xref: /openbmc/linux/drivers/dma/ti/k3-udma.c (revision b83685bc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com
4  *  Author: Peter Ujfalusi <peter.ujfalusi@ti.com>
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmapool.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/platform_device.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/of.h>
19 #include <linux/of_dma.h>
20 #include <linux/of_device.h>
21 #include <linux/of_irq.h>
22 #include <linux/workqueue.h>
23 #include <linux/completion.h>
24 #include <linux/soc/ti/k3-ringacc.h>
25 #include <linux/soc/ti/ti_sci_protocol.h>
26 #include <linux/soc/ti/ti_sci_inta_msi.h>
27 #include <linux/dma/ti-cppi5.h>
28 
29 #include "../virt-dma.h"
30 #include "k3-udma.h"
31 #include "k3-psil-priv.h"
32 
33 struct udma_static_tr {
34 	u8 elsize; /* RPSTR0 */
35 	u16 elcnt; /* RPSTR0 */
36 	u16 bstcnt; /* RPSTR1 */
37 };
38 
39 #define K3_UDMA_MAX_RFLOWS		1024
40 #define K3_UDMA_DEFAULT_RING_SIZE	16
41 
42 /* How SRC/DST tag should be updated by UDMA in the descriptor's Word 3 */
43 #define UDMA_RFLOW_SRCTAG_NONE		0
44 #define UDMA_RFLOW_SRCTAG_CFG_TAG	1
45 #define UDMA_RFLOW_SRCTAG_FLOW_ID	2
46 #define UDMA_RFLOW_SRCTAG_SRC_TAG	4
47 
48 #define UDMA_RFLOW_DSTTAG_NONE		0
49 #define UDMA_RFLOW_DSTTAG_CFG_TAG	1
50 #define UDMA_RFLOW_DSTTAG_FLOW_ID	2
51 #define UDMA_RFLOW_DSTTAG_DST_TAG_LO	4
52 #define UDMA_RFLOW_DSTTAG_DST_TAG_HI	5
53 
54 struct udma_chan;
55 
56 enum udma_mmr {
57 	MMR_GCFG = 0,
58 	MMR_RCHANRT,
59 	MMR_TCHANRT,
60 	MMR_LAST,
61 };
62 
63 static const char * const mmr_names[] = { "gcfg", "rchanrt", "tchanrt" };
64 
65 struct udma_tchan {
66 	void __iomem *reg_rt;
67 
68 	int id;
69 	struct k3_ring *t_ring; /* Transmit ring */
70 	struct k3_ring *tc_ring; /* Transmit Completion ring */
71 };
72 
73 struct udma_rflow {
74 	int id;
75 	struct k3_ring *fd_ring; /* Free Descriptor ring */
76 	struct k3_ring *r_ring; /* Receive ring */
77 };
78 
79 struct udma_rchan {
80 	void __iomem *reg_rt;
81 
82 	int id;
83 };
84 
85 #define UDMA_FLAG_PDMA_ACC32		BIT(0)
86 #define UDMA_FLAG_PDMA_BURST		BIT(1)
87 
88 struct udma_match_data {
89 	u32 psil_base;
90 	bool enable_memcpy_support;
91 	u32 flags;
92 	u32 statictr_z_mask;
93 	u32 rchan_oes_offset;
94 
95 	u8 tpl_levels;
96 	u32 level_start_idx[];
97 };
98 
99 struct udma_dev {
100 	struct dma_device ddev;
101 	struct device *dev;
102 	void __iomem *mmrs[MMR_LAST];
103 	const struct udma_match_data *match_data;
104 
105 	size_t desc_align; /* alignment to use for descriptors */
106 
107 	struct udma_tisci_rm tisci_rm;
108 
109 	struct k3_ringacc *ringacc;
110 
111 	struct work_struct purge_work;
112 	struct list_head desc_to_purge;
113 	spinlock_t lock;
114 
115 	int tchan_cnt;
116 	int echan_cnt;
117 	int rchan_cnt;
118 	int rflow_cnt;
119 	unsigned long *tchan_map;
120 	unsigned long *rchan_map;
121 	unsigned long *rflow_gp_map;
122 	unsigned long *rflow_gp_map_allocated;
123 	unsigned long *rflow_in_use;
124 
125 	struct udma_tchan *tchans;
126 	struct udma_rchan *rchans;
127 	struct udma_rflow *rflows;
128 
129 	struct udma_chan *channels;
130 	u32 psil_base;
131 };
132 
133 struct udma_hwdesc {
134 	size_t cppi5_desc_size;
135 	void *cppi5_desc_vaddr;
136 	dma_addr_t cppi5_desc_paddr;
137 
138 	/* TR descriptor internal pointers */
139 	void *tr_req_base;
140 	struct cppi5_tr_resp_t *tr_resp_base;
141 };
142 
143 struct udma_desc {
144 	struct virt_dma_desc vd;
145 
146 	bool terminated;
147 
148 	enum dma_transfer_direction dir;
149 
150 	struct udma_static_tr static_tr;
151 	u32 residue;
152 
153 	unsigned int sglen;
154 	unsigned int desc_idx; /* Only used for cyclic in packet mode */
155 	unsigned int tr_idx;
156 
157 	u32 metadata_size;
158 	void *metadata; /* pointer to provided metadata buffer (EPIP, PSdata) */
159 
160 	unsigned int hwdesc_count;
161 	struct udma_hwdesc hwdesc[0];
162 };
163 
164 enum udma_chan_state {
165 	UDMA_CHAN_IS_IDLE = 0, /* not active, no teardown is in progress */
166 	UDMA_CHAN_IS_ACTIVE, /* Normal operation */
167 	UDMA_CHAN_IS_TERMINATING, /* channel is being terminated */
168 };
169 
170 struct udma_tx_drain {
171 	struct delayed_work work;
172 	unsigned long jiffie;
173 	u32 residue;
174 };
175 
176 struct udma_chan_config {
177 	bool pkt_mode; /* TR or packet */
178 	bool needs_epib; /* EPIB is needed for the communication or not */
179 	u32 psd_size; /* size of Protocol Specific Data */
180 	u32 metadata_size; /* (needs_epib ? 16:0) + psd_size */
181 	u32 hdesc_size; /* Size of a packet descriptor in packet mode */
182 	bool notdpkt; /* Suppress sending TDC packet */
183 	int remote_thread_id;
184 	u32 src_thread;
185 	u32 dst_thread;
186 	enum psil_endpoint_type ep_type;
187 	bool enable_acc32;
188 	bool enable_burst;
189 	enum udma_tp_level channel_tpl; /* Channel Throughput Level */
190 
191 	enum dma_transfer_direction dir;
192 };
193 
194 struct udma_chan {
195 	struct virt_dma_chan vc;
196 	struct dma_slave_config	cfg;
197 	struct udma_dev *ud;
198 	struct udma_desc *desc;
199 	struct udma_desc *terminated_desc;
200 	struct udma_static_tr static_tr;
201 	char *name;
202 
203 	struct udma_tchan *tchan;
204 	struct udma_rchan *rchan;
205 	struct udma_rflow *rflow;
206 
207 	bool psil_paired;
208 
209 	int irq_num_ring;
210 	int irq_num_udma;
211 
212 	bool cyclic;
213 	bool paused;
214 
215 	enum udma_chan_state state;
216 	struct completion teardown_completed;
217 
218 	struct udma_tx_drain tx_drain;
219 
220 	u32 bcnt; /* number of bytes completed since the start of the channel */
221 	u32 in_ring_cnt; /* number of descriptors in flight */
222 
223 	/* Channel configuration parameters */
224 	struct udma_chan_config config;
225 
226 	/* dmapool for packet mode descriptors */
227 	bool use_dma_pool;
228 	struct dma_pool *hdesc_pool;
229 
230 	u32 id;
231 };
232 
233 static inline struct udma_dev *to_udma_dev(struct dma_device *d)
234 {
235 	return container_of(d, struct udma_dev, ddev);
236 }
237 
238 static inline struct udma_chan *to_udma_chan(struct dma_chan *c)
239 {
240 	return container_of(c, struct udma_chan, vc.chan);
241 }
242 
243 static inline struct udma_desc *to_udma_desc(struct dma_async_tx_descriptor *t)
244 {
245 	return container_of(t, struct udma_desc, vd.tx);
246 }
247 
248 /* Generic register access functions */
249 static inline u32 udma_read(void __iomem *base, int reg)
250 {
251 	return readl(base + reg);
252 }
253 
254 static inline void udma_write(void __iomem *base, int reg, u32 val)
255 {
256 	writel(val, base + reg);
257 }
258 
259 static inline void udma_update_bits(void __iomem *base, int reg,
260 				    u32 mask, u32 val)
261 {
262 	u32 tmp, orig;
263 
264 	orig = readl(base + reg);
265 	tmp = orig & ~mask;
266 	tmp |= (val & mask);
267 
268 	if (tmp != orig)
269 		writel(tmp, base + reg);
270 }
271 
272 /* TCHANRT */
273 static inline u32 udma_tchanrt_read(struct udma_tchan *tchan, int reg)
274 {
275 	if (!tchan)
276 		return 0;
277 	return udma_read(tchan->reg_rt, reg);
278 }
279 
280 static inline void udma_tchanrt_write(struct udma_tchan *tchan, int reg,
281 				      u32 val)
282 {
283 	if (!tchan)
284 		return;
285 	udma_write(tchan->reg_rt, reg, val);
286 }
287 
288 static inline void udma_tchanrt_update_bits(struct udma_tchan *tchan, int reg,
289 					    u32 mask, u32 val)
290 {
291 	if (!tchan)
292 		return;
293 	udma_update_bits(tchan->reg_rt, reg, mask, val);
294 }
295 
296 /* RCHANRT */
297 static inline u32 udma_rchanrt_read(struct udma_rchan *rchan, int reg)
298 {
299 	if (!rchan)
300 		return 0;
301 	return udma_read(rchan->reg_rt, reg);
302 }
303 
304 static inline void udma_rchanrt_write(struct udma_rchan *rchan, int reg,
305 				      u32 val)
306 {
307 	if (!rchan)
308 		return;
309 	udma_write(rchan->reg_rt, reg, val);
310 }
311 
312 static inline void udma_rchanrt_update_bits(struct udma_rchan *rchan, int reg,
313 					    u32 mask, u32 val)
314 {
315 	if (!rchan)
316 		return;
317 	udma_update_bits(rchan->reg_rt, reg, mask, val);
318 }
319 
320 static int navss_psil_pair(struct udma_dev *ud, u32 src_thread, u32 dst_thread)
321 {
322 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
323 
324 	dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET;
325 	return tisci_rm->tisci_psil_ops->pair(tisci_rm->tisci,
326 					      tisci_rm->tisci_navss_dev_id,
327 					      src_thread, dst_thread);
328 }
329 
330 static int navss_psil_unpair(struct udma_dev *ud, u32 src_thread,
331 			     u32 dst_thread)
332 {
333 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
334 
335 	dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET;
336 	return tisci_rm->tisci_psil_ops->unpair(tisci_rm->tisci,
337 						tisci_rm->tisci_navss_dev_id,
338 						src_thread, dst_thread);
339 }
340 
341 static void udma_reset_uchan(struct udma_chan *uc)
342 {
343 	memset(&uc->config, 0, sizeof(uc->config));
344 	uc->config.remote_thread_id = -1;
345 	uc->state = UDMA_CHAN_IS_IDLE;
346 }
347 
348 static void udma_dump_chan_stdata(struct udma_chan *uc)
349 {
350 	struct device *dev = uc->ud->dev;
351 	u32 offset;
352 	int i;
353 
354 	if (uc->config.dir == DMA_MEM_TO_DEV || uc->config.dir == DMA_MEM_TO_MEM) {
355 		dev_dbg(dev, "TCHAN State data:\n");
356 		for (i = 0; i < 32; i++) {
357 			offset = UDMA_TCHAN_RT_STDATA_REG + i * 4;
358 			dev_dbg(dev, "TRT_STDATA[%02d]: 0x%08x\n", i,
359 				udma_tchanrt_read(uc->tchan, offset));
360 		}
361 	}
362 
363 	if (uc->config.dir == DMA_DEV_TO_MEM || uc->config.dir == DMA_MEM_TO_MEM) {
364 		dev_dbg(dev, "RCHAN State data:\n");
365 		for (i = 0; i < 32; i++) {
366 			offset = UDMA_RCHAN_RT_STDATA_REG + i * 4;
367 			dev_dbg(dev, "RRT_STDATA[%02d]: 0x%08x\n", i,
368 				udma_rchanrt_read(uc->rchan, offset));
369 		}
370 	}
371 }
372 
373 static inline dma_addr_t udma_curr_cppi5_desc_paddr(struct udma_desc *d,
374 						    int idx)
375 {
376 	return d->hwdesc[idx].cppi5_desc_paddr;
377 }
378 
379 static inline void *udma_curr_cppi5_desc_vaddr(struct udma_desc *d, int idx)
380 {
381 	return d->hwdesc[idx].cppi5_desc_vaddr;
382 }
383 
384 static struct udma_desc *udma_udma_desc_from_paddr(struct udma_chan *uc,
385 						   dma_addr_t paddr)
386 {
387 	struct udma_desc *d = uc->terminated_desc;
388 
389 	if (d) {
390 		dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d,
391 								   d->desc_idx);
392 
393 		if (desc_paddr != paddr)
394 			d = NULL;
395 	}
396 
397 	if (!d) {
398 		d = uc->desc;
399 		if (d) {
400 			dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d,
401 								d->desc_idx);
402 
403 			if (desc_paddr != paddr)
404 				d = NULL;
405 		}
406 	}
407 
408 	return d;
409 }
410 
411 static void udma_free_hwdesc(struct udma_chan *uc, struct udma_desc *d)
412 {
413 	if (uc->use_dma_pool) {
414 		int i;
415 
416 		for (i = 0; i < d->hwdesc_count; i++) {
417 			if (!d->hwdesc[i].cppi5_desc_vaddr)
418 				continue;
419 
420 			dma_pool_free(uc->hdesc_pool,
421 				      d->hwdesc[i].cppi5_desc_vaddr,
422 				      d->hwdesc[i].cppi5_desc_paddr);
423 
424 			d->hwdesc[i].cppi5_desc_vaddr = NULL;
425 		}
426 	} else if (d->hwdesc[0].cppi5_desc_vaddr) {
427 		struct udma_dev *ud = uc->ud;
428 
429 		dma_free_coherent(ud->dev, d->hwdesc[0].cppi5_desc_size,
430 				  d->hwdesc[0].cppi5_desc_vaddr,
431 				  d->hwdesc[0].cppi5_desc_paddr);
432 
433 		d->hwdesc[0].cppi5_desc_vaddr = NULL;
434 	}
435 }
436 
437 static void udma_purge_desc_work(struct work_struct *work)
438 {
439 	struct udma_dev *ud = container_of(work, typeof(*ud), purge_work);
440 	struct virt_dma_desc *vd, *_vd;
441 	unsigned long flags;
442 	LIST_HEAD(head);
443 
444 	spin_lock_irqsave(&ud->lock, flags);
445 	list_splice_tail_init(&ud->desc_to_purge, &head);
446 	spin_unlock_irqrestore(&ud->lock, flags);
447 
448 	list_for_each_entry_safe(vd, _vd, &head, node) {
449 		struct udma_chan *uc = to_udma_chan(vd->tx.chan);
450 		struct udma_desc *d = to_udma_desc(&vd->tx);
451 
452 		udma_free_hwdesc(uc, d);
453 		list_del(&vd->node);
454 		kfree(d);
455 	}
456 
457 	/* If more to purge, schedule the work again */
458 	if (!list_empty(&ud->desc_to_purge))
459 		schedule_work(&ud->purge_work);
460 }
461 
462 static void udma_desc_free(struct virt_dma_desc *vd)
463 {
464 	struct udma_dev *ud = to_udma_dev(vd->tx.chan->device);
465 	struct udma_chan *uc = to_udma_chan(vd->tx.chan);
466 	struct udma_desc *d = to_udma_desc(&vd->tx);
467 	unsigned long flags;
468 
469 	if (uc->terminated_desc == d)
470 		uc->terminated_desc = NULL;
471 
472 	if (uc->use_dma_pool) {
473 		udma_free_hwdesc(uc, d);
474 		kfree(d);
475 		return;
476 	}
477 
478 	spin_lock_irqsave(&ud->lock, flags);
479 	list_add_tail(&vd->node, &ud->desc_to_purge);
480 	spin_unlock_irqrestore(&ud->lock, flags);
481 
482 	schedule_work(&ud->purge_work);
483 }
484 
485 static bool udma_is_chan_running(struct udma_chan *uc)
486 {
487 	u32 trt_ctl = 0;
488 	u32 rrt_ctl = 0;
489 
490 	if (uc->tchan)
491 		trt_ctl = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_CTL_REG);
492 	if (uc->rchan)
493 		rrt_ctl = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_CTL_REG);
494 
495 	if (trt_ctl & UDMA_CHAN_RT_CTL_EN || rrt_ctl & UDMA_CHAN_RT_CTL_EN)
496 		return true;
497 
498 	return false;
499 }
500 
501 static bool udma_is_chan_paused(struct udma_chan *uc)
502 {
503 	u32 val, pause_mask;
504 
505 	switch (uc->desc->dir) {
506 	case DMA_DEV_TO_MEM:
507 		val = udma_rchanrt_read(uc->rchan,
508 					UDMA_RCHAN_RT_PEER_RT_EN_REG);
509 		pause_mask = UDMA_PEER_RT_EN_PAUSE;
510 		break;
511 	case DMA_MEM_TO_DEV:
512 		val = udma_tchanrt_read(uc->tchan,
513 					UDMA_TCHAN_RT_PEER_RT_EN_REG);
514 		pause_mask = UDMA_PEER_RT_EN_PAUSE;
515 		break;
516 	case DMA_MEM_TO_MEM:
517 		val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_CTL_REG);
518 		pause_mask = UDMA_CHAN_RT_CTL_PAUSE;
519 		break;
520 	default:
521 		return false;
522 	}
523 
524 	if (val & pause_mask)
525 		return true;
526 
527 	return false;
528 }
529 
530 static void udma_sync_for_device(struct udma_chan *uc, int idx)
531 {
532 	struct udma_desc *d = uc->desc;
533 
534 	if (uc->cyclic && uc->config.pkt_mode) {
535 		dma_sync_single_for_device(uc->ud->dev,
536 					   d->hwdesc[idx].cppi5_desc_paddr,
537 					   d->hwdesc[idx].cppi5_desc_size,
538 					   DMA_TO_DEVICE);
539 	} else {
540 		int i;
541 
542 		for (i = 0; i < d->hwdesc_count; i++) {
543 			if (!d->hwdesc[i].cppi5_desc_vaddr)
544 				continue;
545 
546 			dma_sync_single_for_device(uc->ud->dev,
547 						d->hwdesc[i].cppi5_desc_paddr,
548 						d->hwdesc[i].cppi5_desc_size,
549 						DMA_TO_DEVICE);
550 		}
551 	}
552 }
553 
554 static int udma_push_to_ring(struct udma_chan *uc, int idx)
555 {
556 	struct udma_desc *d = uc->desc;
557 
558 	struct k3_ring *ring = NULL;
559 	int ret = -EINVAL;
560 
561 	switch (uc->config.dir) {
562 	case DMA_DEV_TO_MEM:
563 		ring = uc->rflow->fd_ring;
564 		break;
565 	case DMA_MEM_TO_DEV:
566 	case DMA_MEM_TO_MEM:
567 		ring = uc->tchan->t_ring;
568 		break;
569 	default:
570 		break;
571 	}
572 
573 	if (ring) {
574 		dma_addr_t desc_addr = udma_curr_cppi5_desc_paddr(d, idx);
575 
576 		wmb(); /* Ensure that writes are not moved over this point */
577 		udma_sync_for_device(uc, idx);
578 		ret = k3_ringacc_ring_push(ring, &desc_addr);
579 		uc->in_ring_cnt++;
580 	}
581 
582 	return ret;
583 }
584 
585 static int udma_pop_from_ring(struct udma_chan *uc, dma_addr_t *addr)
586 {
587 	struct k3_ring *ring = NULL;
588 	int ret = -ENOENT;
589 
590 	switch (uc->config.dir) {
591 	case DMA_DEV_TO_MEM:
592 		ring = uc->rflow->r_ring;
593 		break;
594 	case DMA_MEM_TO_DEV:
595 	case DMA_MEM_TO_MEM:
596 		ring = uc->tchan->tc_ring;
597 		break;
598 	default:
599 		break;
600 	}
601 
602 	if (ring && k3_ringacc_ring_get_occ(ring)) {
603 		struct udma_desc *d = NULL;
604 
605 		ret = k3_ringacc_ring_pop(ring, addr);
606 		if (ret)
607 			return ret;
608 
609 		/* Teardown completion */
610 		if (cppi5_desc_is_tdcm(*addr))
611 			return ret;
612 
613 		d = udma_udma_desc_from_paddr(uc, *addr);
614 
615 		if (d)
616 			dma_sync_single_for_cpu(uc->ud->dev, *addr,
617 						d->hwdesc[0].cppi5_desc_size,
618 						DMA_FROM_DEVICE);
619 		rmb(); /* Ensure that reads are not moved before this point */
620 
621 		if (!ret)
622 			uc->in_ring_cnt--;
623 	}
624 
625 	return ret;
626 }
627 
628 static void udma_reset_rings(struct udma_chan *uc)
629 {
630 	struct k3_ring *ring1 = NULL;
631 	struct k3_ring *ring2 = NULL;
632 
633 	switch (uc->config.dir) {
634 	case DMA_DEV_TO_MEM:
635 		if (uc->rchan) {
636 			ring1 = uc->rflow->fd_ring;
637 			ring2 = uc->rflow->r_ring;
638 		}
639 		break;
640 	case DMA_MEM_TO_DEV:
641 	case DMA_MEM_TO_MEM:
642 		if (uc->tchan) {
643 			ring1 = uc->tchan->t_ring;
644 			ring2 = uc->tchan->tc_ring;
645 		}
646 		break;
647 	default:
648 		break;
649 	}
650 
651 	if (ring1)
652 		k3_ringacc_ring_reset_dma(ring1,
653 					  k3_ringacc_ring_get_occ(ring1));
654 	if (ring2)
655 		k3_ringacc_ring_reset(ring2);
656 
657 	/* make sure we are not leaking memory by stalled descriptor */
658 	if (uc->terminated_desc) {
659 		udma_desc_free(&uc->terminated_desc->vd);
660 		uc->terminated_desc = NULL;
661 	}
662 
663 	uc->in_ring_cnt = 0;
664 }
665 
666 static void udma_reset_counters(struct udma_chan *uc)
667 {
668 	u32 val;
669 
670 	if (uc->tchan) {
671 		val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_BCNT_REG);
672 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_BCNT_REG, val);
673 
674 		val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_SBCNT_REG);
675 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_SBCNT_REG, val);
676 
677 		val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_PCNT_REG);
678 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PCNT_REG, val);
679 
680 		val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_PEER_BCNT_REG);
681 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PEER_BCNT_REG, val);
682 	}
683 
684 	if (uc->rchan) {
685 		val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_BCNT_REG);
686 		udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_BCNT_REG, val);
687 
688 		val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_SBCNT_REG);
689 		udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_SBCNT_REG, val);
690 
691 		val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_PCNT_REG);
692 		udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PCNT_REG, val);
693 
694 		val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_PEER_BCNT_REG);
695 		udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PEER_BCNT_REG, val);
696 	}
697 
698 	uc->bcnt = 0;
699 }
700 
701 static int udma_reset_chan(struct udma_chan *uc, bool hard)
702 {
703 	switch (uc->config.dir) {
704 	case DMA_DEV_TO_MEM:
705 		udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PEER_RT_EN_REG, 0);
706 		udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG, 0);
707 		break;
708 	case DMA_MEM_TO_DEV:
709 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG, 0);
710 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PEER_RT_EN_REG, 0);
711 		break;
712 	case DMA_MEM_TO_MEM:
713 		udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG, 0);
714 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG, 0);
715 		break;
716 	default:
717 		return -EINVAL;
718 	}
719 
720 	/* Reset all counters */
721 	udma_reset_counters(uc);
722 
723 	/* Hard reset: re-initialize the channel to reset */
724 	if (hard) {
725 		struct udma_chan_config ucc_backup;
726 		int ret;
727 
728 		memcpy(&ucc_backup, &uc->config, sizeof(uc->config));
729 		uc->ud->ddev.device_free_chan_resources(&uc->vc.chan);
730 
731 		/* restore the channel configuration */
732 		memcpy(&uc->config, &ucc_backup, sizeof(uc->config));
733 		ret = uc->ud->ddev.device_alloc_chan_resources(&uc->vc.chan);
734 		if (ret)
735 			return ret;
736 
737 		/*
738 		 * Setting forced teardown after forced reset helps recovering
739 		 * the rchan.
740 		 */
741 		if (uc->config.dir == DMA_DEV_TO_MEM)
742 			udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG,
743 					   UDMA_CHAN_RT_CTL_EN |
744 					   UDMA_CHAN_RT_CTL_TDOWN |
745 					   UDMA_CHAN_RT_CTL_FTDOWN);
746 	}
747 	uc->state = UDMA_CHAN_IS_IDLE;
748 
749 	return 0;
750 }
751 
752 static void udma_start_desc(struct udma_chan *uc)
753 {
754 	struct udma_chan_config *ucc = &uc->config;
755 
756 	if (ucc->pkt_mode && (uc->cyclic || ucc->dir == DMA_DEV_TO_MEM)) {
757 		int i;
758 
759 		/* Push all descriptors to ring for packet mode cyclic or RX */
760 		for (i = 0; i < uc->desc->sglen; i++)
761 			udma_push_to_ring(uc, i);
762 	} else {
763 		udma_push_to_ring(uc, 0);
764 	}
765 }
766 
767 static bool udma_chan_needs_reconfiguration(struct udma_chan *uc)
768 {
769 	/* Only PDMAs have staticTR */
770 	if (uc->config.ep_type == PSIL_EP_NATIVE)
771 		return false;
772 
773 	/* Check if the staticTR configuration has changed for TX */
774 	if (memcmp(&uc->static_tr, &uc->desc->static_tr, sizeof(uc->static_tr)))
775 		return true;
776 
777 	return false;
778 }
779 
780 static int udma_start(struct udma_chan *uc)
781 {
782 	struct virt_dma_desc *vd = vchan_next_desc(&uc->vc);
783 
784 	if (!vd) {
785 		uc->desc = NULL;
786 		return -ENOENT;
787 	}
788 
789 	list_del(&vd->node);
790 
791 	uc->desc = to_udma_desc(&vd->tx);
792 
793 	/* Channel is already running and does not need reconfiguration */
794 	if (udma_is_chan_running(uc) && !udma_chan_needs_reconfiguration(uc)) {
795 		udma_start_desc(uc);
796 		goto out;
797 	}
798 
799 	/* Make sure that we clear the teardown bit, if it is set */
800 	udma_reset_chan(uc, false);
801 
802 	/* Push descriptors before we start the channel */
803 	udma_start_desc(uc);
804 
805 	switch (uc->desc->dir) {
806 	case DMA_DEV_TO_MEM:
807 		/* Config remote TR */
808 		if (uc->config.ep_type == PSIL_EP_PDMA_XY) {
809 			u32 val = PDMA_STATIC_TR_Y(uc->desc->static_tr.elcnt) |
810 				  PDMA_STATIC_TR_X(uc->desc->static_tr.elsize);
811 			const struct udma_match_data *match_data =
812 							uc->ud->match_data;
813 
814 			if (uc->config.enable_acc32)
815 				val |= PDMA_STATIC_TR_XY_ACC32;
816 			if (uc->config.enable_burst)
817 				val |= PDMA_STATIC_TR_XY_BURST;
818 
819 			udma_rchanrt_write(uc->rchan,
820 				UDMA_RCHAN_RT_PEER_STATIC_TR_XY_REG, val);
821 
822 			udma_rchanrt_write(uc->rchan,
823 				UDMA_RCHAN_RT_PEER_STATIC_TR_Z_REG,
824 				PDMA_STATIC_TR_Z(uc->desc->static_tr.bstcnt,
825 						 match_data->statictr_z_mask));
826 
827 			/* save the current staticTR configuration */
828 			memcpy(&uc->static_tr, &uc->desc->static_tr,
829 			       sizeof(uc->static_tr));
830 		}
831 
832 		udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG,
833 				   UDMA_CHAN_RT_CTL_EN);
834 
835 		/* Enable remote */
836 		udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PEER_RT_EN_REG,
837 				   UDMA_PEER_RT_EN_ENABLE);
838 
839 		break;
840 	case DMA_MEM_TO_DEV:
841 		/* Config remote TR */
842 		if (uc->config.ep_type == PSIL_EP_PDMA_XY) {
843 			u32 val = PDMA_STATIC_TR_Y(uc->desc->static_tr.elcnt) |
844 				  PDMA_STATIC_TR_X(uc->desc->static_tr.elsize);
845 
846 			if (uc->config.enable_acc32)
847 				val |= PDMA_STATIC_TR_XY_ACC32;
848 			if (uc->config.enable_burst)
849 				val |= PDMA_STATIC_TR_XY_BURST;
850 
851 			udma_tchanrt_write(uc->tchan,
852 				UDMA_TCHAN_RT_PEER_STATIC_TR_XY_REG, val);
853 
854 			/* save the current staticTR configuration */
855 			memcpy(&uc->static_tr, &uc->desc->static_tr,
856 			       sizeof(uc->static_tr));
857 		}
858 
859 		/* Enable remote */
860 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PEER_RT_EN_REG,
861 				   UDMA_PEER_RT_EN_ENABLE);
862 
863 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG,
864 				   UDMA_CHAN_RT_CTL_EN);
865 
866 		break;
867 	case DMA_MEM_TO_MEM:
868 		udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG,
869 				   UDMA_CHAN_RT_CTL_EN);
870 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG,
871 				   UDMA_CHAN_RT_CTL_EN);
872 
873 		break;
874 	default:
875 		return -EINVAL;
876 	}
877 
878 	uc->state = UDMA_CHAN_IS_ACTIVE;
879 out:
880 
881 	return 0;
882 }
883 
884 static int udma_stop(struct udma_chan *uc)
885 {
886 	enum udma_chan_state old_state = uc->state;
887 
888 	uc->state = UDMA_CHAN_IS_TERMINATING;
889 	reinit_completion(&uc->teardown_completed);
890 
891 	switch (uc->config.dir) {
892 	case DMA_DEV_TO_MEM:
893 		udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PEER_RT_EN_REG,
894 				   UDMA_PEER_RT_EN_ENABLE |
895 				   UDMA_PEER_RT_EN_TEARDOWN);
896 		break;
897 	case DMA_MEM_TO_DEV:
898 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PEER_RT_EN_REG,
899 				   UDMA_PEER_RT_EN_ENABLE |
900 				   UDMA_PEER_RT_EN_FLUSH);
901 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG,
902 				   UDMA_CHAN_RT_CTL_EN |
903 				   UDMA_CHAN_RT_CTL_TDOWN);
904 		break;
905 	case DMA_MEM_TO_MEM:
906 		udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG,
907 				   UDMA_CHAN_RT_CTL_EN |
908 				   UDMA_CHAN_RT_CTL_TDOWN);
909 		break;
910 	default:
911 		uc->state = old_state;
912 		complete_all(&uc->teardown_completed);
913 		return -EINVAL;
914 	}
915 
916 	return 0;
917 }
918 
919 static void udma_cyclic_packet_elapsed(struct udma_chan *uc)
920 {
921 	struct udma_desc *d = uc->desc;
922 	struct cppi5_host_desc_t *h_desc;
923 
924 	h_desc = d->hwdesc[d->desc_idx].cppi5_desc_vaddr;
925 	cppi5_hdesc_reset_to_original(h_desc);
926 	udma_push_to_ring(uc, d->desc_idx);
927 	d->desc_idx = (d->desc_idx + 1) % d->sglen;
928 }
929 
930 static inline void udma_fetch_epib(struct udma_chan *uc, struct udma_desc *d)
931 {
932 	struct cppi5_host_desc_t *h_desc = d->hwdesc[0].cppi5_desc_vaddr;
933 
934 	memcpy(d->metadata, h_desc->epib, d->metadata_size);
935 }
936 
937 static bool udma_is_desc_really_done(struct udma_chan *uc, struct udma_desc *d)
938 {
939 	u32 peer_bcnt, bcnt;
940 
941 	/* Only TX towards PDMA is affected */
942 	if (uc->config.ep_type == PSIL_EP_NATIVE ||
943 	    uc->config.dir != DMA_MEM_TO_DEV)
944 		return true;
945 
946 	peer_bcnt = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_PEER_BCNT_REG);
947 	bcnt = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_BCNT_REG);
948 
949 	if (peer_bcnt < bcnt) {
950 		uc->tx_drain.residue = bcnt - peer_bcnt;
951 		uc->tx_drain.jiffie = jiffies;
952 		return false;
953 	}
954 
955 	return true;
956 }
957 
958 static void udma_check_tx_completion(struct work_struct *work)
959 {
960 	struct udma_chan *uc = container_of(work, typeof(*uc),
961 					    tx_drain.work.work);
962 	bool desc_done = true;
963 	u32 residue_diff;
964 	unsigned long jiffie_diff, delay;
965 
966 	if (uc->desc) {
967 		residue_diff = uc->tx_drain.residue;
968 		jiffie_diff = uc->tx_drain.jiffie;
969 		desc_done = udma_is_desc_really_done(uc, uc->desc);
970 	}
971 
972 	if (!desc_done) {
973 		jiffie_diff = uc->tx_drain.jiffie - jiffie_diff;
974 		residue_diff -= uc->tx_drain.residue;
975 		if (residue_diff) {
976 			/* Try to guess when we should check next time */
977 			residue_diff /= jiffie_diff;
978 			delay = uc->tx_drain.residue / residue_diff / 3;
979 			if (jiffies_to_msecs(delay) < 5)
980 				delay = 0;
981 		} else {
982 			/* No progress, check again in 1 second  */
983 			delay = HZ;
984 		}
985 
986 		schedule_delayed_work(&uc->tx_drain.work, delay);
987 	} else if (uc->desc) {
988 		struct udma_desc *d = uc->desc;
989 
990 		uc->bcnt += d->residue;
991 		udma_start(uc);
992 		vchan_cookie_complete(&d->vd);
993 	}
994 }
995 
996 static irqreturn_t udma_ring_irq_handler(int irq, void *data)
997 {
998 	struct udma_chan *uc = data;
999 	struct udma_desc *d;
1000 	unsigned long flags;
1001 	dma_addr_t paddr = 0;
1002 
1003 	if (udma_pop_from_ring(uc, &paddr) || !paddr)
1004 		return IRQ_HANDLED;
1005 
1006 	spin_lock_irqsave(&uc->vc.lock, flags);
1007 
1008 	/* Teardown completion message */
1009 	if (cppi5_desc_is_tdcm(paddr)) {
1010 		/* Compensate our internal pop/push counter */
1011 		uc->in_ring_cnt++;
1012 
1013 		complete_all(&uc->teardown_completed);
1014 
1015 		if (uc->terminated_desc) {
1016 			udma_desc_free(&uc->terminated_desc->vd);
1017 			uc->terminated_desc = NULL;
1018 		}
1019 
1020 		if (!uc->desc)
1021 			udma_start(uc);
1022 
1023 		goto out;
1024 	}
1025 
1026 	d = udma_udma_desc_from_paddr(uc, paddr);
1027 
1028 	if (d) {
1029 		dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d,
1030 								   d->desc_idx);
1031 		if (desc_paddr != paddr) {
1032 			dev_err(uc->ud->dev, "not matching descriptors!\n");
1033 			goto out;
1034 		}
1035 
1036 		if (uc->cyclic) {
1037 			/* push the descriptor back to the ring */
1038 			if (d == uc->desc) {
1039 				udma_cyclic_packet_elapsed(uc);
1040 				vchan_cyclic_callback(&d->vd);
1041 			}
1042 		} else {
1043 			bool desc_done = false;
1044 
1045 			if (d == uc->desc) {
1046 				desc_done = udma_is_desc_really_done(uc, d);
1047 
1048 				if (desc_done) {
1049 					uc->bcnt += d->residue;
1050 					udma_start(uc);
1051 				} else {
1052 					schedule_delayed_work(&uc->tx_drain.work,
1053 							      0);
1054 				}
1055 			}
1056 
1057 			if (desc_done)
1058 				vchan_cookie_complete(&d->vd);
1059 		}
1060 	}
1061 out:
1062 	spin_unlock_irqrestore(&uc->vc.lock, flags);
1063 
1064 	return IRQ_HANDLED;
1065 }
1066 
1067 static irqreturn_t udma_udma_irq_handler(int irq, void *data)
1068 {
1069 	struct udma_chan *uc = data;
1070 	struct udma_desc *d;
1071 	unsigned long flags;
1072 
1073 	spin_lock_irqsave(&uc->vc.lock, flags);
1074 	d = uc->desc;
1075 	if (d) {
1076 		d->tr_idx = (d->tr_idx + 1) % d->sglen;
1077 
1078 		if (uc->cyclic) {
1079 			vchan_cyclic_callback(&d->vd);
1080 		} else {
1081 			/* TODO: figure out the real amount of data */
1082 			uc->bcnt += d->residue;
1083 			udma_start(uc);
1084 			vchan_cookie_complete(&d->vd);
1085 		}
1086 	}
1087 
1088 	spin_unlock_irqrestore(&uc->vc.lock, flags);
1089 
1090 	return IRQ_HANDLED;
1091 }
1092 
1093 /**
1094  * __udma_alloc_gp_rflow_range - alloc range of GP RX flows
1095  * @ud: UDMA device
1096  * @from: Start the search from this flow id number
1097  * @cnt: Number of consecutive flow ids to allocate
1098  *
1099  * Allocate range of RX flow ids for future use, those flows can be requested
1100  * only using explicit flow id number. if @from is set to -1 it will try to find
1101  * first free range. if @from is positive value it will force allocation only
1102  * of the specified range of flows.
1103  *
1104  * Returns -ENOMEM if can't find free range.
1105  * -EEXIST if requested range is busy.
1106  * -EINVAL if wrong input values passed.
1107  * Returns flow id on success.
1108  */
1109 static int __udma_alloc_gp_rflow_range(struct udma_dev *ud, int from, int cnt)
1110 {
1111 	int start, tmp_from;
1112 	DECLARE_BITMAP(tmp, K3_UDMA_MAX_RFLOWS);
1113 
1114 	tmp_from = from;
1115 	if (tmp_from < 0)
1116 		tmp_from = ud->rchan_cnt;
1117 	/* default flows can't be allocated and accessible only by id */
1118 	if (tmp_from < ud->rchan_cnt)
1119 		return -EINVAL;
1120 
1121 	if (tmp_from + cnt > ud->rflow_cnt)
1122 		return -EINVAL;
1123 
1124 	bitmap_or(tmp, ud->rflow_gp_map, ud->rflow_gp_map_allocated,
1125 		  ud->rflow_cnt);
1126 
1127 	start = bitmap_find_next_zero_area(tmp,
1128 					   ud->rflow_cnt,
1129 					   tmp_from, cnt, 0);
1130 	if (start >= ud->rflow_cnt)
1131 		return -ENOMEM;
1132 
1133 	if (from >= 0 && start != from)
1134 		return -EEXIST;
1135 
1136 	bitmap_set(ud->rflow_gp_map_allocated, start, cnt);
1137 	return start;
1138 }
1139 
1140 static int __udma_free_gp_rflow_range(struct udma_dev *ud, int from, int cnt)
1141 {
1142 	if (from < ud->rchan_cnt)
1143 		return -EINVAL;
1144 	if (from + cnt > ud->rflow_cnt)
1145 		return -EINVAL;
1146 
1147 	bitmap_clear(ud->rflow_gp_map_allocated, from, cnt);
1148 	return 0;
1149 }
1150 
1151 static struct udma_rflow *__udma_get_rflow(struct udma_dev *ud, int id)
1152 {
1153 	/*
1154 	 * Attempt to request rflow by ID can be made for any rflow
1155 	 * if not in use with assumption that caller knows what's doing.
1156 	 * TI-SCI FW will perform additional permission check ant way, it's
1157 	 * safe
1158 	 */
1159 
1160 	if (id < 0 || id >= ud->rflow_cnt)
1161 		return ERR_PTR(-ENOENT);
1162 
1163 	if (test_bit(id, ud->rflow_in_use))
1164 		return ERR_PTR(-ENOENT);
1165 
1166 	/* GP rflow has to be allocated first */
1167 	if (!test_bit(id, ud->rflow_gp_map) &&
1168 	    !test_bit(id, ud->rflow_gp_map_allocated))
1169 		return ERR_PTR(-EINVAL);
1170 
1171 	dev_dbg(ud->dev, "get rflow%d\n", id);
1172 	set_bit(id, ud->rflow_in_use);
1173 	return &ud->rflows[id];
1174 }
1175 
1176 static void __udma_put_rflow(struct udma_dev *ud, struct udma_rflow *rflow)
1177 {
1178 	if (!test_bit(rflow->id, ud->rflow_in_use)) {
1179 		dev_err(ud->dev, "attempt to put unused rflow%d\n", rflow->id);
1180 		return;
1181 	}
1182 
1183 	dev_dbg(ud->dev, "put rflow%d\n", rflow->id);
1184 	clear_bit(rflow->id, ud->rflow_in_use);
1185 }
1186 
1187 #define UDMA_RESERVE_RESOURCE(res)					\
1188 static struct udma_##res *__udma_reserve_##res(struct udma_dev *ud,	\
1189 					       enum udma_tp_level tpl,	\
1190 					       int id)			\
1191 {									\
1192 	if (id >= 0) {							\
1193 		if (test_bit(id, ud->res##_map)) {			\
1194 			dev_err(ud->dev, "res##%d is in use\n", id);	\
1195 			return ERR_PTR(-ENOENT);			\
1196 		}							\
1197 	} else {							\
1198 		int start;						\
1199 									\
1200 		if (tpl >= ud->match_data->tpl_levels)			\
1201 			tpl = ud->match_data->tpl_levels - 1;		\
1202 									\
1203 		start = ud->match_data->level_start_idx[tpl];		\
1204 									\
1205 		id = find_next_zero_bit(ud->res##_map, ud->res##_cnt,	\
1206 					start);				\
1207 		if (id == ud->res##_cnt) {				\
1208 			return ERR_PTR(-ENOENT);			\
1209 		}							\
1210 	}								\
1211 									\
1212 	set_bit(id, ud->res##_map);					\
1213 	return &ud->res##s[id];						\
1214 }
1215 
1216 UDMA_RESERVE_RESOURCE(tchan);
1217 UDMA_RESERVE_RESOURCE(rchan);
1218 
1219 static int udma_get_tchan(struct udma_chan *uc)
1220 {
1221 	struct udma_dev *ud = uc->ud;
1222 
1223 	if (uc->tchan) {
1224 		dev_dbg(ud->dev, "chan%d: already have tchan%d allocated\n",
1225 			uc->id, uc->tchan->id);
1226 		return 0;
1227 	}
1228 
1229 	uc->tchan = __udma_reserve_tchan(ud, uc->config.channel_tpl, -1);
1230 	if (IS_ERR(uc->tchan))
1231 		return PTR_ERR(uc->tchan);
1232 
1233 	return 0;
1234 }
1235 
1236 static int udma_get_rchan(struct udma_chan *uc)
1237 {
1238 	struct udma_dev *ud = uc->ud;
1239 
1240 	if (uc->rchan) {
1241 		dev_dbg(ud->dev, "chan%d: already have rchan%d allocated\n",
1242 			uc->id, uc->rchan->id);
1243 		return 0;
1244 	}
1245 
1246 	uc->rchan = __udma_reserve_rchan(ud, uc->config.channel_tpl, -1);
1247 	if (IS_ERR(uc->rchan))
1248 		return PTR_ERR(uc->rchan);
1249 
1250 	return 0;
1251 }
1252 
1253 static int udma_get_chan_pair(struct udma_chan *uc)
1254 {
1255 	struct udma_dev *ud = uc->ud;
1256 	const struct udma_match_data *match_data = ud->match_data;
1257 	int chan_id, end;
1258 
1259 	if ((uc->tchan && uc->rchan) && uc->tchan->id == uc->rchan->id) {
1260 		dev_info(ud->dev, "chan%d: already have %d pair allocated\n",
1261 			 uc->id, uc->tchan->id);
1262 		return 0;
1263 	}
1264 
1265 	if (uc->tchan) {
1266 		dev_err(ud->dev, "chan%d: already have tchan%d allocated\n",
1267 			uc->id, uc->tchan->id);
1268 		return -EBUSY;
1269 	} else if (uc->rchan) {
1270 		dev_err(ud->dev, "chan%d: already have rchan%d allocated\n",
1271 			uc->id, uc->rchan->id);
1272 		return -EBUSY;
1273 	}
1274 
1275 	/* Can be optimized, but let's have it like this for now */
1276 	end = min(ud->tchan_cnt, ud->rchan_cnt);
1277 	/* Try to use the highest TPL channel pair for MEM_TO_MEM channels */
1278 	chan_id = match_data->level_start_idx[match_data->tpl_levels - 1];
1279 	for (; chan_id < end; chan_id++) {
1280 		if (!test_bit(chan_id, ud->tchan_map) &&
1281 		    !test_bit(chan_id, ud->rchan_map))
1282 			break;
1283 	}
1284 
1285 	if (chan_id == end)
1286 		return -ENOENT;
1287 
1288 	set_bit(chan_id, ud->tchan_map);
1289 	set_bit(chan_id, ud->rchan_map);
1290 	uc->tchan = &ud->tchans[chan_id];
1291 	uc->rchan = &ud->rchans[chan_id];
1292 
1293 	return 0;
1294 }
1295 
1296 static int udma_get_rflow(struct udma_chan *uc, int flow_id)
1297 {
1298 	struct udma_dev *ud = uc->ud;
1299 
1300 	if (!uc->rchan) {
1301 		dev_err(ud->dev, "chan%d: does not have rchan??\n", uc->id);
1302 		return -EINVAL;
1303 	}
1304 
1305 	if (uc->rflow) {
1306 		dev_dbg(ud->dev, "chan%d: already have rflow%d allocated\n",
1307 			uc->id, uc->rflow->id);
1308 		return 0;
1309 	}
1310 
1311 	uc->rflow = __udma_get_rflow(ud, flow_id);
1312 	if (IS_ERR(uc->rflow))
1313 		return PTR_ERR(uc->rflow);
1314 
1315 	return 0;
1316 }
1317 
1318 static void udma_put_rchan(struct udma_chan *uc)
1319 {
1320 	struct udma_dev *ud = uc->ud;
1321 
1322 	if (uc->rchan) {
1323 		dev_dbg(ud->dev, "chan%d: put rchan%d\n", uc->id,
1324 			uc->rchan->id);
1325 		clear_bit(uc->rchan->id, ud->rchan_map);
1326 		uc->rchan = NULL;
1327 	}
1328 }
1329 
1330 static void udma_put_tchan(struct udma_chan *uc)
1331 {
1332 	struct udma_dev *ud = uc->ud;
1333 
1334 	if (uc->tchan) {
1335 		dev_dbg(ud->dev, "chan%d: put tchan%d\n", uc->id,
1336 			uc->tchan->id);
1337 		clear_bit(uc->tchan->id, ud->tchan_map);
1338 		uc->tchan = NULL;
1339 	}
1340 }
1341 
1342 static void udma_put_rflow(struct udma_chan *uc)
1343 {
1344 	struct udma_dev *ud = uc->ud;
1345 
1346 	if (uc->rflow) {
1347 		dev_dbg(ud->dev, "chan%d: put rflow%d\n", uc->id,
1348 			uc->rflow->id);
1349 		__udma_put_rflow(ud, uc->rflow);
1350 		uc->rflow = NULL;
1351 	}
1352 }
1353 
1354 static void udma_free_tx_resources(struct udma_chan *uc)
1355 {
1356 	if (!uc->tchan)
1357 		return;
1358 
1359 	k3_ringacc_ring_free(uc->tchan->t_ring);
1360 	k3_ringacc_ring_free(uc->tchan->tc_ring);
1361 	uc->tchan->t_ring = NULL;
1362 	uc->tchan->tc_ring = NULL;
1363 
1364 	udma_put_tchan(uc);
1365 }
1366 
1367 static int udma_alloc_tx_resources(struct udma_chan *uc)
1368 {
1369 	struct k3_ring_cfg ring_cfg;
1370 	struct udma_dev *ud = uc->ud;
1371 	int ret;
1372 
1373 	ret = udma_get_tchan(uc);
1374 	if (ret)
1375 		return ret;
1376 
1377 	uc->tchan->t_ring = k3_ringacc_request_ring(ud->ringacc,
1378 						    uc->tchan->id, 0);
1379 	if (!uc->tchan->t_ring) {
1380 		ret = -EBUSY;
1381 		goto err_tx_ring;
1382 	}
1383 
1384 	uc->tchan->tc_ring = k3_ringacc_request_ring(ud->ringacc, -1, 0);
1385 	if (!uc->tchan->tc_ring) {
1386 		ret = -EBUSY;
1387 		goto err_txc_ring;
1388 	}
1389 
1390 	memset(&ring_cfg, 0, sizeof(ring_cfg));
1391 	ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE;
1392 	ring_cfg.elm_size = K3_RINGACC_RING_ELSIZE_8;
1393 	ring_cfg.mode = K3_RINGACC_RING_MODE_MESSAGE;
1394 
1395 	ret = k3_ringacc_ring_cfg(uc->tchan->t_ring, &ring_cfg);
1396 	ret |= k3_ringacc_ring_cfg(uc->tchan->tc_ring, &ring_cfg);
1397 
1398 	if (ret)
1399 		goto err_ringcfg;
1400 
1401 	return 0;
1402 
1403 err_ringcfg:
1404 	k3_ringacc_ring_free(uc->tchan->tc_ring);
1405 	uc->tchan->tc_ring = NULL;
1406 err_txc_ring:
1407 	k3_ringacc_ring_free(uc->tchan->t_ring);
1408 	uc->tchan->t_ring = NULL;
1409 err_tx_ring:
1410 	udma_put_tchan(uc);
1411 
1412 	return ret;
1413 }
1414 
1415 static void udma_free_rx_resources(struct udma_chan *uc)
1416 {
1417 	if (!uc->rchan)
1418 		return;
1419 
1420 	if (uc->rflow) {
1421 		struct udma_rflow *rflow = uc->rflow;
1422 
1423 		k3_ringacc_ring_free(rflow->fd_ring);
1424 		k3_ringacc_ring_free(rflow->r_ring);
1425 		rflow->fd_ring = NULL;
1426 		rflow->r_ring = NULL;
1427 
1428 		udma_put_rflow(uc);
1429 	}
1430 
1431 	udma_put_rchan(uc);
1432 }
1433 
1434 static int udma_alloc_rx_resources(struct udma_chan *uc)
1435 {
1436 	struct udma_dev *ud = uc->ud;
1437 	struct k3_ring_cfg ring_cfg;
1438 	struct udma_rflow *rflow;
1439 	int fd_ring_id;
1440 	int ret;
1441 
1442 	ret = udma_get_rchan(uc);
1443 	if (ret)
1444 		return ret;
1445 
1446 	/* For MEM_TO_MEM we don't need rflow or rings */
1447 	if (uc->config.dir == DMA_MEM_TO_MEM)
1448 		return 0;
1449 
1450 	ret = udma_get_rflow(uc, uc->rchan->id);
1451 	if (ret) {
1452 		ret = -EBUSY;
1453 		goto err_rflow;
1454 	}
1455 
1456 	rflow = uc->rflow;
1457 	fd_ring_id = ud->tchan_cnt + ud->echan_cnt + uc->rchan->id;
1458 	rflow->fd_ring = k3_ringacc_request_ring(ud->ringacc, fd_ring_id, 0);
1459 	if (!rflow->fd_ring) {
1460 		ret = -EBUSY;
1461 		goto err_rx_ring;
1462 	}
1463 
1464 	rflow->r_ring = k3_ringacc_request_ring(ud->ringacc, -1, 0);
1465 	if (!rflow->r_ring) {
1466 		ret = -EBUSY;
1467 		goto err_rxc_ring;
1468 	}
1469 
1470 	memset(&ring_cfg, 0, sizeof(ring_cfg));
1471 
1472 	if (uc->config.pkt_mode)
1473 		ring_cfg.size = SG_MAX_SEGMENTS;
1474 	else
1475 		ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE;
1476 
1477 	ring_cfg.elm_size = K3_RINGACC_RING_ELSIZE_8;
1478 	ring_cfg.mode = K3_RINGACC_RING_MODE_MESSAGE;
1479 
1480 	ret = k3_ringacc_ring_cfg(rflow->fd_ring, &ring_cfg);
1481 	ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE;
1482 	ret |= k3_ringacc_ring_cfg(rflow->r_ring, &ring_cfg);
1483 
1484 	if (ret)
1485 		goto err_ringcfg;
1486 
1487 	return 0;
1488 
1489 err_ringcfg:
1490 	k3_ringacc_ring_free(rflow->r_ring);
1491 	rflow->r_ring = NULL;
1492 err_rxc_ring:
1493 	k3_ringacc_ring_free(rflow->fd_ring);
1494 	rflow->fd_ring = NULL;
1495 err_rx_ring:
1496 	udma_put_rflow(uc);
1497 err_rflow:
1498 	udma_put_rchan(uc);
1499 
1500 	return ret;
1501 }
1502 
1503 #define TISCI_TCHAN_VALID_PARAMS (				\
1504 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_PAUSE_ON_ERR_VALID |	\
1505 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_FILT_EINFO_VALID |	\
1506 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_FILT_PSWORDS_VALID |	\
1507 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_CHAN_TYPE_VALID |		\
1508 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_SUPR_TDPKT_VALID |	\
1509 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_FETCH_SIZE_VALID |		\
1510 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_CQ_QNUM_VALID)
1511 
1512 #define TISCI_RCHAN_VALID_PARAMS (				\
1513 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_PAUSE_ON_ERR_VALID |	\
1514 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_FETCH_SIZE_VALID |		\
1515 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_CQ_QNUM_VALID |		\
1516 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_CHAN_TYPE_VALID |		\
1517 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_IGNORE_SHORT_VALID |	\
1518 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_IGNORE_LONG_VALID |	\
1519 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_FLOWID_START_VALID |	\
1520 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_FLOWID_CNT_VALID)
1521 
1522 static int udma_tisci_m2m_channel_config(struct udma_chan *uc)
1523 {
1524 	struct udma_dev *ud = uc->ud;
1525 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
1526 	const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops;
1527 	struct udma_tchan *tchan = uc->tchan;
1528 	struct udma_rchan *rchan = uc->rchan;
1529 	int ret = 0;
1530 
1531 	/* Non synchronized - mem to mem type of transfer */
1532 	int tc_ring = k3_ringacc_get_ring_id(tchan->tc_ring);
1533 	struct ti_sci_msg_rm_udmap_tx_ch_cfg req_tx = { 0 };
1534 	struct ti_sci_msg_rm_udmap_rx_ch_cfg req_rx = { 0 };
1535 
1536 	req_tx.valid_params = TISCI_TCHAN_VALID_PARAMS;
1537 	req_tx.nav_id = tisci_rm->tisci_dev_id;
1538 	req_tx.index = tchan->id;
1539 	req_tx.tx_chan_type = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_BCOPY_PBRR;
1540 	req_tx.tx_fetch_size = sizeof(struct cppi5_desc_hdr_t) >> 2;
1541 	req_tx.txcq_qnum = tc_ring;
1542 
1543 	ret = tisci_ops->tx_ch_cfg(tisci_rm->tisci, &req_tx);
1544 	if (ret) {
1545 		dev_err(ud->dev, "tchan%d cfg failed %d\n", tchan->id, ret);
1546 		return ret;
1547 	}
1548 
1549 	req_rx.valid_params = TISCI_RCHAN_VALID_PARAMS;
1550 	req_rx.nav_id = tisci_rm->tisci_dev_id;
1551 	req_rx.index = rchan->id;
1552 	req_rx.rx_fetch_size = sizeof(struct cppi5_desc_hdr_t) >> 2;
1553 	req_rx.rxcq_qnum = tc_ring;
1554 	req_rx.rx_chan_type = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_BCOPY_PBRR;
1555 
1556 	ret = tisci_ops->rx_ch_cfg(tisci_rm->tisci, &req_rx);
1557 	if (ret)
1558 		dev_err(ud->dev, "rchan%d alloc failed %d\n", rchan->id, ret);
1559 
1560 	return ret;
1561 }
1562 
1563 static int udma_tisci_tx_channel_config(struct udma_chan *uc)
1564 {
1565 	struct udma_dev *ud = uc->ud;
1566 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
1567 	const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops;
1568 	struct udma_tchan *tchan = uc->tchan;
1569 	int tc_ring = k3_ringacc_get_ring_id(tchan->tc_ring);
1570 	struct ti_sci_msg_rm_udmap_tx_ch_cfg req_tx = { 0 };
1571 	u32 mode, fetch_size;
1572 	int ret = 0;
1573 
1574 	if (uc->config.pkt_mode) {
1575 		mode = TI_SCI_RM_UDMAP_CHAN_TYPE_PKT_PBRR;
1576 		fetch_size = cppi5_hdesc_calc_size(uc->config.needs_epib,
1577 						   uc->config.psd_size, 0);
1578 	} else {
1579 		mode = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_PBRR;
1580 		fetch_size = sizeof(struct cppi5_desc_hdr_t);
1581 	}
1582 
1583 	req_tx.valid_params = TISCI_TCHAN_VALID_PARAMS;
1584 	req_tx.nav_id = tisci_rm->tisci_dev_id;
1585 	req_tx.index = tchan->id;
1586 	req_tx.tx_chan_type = mode;
1587 	req_tx.tx_supr_tdpkt = uc->config.notdpkt;
1588 	req_tx.tx_fetch_size = fetch_size >> 2;
1589 	req_tx.txcq_qnum = tc_ring;
1590 
1591 	ret = tisci_ops->tx_ch_cfg(tisci_rm->tisci, &req_tx);
1592 	if (ret)
1593 		dev_err(ud->dev, "tchan%d cfg failed %d\n", tchan->id, ret);
1594 
1595 	return ret;
1596 }
1597 
1598 static int udma_tisci_rx_channel_config(struct udma_chan *uc)
1599 {
1600 	struct udma_dev *ud = uc->ud;
1601 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
1602 	const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops;
1603 	struct udma_rchan *rchan = uc->rchan;
1604 	int fd_ring = k3_ringacc_get_ring_id(uc->rflow->fd_ring);
1605 	int rx_ring = k3_ringacc_get_ring_id(uc->rflow->r_ring);
1606 	struct ti_sci_msg_rm_udmap_rx_ch_cfg req_rx = { 0 };
1607 	struct ti_sci_msg_rm_udmap_flow_cfg flow_req = { 0 };
1608 	u32 mode, fetch_size;
1609 	int ret = 0;
1610 
1611 	if (uc->config.pkt_mode) {
1612 		mode = TI_SCI_RM_UDMAP_CHAN_TYPE_PKT_PBRR;
1613 		fetch_size = cppi5_hdesc_calc_size(uc->config.needs_epib,
1614 						   uc->config.psd_size, 0);
1615 	} else {
1616 		mode = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_PBRR;
1617 		fetch_size = sizeof(struct cppi5_desc_hdr_t);
1618 	}
1619 
1620 	req_rx.valid_params = TISCI_RCHAN_VALID_PARAMS;
1621 	req_rx.nav_id = tisci_rm->tisci_dev_id;
1622 	req_rx.index = rchan->id;
1623 	req_rx.rx_fetch_size =  fetch_size >> 2;
1624 	req_rx.rxcq_qnum = rx_ring;
1625 	req_rx.rx_chan_type = mode;
1626 
1627 	ret = tisci_ops->rx_ch_cfg(tisci_rm->tisci, &req_rx);
1628 	if (ret) {
1629 		dev_err(ud->dev, "rchan%d cfg failed %d\n", rchan->id, ret);
1630 		return ret;
1631 	}
1632 
1633 	flow_req.valid_params =
1634 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_EINFO_PRESENT_VALID |
1635 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_PSINFO_PRESENT_VALID |
1636 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_ERROR_HANDLING_VALID |
1637 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DESC_TYPE_VALID |
1638 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_QNUM_VALID |
1639 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_SRC_TAG_HI_SEL_VALID |
1640 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_SRC_TAG_LO_SEL_VALID |
1641 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_TAG_HI_SEL_VALID |
1642 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_TAG_LO_SEL_VALID |
1643 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ0_SZ0_QNUM_VALID |
1644 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ1_QNUM_VALID |
1645 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ2_QNUM_VALID |
1646 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ3_QNUM_VALID;
1647 
1648 	flow_req.nav_id = tisci_rm->tisci_dev_id;
1649 	flow_req.flow_index = rchan->id;
1650 
1651 	if (uc->config.needs_epib)
1652 		flow_req.rx_einfo_present = 1;
1653 	else
1654 		flow_req.rx_einfo_present = 0;
1655 	if (uc->config.psd_size)
1656 		flow_req.rx_psinfo_present = 1;
1657 	else
1658 		flow_req.rx_psinfo_present = 0;
1659 	flow_req.rx_error_handling = 1;
1660 	flow_req.rx_dest_qnum = rx_ring;
1661 	flow_req.rx_src_tag_hi_sel = UDMA_RFLOW_SRCTAG_NONE;
1662 	flow_req.rx_src_tag_lo_sel = UDMA_RFLOW_SRCTAG_SRC_TAG;
1663 	flow_req.rx_dest_tag_hi_sel = UDMA_RFLOW_DSTTAG_DST_TAG_HI;
1664 	flow_req.rx_dest_tag_lo_sel = UDMA_RFLOW_DSTTAG_DST_TAG_LO;
1665 	flow_req.rx_fdq0_sz0_qnum = fd_ring;
1666 	flow_req.rx_fdq1_qnum = fd_ring;
1667 	flow_req.rx_fdq2_qnum = fd_ring;
1668 	flow_req.rx_fdq3_qnum = fd_ring;
1669 
1670 	ret = tisci_ops->rx_flow_cfg(tisci_rm->tisci, &flow_req);
1671 
1672 	if (ret)
1673 		dev_err(ud->dev, "flow%d config failed: %d\n", rchan->id, ret);
1674 
1675 	return 0;
1676 }
1677 
1678 static int udma_alloc_chan_resources(struct dma_chan *chan)
1679 {
1680 	struct udma_chan *uc = to_udma_chan(chan);
1681 	struct udma_dev *ud = to_udma_dev(chan->device);
1682 	const struct udma_match_data *match_data = ud->match_data;
1683 	struct k3_ring *irq_ring;
1684 	u32 irq_udma_idx;
1685 	int ret;
1686 
1687 	if (uc->config.pkt_mode || uc->config.dir == DMA_MEM_TO_MEM) {
1688 		uc->use_dma_pool = true;
1689 		/* in case of MEM_TO_MEM we have maximum of two TRs */
1690 		if (uc->config.dir == DMA_MEM_TO_MEM) {
1691 			uc->config.hdesc_size = cppi5_trdesc_calc_size(
1692 					sizeof(struct cppi5_tr_type15_t), 2);
1693 			uc->config.pkt_mode = false;
1694 		}
1695 	}
1696 
1697 	if (uc->use_dma_pool) {
1698 		uc->hdesc_pool = dma_pool_create(uc->name, ud->ddev.dev,
1699 						 uc->config.hdesc_size,
1700 						 ud->desc_align,
1701 						 0);
1702 		if (!uc->hdesc_pool) {
1703 			dev_err(ud->ddev.dev,
1704 				"Descriptor pool allocation failed\n");
1705 			uc->use_dma_pool = false;
1706 			return -ENOMEM;
1707 		}
1708 	}
1709 
1710 	/*
1711 	 * Make sure that the completion is in a known state:
1712 	 * No teardown, the channel is idle
1713 	 */
1714 	reinit_completion(&uc->teardown_completed);
1715 	complete_all(&uc->teardown_completed);
1716 	uc->state = UDMA_CHAN_IS_IDLE;
1717 
1718 	switch (uc->config.dir) {
1719 	case DMA_MEM_TO_MEM:
1720 		/* Non synchronized - mem to mem type of transfer */
1721 		dev_dbg(uc->ud->dev, "%s: chan%d as MEM-to-MEM\n", __func__,
1722 			uc->id);
1723 
1724 		ret = udma_get_chan_pair(uc);
1725 		if (ret)
1726 			return ret;
1727 
1728 		ret = udma_alloc_tx_resources(uc);
1729 		if (ret)
1730 			return ret;
1731 
1732 		ret = udma_alloc_rx_resources(uc);
1733 		if (ret) {
1734 			udma_free_tx_resources(uc);
1735 			return ret;
1736 		}
1737 
1738 		uc->config.src_thread = ud->psil_base + uc->tchan->id;
1739 		uc->config.dst_thread = (ud->psil_base + uc->rchan->id) |
1740 					K3_PSIL_DST_THREAD_ID_OFFSET;
1741 
1742 		irq_ring = uc->tchan->tc_ring;
1743 		irq_udma_idx = uc->tchan->id;
1744 
1745 		ret = udma_tisci_m2m_channel_config(uc);
1746 		break;
1747 	case DMA_MEM_TO_DEV:
1748 		/* Slave transfer synchronized - mem to dev (TX) trasnfer */
1749 		dev_dbg(uc->ud->dev, "%s: chan%d as MEM-to-DEV\n", __func__,
1750 			uc->id);
1751 
1752 		ret = udma_alloc_tx_resources(uc);
1753 		if (ret) {
1754 			uc->config.remote_thread_id = -1;
1755 			return ret;
1756 		}
1757 
1758 		uc->config.src_thread = ud->psil_base + uc->tchan->id;
1759 		uc->config.dst_thread = uc->config.remote_thread_id;
1760 		uc->config.dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET;
1761 
1762 		irq_ring = uc->tchan->tc_ring;
1763 		irq_udma_idx = uc->tchan->id;
1764 
1765 		ret = udma_tisci_tx_channel_config(uc);
1766 		break;
1767 	case DMA_DEV_TO_MEM:
1768 		/* Slave transfer synchronized - dev to mem (RX) trasnfer */
1769 		dev_dbg(uc->ud->dev, "%s: chan%d as DEV-to-MEM\n", __func__,
1770 			uc->id);
1771 
1772 		ret = udma_alloc_rx_resources(uc);
1773 		if (ret) {
1774 			uc->config.remote_thread_id = -1;
1775 			return ret;
1776 		}
1777 
1778 		uc->config.src_thread = uc->config.remote_thread_id;
1779 		uc->config.dst_thread = (ud->psil_base + uc->rchan->id) |
1780 					K3_PSIL_DST_THREAD_ID_OFFSET;
1781 
1782 		irq_ring = uc->rflow->r_ring;
1783 		irq_udma_idx = match_data->rchan_oes_offset + uc->rchan->id;
1784 
1785 		ret = udma_tisci_rx_channel_config(uc);
1786 		break;
1787 	default:
1788 		/* Can not happen */
1789 		dev_err(uc->ud->dev, "%s: chan%d invalid direction (%u)\n",
1790 			__func__, uc->id, uc->config.dir);
1791 		return -EINVAL;
1792 	}
1793 
1794 	/* check if the channel configuration was successful */
1795 	if (ret)
1796 		goto err_res_free;
1797 
1798 	if (udma_is_chan_running(uc)) {
1799 		dev_warn(ud->dev, "chan%d: is running!\n", uc->id);
1800 		udma_stop(uc);
1801 		if (udma_is_chan_running(uc)) {
1802 			dev_err(ud->dev, "chan%d: won't stop!\n", uc->id);
1803 			goto err_res_free;
1804 		}
1805 	}
1806 
1807 	/* PSI-L pairing */
1808 	ret = navss_psil_pair(ud, uc->config.src_thread, uc->config.dst_thread);
1809 	if (ret) {
1810 		dev_err(ud->dev, "PSI-L pairing failed: 0x%04x -> 0x%04x\n",
1811 			uc->config.src_thread, uc->config.dst_thread);
1812 		goto err_res_free;
1813 	}
1814 
1815 	uc->psil_paired = true;
1816 
1817 	uc->irq_num_ring = k3_ringacc_get_ring_irq_num(irq_ring);
1818 	if (uc->irq_num_ring <= 0) {
1819 		dev_err(ud->dev, "Failed to get ring irq (index: %u)\n",
1820 			k3_ringacc_get_ring_id(irq_ring));
1821 		ret = -EINVAL;
1822 		goto err_psi_free;
1823 	}
1824 
1825 	ret = request_irq(uc->irq_num_ring, udma_ring_irq_handler,
1826 			  IRQF_TRIGGER_HIGH, uc->name, uc);
1827 	if (ret) {
1828 		dev_err(ud->dev, "chan%d: ring irq request failed\n", uc->id);
1829 		goto err_irq_free;
1830 	}
1831 
1832 	/* Event from UDMA (TR events) only needed for slave TR mode channels */
1833 	if (is_slave_direction(uc->config.dir) && !uc->config.pkt_mode) {
1834 		uc->irq_num_udma = ti_sci_inta_msi_get_virq(ud->dev,
1835 							    irq_udma_idx);
1836 		if (uc->irq_num_udma <= 0) {
1837 			dev_err(ud->dev, "Failed to get udma irq (index: %u)\n",
1838 				irq_udma_idx);
1839 			free_irq(uc->irq_num_ring, uc);
1840 			ret = -EINVAL;
1841 			goto err_irq_free;
1842 		}
1843 
1844 		ret = request_irq(uc->irq_num_udma, udma_udma_irq_handler, 0,
1845 				  uc->name, uc);
1846 		if (ret) {
1847 			dev_err(ud->dev, "chan%d: UDMA irq request failed\n",
1848 				uc->id);
1849 			free_irq(uc->irq_num_ring, uc);
1850 			goto err_irq_free;
1851 		}
1852 	} else {
1853 		uc->irq_num_udma = 0;
1854 	}
1855 
1856 	udma_reset_rings(uc);
1857 
1858 	INIT_DELAYED_WORK_ONSTACK(&uc->tx_drain.work,
1859 				  udma_check_tx_completion);
1860 	return 0;
1861 
1862 err_irq_free:
1863 	uc->irq_num_ring = 0;
1864 	uc->irq_num_udma = 0;
1865 err_psi_free:
1866 	navss_psil_unpair(ud, uc->config.src_thread, uc->config.dst_thread);
1867 	uc->psil_paired = false;
1868 err_res_free:
1869 	udma_free_tx_resources(uc);
1870 	udma_free_rx_resources(uc);
1871 
1872 	udma_reset_uchan(uc);
1873 
1874 	if (uc->use_dma_pool) {
1875 		dma_pool_destroy(uc->hdesc_pool);
1876 		uc->use_dma_pool = false;
1877 	}
1878 
1879 	return ret;
1880 }
1881 
1882 static int udma_slave_config(struct dma_chan *chan,
1883 			     struct dma_slave_config *cfg)
1884 {
1885 	struct udma_chan *uc = to_udma_chan(chan);
1886 
1887 	memcpy(&uc->cfg, cfg, sizeof(uc->cfg));
1888 
1889 	return 0;
1890 }
1891 
1892 static struct udma_desc *udma_alloc_tr_desc(struct udma_chan *uc,
1893 					    size_t tr_size, int tr_count,
1894 					    enum dma_transfer_direction dir)
1895 {
1896 	struct udma_hwdesc *hwdesc;
1897 	struct cppi5_desc_hdr_t *tr_desc;
1898 	struct udma_desc *d;
1899 	u32 reload_count = 0;
1900 	u32 ring_id;
1901 
1902 	switch (tr_size) {
1903 	case 16:
1904 	case 32:
1905 	case 64:
1906 	case 128:
1907 		break;
1908 	default:
1909 		dev_err(uc->ud->dev, "Unsupported TR size of %zu\n", tr_size);
1910 		return NULL;
1911 	}
1912 
1913 	/* We have only one descriptor containing multiple TRs */
1914 	d = kzalloc(sizeof(*d) + sizeof(d->hwdesc[0]), GFP_NOWAIT);
1915 	if (!d)
1916 		return NULL;
1917 
1918 	d->sglen = tr_count;
1919 
1920 	d->hwdesc_count = 1;
1921 	hwdesc = &d->hwdesc[0];
1922 
1923 	/* Allocate memory for DMA ring descriptor */
1924 	if (uc->use_dma_pool) {
1925 		hwdesc->cppi5_desc_size = uc->config.hdesc_size;
1926 		hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool,
1927 						GFP_NOWAIT,
1928 						&hwdesc->cppi5_desc_paddr);
1929 	} else {
1930 		hwdesc->cppi5_desc_size = cppi5_trdesc_calc_size(tr_size,
1931 								 tr_count);
1932 		hwdesc->cppi5_desc_size = ALIGN(hwdesc->cppi5_desc_size,
1933 						uc->ud->desc_align);
1934 		hwdesc->cppi5_desc_vaddr = dma_alloc_coherent(uc->ud->dev,
1935 						hwdesc->cppi5_desc_size,
1936 						&hwdesc->cppi5_desc_paddr,
1937 						GFP_NOWAIT);
1938 	}
1939 
1940 	if (!hwdesc->cppi5_desc_vaddr) {
1941 		kfree(d);
1942 		return NULL;
1943 	}
1944 
1945 	/* Start of the TR req records */
1946 	hwdesc->tr_req_base = hwdesc->cppi5_desc_vaddr + tr_size;
1947 	/* Start address of the TR response array */
1948 	hwdesc->tr_resp_base = hwdesc->tr_req_base + tr_size * tr_count;
1949 
1950 	tr_desc = hwdesc->cppi5_desc_vaddr;
1951 
1952 	if (uc->cyclic)
1953 		reload_count = CPPI5_INFO0_TRDESC_RLDCNT_INFINITE;
1954 
1955 	if (dir == DMA_DEV_TO_MEM)
1956 		ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring);
1957 	else
1958 		ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring);
1959 
1960 	cppi5_trdesc_init(tr_desc, tr_count, tr_size, 0, reload_count);
1961 	cppi5_desc_set_pktids(tr_desc, uc->id,
1962 			      CPPI5_INFO1_DESC_FLOWID_DEFAULT);
1963 	cppi5_desc_set_retpolicy(tr_desc, 0, ring_id);
1964 
1965 	return d;
1966 }
1967 
1968 static struct udma_desc *
1969 udma_prep_slave_sg_tr(struct udma_chan *uc, struct scatterlist *sgl,
1970 		      unsigned int sglen, enum dma_transfer_direction dir,
1971 		      unsigned long tx_flags, void *context)
1972 {
1973 	enum dma_slave_buswidth dev_width;
1974 	struct scatterlist *sgent;
1975 	struct udma_desc *d;
1976 	size_t tr_size;
1977 	struct cppi5_tr_type1_t *tr_req = NULL;
1978 	unsigned int i;
1979 	u32 burst;
1980 
1981 	if (dir == DMA_DEV_TO_MEM) {
1982 		dev_width = uc->cfg.src_addr_width;
1983 		burst = uc->cfg.src_maxburst;
1984 	} else if (dir == DMA_MEM_TO_DEV) {
1985 		dev_width = uc->cfg.dst_addr_width;
1986 		burst = uc->cfg.dst_maxburst;
1987 	} else {
1988 		dev_err(uc->ud->dev, "%s: bad direction?\n", __func__);
1989 		return NULL;
1990 	}
1991 
1992 	if (!burst)
1993 		burst = 1;
1994 
1995 	/* Now allocate and setup the descriptor. */
1996 	tr_size = sizeof(struct cppi5_tr_type1_t);
1997 	d = udma_alloc_tr_desc(uc, tr_size, sglen, dir);
1998 	if (!d)
1999 		return NULL;
2000 
2001 	d->sglen = sglen;
2002 
2003 	tr_req = d->hwdesc[0].tr_req_base;
2004 	for_each_sg(sgl, sgent, sglen, i) {
2005 		d->residue += sg_dma_len(sgent);
2006 
2007 		cppi5_tr_init(&tr_req[i].flags, CPPI5_TR_TYPE1, false, false,
2008 			      CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
2009 		cppi5_tr_csf_set(&tr_req[i].flags, CPPI5_TR_CSF_SUPR_EVT);
2010 
2011 		tr_req[i].addr = sg_dma_address(sgent);
2012 		tr_req[i].icnt0 = burst * dev_width;
2013 		tr_req[i].dim1 = burst * dev_width;
2014 		tr_req[i].icnt1 = sg_dma_len(sgent) / tr_req[i].icnt0;
2015 	}
2016 
2017 	cppi5_tr_csf_set(&tr_req[i - 1].flags, CPPI5_TR_CSF_EOP);
2018 
2019 	return d;
2020 }
2021 
2022 static int udma_configure_statictr(struct udma_chan *uc, struct udma_desc *d,
2023 				   enum dma_slave_buswidth dev_width,
2024 				   u16 elcnt)
2025 {
2026 	if (uc->config.ep_type != PSIL_EP_PDMA_XY)
2027 		return 0;
2028 
2029 	/* Bus width translates to the element size (ES) */
2030 	switch (dev_width) {
2031 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
2032 		d->static_tr.elsize = 0;
2033 		break;
2034 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
2035 		d->static_tr.elsize = 1;
2036 		break;
2037 	case DMA_SLAVE_BUSWIDTH_3_BYTES:
2038 		d->static_tr.elsize = 2;
2039 		break;
2040 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
2041 		d->static_tr.elsize = 3;
2042 		break;
2043 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
2044 		d->static_tr.elsize = 4;
2045 		break;
2046 	default: /* not reached */
2047 		return -EINVAL;
2048 	}
2049 
2050 	d->static_tr.elcnt = elcnt;
2051 
2052 	/*
2053 	 * PDMA must to close the packet when the channel is in packet mode.
2054 	 * For TR mode when the channel is not cyclic we also need PDMA to close
2055 	 * the packet otherwise the transfer will stall because PDMA holds on
2056 	 * the data it has received from the peripheral.
2057 	 */
2058 	if (uc->config.pkt_mode || !uc->cyclic) {
2059 		unsigned int div = dev_width * elcnt;
2060 
2061 		if (uc->cyclic)
2062 			d->static_tr.bstcnt = d->residue / d->sglen / div;
2063 		else
2064 			d->static_tr.bstcnt = d->residue / div;
2065 
2066 		if (uc->config.dir == DMA_DEV_TO_MEM &&
2067 		    d->static_tr.bstcnt > uc->ud->match_data->statictr_z_mask)
2068 			return -EINVAL;
2069 	} else {
2070 		d->static_tr.bstcnt = 0;
2071 	}
2072 
2073 	return 0;
2074 }
2075 
2076 static struct udma_desc *
2077 udma_prep_slave_sg_pkt(struct udma_chan *uc, struct scatterlist *sgl,
2078 		       unsigned int sglen, enum dma_transfer_direction dir,
2079 		       unsigned long tx_flags, void *context)
2080 {
2081 	struct scatterlist *sgent;
2082 	struct cppi5_host_desc_t *h_desc = NULL;
2083 	struct udma_desc *d;
2084 	u32 ring_id;
2085 	unsigned int i;
2086 
2087 	d = kzalloc(sizeof(*d) + sglen * sizeof(d->hwdesc[0]), GFP_NOWAIT);
2088 	if (!d)
2089 		return NULL;
2090 
2091 	d->sglen = sglen;
2092 	d->hwdesc_count = sglen;
2093 
2094 	if (dir == DMA_DEV_TO_MEM)
2095 		ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring);
2096 	else
2097 		ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring);
2098 
2099 	for_each_sg(sgl, sgent, sglen, i) {
2100 		struct udma_hwdesc *hwdesc = &d->hwdesc[i];
2101 		dma_addr_t sg_addr = sg_dma_address(sgent);
2102 		struct cppi5_host_desc_t *desc;
2103 		size_t sg_len = sg_dma_len(sgent);
2104 
2105 		hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool,
2106 						GFP_NOWAIT,
2107 						&hwdesc->cppi5_desc_paddr);
2108 		if (!hwdesc->cppi5_desc_vaddr) {
2109 			dev_err(uc->ud->dev,
2110 				"descriptor%d allocation failed\n", i);
2111 
2112 			udma_free_hwdesc(uc, d);
2113 			kfree(d);
2114 			return NULL;
2115 		}
2116 
2117 		d->residue += sg_len;
2118 		hwdesc->cppi5_desc_size = uc->config.hdesc_size;
2119 		desc = hwdesc->cppi5_desc_vaddr;
2120 
2121 		if (i == 0) {
2122 			cppi5_hdesc_init(desc, 0, 0);
2123 			/* Flow and Packed ID */
2124 			cppi5_desc_set_pktids(&desc->hdr, uc->id,
2125 					      CPPI5_INFO1_DESC_FLOWID_DEFAULT);
2126 			cppi5_desc_set_retpolicy(&desc->hdr, 0, ring_id);
2127 		} else {
2128 			cppi5_hdesc_reset_hbdesc(desc);
2129 			cppi5_desc_set_retpolicy(&desc->hdr, 0, 0xffff);
2130 		}
2131 
2132 		/* attach the sg buffer to the descriptor */
2133 		cppi5_hdesc_attach_buf(desc, sg_addr, sg_len, sg_addr, sg_len);
2134 
2135 		/* Attach link as host buffer descriptor */
2136 		if (h_desc)
2137 			cppi5_hdesc_link_hbdesc(h_desc,
2138 						hwdesc->cppi5_desc_paddr);
2139 
2140 		if (dir == DMA_MEM_TO_DEV)
2141 			h_desc = desc;
2142 	}
2143 
2144 	if (d->residue >= SZ_4M) {
2145 		dev_err(uc->ud->dev,
2146 			"%s: Transfer size %u is over the supported 4M range\n",
2147 			__func__, d->residue);
2148 		udma_free_hwdesc(uc, d);
2149 		kfree(d);
2150 		return NULL;
2151 	}
2152 
2153 	h_desc = d->hwdesc[0].cppi5_desc_vaddr;
2154 	cppi5_hdesc_set_pktlen(h_desc, d->residue);
2155 
2156 	return d;
2157 }
2158 
2159 static int udma_attach_metadata(struct dma_async_tx_descriptor *desc,
2160 				void *data, size_t len)
2161 {
2162 	struct udma_desc *d = to_udma_desc(desc);
2163 	struct udma_chan *uc = to_udma_chan(desc->chan);
2164 	struct cppi5_host_desc_t *h_desc;
2165 	u32 psd_size = len;
2166 	u32 flags = 0;
2167 
2168 	if (!uc->config.pkt_mode || !uc->config.metadata_size)
2169 		return -ENOTSUPP;
2170 
2171 	if (!data || len > uc->config.metadata_size)
2172 		return -EINVAL;
2173 
2174 	if (uc->config.needs_epib && len < CPPI5_INFO0_HDESC_EPIB_SIZE)
2175 		return -EINVAL;
2176 
2177 	h_desc = d->hwdesc[0].cppi5_desc_vaddr;
2178 	if (d->dir == DMA_MEM_TO_DEV)
2179 		memcpy(h_desc->epib, data, len);
2180 
2181 	if (uc->config.needs_epib)
2182 		psd_size -= CPPI5_INFO0_HDESC_EPIB_SIZE;
2183 
2184 	d->metadata = data;
2185 	d->metadata_size = len;
2186 	if (uc->config.needs_epib)
2187 		flags |= CPPI5_INFO0_HDESC_EPIB_PRESENT;
2188 
2189 	cppi5_hdesc_update_flags(h_desc, flags);
2190 	cppi5_hdesc_update_psdata_size(h_desc, psd_size);
2191 
2192 	return 0;
2193 }
2194 
2195 static void *udma_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
2196 				   size_t *payload_len, size_t *max_len)
2197 {
2198 	struct udma_desc *d = to_udma_desc(desc);
2199 	struct udma_chan *uc = to_udma_chan(desc->chan);
2200 	struct cppi5_host_desc_t *h_desc;
2201 
2202 	if (!uc->config.pkt_mode || !uc->config.metadata_size)
2203 		return ERR_PTR(-ENOTSUPP);
2204 
2205 	h_desc = d->hwdesc[0].cppi5_desc_vaddr;
2206 
2207 	*max_len = uc->config.metadata_size;
2208 
2209 	*payload_len = cppi5_hdesc_epib_present(&h_desc->hdr) ?
2210 		       CPPI5_INFO0_HDESC_EPIB_SIZE : 0;
2211 	*payload_len += cppi5_hdesc_get_psdata_size(h_desc);
2212 
2213 	return h_desc->epib;
2214 }
2215 
2216 static int udma_set_metadata_len(struct dma_async_tx_descriptor *desc,
2217 				 size_t payload_len)
2218 {
2219 	struct udma_desc *d = to_udma_desc(desc);
2220 	struct udma_chan *uc = to_udma_chan(desc->chan);
2221 	struct cppi5_host_desc_t *h_desc;
2222 	u32 psd_size = payload_len;
2223 	u32 flags = 0;
2224 
2225 	if (!uc->config.pkt_mode || !uc->config.metadata_size)
2226 		return -ENOTSUPP;
2227 
2228 	if (payload_len > uc->config.metadata_size)
2229 		return -EINVAL;
2230 
2231 	if (uc->config.needs_epib && payload_len < CPPI5_INFO0_HDESC_EPIB_SIZE)
2232 		return -EINVAL;
2233 
2234 	h_desc = d->hwdesc[0].cppi5_desc_vaddr;
2235 
2236 	if (uc->config.needs_epib) {
2237 		psd_size -= CPPI5_INFO0_HDESC_EPIB_SIZE;
2238 		flags |= CPPI5_INFO0_HDESC_EPIB_PRESENT;
2239 	}
2240 
2241 	cppi5_hdesc_update_flags(h_desc, flags);
2242 	cppi5_hdesc_update_psdata_size(h_desc, psd_size);
2243 
2244 	return 0;
2245 }
2246 
2247 static struct dma_descriptor_metadata_ops metadata_ops = {
2248 	.attach = udma_attach_metadata,
2249 	.get_ptr = udma_get_metadata_ptr,
2250 	.set_len = udma_set_metadata_len,
2251 };
2252 
2253 static struct dma_async_tx_descriptor *
2254 udma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2255 		   unsigned int sglen, enum dma_transfer_direction dir,
2256 		   unsigned long tx_flags, void *context)
2257 {
2258 	struct udma_chan *uc = to_udma_chan(chan);
2259 	enum dma_slave_buswidth dev_width;
2260 	struct udma_desc *d;
2261 	u32 burst;
2262 
2263 	if (dir != uc->config.dir) {
2264 		dev_err(chan->device->dev,
2265 			"%s: chan%d is for %s, not supporting %s\n",
2266 			__func__, uc->id,
2267 			dmaengine_get_direction_text(uc->config.dir),
2268 			dmaengine_get_direction_text(dir));
2269 		return NULL;
2270 	}
2271 
2272 	if (dir == DMA_DEV_TO_MEM) {
2273 		dev_width = uc->cfg.src_addr_width;
2274 		burst = uc->cfg.src_maxburst;
2275 	} else if (dir == DMA_MEM_TO_DEV) {
2276 		dev_width = uc->cfg.dst_addr_width;
2277 		burst = uc->cfg.dst_maxburst;
2278 	} else {
2279 		dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
2280 		return NULL;
2281 	}
2282 
2283 	if (!burst)
2284 		burst = 1;
2285 
2286 	if (uc->config.pkt_mode)
2287 		d = udma_prep_slave_sg_pkt(uc, sgl, sglen, dir, tx_flags,
2288 					   context);
2289 	else
2290 		d = udma_prep_slave_sg_tr(uc, sgl, sglen, dir, tx_flags,
2291 					  context);
2292 
2293 	if (!d)
2294 		return NULL;
2295 
2296 	d->dir = dir;
2297 	d->desc_idx = 0;
2298 	d->tr_idx = 0;
2299 
2300 	/* static TR for remote PDMA */
2301 	if (udma_configure_statictr(uc, d, dev_width, burst)) {
2302 		dev_err(uc->ud->dev,
2303 			"%s: StaticTR Z is limited to maximum 4095 (%u)\n",
2304 			__func__, d->static_tr.bstcnt);
2305 
2306 		udma_free_hwdesc(uc, d);
2307 		kfree(d);
2308 		return NULL;
2309 	}
2310 
2311 	if (uc->config.metadata_size)
2312 		d->vd.tx.metadata_ops = &metadata_ops;
2313 
2314 	return vchan_tx_prep(&uc->vc, &d->vd, tx_flags);
2315 }
2316 
2317 static struct udma_desc *
2318 udma_prep_dma_cyclic_tr(struct udma_chan *uc, dma_addr_t buf_addr,
2319 			size_t buf_len, size_t period_len,
2320 			enum dma_transfer_direction dir, unsigned long flags)
2321 {
2322 	enum dma_slave_buswidth dev_width;
2323 	struct udma_desc *d;
2324 	size_t tr_size;
2325 	struct cppi5_tr_type1_t *tr_req;
2326 	unsigned int i;
2327 	unsigned int periods = buf_len / period_len;
2328 	u32 burst;
2329 
2330 	if (dir == DMA_DEV_TO_MEM) {
2331 		dev_width = uc->cfg.src_addr_width;
2332 		burst = uc->cfg.src_maxburst;
2333 	} else if (dir == DMA_MEM_TO_DEV) {
2334 		dev_width = uc->cfg.dst_addr_width;
2335 		burst = uc->cfg.dst_maxburst;
2336 	} else {
2337 		dev_err(uc->ud->dev, "%s: bad direction?\n", __func__);
2338 		return NULL;
2339 	}
2340 
2341 	if (!burst)
2342 		burst = 1;
2343 
2344 	/* Now allocate and setup the descriptor. */
2345 	tr_size = sizeof(struct cppi5_tr_type1_t);
2346 	d = udma_alloc_tr_desc(uc, tr_size, periods, dir);
2347 	if (!d)
2348 		return NULL;
2349 
2350 	tr_req = d->hwdesc[0].tr_req_base;
2351 	for (i = 0; i < periods; i++) {
2352 		cppi5_tr_init(&tr_req[i].flags, CPPI5_TR_TYPE1, false, false,
2353 			      CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
2354 
2355 		tr_req[i].addr = buf_addr + period_len * i;
2356 		tr_req[i].icnt0 = dev_width;
2357 		tr_req[i].icnt1 = period_len / dev_width;
2358 		tr_req[i].dim1 = dev_width;
2359 
2360 		if (!(flags & DMA_PREP_INTERRUPT))
2361 			cppi5_tr_csf_set(&tr_req[i].flags,
2362 					 CPPI5_TR_CSF_SUPR_EVT);
2363 	}
2364 
2365 	return d;
2366 }
2367 
2368 static struct udma_desc *
2369 udma_prep_dma_cyclic_pkt(struct udma_chan *uc, dma_addr_t buf_addr,
2370 			 size_t buf_len, size_t period_len,
2371 			 enum dma_transfer_direction dir, unsigned long flags)
2372 {
2373 	struct udma_desc *d;
2374 	u32 ring_id;
2375 	int i;
2376 	int periods = buf_len / period_len;
2377 
2378 	if (periods > (K3_UDMA_DEFAULT_RING_SIZE - 1))
2379 		return NULL;
2380 
2381 	if (period_len >= SZ_4M)
2382 		return NULL;
2383 
2384 	d = kzalloc(sizeof(*d) + periods * sizeof(d->hwdesc[0]), GFP_NOWAIT);
2385 	if (!d)
2386 		return NULL;
2387 
2388 	d->hwdesc_count = periods;
2389 
2390 	/* TODO: re-check this... */
2391 	if (dir == DMA_DEV_TO_MEM)
2392 		ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring);
2393 	else
2394 		ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring);
2395 
2396 	for (i = 0; i < periods; i++) {
2397 		struct udma_hwdesc *hwdesc = &d->hwdesc[i];
2398 		dma_addr_t period_addr = buf_addr + (period_len * i);
2399 		struct cppi5_host_desc_t *h_desc;
2400 
2401 		hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool,
2402 						GFP_NOWAIT,
2403 						&hwdesc->cppi5_desc_paddr);
2404 		if (!hwdesc->cppi5_desc_vaddr) {
2405 			dev_err(uc->ud->dev,
2406 				"descriptor%d allocation failed\n", i);
2407 
2408 			udma_free_hwdesc(uc, d);
2409 			kfree(d);
2410 			return NULL;
2411 		}
2412 
2413 		hwdesc->cppi5_desc_size = uc->config.hdesc_size;
2414 		h_desc = hwdesc->cppi5_desc_vaddr;
2415 
2416 		cppi5_hdesc_init(h_desc, 0, 0);
2417 		cppi5_hdesc_set_pktlen(h_desc, period_len);
2418 
2419 		/* Flow and Packed ID */
2420 		cppi5_desc_set_pktids(&h_desc->hdr, uc->id,
2421 				      CPPI5_INFO1_DESC_FLOWID_DEFAULT);
2422 		cppi5_desc_set_retpolicy(&h_desc->hdr, 0, ring_id);
2423 
2424 		/* attach each period to a new descriptor */
2425 		cppi5_hdesc_attach_buf(h_desc,
2426 				       period_addr, period_len,
2427 				       period_addr, period_len);
2428 	}
2429 
2430 	return d;
2431 }
2432 
2433 static struct dma_async_tx_descriptor *
2434 udma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
2435 		     size_t period_len, enum dma_transfer_direction dir,
2436 		     unsigned long flags)
2437 {
2438 	struct udma_chan *uc = to_udma_chan(chan);
2439 	enum dma_slave_buswidth dev_width;
2440 	struct udma_desc *d;
2441 	u32 burst;
2442 
2443 	if (dir != uc->config.dir) {
2444 		dev_err(chan->device->dev,
2445 			"%s: chan%d is for %s, not supporting %s\n",
2446 			__func__, uc->id,
2447 			dmaengine_get_direction_text(uc->config.dir),
2448 			dmaengine_get_direction_text(dir));
2449 		return NULL;
2450 	}
2451 
2452 	uc->cyclic = true;
2453 
2454 	if (dir == DMA_DEV_TO_MEM) {
2455 		dev_width = uc->cfg.src_addr_width;
2456 		burst = uc->cfg.src_maxburst;
2457 	} else if (dir == DMA_MEM_TO_DEV) {
2458 		dev_width = uc->cfg.dst_addr_width;
2459 		burst = uc->cfg.dst_maxburst;
2460 	} else {
2461 		dev_err(uc->ud->dev, "%s: bad direction?\n", __func__);
2462 		return NULL;
2463 	}
2464 
2465 	if (!burst)
2466 		burst = 1;
2467 
2468 	if (uc->config.pkt_mode)
2469 		d = udma_prep_dma_cyclic_pkt(uc, buf_addr, buf_len, period_len,
2470 					     dir, flags);
2471 	else
2472 		d = udma_prep_dma_cyclic_tr(uc, buf_addr, buf_len, period_len,
2473 					    dir, flags);
2474 
2475 	if (!d)
2476 		return NULL;
2477 
2478 	d->sglen = buf_len / period_len;
2479 
2480 	d->dir = dir;
2481 	d->residue = buf_len;
2482 
2483 	/* static TR for remote PDMA */
2484 	if (udma_configure_statictr(uc, d, dev_width, burst)) {
2485 		dev_err(uc->ud->dev,
2486 			"%s: StaticTR Z is limited to maximum 4095 (%u)\n",
2487 			__func__, d->static_tr.bstcnt);
2488 
2489 		udma_free_hwdesc(uc, d);
2490 		kfree(d);
2491 		return NULL;
2492 	}
2493 
2494 	if (uc->config.metadata_size)
2495 		d->vd.tx.metadata_ops = &metadata_ops;
2496 
2497 	return vchan_tx_prep(&uc->vc, &d->vd, flags);
2498 }
2499 
2500 static struct dma_async_tx_descriptor *
2501 udma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
2502 		     size_t len, unsigned long tx_flags)
2503 {
2504 	struct udma_chan *uc = to_udma_chan(chan);
2505 	struct udma_desc *d;
2506 	struct cppi5_tr_type15_t *tr_req;
2507 	int num_tr;
2508 	size_t tr_size = sizeof(struct cppi5_tr_type15_t);
2509 	u16 tr0_cnt0, tr0_cnt1, tr1_cnt0;
2510 
2511 	if (uc->config.dir != DMA_MEM_TO_MEM) {
2512 		dev_err(chan->device->dev,
2513 			"%s: chan%d is for %s, not supporting %s\n",
2514 			__func__, uc->id,
2515 			dmaengine_get_direction_text(uc->config.dir),
2516 			dmaengine_get_direction_text(DMA_MEM_TO_MEM));
2517 		return NULL;
2518 	}
2519 
2520 	if (len < SZ_64K) {
2521 		num_tr = 1;
2522 		tr0_cnt0 = len;
2523 		tr0_cnt1 = 1;
2524 	} else {
2525 		unsigned long align_to = __ffs(src | dest);
2526 
2527 		if (align_to > 3)
2528 			align_to = 3;
2529 		/*
2530 		 * Keep simple: tr0: SZ_64K-alignment blocks,
2531 		 *		tr1: the remaining
2532 		 */
2533 		num_tr = 2;
2534 		tr0_cnt0 = (SZ_64K - BIT(align_to));
2535 		if (len / tr0_cnt0 >= SZ_64K) {
2536 			dev_err(uc->ud->dev, "size %zu is not supported\n",
2537 				len);
2538 			return NULL;
2539 		}
2540 
2541 		tr0_cnt1 = len / tr0_cnt0;
2542 		tr1_cnt0 = len % tr0_cnt0;
2543 	}
2544 
2545 	d = udma_alloc_tr_desc(uc, tr_size, num_tr, DMA_MEM_TO_MEM);
2546 	if (!d)
2547 		return NULL;
2548 
2549 	d->dir = DMA_MEM_TO_MEM;
2550 	d->desc_idx = 0;
2551 	d->tr_idx = 0;
2552 	d->residue = len;
2553 
2554 	tr_req = d->hwdesc[0].tr_req_base;
2555 
2556 	cppi5_tr_init(&tr_req[0].flags, CPPI5_TR_TYPE15, false, true,
2557 		      CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
2558 	cppi5_tr_csf_set(&tr_req[0].flags, CPPI5_TR_CSF_SUPR_EVT);
2559 
2560 	tr_req[0].addr = src;
2561 	tr_req[0].icnt0 = tr0_cnt0;
2562 	tr_req[0].icnt1 = tr0_cnt1;
2563 	tr_req[0].icnt2 = 1;
2564 	tr_req[0].icnt3 = 1;
2565 	tr_req[0].dim1 = tr0_cnt0;
2566 
2567 	tr_req[0].daddr = dest;
2568 	tr_req[0].dicnt0 = tr0_cnt0;
2569 	tr_req[0].dicnt1 = tr0_cnt1;
2570 	tr_req[0].dicnt2 = 1;
2571 	tr_req[0].dicnt3 = 1;
2572 	tr_req[0].ddim1 = tr0_cnt0;
2573 
2574 	if (num_tr == 2) {
2575 		cppi5_tr_init(&tr_req[1].flags, CPPI5_TR_TYPE15, false, true,
2576 			      CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
2577 		cppi5_tr_csf_set(&tr_req[1].flags, CPPI5_TR_CSF_SUPR_EVT);
2578 
2579 		tr_req[1].addr = src + tr0_cnt1 * tr0_cnt0;
2580 		tr_req[1].icnt0 = tr1_cnt0;
2581 		tr_req[1].icnt1 = 1;
2582 		tr_req[1].icnt2 = 1;
2583 		tr_req[1].icnt3 = 1;
2584 
2585 		tr_req[1].daddr = dest + tr0_cnt1 * tr0_cnt0;
2586 		tr_req[1].dicnt0 = tr1_cnt0;
2587 		tr_req[1].dicnt1 = 1;
2588 		tr_req[1].dicnt2 = 1;
2589 		tr_req[1].dicnt3 = 1;
2590 	}
2591 
2592 	cppi5_tr_csf_set(&tr_req[num_tr - 1].flags, CPPI5_TR_CSF_EOP);
2593 
2594 	if (uc->config.metadata_size)
2595 		d->vd.tx.metadata_ops = &metadata_ops;
2596 
2597 	return vchan_tx_prep(&uc->vc, &d->vd, tx_flags);
2598 }
2599 
2600 static void udma_issue_pending(struct dma_chan *chan)
2601 {
2602 	struct udma_chan *uc = to_udma_chan(chan);
2603 	unsigned long flags;
2604 
2605 	spin_lock_irqsave(&uc->vc.lock, flags);
2606 
2607 	/* If we have something pending and no active descriptor, then */
2608 	if (vchan_issue_pending(&uc->vc) && !uc->desc) {
2609 		/*
2610 		 * start a descriptor if the channel is NOT [marked as
2611 		 * terminating _and_ it is still running (teardown has not
2612 		 * completed yet)].
2613 		 */
2614 		if (!(uc->state == UDMA_CHAN_IS_TERMINATING &&
2615 		      udma_is_chan_running(uc)))
2616 			udma_start(uc);
2617 	}
2618 
2619 	spin_unlock_irqrestore(&uc->vc.lock, flags);
2620 }
2621 
2622 static enum dma_status udma_tx_status(struct dma_chan *chan,
2623 				      dma_cookie_t cookie,
2624 				      struct dma_tx_state *txstate)
2625 {
2626 	struct udma_chan *uc = to_udma_chan(chan);
2627 	enum dma_status ret;
2628 	unsigned long flags;
2629 
2630 	spin_lock_irqsave(&uc->vc.lock, flags);
2631 
2632 	ret = dma_cookie_status(chan, cookie, txstate);
2633 
2634 	if (ret == DMA_IN_PROGRESS && udma_is_chan_paused(uc))
2635 		ret = DMA_PAUSED;
2636 
2637 	if (ret == DMA_COMPLETE || !txstate)
2638 		goto out;
2639 
2640 	if (uc->desc && uc->desc->vd.tx.cookie == cookie) {
2641 		u32 peer_bcnt = 0;
2642 		u32 bcnt = 0;
2643 		u32 residue = uc->desc->residue;
2644 		u32 delay = 0;
2645 
2646 		if (uc->desc->dir == DMA_MEM_TO_DEV) {
2647 			bcnt = udma_tchanrt_read(uc->tchan,
2648 						 UDMA_TCHAN_RT_SBCNT_REG);
2649 
2650 			if (uc->config.ep_type != PSIL_EP_NATIVE) {
2651 				peer_bcnt = udma_tchanrt_read(uc->tchan,
2652 						UDMA_TCHAN_RT_PEER_BCNT_REG);
2653 
2654 				if (bcnt > peer_bcnt)
2655 					delay = bcnt - peer_bcnt;
2656 			}
2657 		} else if (uc->desc->dir == DMA_DEV_TO_MEM) {
2658 			bcnt = udma_rchanrt_read(uc->rchan,
2659 						 UDMA_RCHAN_RT_BCNT_REG);
2660 
2661 			if (uc->config.ep_type != PSIL_EP_NATIVE) {
2662 				peer_bcnt = udma_rchanrt_read(uc->rchan,
2663 						UDMA_RCHAN_RT_PEER_BCNT_REG);
2664 
2665 				if (peer_bcnt > bcnt)
2666 					delay = peer_bcnt - bcnt;
2667 			}
2668 		} else {
2669 			bcnt = udma_tchanrt_read(uc->tchan,
2670 						 UDMA_TCHAN_RT_BCNT_REG);
2671 		}
2672 
2673 		bcnt -= uc->bcnt;
2674 		if (bcnt && !(bcnt % uc->desc->residue))
2675 			residue = 0;
2676 		else
2677 			residue -= bcnt % uc->desc->residue;
2678 
2679 		if (!residue && (uc->config.dir == DMA_DEV_TO_MEM || !delay)) {
2680 			ret = DMA_COMPLETE;
2681 			delay = 0;
2682 		}
2683 
2684 		dma_set_residue(txstate, residue);
2685 		dma_set_in_flight_bytes(txstate, delay);
2686 
2687 	} else {
2688 		ret = DMA_COMPLETE;
2689 	}
2690 
2691 out:
2692 	spin_unlock_irqrestore(&uc->vc.lock, flags);
2693 	return ret;
2694 }
2695 
2696 static int udma_pause(struct dma_chan *chan)
2697 {
2698 	struct udma_chan *uc = to_udma_chan(chan);
2699 
2700 	if (!uc->desc)
2701 		return -EINVAL;
2702 
2703 	/* pause the channel */
2704 	switch (uc->desc->dir) {
2705 	case DMA_DEV_TO_MEM:
2706 		udma_rchanrt_update_bits(uc->rchan,
2707 					 UDMA_RCHAN_RT_PEER_RT_EN_REG,
2708 					 UDMA_PEER_RT_EN_PAUSE,
2709 					 UDMA_PEER_RT_EN_PAUSE);
2710 		break;
2711 	case DMA_MEM_TO_DEV:
2712 		udma_tchanrt_update_bits(uc->tchan,
2713 					 UDMA_TCHAN_RT_PEER_RT_EN_REG,
2714 					 UDMA_PEER_RT_EN_PAUSE,
2715 					 UDMA_PEER_RT_EN_PAUSE);
2716 		break;
2717 	case DMA_MEM_TO_MEM:
2718 		udma_tchanrt_update_bits(uc->tchan, UDMA_TCHAN_RT_CTL_REG,
2719 					 UDMA_CHAN_RT_CTL_PAUSE,
2720 					 UDMA_CHAN_RT_CTL_PAUSE);
2721 		break;
2722 	default:
2723 		return -EINVAL;
2724 	}
2725 
2726 	return 0;
2727 }
2728 
2729 static int udma_resume(struct dma_chan *chan)
2730 {
2731 	struct udma_chan *uc = to_udma_chan(chan);
2732 
2733 	if (!uc->desc)
2734 		return -EINVAL;
2735 
2736 	/* resume the channel */
2737 	switch (uc->desc->dir) {
2738 	case DMA_DEV_TO_MEM:
2739 		udma_rchanrt_update_bits(uc->rchan,
2740 					 UDMA_RCHAN_RT_PEER_RT_EN_REG,
2741 					 UDMA_PEER_RT_EN_PAUSE, 0);
2742 
2743 		break;
2744 	case DMA_MEM_TO_DEV:
2745 		udma_tchanrt_update_bits(uc->tchan,
2746 					 UDMA_TCHAN_RT_PEER_RT_EN_REG,
2747 					 UDMA_PEER_RT_EN_PAUSE, 0);
2748 		break;
2749 	case DMA_MEM_TO_MEM:
2750 		udma_tchanrt_update_bits(uc->tchan, UDMA_TCHAN_RT_CTL_REG,
2751 					 UDMA_CHAN_RT_CTL_PAUSE, 0);
2752 		break;
2753 	default:
2754 		return -EINVAL;
2755 	}
2756 
2757 	return 0;
2758 }
2759 
2760 static int udma_terminate_all(struct dma_chan *chan)
2761 {
2762 	struct udma_chan *uc = to_udma_chan(chan);
2763 	unsigned long flags;
2764 	LIST_HEAD(head);
2765 
2766 	spin_lock_irqsave(&uc->vc.lock, flags);
2767 
2768 	if (udma_is_chan_running(uc))
2769 		udma_stop(uc);
2770 
2771 	if (uc->desc) {
2772 		uc->terminated_desc = uc->desc;
2773 		uc->desc = NULL;
2774 		uc->terminated_desc->terminated = true;
2775 		cancel_delayed_work(&uc->tx_drain.work);
2776 	}
2777 
2778 	uc->paused = false;
2779 
2780 	vchan_get_all_descriptors(&uc->vc, &head);
2781 	spin_unlock_irqrestore(&uc->vc.lock, flags);
2782 	vchan_dma_desc_free_list(&uc->vc, &head);
2783 
2784 	return 0;
2785 }
2786 
2787 static void udma_synchronize(struct dma_chan *chan)
2788 {
2789 	struct udma_chan *uc = to_udma_chan(chan);
2790 	unsigned long timeout = msecs_to_jiffies(1000);
2791 
2792 	vchan_synchronize(&uc->vc);
2793 
2794 	if (uc->state == UDMA_CHAN_IS_TERMINATING) {
2795 		timeout = wait_for_completion_timeout(&uc->teardown_completed,
2796 						      timeout);
2797 		if (!timeout) {
2798 			dev_warn(uc->ud->dev, "chan%d teardown timeout!\n",
2799 				 uc->id);
2800 			udma_dump_chan_stdata(uc);
2801 			udma_reset_chan(uc, true);
2802 		}
2803 	}
2804 
2805 	udma_reset_chan(uc, false);
2806 	if (udma_is_chan_running(uc))
2807 		dev_warn(uc->ud->dev, "chan%d refused to stop!\n", uc->id);
2808 
2809 	cancel_delayed_work_sync(&uc->tx_drain.work);
2810 	udma_reset_rings(uc);
2811 }
2812 
2813 static void udma_desc_pre_callback(struct virt_dma_chan *vc,
2814 				   struct virt_dma_desc *vd,
2815 				   struct dmaengine_result *result)
2816 {
2817 	struct udma_chan *uc = to_udma_chan(&vc->chan);
2818 	struct udma_desc *d;
2819 
2820 	if (!vd)
2821 		return;
2822 
2823 	d = to_udma_desc(&vd->tx);
2824 
2825 	if (d->metadata_size)
2826 		udma_fetch_epib(uc, d);
2827 
2828 	/* Provide residue information for the client */
2829 	if (result) {
2830 		void *desc_vaddr = udma_curr_cppi5_desc_vaddr(d, d->desc_idx);
2831 
2832 		if (cppi5_desc_get_type(desc_vaddr) ==
2833 		    CPPI5_INFO0_DESC_TYPE_VAL_HOST) {
2834 			result->residue = d->residue -
2835 					  cppi5_hdesc_get_pktlen(desc_vaddr);
2836 			if (result->residue)
2837 				result->result = DMA_TRANS_ABORTED;
2838 			else
2839 				result->result = DMA_TRANS_NOERROR;
2840 		} else {
2841 			result->residue = 0;
2842 			result->result = DMA_TRANS_NOERROR;
2843 		}
2844 	}
2845 }
2846 
2847 /*
2848  * This tasklet handles the completion of a DMA descriptor by
2849  * calling its callback and freeing it.
2850  */
2851 static void udma_vchan_complete(unsigned long arg)
2852 {
2853 	struct virt_dma_chan *vc = (struct virt_dma_chan *)arg;
2854 	struct virt_dma_desc *vd, *_vd;
2855 	struct dmaengine_desc_callback cb;
2856 	LIST_HEAD(head);
2857 
2858 	spin_lock_irq(&vc->lock);
2859 	list_splice_tail_init(&vc->desc_completed, &head);
2860 	vd = vc->cyclic;
2861 	if (vd) {
2862 		vc->cyclic = NULL;
2863 		dmaengine_desc_get_callback(&vd->tx, &cb);
2864 	} else {
2865 		memset(&cb, 0, sizeof(cb));
2866 	}
2867 	spin_unlock_irq(&vc->lock);
2868 
2869 	udma_desc_pre_callback(vc, vd, NULL);
2870 	dmaengine_desc_callback_invoke(&cb, NULL);
2871 
2872 	list_for_each_entry_safe(vd, _vd, &head, node) {
2873 		struct dmaengine_result result;
2874 
2875 		dmaengine_desc_get_callback(&vd->tx, &cb);
2876 
2877 		list_del(&vd->node);
2878 
2879 		udma_desc_pre_callback(vc, vd, &result);
2880 		dmaengine_desc_callback_invoke(&cb, &result);
2881 
2882 		vchan_vdesc_fini(vd);
2883 	}
2884 }
2885 
2886 static void udma_free_chan_resources(struct dma_chan *chan)
2887 {
2888 	struct udma_chan *uc = to_udma_chan(chan);
2889 	struct udma_dev *ud = to_udma_dev(chan->device);
2890 
2891 	udma_terminate_all(chan);
2892 	if (uc->terminated_desc) {
2893 		udma_reset_chan(uc, false);
2894 		udma_reset_rings(uc);
2895 	}
2896 
2897 	cancel_delayed_work_sync(&uc->tx_drain.work);
2898 	destroy_delayed_work_on_stack(&uc->tx_drain.work);
2899 
2900 	if (uc->irq_num_ring > 0) {
2901 		free_irq(uc->irq_num_ring, uc);
2902 
2903 		uc->irq_num_ring = 0;
2904 	}
2905 	if (uc->irq_num_udma > 0) {
2906 		free_irq(uc->irq_num_udma, uc);
2907 
2908 		uc->irq_num_udma = 0;
2909 	}
2910 
2911 	/* Release PSI-L pairing */
2912 	if (uc->psil_paired) {
2913 		navss_psil_unpair(ud, uc->config.src_thread,
2914 				  uc->config.dst_thread);
2915 		uc->psil_paired = false;
2916 	}
2917 
2918 	vchan_free_chan_resources(&uc->vc);
2919 	tasklet_kill(&uc->vc.task);
2920 
2921 	udma_free_tx_resources(uc);
2922 	udma_free_rx_resources(uc);
2923 	udma_reset_uchan(uc);
2924 
2925 	if (uc->use_dma_pool) {
2926 		dma_pool_destroy(uc->hdesc_pool);
2927 		uc->use_dma_pool = false;
2928 	}
2929 }
2930 
2931 static struct platform_driver udma_driver;
2932 
2933 static bool udma_dma_filter_fn(struct dma_chan *chan, void *param)
2934 {
2935 	struct udma_chan_config *ucc;
2936 	struct psil_endpoint_config *ep_config;
2937 	struct udma_chan *uc;
2938 	struct udma_dev *ud;
2939 	u32 *args;
2940 
2941 	if (chan->device->dev->driver != &udma_driver.driver)
2942 		return false;
2943 
2944 	uc = to_udma_chan(chan);
2945 	ucc = &uc->config;
2946 	ud = uc->ud;
2947 	args = param;
2948 
2949 	ucc->remote_thread_id = args[0];
2950 
2951 	if (ucc->remote_thread_id & K3_PSIL_DST_THREAD_ID_OFFSET)
2952 		ucc->dir = DMA_MEM_TO_DEV;
2953 	else
2954 		ucc->dir = DMA_DEV_TO_MEM;
2955 
2956 	ep_config = psil_get_ep_config(ucc->remote_thread_id);
2957 	if (IS_ERR(ep_config)) {
2958 		dev_err(ud->dev, "No configuration for psi-l thread 0x%04x\n",
2959 			ucc->remote_thread_id);
2960 		ucc->dir = DMA_MEM_TO_MEM;
2961 		ucc->remote_thread_id = -1;
2962 		return false;
2963 	}
2964 
2965 	ucc->pkt_mode = ep_config->pkt_mode;
2966 	ucc->channel_tpl = ep_config->channel_tpl;
2967 	ucc->notdpkt = ep_config->notdpkt;
2968 	ucc->ep_type = ep_config->ep_type;
2969 
2970 	if (ucc->ep_type != PSIL_EP_NATIVE) {
2971 		const struct udma_match_data *match_data = ud->match_data;
2972 
2973 		if (match_data->flags & UDMA_FLAG_PDMA_ACC32)
2974 			ucc->enable_acc32 = ep_config->pdma_acc32;
2975 		if (match_data->flags & UDMA_FLAG_PDMA_BURST)
2976 			ucc->enable_burst = ep_config->pdma_burst;
2977 	}
2978 
2979 	ucc->needs_epib = ep_config->needs_epib;
2980 	ucc->psd_size = ep_config->psd_size;
2981 	ucc->metadata_size =
2982 			(ucc->needs_epib ? CPPI5_INFO0_HDESC_EPIB_SIZE : 0) +
2983 			ucc->psd_size;
2984 
2985 	if (ucc->pkt_mode)
2986 		ucc->hdesc_size = ALIGN(sizeof(struct cppi5_host_desc_t) +
2987 				 ucc->metadata_size, ud->desc_align);
2988 
2989 	dev_dbg(ud->dev, "chan%d: Remote thread: 0x%04x (%s)\n", uc->id,
2990 		ucc->remote_thread_id, dmaengine_get_direction_text(ucc->dir));
2991 
2992 	return true;
2993 }
2994 
2995 static struct dma_chan *udma_of_xlate(struct of_phandle_args *dma_spec,
2996 				      struct of_dma *ofdma)
2997 {
2998 	struct udma_dev *ud = ofdma->of_dma_data;
2999 	dma_cap_mask_t mask = ud->ddev.cap_mask;
3000 	struct dma_chan *chan;
3001 
3002 	if (dma_spec->args_count != 1)
3003 		return NULL;
3004 
3005 	chan = __dma_request_channel(&mask, udma_dma_filter_fn,
3006 				     &dma_spec->args[0], ofdma->of_node);
3007 	if (!chan) {
3008 		dev_err(ud->dev, "get channel fail in %s.\n", __func__);
3009 		return ERR_PTR(-EINVAL);
3010 	}
3011 
3012 	return chan;
3013 }
3014 
3015 static struct udma_match_data am654_main_data = {
3016 	.psil_base = 0x1000,
3017 	.enable_memcpy_support = true,
3018 	.statictr_z_mask = GENMASK(11, 0),
3019 	.rchan_oes_offset = 0x2000,
3020 	.tpl_levels = 2,
3021 	.level_start_idx = {
3022 		[0] = 8, /* Normal channels */
3023 		[1] = 0, /* High Throughput channels */
3024 	},
3025 };
3026 
3027 static struct udma_match_data am654_mcu_data = {
3028 	.psil_base = 0x6000,
3029 	.enable_memcpy_support = true, /* TEST: DMA domains */
3030 	.statictr_z_mask = GENMASK(11, 0),
3031 	.rchan_oes_offset = 0x2000,
3032 	.tpl_levels = 2,
3033 	.level_start_idx = {
3034 		[0] = 2, /* Normal channels */
3035 		[1] = 0, /* High Throughput channels */
3036 	},
3037 };
3038 
3039 static struct udma_match_data j721e_main_data = {
3040 	.psil_base = 0x1000,
3041 	.enable_memcpy_support = true,
3042 	.flags = UDMA_FLAG_PDMA_ACC32 | UDMA_FLAG_PDMA_BURST,
3043 	.statictr_z_mask = GENMASK(23, 0),
3044 	.rchan_oes_offset = 0x400,
3045 	.tpl_levels = 3,
3046 	.level_start_idx = {
3047 		[0] = 16, /* Normal channels */
3048 		[1] = 4, /* High Throughput channels */
3049 		[2] = 0, /* Ultra High Throughput channels */
3050 	},
3051 };
3052 
3053 static struct udma_match_data j721e_mcu_data = {
3054 	.psil_base = 0x6000,
3055 	.enable_memcpy_support = false, /* MEM_TO_MEM is slow via MCU UDMA */
3056 	.flags = UDMA_FLAG_PDMA_ACC32 | UDMA_FLAG_PDMA_BURST,
3057 	.statictr_z_mask = GENMASK(23, 0),
3058 	.rchan_oes_offset = 0x400,
3059 	.tpl_levels = 2,
3060 	.level_start_idx = {
3061 		[0] = 2, /* Normal channels */
3062 		[1] = 0, /* High Throughput channels */
3063 	},
3064 };
3065 
3066 static const struct of_device_id udma_of_match[] = {
3067 	{
3068 		.compatible = "ti,am654-navss-main-udmap",
3069 		.data = &am654_main_data,
3070 	},
3071 	{
3072 		.compatible = "ti,am654-navss-mcu-udmap",
3073 		.data = &am654_mcu_data,
3074 	}, {
3075 		.compatible = "ti,j721e-navss-main-udmap",
3076 		.data = &j721e_main_data,
3077 	}, {
3078 		.compatible = "ti,j721e-navss-mcu-udmap",
3079 		.data = &j721e_mcu_data,
3080 	},
3081 	{ /* Sentinel */ },
3082 };
3083 
3084 static int udma_get_mmrs(struct platform_device *pdev, struct udma_dev *ud)
3085 {
3086 	struct resource *res;
3087 	int i;
3088 
3089 	for (i = 0; i < MMR_LAST; i++) {
3090 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3091 						   mmr_names[i]);
3092 		ud->mmrs[i] = devm_ioremap_resource(&pdev->dev, res);
3093 		if (IS_ERR(ud->mmrs[i]))
3094 			return PTR_ERR(ud->mmrs[i]);
3095 	}
3096 
3097 	return 0;
3098 }
3099 
3100 static int udma_setup_resources(struct udma_dev *ud)
3101 {
3102 	struct device *dev = ud->dev;
3103 	int ch_count, ret, i, j;
3104 	u32 cap2, cap3;
3105 	struct ti_sci_resource_desc *rm_desc;
3106 	struct ti_sci_resource *rm_res, irq_res;
3107 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
3108 	static const char * const range_names[] = { "ti,sci-rm-range-tchan",
3109 						    "ti,sci-rm-range-rchan",
3110 						    "ti,sci-rm-range-rflow" };
3111 
3112 	cap2 = udma_read(ud->mmrs[MMR_GCFG], 0x28);
3113 	cap3 = udma_read(ud->mmrs[MMR_GCFG], 0x2c);
3114 
3115 	ud->rflow_cnt = cap3 & 0x3fff;
3116 	ud->tchan_cnt = cap2 & 0x1ff;
3117 	ud->echan_cnt = (cap2 >> 9) & 0x1ff;
3118 	ud->rchan_cnt = (cap2 >> 18) & 0x1ff;
3119 	ch_count  = ud->tchan_cnt + ud->rchan_cnt;
3120 
3121 	ud->tchan_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->tchan_cnt),
3122 					   sizeof(unsigned long), GFP_KERNEL);
3123 	ud->tchans = devm_kcalloc(dev, ud->tchan_cnt, sizeof(*ud->tchans),
3124 				  GFP_KERNEL);
3125 	ud->rchan_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->rchan_cnt),
3126 					   sizeof(unsigned long), GFP_KERNEL);
3127 	ud->rchans = devm_kcalloc(dev, ud->rchan_cnt, sizeof(*ud->rchans),
3128 				  GFP_KERNEL);
3129 	ud->rflow_gp_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->rflow_cnt),
3130 					      sizeof(unsigned long),
3131 					      GFP_KERNEL);
3132 	ud->rflow_gp_map_allocated = devm_kcalloc(dev,
3133 						  BITS_TO_LONGS(ud->rflow_cnt),
3134 						  sizeof(unsigned long),
3135 						  GFP_KERNEL);
3136 	ud->rflow_in_use = devm_kcalloc(dev, BITS_TO_LONGS(ud->rflow_cnt),
3137 					sizeof(unsigned long),
3138 					GFP_KERNEL);
3139 	ud->rflows = devm_kcalloc(dev, ud->rflow_cnt, sizeof(*ud->rflows),
3140 				  GFP_KERNEL);
3141 
3142 	if (!ud->tchan_map || !ud->rchan_map || !ud->rflow_gp_map ||
3143 	    !ud->rflow_gp_map_allocated || !ud->tchans || !ud->rchans ||
3144 	    !ud->rflows || !ud->rflow_in_use)
3145 		return -ENOMEM;
3146 
3147 	/*
3148 	 * RX flows with the same Ids as RX channels are reserved to be used
3149 	 * as default flows if remote HW can't generate flow_ids. Those
3150 	 * RX flows can be requested only explicitly by id.
3151 	 */
3152 	bitmap_set(ud->rflow_gp_map_allocated, 0, ud->rchan_cnt);
3153 
3154 	/* by default no GP rflows are assigned to Linux */
3155 	bitmap_set(ud->rflow_gp_map, 0, ud->rflow_cnt);
3156 
3157 	/* Get resource ranges from tisci */
3158 	for (i = 0; i < RM_RANGE_LAST; i++)
3159 		tisci_rm->rm_ranges[i] =
3160 			devm_ti_sci_get_of_resource(tisci_rm->tisci, dev,
3161 						    tisci_rm->tisci_dev_id,
3162 						    (char *)range_names[i]);
3163 
3164 	/* tchan ranges */
3165 	rm_res = tisci_rm->rm_ranges[RM_RANGE_TCHAN];
3166 	if (IS_ERR(rm_res)) {
3167 		bitmap_zero(ud->tchan_map, ud->tchan_cnt);
3168 	} else {
3169 		bitmap_fill(ud->tchan_map, ud->tchan_cnt);
3170 		for (i = 0; i < rm_res->sets; i++) {
3171 			rm_desc = &rm_res->desc[i];
3172 			bitmap_clear(ud->tchan_map, rm_desc->start,
3173 				     rm_desc->num);
3174 			dev_dbg(dev, "ti-sci-res: tchan: %d:%d\n",
3175 				rm_desc->start, rm_desc->num);
3176 		}
3177 	}
3178 	irq_res.sets = rm_res->sets;
3179 
3180 	/* rchan and matching default flow ranges */
3181 	rm_res = tisci_rm->rm_ranges[RM_RANGE_RCHAN];
3182 	if (IS_ERR(rm_res)) {
3183 		bitmap_zero(ud->rchan_map, ud->rchan_cnt);
3184 	} else {
3185 		bitmap_fill(ud->rchan_map, ud->rchan_cnt);
3186 		for (i = 0; i < rm_res->sets; i++) {
3187 			rm_desc = &rm_res->desc[i];
3188 			bitmap_clear(ud->rchan_map, rm_desc->start,
3189 				     rm_desc->num);
3190 			dev_dbg(dev, "ti-sci-res: rchan: %d:%d\n",
3191 				rm_desc->start, rm_desc->num);
3192 		}
3193 	}
3194 
3195 	irq_res.sets += rm_res->sets;
3196 	irq_res.desc = kcalloc(irq_res.sets, sizeof(*irq_res.desc), GFP_KERNEL);
3197 	rm_res = tisci_rm->rm_ranges[RM_RANGE_TCHAN];
3198 	for (i = 0; i < rm_res->sets; i++) {
3199 		irq_res.desc[i].start = rm_res->desc[i].start;
3200 		irq_res.desc[i].num = rm_res->desc[i].num;
3201 	}
3202 	rm_res = tisci_rm->rm_ranges[RM_RANGE_RCHAN];
3203 	for (j = 0; j < rm_res->sets; j++, i++) {
3204 		irq_res.desc[i].start = rm_res->desc[j].start +
3205 					ud->match_data->rchan_oes_offset;
3206 		irq_res.desc[i].num = rm_res->desc[j].num;
3207 	}
3208 	ret = ti_sci_inta_msi_domain_alloc_irqs(ud->dev, &irq_res);
3209 	kfree(irq_res.desc);
3210 	if (ret) {
3211 		dev_err(ud->dev, "Failed to allocate MSI interrupts\n");
3212 		return ret;
3213 	}
3214 
3215 	/* GP rflow ranges */
3216 	rm_res = tisci_rm->rm_ranges[RM_RANGE_RFLOW];
3217 	if (IS_ERR(rm_res)) {
3218 		/* all gp flows are assigned exclusively to Linux */
3219 		bitmap_clear(ud->rflow_gp_map, ud->rchan_cnt,
3220 			     ud->rflow_cnt - ud->rchan_cnt);
3221 	} else {
3222 		for (i = 0; i < rm_res->sets; i++) {
3223 			rm_desc = &rm_res->desc[i];
3224 			bitmap_clear(ud->rflow_gp_map, rm_desc->start,
3225 				     rm_desc->num);
3226 			dev_dbg(dev, "ti-sci-res: rflow: %d:%d\n",
3227 				rm_desc->start, rm_desc->num);
3228 		}
3229 	}
3230 
3231 	ch_count -= bitmap_weight(ud->tchan_map, ud->tchan_cnt);
3232 	ch_count -= bitmap_weight(ud->rchan_map, ud->rchan_cnt);
3233 	if (!ch_count)
3234 		return -ENODEV;
3235 
3236 	ud->channels = devm_kcalloc(dev, ch_count, sizeof(*ud->channels),
3237 				    GFP_KERNEL);
3238 	if (!ud->channels)
3239 		return -ENOMEM;
3240 
3241 	dev_info(dev, "Channels: %d (tchan: %u, rchan: %u, gp-rflow: %u)\n",
3242 		 ch_count,
3243 		 ud->tchan_cnt - bitmap_weight(ud->tchan_map, ud->tchan_cnt),
3244 		 ud->rchan_cnt - bitmap_weight(ud->rchan_map, ud->rchan_cnt),
3245 		 ud->rflow_cnt - bitmap_weight(ud->rflow_gp_map,
3246 					       ud->rflow_cnt));
3247 
3248 	return ch_count;
3249 }
3250 
3251 #define TI_UDMAC_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
3252 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
3253 				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
3254 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
3255 				 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
3256 
3257 static int udma_probe(struct platform_device *pdev)
3258 {
3259 	struct device_node *navss_node = pdev->dev.parent->of_node;
3260 	struct device *dev = &pdev->dev;
3261 	struct udma_dev *ud;
3262 	const struct of_device_id *match;
3263 	int i, ret;
3264 	int ch_count;
3265 
3266 	ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(48));
3267 	if (ret)
3268 		dev_err(dev, "failed to set dma mask stuff\n");
3269 
3270 	ud = devm_kzalloc(dev, sizeof(*ud), GFP_KERNEL);
3271 	if (!ud)
3272 		return -ENOMEM;
3273 
3274 	ret = udma_get_mmrs(pdev, ud);
3275 	if (ret)
3276 		return ret;
3277 
3278 	ud->tisci_rm.tisci = ti_sci_get_by_phandle(dev->of_node, "ti,sci");
3279 	if (IS_ERR(ud->tisci_rm.tisci))
3280 		return PTR_ERR(ud->tisci_rm.tisci);
3281 
3282 	ret = of_property_read_u32(dev->of_node, "ti,sci-dev-id",
3283 				   &ud->tisci_rm.tisci_dev_id);
3284 	if (ret) {
3285 		dev_err(dev, "ti,sci-dev-id read failure %d\n", ret);
3286 		return ret;
3287 	}
3288 	pdev->id = ud->tisci_rm.tisci_dev_id;
3289 
3290 	ret = of_property_read_u32(navss_node, "ti,sci-dev-id",
3291 				   &ud->tisci_rm.tisci_navss_dev_id);
3292 	if (ret) {
3293 		dev_err(dev, "NAVSS ti,sci-dev-id read failure %d\n", ret);
3294 		return ret;
3295 	}
3296 
3297 	ud->tisci_rm.tisci_udmap_ops = &ud->tisci_rm.tisci->ops.rm_udmap_ops;
3298 	ud->tisci_rm.tisci_psil_ops = &ud->tisci_rm.tisci->ops.rm_psil_ops;
3299 
3300 	ud->ringacc = of_k3_ringacc_get_by_phandle(dev->of_node, "ti,ringacc");
3301 	if (IS_ERR(ud->ringacc))
3302 		return PTR_ERR(ud->ringacc);
3303 
3304 	dev->msi_domain = of_msi_get_domain(dev, dev->of_node,
3305 					    DOMAIN_BUS_TI_SCI_INTA_MSI);
3306 	if (!dev->msi_domain) {
3307 		dev_err(dev, "Failed to get MSI domain\n");
3308 		return -EPROBE_DEFER;
3309 	}
3310 
3311 	match = of_match_node(udma_of_match, dev->of_node);
3312 	if (!match) {
3313 		dev_err(dev, "No compatible match found\n");
3314 		return -ENODEV;
3315 	}
3316 	ud->match_data = match->data;
3317 
3318 	dma_cap_set(DMA_SLAVE, ud->ddev.cap_mask);
3319 	dma_cap_set(DMA_CYCLIC, ud->ddev.cap_mask);
3320 
3321 	ud->ddev.device_alloc_chan_resources = udma_alloc_chan_resources;
3322 	ud->ddev.device_config = udma_slave_config;
3323 	ud->ddev.device_prep_slave_sg = udma_prep_slave_sg;
3324 	ud->ddev.device_prep_dma_cyclic = udma_prep_dma_cyclic;
3325 	ud->ddev.device_issue_pending = udma_issue_pending;
3326 	ud->ddev.device_tx_status = udma_tx_status;
3327 	ud->ddev.device_pause = udma_pause;
3328 	ud->ddev.device_resume = udma_resume;
3329 	ud->ddev.device_terminate_all = udma_terminate_all;
3330 	ud->ddev.device_synchronize = udma_synchronize;
3331 
3332 	ud->ddev.device_free_chan_resources = udma_free_chan_resources;
3333 	ud->ddev.src_addr_widths = TI_UDMAC_BUSWIDTHS;
3334 	ud->ddev.dst_addr_widths = TI_UDMAC_BUSWIDTHS;
3335 	ud->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
3336 	ud->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
3337 	ud->ddev.copy_align = DMAENGINE_ALIGN_8_BYTES;
3338 	ud->ddev.desc_metadata_modes = DESC_METADATA_CLIENT |
3339 				       DESC_METADATA_ENGINE;
3340 	if (ud->match_data->enable_memcpy_support) {
3341 		dma_cap_set(DMA_MEMCPY, ud->ddev.cap_mask);
3342 		ud->ddev.device_prep_dma_memcpy = udma_prep_dma_memcpy;
3343 		ud->ddev.directions |= BIT(DMA_MEM_TO_MEM);
3344 	}
3345 
3346 	ud->ddev.dev = dev;
3347 	ud->dev = dev;
3348 	ud->psil_base = ud->match_data->psil_base;
3349 
3350 	INIT_LIST_HEAD(&ud->ddev.channels);
3351 	INIT_LIST_HEAD(&ud->desc_to_purge);
3352 
3353 	ch_count = udma_setup_resources(ud);
3354 	if (ch_count <= 0)
3355 		return ch_count;
3356 
3357 	spin_lock_init(&ud->lock);
3358 	INIT_WORK(&ud->purge_work, udma_purge_desc_work);
3359 
3360 	ud->desc_align = 64;
3361 	if (ud->desc_align < dma_get_cache_alignment())
3362 		ud->desc_align = dma_get_cache_alignment();
3363 
3364 	for (i = 0; i < ud->tchan_cnt; i++) {
3365 		struct udma_tchan *tchan = &ud->tchans[i];
3366 
3367 		tchan->id = i;
3368 		tchan->reg_rt = ud->mmrs[MMR_TCHANRT] + i * 0x1000;
3369 	}
3370 
3371 	for (i = 0; i < ud->rchan_cnt; i++) {
3372 		struct udma_rchan *rchan = &ud->rchans[i];
3373 
3374 		rchan->id = i;
3375 		rchan->reg_rt = ud->mmrs[MMR_RCHANRT] + i * 0x1000;
3376 	}
3377 
3378 	for (i = 0; i < ud->rflow_cnt; i++) {
3379 		struct udma_rflow *rflow = &ud->rflows[i];
3380 
3381 		rflow->id = i;
3382 	}
3383 
3384 	for (i = 0; i < ch_count; i++) {
3385 		struct udma_chan *uc = &ud->channels[i];
3386 
3387 		uc->ud = ud;
3388 		uc->vc.desc_free = udma_desc_free;
3389 		uc->id = i;
3390 		uc->tchan = NULL;
3391 		uc->rchan = NULL;
3392 		uc->config.remote_thread_id = -1;
3393 		uc->config.dir = DMA_MEM_TO_MEM;
3394 		uc->name = devm_kasprintf(dev, GFP_KERNEL, "%s chan%d",
3395 					  dev_name(dev), i);
3396 
3397 		vchan_init(&uc->vc, &ud->ddev);
3398 		/* Use custom vchan completion handling */
3399 		tasklet_init(&uc->vc.task, udma_vchan_complete,
3400 			     (unsigned long)&uc->vc);
3401 		init_completion(&uc->teardown_completed);
3402 	}
3403 
3404 	ret = dma_async_device_register(&ud->ddev);
3405 	if (ret) {
3406 		dev_err(dev, "failed to register slave DMA engine: %d\n", ret);
3407 		return ret;
3408 	}
3409 
3410 	platform_set_drvdata(pdev, ud);
3411 
3412 	ret = of_dma_controller_register(dev->of_node, udma_of_xlate, ud);
3413 	if (ret) {
3414 		dev_err(dev, "failed to register of_dma controller\n");
3415 		dma_async_device_unregister(&ud->ddev);
3416 	}
3417 
3418 	return ret;
3419 }
3420 
3421 static struct platform_driver udma_driver = {
3422 	.driver = {
3423 		.name	= "ti-udma",
3424 		.of_match_table = udma_of_match,
3425 		.suppress_bind_attrs = true,
3426 	},
3427 	.probe		= udma_probe,
3428 };
3429 builtin_platform_driver(udma_driver);
3430 
3431 /* Private interfaces to UDMA */
3432 #include "k3-udma-private.c"
3433