicy(&desc->hdr, 0, 0);
3496 
3497 	cppi5_hdesc_attach_buf(desc,
3498 			       rx_flush->buffer_paddr, rx_flush->buffer_size,
3499 			       rx_flush->buffer_paddr, rx_flush->buffer_size);
3500 
3501 	dma_sync_single_for_device(dev, hwdesc->cppi5_desc_paddr,
3502 				   hwdesc->cppi5_desc_size, DMA_TO_DEVICE);
3503 	return 0;
3504 }
3505 
3506 #ifdef CONFIG_DEBUG_FS
3507 static void udma_dbg_summary_show_chan(struct seq_file *s,
3508 				       struct dma_chan *chan)
3509 {
3510 	struct udma_chan *uc = to_udma_chan(chan);
3511 	struct udma_chan_config *ucc = &uc->config;
3512 
3513 	seq_printf(s, " %-13s| %s", dma_chan_name(chan),
3514 		   chan->dbg_client_name ?: "in-use");
3515 	seq_printf(s, " (%s, ", dmaengine_get_direction_text(uc->config.dir));
3516 
3517 	switch (uc->config.dir) {
3518 	case DMA_MEM_TO_MEM:
3519 		seq_printf(s, "chan%d pair [0x%04x -> 0x%04x], ", uc->tchan->id,
3520 			   ucc->src_thread, ucc->dst_thread);
3521 		break;
3522 	case DMA_DEV_TO_MEM:
3523 		seq_printf(s, "rchan%d [0x%04x -> 0x%04x], ", uc->rchan->id,
3524 			   ucc->src_thread, ucc->dst_thread);
3525 		break;
3526 	case DMA_MEM_TO_DEV:
3527 		seq_printf(s, "tchan%d [0x%04x -> 0x%04x], ", uc->tchan->id,
3528 			   ucc->src_thread, ucc->dst_thread);
3529 		break;
3530 	default:
3531 		seq_printf(s, ")\n");
3532 		return;
3533 	}
3534 
3535 	if (ucc->ep_type == PSIL_EP_NATIVE) {
3536 		seq_printf(s, "PSI-L Native");
3537 		if (ucc->metadata_size) {
3538 			seq_printf(s, "[%s", ucc->needs_epib ? " EPIB" : "");
3539 			if (ucc->psd_size)
3540 				seq_printf(s, " PSDsize:%u", ucc->psd_size);
3541 			seq_printf(s, " ]");
3542 		}
3543 	} else {
3544 		seq_printf(s, "PDMA");
3545 		if (ucc->enable_acc32 || ucc->enable_burst)
3546 			seq_printf(s, "[%s%s ]",
3547 				   ucc->enable_acc32 ? " ACC32" : "",
3548 				   ucc->enable_burst ? " BURST" : "");
3549 	}
3550 
3551 	seq_printf(s, ", %s)\n", ucc->pkt_mode ? "Packet mode" : "TR mode");
3552 }
3553 
3554 static void udma_dbg_summary_show(struct seq_file *s,
3555 				  struct dma_device *dma_dev)
3556 {
3557 	struct dma_chan *chan;
3558 
3559 	list_for_each_entry(chan, &dma_dev->channels, device_node) {
3560 		if (chan->client_count)
3561 			udma_dbg_summary_show_chan(s, chan);
3562 	}
3563 }
3564 #endif /* CONFIG_DEBUG_FS */
3565 
3566 #define TI_UDMAC_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
3567 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
3568 				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
3569 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
3570 				 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
3571 
3572 static int udma_probe(struct platform_device *pdev)
3573 {
3574 	struct device_node *navss_node = pdev->dev.parent->of_node;
3575 	struct device *dev = &pdev->dev;
3576 	struct udma_dev *ud;
3577 	const struct of_device_id *match;
3578 	int i, ret;
3579 	int ch_count;
3580 
3581 	ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(48));
3582 	if (ret)
3583 		dev_err(dev, "failed to set dma mask stuff\n");
3584 
3585 	ud = devm_kzalloc(dev, sizeof(*ud), GFP_KERNEL);
3586 	if (!ud)
3587 		return -ENOMEM;
3588 
3589 	ret = udma_get_mmrs(pdev, ud);
3590 	if (ret)
3591 		return ret;
3592 
3593 	ud->tisci_rm.tisci = ti_sci_get_by_phandle(dev->of_node, "ti,sci");
3594 	if (IS_ERR(ud->tisci_rm.tisci))
3595 		return PTR_ERR(ud->tisci_rm.tisci);
3596 
3597 	ret = of_property_read_u32(dev->of_node, "ti,sci-dev-id",
3598 				   &ud->tisci_rm.tisci_dev_id);
3599 	if (ret) {
3600 		dev_err(dev, "ti,sci-dev-id read failure %d\n", ret);
3601 		return ret;
3602 	}
3603 	pdev->id = ud->tisci_rm.tisci_dev_id;
3604 
3605 	ret = of_property_read_u32(navss_node, "ti,sci-dev-id",
3606 				   &ud->tisci_rm.tisci_navss_dev_id);
3607 	if (ret) {
3608 		dev_err(dev, "NAVSS ti,sci-dev-id read failure %d\n", ret);
3609 		return ret;
3610 	}
3611 
3612 	ret = of_property_read_u32(navss_node, "ti,udma-atype", &ud->atype);
3613 	if (!ret && ud->atype > 2) {
3614 		dev_err(dev, "Invalid atype: %u\n", ud->atype);
3615 		return -EINVAL;
3616 	}
3617 
3618 	ud->tisci_rm.tisci_udmap_ops = &ud->tisci_rm.tisci->ops.rm_udmap_ops;
3619 	ud->tisci_rm.tisci_psil_ops = &ud->tisci_rm.tisci->ops.rm_psil_ops;
3620 
3621 	ud->ringacc = of_k3_ringacc_get_by_phandle(dev->of_node, "ti,ringacc");
3622 	if (IS_ERR(ud->ringacc))
3623 		return PTR_ERR(ud->ringacc);
3624 
3625 	dev->msi_domain = of_msi_get_domain(dev, dev->of_node,
3626 					    DOMAIN_BUS_TI_SCI_INTA_MSI);
3627 	if (!dev->msi_domain) {
3628 		dev_err(dev, "Failed to get MSI domain\n");
3629 		return -EPROBE_DEFER;
3630 	}
3631 
3632 	match = of_match_node(udma_of_match, dev->of_node);
3633 	if (!match) {
3634 		dev_err(dev, "No compatible match found\n");
3635 		return -ENODEV;
3636 	}
3637 	ud->match_data = match->data;
3638 
3639 	dma_cap_set(DMA_SLAVE, ud->ddev.cap_mask);
3640 	dma_cap_set(DMA_CYCLIC, ud->ddev.cap_mask);
3641 
3642 	ud->ddev.device_alloc_chan_resources = udma_alloc_chan_resources;
3643 	ud->ddev.device_config = udma_slave_config;
3644 	ud->ddev.device_prep_slave_sg = udma_prep_slave_sg;
3645 	ud->ddev.device_prep_dma_cyclic = udma_prep_dma_cyclic;
3646 	ud->ddev.device_issue_pending = udma_issue_pending;
3647 	ud->ddev.device_tx_status = udma_tx_status;
3648 	ud->ddev.device_pause = udma_pause;
3649 	ud->ddev.device_resume = udma_resume;
3650 	ud->ddev.device_terminate_all = udma_terminate_all;
3651 	ud->ddev.device_synchronize = udma_synchronize;
3652 #ifdef CONFIG_DEBUG_FS
3653 	ud->ddev.dbg_summary_show = udma_dbg_summary_show;
3654 #endif
3655 
3656 	ud->ddev.device_free_chan_resources = udma_free_chan_resources;
3657 	ud->ddev.src_addr_widths = TI_UDMAC_BUSWIDTHS;
3658 	ud->ddev.dst_addr_widths = TI_UDMAC_BUSWIDTHS;
3659 	ud->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
3660 	ud->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
3661 	ud->ddev.copy_align = DMAENGINE_ALIGN_8_BYTES;
3662 	ud->ddev.desc_metadata_modes = DESC_METADATA_CLIENT |
3663 				       DESC_METADATA_ENGINE;
3664 	if (ud->match_data->enable_memcpy_support) {
3665 		dma_cap_set(DMA_MEMCPY, ud->ddev.cap_mask);
3666 		ud->ddev.device_prep_dma_memcpy = udma_prep_dma_memcpy;
3667 		ud->ddev.directions |= BIT(DMA_MEM_TO_MEM);
3668 	}
3669 
3670 	ud->ddev.dev = dev;
3671 	ud->dev = dev;
3672 	ud->psil_base = ud->match_data->psil_base;
3673 
3674 	INIT_LIST_HEAD(&ud->ddev.channels);
3675 	INIT_LIST_HEAD(&ud->desc_to_purge);
3676 
3677 	ch_count = udma_setup_resources(ud);
3678 	if (ch_count <= 0)
3679 		return ch_count;
3680 
3681 	spin_lock_init(&ud->lock);
3682 	INIT_WORK(&ud->purge_work, udma_purge_desc_work);
3683 
3684 	ud->desc_align = 64;
3685 	if (ud->desc_align < dma_get_cache_alignment())
3686 		ud->desc_align = dma_get_cache_alignment();
3687 
3688 	ret = udma_setup_rx_flush(ud);
3689 	if (ret)
3690 		return ret;
3691 
3692 	for (i = 0; i < ud->tchan_cnt; i++) {
3693 		struct udma_tchan *tchan = &ud->tchans[i];
3694 
3695 		tchan->id = i;
3696 		tchan->reg_rt = ud->mmrs[MMR_TCHANRT] + i * 0x1000;
3697 	}
3698 
3699 	for (i = 0; i < ud->rchan_cnt; i++) {
3700 		struct udma_rchan *rchan = &ud->rchans[i];
3701 
3702 		rchan->id = i;
3703 		rchan->reg_rt = ud->mmrs[MMR_RCHANRT] + i * 0x1000;
3704 	}
3705 
3706 	for (i = 0; i < ud->rflow_cnt; i++) {
3707 		struct udma_rflow *rflow = &ud->rflows[i];
3708 
3709 		rflow->id = i;
3710 	}
3711 
3712 	for (i = 0; i < ch_count; i++) {
3713 		struct udma_chan *uc = &ud->channels[i];
3714 
3715 		uc->ud = ud;
3716 		uc->vc.desc_free = udma_desc_free;
3717 		uc->id = i;
3718 		uc->tchan = NULL;
3719 		uc->rchan = NULL;
3720 		uc->config.remote_thread_id = -1;
3721 		uc->config.dir = DMA_MEM_TO_MEM;
3722 		uc->name = devm_kasprintf(dev, GFP_KERNEL, "%s chan%d",
3723 					  dev_name(dev), i);
3724 
3725 		vchan_init(&uc->vc, &ud->ddev);
3726 		/* Use custom vchan completion handling */
3727 		tasklet_init(&uc->vc.task, udma_vchan_complete,
3728 			     (unsigned long)&uc->vc);
3729 		init_completion(&uc->teardown_completed);
3730 	}
3731 
3732 	ret = dma_async_device_register(&ud->ddev);
3733 	if (ret) {
3734 		dev_err(dev, "failed to register slave DMA engine: %d\n", ret);
3735 		return ret;
3736 	}
3737 
3738 	platform_set_drvdata(pdev, ud);
3739 
3740 	ret = of_dma_controller_register(dev->of_node, udma_of_xlate, ud);
3741 	if (ret) {
3742 		dev_err(dev, "failed to register of_dma controller\n");
3743 		dma_async_device_unregister(&ud->ddev);
3744 	}
3745 
3746 	return ret;
3747 }
3748 
3749 static struct platform_driver udma_driver = {
3750 	.driver = {
3751 		.name	= "ti-udma",
3752 		.of_match_table = udma_of_match,
3753 		.suppress_bind_attrs = true,
3754 	},
3755 	.probe		= udma_probe,
3756 };
3757 builtin_platform_driver(udma_driver);
3758 
3759 /* Private interfaces to UDMA */
3760 #include "k3-udma-private.c"
3761