1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TI EDMA DMA engine driver 4 * 5 * Copyright 2012 Texas Instruments 6 */ 7 8 #include <linux/dmaengine.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/bitmap.h> 11 #include <linux/err.h> 12 #include <linux/init.h> 13 #include <linux/interrupt.h> 14 #include <linux/list.h> 15 #include <linux/module.h> 16 #include <linux/platform_device.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/of.h> 20 #include <linux/of_dma.h> 21 #include <linux/of_irq.h> 22 #include <linux/of_address.h> 23 #include <linux/of_device.h> 24 #include <linux/pm_runtime.h> 25 26 #include <linux/platform_data/edma.h> 27 28 #include "../dmaengine.h" 29 #include "../virt-dma.h" 30 31 /* Offsets matching "struct edmacc_param" */ 32 #define PARM_OPT 0x00 33 #define PARM_SRC 0x04 34 #define PARM_A_B_CNT 0x08 35 #define PARM_DST 0x0c 36 #define PARM_SRC_DST_BIDX 0x10 37 #define PARM_LINK_BCNTRLD 0x14 38 #define PARM_SRC_DST_CIDX 0x18 39 #define PARM_CCNT 0x1c 40 41 #define PARM_SIZE 0x20 42 43 /* Offsets for EDMA CC global channel registers and their shadows */ 44 #define SH_ER 0x00 /* 64 bits */ 45 #define SH_ECR 0x08 /* 64 bits */ 46 #define SH_ESR 0x10 /* 64 bits */ 47 #define SH_CER 0x18 /* 64 bits */ 48 #define SH_EER 0x20 /* 64 bits */ 49 #define SH_EECR 0x28 /* 64 bits */ 50 #define SH_EESR 0x30 /* 64 bits */ 51 #define SH_SER 0x38 /* 64 bits */ 52 #define SH_SECR 0x40 /* 64 bits */ 53 #define SH_IER 0x50 /* 64 bits */ 54 #define SH_IECR 0x58 /* 64 bits */ 55 #define SH_IESR 0x60 /* 64 bits */ 56 #define SH_IPR 0x68 /* 64 bits */ 57 #define SH_ICR 0x70 /* 64 bits */ 58 #define SH_IEVAL 0x78 59 #define SH_QER 0x80 60 #define SH_QEER 0x84 61 #define SH_QEECR 0x88 62 #define SH_QEESR 0x8c 63 #define SH_QSER 0x90 64 #define SH_QSECR 0x94 65 #define SH_SIZE 0x200 66 67 /* Offsets for EDMA CC global registers */ 68 #define EDMA_REV 0x0000 69 #define EDMA_CCCFG 0x0004 70 #define EDMA_QCHMAP 0x0200 /* 8 registers */ 71 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */ 72 #define EDMA_QDMAQNUM 0x0260 73 #define EDMA_QUETCMAP 0x0280 74 #define EDMA_QUEPRI 0x0284 75 #define EDMA_EMR 0x0300 /* 64 bits */ 76 #define EDMA_EMCR 0x0308 /* 64 bits */ 77 #define EDMA_QEMR 0x0310 78 #define EDMA_QEMCR 0x0314 79 #define EDMA_CCERR 0x0318 80 #define EDMA_CCERRCLR 0x031c 81 #define EDMA_EEVAL 0x0320 82 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/ 83 #define EDMA_QRAE 0x0380 /* 4 registers */ 84 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */ 85 #define EDMA_QSTAT 0x0600 /* 2 registers */ 86 #define EDMA_QWMTHRA 0x0620 87 #define EDMA_QWMTHRB 0x0624 88 #define EDMA_CCSTAT 0x0640 89 90 #define EDMA_M 0x1000 /* global channel registers */ 91 #define EDMA_ECR 0x1008 92 #define EDMA_ECRH 0x100C 93 #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */ 94 #define EDMA_PARM 0x4000 /* PaRAM entries */ 95 96 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5)) 97 98 #define EDMA_DCHMAP 0x0100 /* 64 registers */ 99 100 /* CCCFG register */ 101 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */ 102 #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */ 103 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */ 104 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */ 105 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */ 106 #define CHMAP_EXIST BIT(24) 107 108 /* CCSTAT register */ 109 #define EDMA_CCSTAT_ACTV BIT(4) 110 111 /* 112 * Max of 20 segments per channel to conserve PaRAM slots 113 * Also note that MAX_NR_SG should be at least the no.of periods 114 * that are required for ASoC, otherwise DMA prep calls will 115 * fail. Today davinci-pcm is the only user of this driver and 116 * requires at least 17 slots, so we setup the default to 20. 117 */ 118 #define MAX_NR_SG 20 119 #define EDMA_MAX_SLOTS MAX_NR_SG 120 #define EDMA_DESCRIPTORS 16 121 122 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */ 123 #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */ 124 #define EDMA_CONT_PARAMS_ANY 1001 125 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002 126 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003 127 128 /* 129 * 64bit array registers are split into two 32bit registers: 130 * reg0: channel/event 0-31 131 * reg1: channel/event 32-63 132 * 133 * bit 5 in the channel number tells the array index (0/1) 134 * bit 0-4 (0x1f) is the bit offset within the register 135 */ 136 #define EDMA_REG_ARRAY_INDEX(channel) ((channel) >> 5) 137 #define EDMA_CHANNEL_BIT(channel) (BIT((channel) & 0x1f)) 138 139 /* PaRAM slots are laid out like this */ 140 struct edmacc_param { 141 u32 opt; 142 u32 src; 143 u32 a_b_cnt; 144 u32 dst; 145 u32 src_dst_bidx; 146 u32 link_bcntrld; 147 u32 src_dst_cidx; 148 u32 ccnt; 149 } __packed; 150 151 /* fields in edmacc_param.opt */ 152 #define SAM BIT(0) 153 #define DAM BIT(1) 154 #define SYNCDIM BIT(2) 155 #define STATIC BIT(3) 156 #define EDMA_FWID (0x07 << 8) 157 #define TCCMODE BIT(11) 158 #define EDMA_TCC(t) ((t) << 12) 159 #define TCINTEN BIT(20) 160 #define ITCINTEN BIT(21) 161 #define TCCHEN BIT(22) 162 #define ITCCHEN BIT(23) 163 164 struct edma_pset { 165 u32 len; 166 dma_addr_t addr; 167 struct edmacc_param param; 168 }; 169 170 struct edma_desc { 171 struct virt_dma_desc vdesc; 172 struct list_head node; 173 enum dma_transfer_direction direction; 174 int cyclic; 175 bool polled; 176 int absync; 177 int pset_nr; 178 struct edma_chan *echan; 179 int processed; 180 181 /* 182 * The following 4 elements are used for residue accounting. 183 * 184 * - processed_stat: the number of SG elements we have traversed 185 * so far to cover accounting. This is updated directly to processed 186 * during edma_callback and is always <= processed, because processed 187 * refers to the number of pending transfer (programmed to EDMA 188 * controller), where as processed_stat tracks number of transfers 189 * accounted for so far. 190 * 191 * - residue: The amount of bytes we have left to transfer for this desc 192 * 193 * - residue_stat: The residue in bytes of data we have covered 194 * so far for accounting. This is updated directly to residue 195 * during callbacks to keep it current. 196 * 197 * - sg_len: Tracks the length of the current intermediate transfer, 198 * this is required to update the residue during intermediate transfer 199 * completion callback. 200 */ 201 int processed_stat; 202 u32 sg_len; 203 u32 residue; 204 u32 residue_stat; 205 206 struct edma_pset pset[]; 207 }; 208 209 struct edma_cc; 210 211 struct edma_tc { 212 struct device_node *node; 213 u16 id; 214 }; 215 216 struct edma_chan { 217 struct virt_dma_chan vchan; 218 struct list_head node; 219 struct edma_desc *edesc; 220 struct edma_cc *ecc; 221 struct edma_tc *tc; 222 int ch_num; 223 bool alloced; 224 bool hw_triggered; 225 int slot[EDMA_MAX_SLOTS]; 226 int missed; 227 struct dma_slave_config cfg; 228 }; 229 230 struct edma_cc { 231 struct device *dev; 232 struct edma_soc_info *info; 233 void __iomem *base; 234 int id; 235 bool legacy_mode; 236 237 /* eDMA3 resource information */ 238 unsigned num_channels; 239 unsigned num_qchannels; 240 unsigned num_region; 241 unsigned num_slots; 242 unsigned num_tc; 243 bool chmap_exist; 244 enum dma_event_q default_queue; 245 246 unsigned int ccint; 247 unsigned int ccerrint; 248 249 /* 250 * The slot_inuse bit for each PaRAM slot is clear unless the slot is 251 * in use by Linux or if it is allocated to be used by DSP. 252 */ 253 unsigned long *slot_inuse; 254 255 /* 256 * For tracking reserved channels used by DSP. 257 * If the bit is cleared, the channel is allocated to be used by DSP 258 * and Linux must not touch it. 259 */ 260 unsigned long *channels_mask; 261 262 struct dma_device dma_slave; 263 struct dma_device *dma_memcpy; 264 struct edma_chan *slave_chans; 265 struct edma_tc *tc_list; 266 int dummy_slot; 267 }; 268 269 /* dummy param set used to (re)initialize parameter RAM slots */ 270 static const struct edmacc_param dummy_paramset = { 271 .link_bcntrld = 0xffff, 272 .ccnt = 1, 273 }; 274 275 #define EDMA_BINDING_LEGACY 0 276 #define EDMA_BINDING_TPCC 1 277 static const u32 edma_binding_type[] = { 278 [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY, 279 [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC, 280 }; 281 282 static const struct of_device_id edma_of_ids[] = { 283 { 284 .compatible = "ti,edma3", 285 .data = &edma_binding_type[EDMA_BINDING_LEGACY], 286 }, 287 { 288 .compatible = "ti,edma3-tpcc", 289 .data = &edma_binding_type[EDMA_BINDING_TPCC], 290 }, 291 {} 292 }; 293 MODULE_DEVICE_TABLE(of, edma_of_ids); 294 295 static const struct of_device_id edma_tptc_of_ids[] = { 296 { .compatible = "ti,edma3-tptc", }, 297 {} 298 }; 299 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids); 300 301 static inline unsigned int edma_read(struct edma_cc *ecc, int offset) 302 { 303 return (unsigned int)__raw_readl(ecc->base + offset); 304 } 305 306 static inline void edma_write(struct edma_cc *ecc, int offset, int val) 307 { 308 __raw_writel(val, ecc->base + offset); 309 } 310 311 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and, 312 unsigned or) 313 { 314 unsigned val = edma_read(ecc, offset); 315 316 val &= and; 317 val |= or; 318 edma_write(ecc, offset, val); 319 } 320 321 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and) 322 { 323 unsigned val = edma_read(ecc, offset); 324 325 val &= and; 326 edma_write(ecc, offset, val); 327 } 328 329 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or) 330 { 331 unsigned val = edma_read(ecc, offset); 332 333 val |= or; 334 edma_write(ecc, offset, val); 335 } 336 337 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset, 338 int i) 339 { 340 return edma_read(ecc, offset + (i << 2)); 341 } 342 343 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i, 344 unsigned val) 345 { 346 edma_write(ecc, offset + (i << 2), val); 347 } 348 349 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i, 350 unsigned and, unsigned or) 351 { 352 edma_modify(ecc, offset + (i << 2), and, or); 353 } 354 355 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j, 356 unsigned or) 357 { 358 edma_or(ecc, offset + ((i * 2 + j) << 2), or); 359 } 360 361 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i, 362 int j, unsigned val) 363 { 364 edma_write(ecc, offset + ((i * 2 + j) << 2), val); 365 } 366 367 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc, 368 int offset, int i) 369 { 370 return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2)); 371 } 372 373 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset, 374 unsigned val) 375 { 376 edma_write(ecc, EDMA_SHADOW0 + offset, val); 377 } 378 379 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset, 380 int i, unsigned val) 381 { 382 edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val); 383 } 384 385 static inline void edma_param_modify(struct edma_cc *ecc, int offset, 386 int param_no, unsigned and, unsigned or) 387 { 388 edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or); 389 } 390 391 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no, 392 int priority) 393 { 394 int bit = queue_no * 4; 395 396 edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit)); 397 } 398 399 static void edma_set_chmap(struct edma_chan *echan, int slot) 400 { 401 struct edma_cc *ecc = echan->ecc; 402 int channel = EDMA_CHAN_SLOT(echan->ch_num); 403 404 if (ecc->chmap_exist) { 405 slot = EDMA_CHAN_SLOT(slot); 406 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5)); 407 } 408 } 409 410 static void edma_setup_interrupt(struct edma_chan *echan, bool enable) 411 { 412 struct edma_cc *ecc = echan->ecc; 413 int channel = EDMA_CHAN_SLOT(echan->ch_num); 414 int idx = EDMA_REG_ARRAY_INDEX(channel); 415 int ch_bit = EDMA_CHANNEL_BIT(channel); 416 417 if (enable) { 418 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit); 419 edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit); 420 } else { 421 edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit); 422 } 423 } 424 425 /* 426 * paRAM slot management functions 427 */ 428 static void edma_write_slot(struct edma_cc *ecc, unsigned slot, 429 const struct edmacc_param *param) 430 { 431 slot = EDMA_CHAN_SLOT(slot); 432 if (slot >= ecc->num_slots) 433 return; 434 memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE); 435 } 436 437 static int edma_read_slot(struct edma_cc *ecc, unsigned slot, 438 struct edmacc_param *param) 439 { 440 slot = EDMA_CHAN_SLOT(slot); 441 if (slot >= ecc->num_slots) 442 return -EINVAL; 443 memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE); 444 445 return 0; 446 } 447 448 /** 449 * edma_alloc_slot - allocate DMA parameter RAM 450 * @ecc: pointer to edma_cc struct 451 * @slot: specific slot to allocate; negative for "any unused slot" 452 * 453 * This allocates a parameter RAM slot, initializing it to hold a 454 * dummy transfer. Slots allocated using this routine have not been 455 * mapped to a hardware DMA channel, and will normally be used by 456 * linking to them from a slot associated with a DMA channel. 457 * 458 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific 459 * slots may be allocated on behalf of DSP firmware. 460 * 461 * Returns the number of the slot, else negative errno. 462 */ 463 static int edma_alloc_slot(struct edma_cc *ecc, int slot) 464 { 465 if (slot >= 0) { 466 slot = EDMA_CHAN_SLOT(slot); 467 /* Requesting entry paRAM slot for a HW triggered channel. */ 468 if (ecc->chmap_exist && slot < ecc->num_channels) 469 slot = EDMA_SLOT_ANY; 470 } 471 472 if (slot < 0) { 473 if (ecc->chmap_exist) 474 slot = 0; 475 else 476 slot = ecc->num_channels; 477 for (;;) { 478 slot = find_next_zero_bit(ecc->slot_inuse, 479 ecc->num_slots, 480 slot); 481 if (slot == ecc->num_slots) 482 return -ENOMEM; 483 if (!test_and_set_bit(slot, ecc->slot_inuse)) 484 break; 485 } 486 } else if (slot >= ecc->num_slots) { 487 return -EINVAL; 488 } else if (test_and_set_bit(slot, ecc->slot_inuse)) { 489 return -EBUSY; 490 } 491 492 edma_write_slot(ecc, slot, &dummy_paramset); 493 494 return EDMA_CTLR_CHAN(ecc->id, slot); 495 } 496 497 static void edma_free_slot(struct edma_cc *ecc, unsigned slot) 498 { 499 slot = EDMA_CHAN_SLOT(slot); 500 if (slot >= ecc->num_slots) 501 return; 502 503 edma_write_slot(ecc, slot, &dummy_paramset); 504 clear_bit(slot, ecc->slot_inuse); 505 } 506 507 /** 508 * edma_link - link one parameter RAM slot to another 509 * @ecc: pointer to edma_cc struct 510 * @from: parameter RAM slot originating the link 511 * @to: parameter RAM slot which is the link target 512 * 513 * The originating slot should not be part of any active DMA transfer. 514 */ 515 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to) 516 { 517 if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to))) 518 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n"); 519 520 from = EDMA_CHAN_SLOT(from); 521 to = EDMA_CHAN_SLOT(to); 522 if (from >= ecc->num_slots || to >= ecc->num_slots) 523 return; 524 525 edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000, 526 PARM_OFFSET(to)); 527 } 528 529 /** 530 * edma_get_position - returns the current transfer point 531 * @ecc: pointer to edma_cc struct 532 * @slot: parameter RAM slot being examined 533 * @dst: true selects the dest position, false the source 534 * 535 * Returns the position of the current active slot 536 */ 537 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot, 538 bool dst) 539 { 540 u32 offs; 541 542 slot = EDMA_CHAN_SLOT(slot); 543 offs = PARM_OFFSET(slot); 544 offs += dst ? PARM_DST : PARM_SRC; 545 546 return edma_read(ecc, offs); 547 } 548 549 /* 550 * Channels with event associations will be triggered by their hardware 551 * events, and channels without such associations will be triggered by 552 * software. (At this writing there is no interface for using software 553 * triggers except with channels that don't support hardware triggers.) 554 */ 555 static void edma_start(struct edma_chan *echan) 556 { 557 struct edma_cc *ecc = echan->ecc; 558 int channel = EDMA_CHAN_SLOT(echan->ch_num); 559 int idx = EDMA_REG_ARRAY_INDEX(channel); 560 int ch_bit = EDMA_CHANNEL_BIT(channel); 561 562 if (!echan->hw_triggered) { 563 /* EDMA channels without event association */ 564 dev_dbg(ecc->dev, "ESR%d %08x\n", idx, 565 edma_shadow0_read_array(ecc, SH_ESR, idx)); 566 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit); 567 } else { 568 /* EDMA channel with event association */ 569 dev_dbg(ecc->dev, "ER%d %08x\n", idx, 570 edma_shadow0_read_array(ecc, SH_ER, idx)); 571 /* Clear any pending event or error */ 572 edma_write_array(ecc, EDMA_ECR, idx, ch_bit); 573 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); 574 /* Clear any SER */ 575 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); 576 edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit); 577 dev_dbg(ecc->dev, "EER%d %08x\n", idx, 578 edma_shadow0_read_array(ecc, SH_EER, idx)); 579 } 580 } 581 582 static void edma_stop(struct edma_chan *echan) 583 { 584 struct edma_cc *ecc = echan->ecc; 585 int channel = EDMA_CHAN_SLOT(echan->ch_num); 586 int idx = EDMA_REG_ARRAY_INDEX(channel); 587 int ch_bit = EDMA_CHANNEL_BIT(channel); 588 589 edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit); 590 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit); 591 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); 592 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); 593 594 /* clear possibly pending completion interrupt */ 595 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit); 596 597 dev_dbg(ecc->dev, "EER%d %08x\n", idx, 598 edma_shadow0_read_array(ecc, SH_EER, idx)); 599 600 /* REVISIT: consider guarding against inappropriate event 601 * chaining by overwriting with dummy_paramset. 602 */ 603 } 604 605 /* 606 * Temporarily disable EDMA hardware events on the specified channel, 607 * preventing them from triggering new transfers 608 */ 609 static void edma_pause(struct edma_chan *echan) 610 { 611 int channel = EDMA_CHAN_SLOT(echan->ch_num); 612 613 edma_shadow0_write_array(echan->ecc, SH_EECR, 614 EDMA_REG_ARRAY_INDEX(channel), 615 EDMA_CHANNEL_BIT(channel)); 616 } 617 618 /* Re-enable EDMA hardware events on the specified channel. */ 619 static void edma_resume(struct edma_chan *echan) 620 { 621 int channel = EDMA_CHAN_SLOT(echan->ch_num); 622 623 edma_shadow0_write_array(echan->ecc, SH_EESR, 624 EDMA_REG_ARRAY_INDEX(channel), 625 EDMA_CHANNEL_BIT(channel)); 626 } 627 628 static void edma_trigger_channel(struct edma_chan *echan) 629 { 630 struct edma_cc *ecc = echan->ecc; 631 int channel = EDMA_CHAN_SLOT(echan->ch_num); 632 int idx = EDMA_REG_ARRAY_INDEX(channel); 633 int ch_bit = EDMA_CHANNEL_BIT(channel); 634 635 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit); 636 637 dev_dbg(ecc->dev, "ESR%d %08x\n", idx, 638 edma_shadow0_read_array(ecc, SH_ESR, idx)); 639 } 640 641 static void edma_clean_channel(struct edma_chan *echan) 642 { 643 struct edma_cc *ecc = echan->ecc; 644 int channel = EDMA_CHAN_SLOT(echan->ch_num); 645 int idx = EDMA_REG_ARRAY_INDEX(channel); 646 int ch_bit = EDMA_CHANNEL_BIT(channel); 647 648 dev_dbg(ecc->dev, "EMR%d %08x\n", idx, 649 edma_read_array(ecc, EDMA_EMR, idx)); 650 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit); 651 /* Clear the corresponding EMR bits */ 652 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); 653 /* Clear any SER */ 654 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); 655 edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0)); 656 } 657 658 /* Move channel to a specific event queue */ 659 static void edma_assign_channel_eventq(struct edma_chan *echan, 660 enum dma_event_q eventq_no) 661 { 662 struct edma_cc *ecc = echan->ecc; 663 int channel = EDMA_CHAN_SLOT(echan->ch_num); 664 int bit = (channel & 0x7) * 4; 665 666 /* default to low priority queue */ 667 if (eventq_no == EVENTQ_DEFAULT) 668 eventq_no = ecc->default_queue; 669 if (eventq_no >= ecc->num_tc) 670 return; 671 672 eventq_no &= 7; 673 edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit), 674 eventq_no << bit); 675 } 676 677 static int edma_alloc_channel(struct edma_chan *echan, 678 enum dma_event_q eventq_no) 679 { 680 struct edma_cc *ecc = echan->ecc; 681 int channel = EDMA_CHAN_SLOT(echan->ch_num); 682 683 if (!test_bit(echan->ch_num, ecc->channels_mask)) { 684 dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n", 685 echan->ch_num); 686 return -EINVAL; 687 } 688 689 /* ensure access through shadow region 0 */ 690 edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel), 691 EDMA_CHANNEL_BIT(channel)); 692 693 /* ensure no events are pending */ 694 edma_stop(echan); 695 696 edma_setup_interrupt(echan, true); 697 698 edma_assign_channel_eventq(echan, eventq_no); 699 700 return 0; 701 } 702 703 static void edma_free_channel(struct edma_chan *echan) 704 { 705 /* ensure no events are pending */ 706 edma_stop(echan); 707 /* REVISIT should probably take out of shadow region 0 */ 708 edma_setup_interrupt(echan, false); 709 } 710 711 static inline struct edma_chan *to_edma_chan(struct dma_chan *c) 712 { 713 return container_of(c, struct edma_chan, vchan.chan); 714 } 715 716 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx) 717 { 718 return container_of(tx, struct edma_desc, vdesc.tx); 719 } 720 721 static void edma_desc_free(struct virt_dma_desc *vdesc) 722 { 723 kfree(container_of(vdesc, struct edma_desc, vdesc)); 724 } 725 726 /* Dispatch a queued descriptor to the controller (caller holds lock) */ 727 static void edma_execute(struct edma_chan *echan) 728 { 729 struct edma_cc *ecc = echan->ecc; 730 struct virt_dma_desc *vdesc; 731 struct edma_desc *edesc; 732 struct device *dev = echan->vchan.chan.device->dev; 733 int i, j, left, nslots; 734 735 if (!echan->edesc) { 736 /* Setup is needed for the first transfer */ 737 vdesc = vchan_next_desc(&echan->vchan); 738 if (!vdesc) 739 return; 740 list_del(&vdesc->node); 741 echan->edesc = to_edma_desc(&vdesc->tx); 742 } 743 744 edesc = echan->edesc; 745 746 /* Find out how many left */ 747 left = edesc->pset_nr - edesc->processed; 748 nslots = min(MAX_NR_SG, left); 749 edesc->sg_len = 0; 750 751 /* Write descriptor PaRAM set(s) */ 752 for (i = 0; i < nslots; i++) { 753 j = i + edesc->processed; 754 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param); 755 edesc->sg_len += edesc->pset[j].len; 756 dev_vdbg(dev, 757 "\n pset[%d]:\n" 758 " chnum\t%d\n" 759 " slot\t%d\n" 760 " opt\t%08x\n" 761 " src\t%08x\n" 762 " dst\t%08x\n" 763 " abcnt\t%08x\n" 764 " ccnt\t%08x\n" 765 " bidx\t%08x\n" 766 " cidx\t%08x\n" 767 " lkrld\t%08x\n", 768 j, echan->ch_num, echan->slot[i], 769 edesc->pset[j].param.opt, 770 edesc->pset[j].param.src, 771 edesc->pset[j].param.dst, 772 edesc->pset[j].param.a_b_cnt, 773 edesc->pset[j].param.ccnt, 774 edesc->pset[j].param.src_dst_bidx, 775 edesc->pset[j].param.src_dst_cidx, 776 edesc->pset[j].param.link_bcntrld); 777 /* Link to the previous slot if not the last set */ 778 if (i != (nslots - 1)) 779 edma_link(ecc, echan->slot[i], echan->slot[i + 1]); 780 } 781 782 edesc->processed += nslots; 783 784 /* 785 * If this is either the last set in a set of SG-list transactions 786 * then setup a link to the dummy slot, this results in all future 787 * events being absorbed and that's OK because we're done 788 */ 789 if (edesc->processed == edesc->pset_nr) { 790 if (edesc->cyclic) 791 edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]); 792 else 793 edma_link(ecc, echan->slot[nslots - 1], 794 echan->ecc->dummy_slot); 795 } 796 797 if (echan->missed) { 798 /* 799 * This happens due to setup times between intermediate 800 * transfers in long SG lists which have to be broken up into 801 * transfers of MAX_NR_SG 802 */ 803 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num); 804 edma_clean_channel(echan); 805 edma_stop(echan); 806 edma_start(echan); 807 edma_trigger_channel(echan); 808 echan->missed = 0; 809 } else if (edesc->processed <= MAX_NR_SG) { 810 dev_dbg(dev, "first transfer starting on channel %d\n", 811 echan->ch_num); 812 edma_start(echan); 813 } else { 814 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n", 815 echan->ch_num, edesc->processed); 816 edma_resume(echan); 817 } 818 } 819 820 static int edma_terminate_all(struct dma_chan *chan) 821 { 822 struct edma_chan *echan = to_edma_chan(chan); 823 unsigned long flags; 824 LIST_HEAD(head); 825 826 spin_lock_irqsave(&echan->vchan.lock, flags); 827 828 /* 829 * Stop DMA activity: we assume the callback will not be called 830 * after edma_dma() returns (even if it does, it will see 831 * echan->edesc is NULL and exit.) 832 */ 833 if (echan->edesc) { 834 edma_stop(echan); 835 /* Move the cyclic channel back to default queue */ 836 if (!echan->tc && echan->edesc->cyclic) 837 edma_assign_channel_eventq(echan, EVENTQ_DEFAULT); 838 839 vchan_terminate_vdesc(&echan->edesc->vdesc); 840 echan->edesc = NULL; 841 } 842 843 vchan_get_all_descriptors(&echan->vchan, &head); 844 spin_unlock_irqrestore(&echan->vchan.lock, flags); 845 vchan_dma_desc_free_list(&echan->vchan, &head); 846 847 return 0; 848 } 849 850 static void edma_synchronize(struct dma_chan *chan) 851 { 852 struct edma_chan *echan = to_edma_chan(chan); 853 854 vchan_synchronize(&echan->vchan); 855 } 856 857 static int edma_slave_config(struct dma_chan *chan, 858 struct dma_slave_config *cfg) 859 { 860 struct edma_chan *echan = to_edma_chan(chan); 861 862 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || 863 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) 864 return -EINVAL; 865 866 if (cfg->src_maxburst > chan->device->max_burst || 867 cfg->dst_maxburst > chan->device->max_burst) 868 return -EINVAL; 869 870 memcpy(&echan->cfg, cfg, sizeof(echan->cfg)); 871 872 return 0; 873 } 874 875 static int edma_dma_pause(struct dma_chan *chan) 876 { 877 struct edma_chan *echan = to_edma_chan(chan); 878 879 if (!echan->edesc) 880 return -EINVAL; 881 882 edma_pause(echan); 883 return 0; 884 } 885 886 static int edma_dma_resume(struct dma_chan *chan) 887 { 888 struct edma_chan *echan = to_edma_chan(chan); 889 890 edma_resume(echan); 891 return 0; 892 } 893 894 /* 895 * A PaRAM set configuration abstraction used by other modes 896 * @chan: Channel who's PaRAM set we're configuring 897 * @pset: PaRAM set to initialize and setup. 898 * @src_addr: Source address of the DMA 899 * @dst_addr: Destination address of the DMA 900 * @burst: In units of dev_width, how much to send 901 * @dev_width: How much is the dev_width 902 * @dma_length: Total length of the DMA transfer 903 * @direction: Direction of the transfer 904 */ 905 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset, 906 dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst, 907 unsigned int acnt, unsigned int dma_length, 908 enum dma_transfer_direction direction) 909 { 910 struct edma_chan *echan = to_edma_chan(chan); 911 struct device *dev = chan->device->dev; 912 struct edmacc_param *param = &epset->param; 913 int bcnt, ccnt, cidx; 914 int src_bidx, dst_bidx, src_cidx, dst_cidx; 915 int absync; 916 917 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */ 918 if (!burst) 919 burst = 1; 920 /* 921 * If the maxburst is equal to the fifo width, use 922 * A-synced transfers. This allows for large contiguous 923 * buffer transfers using only one PaRAM set. 924 */ 925 if (burst == 1) { 926 /* 927 * For the A-sync case, bcnt and ccnt are the remainder 928 * and quotient respectively of the division of: 929 * (dma_length / acnt) by (SZ_64K -1). This is so 930 * that in case bcnt over flows, we have ccnt to use. 931 * Note: In A-sync transfer only, bcntrld is used, but it 932 * only applies for sg_dma_len(sg) >= SZ_64K. 933 * In this case, the best way adopted is- bccnt for the 934 * first frame will be the remainder below. Then for 935 * every successive frame, bcnt will be SZ_64K-1. This 936 * is assured as bcntrld = 0xffff in end of function. 937 */ 938 absync = false; 939 ccnt = dma_length / acnt / (SZ_64K - 1); 940 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1); 941 /* 942 * If bcnt is non-zero, we have a remainder and hence an 943 * extra frame to transfer, so increment ccnt. 944 */ 945 if (bcnt) 946 ccnt++; 947 else 948 bcnt = SZ_64K - 1; 949 cidx = acnt; 950 } else { 951 /* 952 * If maxburst is greater than the fifo address_width, 953 * use AB-synced transfers where A count is the fifo 954 * address_width and B count is the maxburst. In this 955 * case, we are limited to transfers of C count frames 956 * of (address_width * maxburst) where C count is limited 957 * to SZ_64K-1. This places an upper bound on the length 958 * of an SG segment that can be handled. 959 */ 960 absync = true; 961 bcnt = burst; 962 ccnt = dma_length / (acnt * bcnt); 963 if (ccnt > (SZ_64K - 1)) { 964 dev_err(dev, "Exceeded max SG segment size\n"); 965 return -EINVAL; 966 } 967 cidx = acnt * bcnt; 968 } 969 970 epset->len = dma_length; 971 972 if (direction == DMA_MEM_TO_DEV) { 973 src_bidx = acnt; 974 src_cidx = cidx; 975 dst_bidx = 0; 976 dst_cidx = 0; 977 epset->addr = src_addr; 978 } else if (direction == DMA_DEV_TO_MEM) { 979 src_bidx = 0; 980 src_cidx = 0; 981 dst_bidx = acnt; 982 dst_cidx = cidx; 983 epset->addr = dst_addr; 984 } else if (direction == DMA_MEM_TO_MEM) { 985 src_bidx = acnt; 986 src_cidx = cidx; 987 dst_bidx = acnt; 988 dst_cidx = cidx; 989 epset->addr = src_addr; 990 } else { 991 dev_err(dev, "%s: direction not implemented yet\n", __func__); 992 return -EINVAL; 993 } 994 995 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); 996 /* Configure A or AB synchronized transfers */ 997 if (absync) 998 param->opt |= SYNCDIM; 999 1000 param->src = src_addr; 1001 param->dst = dst_addr; 1002 1003 param->src_dst_bidx = (dst_bidx << 16) | src_bidx; 1004 param->src_dst_cidx = (dst_cidx << 16) | src_cidx; 1005 1006 param->a_b_cnt = bcnt << 16 | acnt; 1007 param->ccnt = ccnt; 1008 /* 1009 * Only time when (bcntrld) auto reload is required is for 1010 * A-sync case, and in this case, a requirement of reload value 1011 * of SZ_64K-1 only is assured. 'link' is initially set to NULL 1012 * and then later will be populated by edma_execute. 1013 */ 1014 param->link_bcntrld = 0xffffffff; 1015 return absync; 1016 } 1017 1018 static struct dma_async_tx_descriptor *edma_prep_slave_sg( 1019 struct dma_chan *chan, struct scatterlist *sgl, 1020 unsigned int sg_len, enum dma_transfer_direction direction, 1021 unsigned long tx_flags, void *context) 1022 { 1023 struct edma_chan *echan = to_edma_chan(chan); 1024 struct device *dev = chan->device->dev; 1025 struct edma_desc *edesc; 1026 dma_addr_t src_addr = 0, dst_addr = 0; 1027 enum dma_slave_buswidth dev_width; 1028 u32 burst; 1029 struct scatterlist *sg; 1030 int i, nslots, ret; 1031 1032 if (unlikely(!echan || !sgl || !sg_len)) 1033 return NULL; 1034 1035 if (direction == DMA_DEV_TO_MEM) { 1036 src_addr = echan->cfg.src_addr; 1037 dev_width = echan->cfg.src_addr_width; 1038 burst = echan->cfg.src_maxburst; 1039 } else if (direction == DMA_MEM_TO_DEV) { 1040 dst_addr = echan->cfg.dst_addr; 1041 dev_width = echan->cfg.dst_addr_width; 1042 burst = echan->cfg.dst_maxburst; 1043 } else { 1044 dev_err(dev, "%s: bad direction: %d\n", __func__, direction); 1045 return NULL; 1046 } 1047 1048 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { 1049 dev_err(dev, "%s: Undefined slave buswidth\n", __func__); 1050 return NULL; 1051 } 1052 1053 edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC); 1054 if (!edesc) 1055 return NULL; 1056 1057 edesc->pset_nr = sg_len; 1058 edesc->residue = 0; 1059 edesc->direction = direction; 1060 edesc->echan = echan; 1061 1062 /* Allocate a PaRAM slot, if needed */ 1063 nslots = min_t(unsigned, MAX_NR_SG, sg_len); 1064 1065 for (i = 0; i < nslots; i++) { 1066 if (echan->slot[i] < 0) { 1067 echan->slot[i] = 1068 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); 1069 if (echan->slot[i] < 0) { 1070 kfree(edesc); 1071 dev_err(dev, "%s: Failed to allocate slot\n", 1072 __func__); 1073 return NULL; 1074 } 1075 } 1076 } 1077 1078 /* Configure PaRAM sets for each SG */ 1079 for_each_sg(sgl, sg, sg_len, i) { 1080 /* Get address for each SG */ 1081 if (direction == DMA_DEV_TO_MEM) 1082 dst_addr = sg_dma_address(sg); 1083 else 1084 src_addr = sg_dma_address(sg); 1085 1086 ret = edma_config_pset(chan, &edesc->pset[i], src_addr, 1087 dst_addr, burst, dev_width, 1088 sg_dma_len(sg), direction); 1089 if (ret < 0) { 1090 kfree(edesc); 1091 return NULL; 1092 } 1093 1094 edesc->absync = ret; 1095 edesc->residue += sg_dma_len(sg); 1096 1097 if (i == sg_len - 1) 1098 /* Enable completion interrupt */ 1099 edesc->pset[i].param.opt |= TCINTEN; 1100 else if (!((i+1) % MAX_NR_SG)) 1101 /* 1102 * Enable early completion interrupt for the 1103 * intermediateset. In this case the driver will be 1104 * notified when the paRAM set is submitted to TC. This 1105 * will allow more time to set up the next set of slots. 1106 */ 1107 edesc->pset[i].param.opt |= (TCINTEN | TCCMODE); 1108 } 1109 edesc->residue_stat = edesc->residue; 1110 1111 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1112 } 1113 1114 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy( 1115 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1116 size_t len, unsigned long tx_flags) 1117 { 1118 int ret, nslots; 1119 struct edma_desc *edesc; 1120 struct device *dev = chan->device->dev; 1121 struct edma_chan *echan = to_edma_chan(chan); 1122 unsigned int width, pset_len, array_size; 1123 1124 if (unlikely(!echan || !len)) 1125 return NULL; 1126 1127 /* Align the array size (acnt block) with the transfer properties */ 1128 switch (__ffs((src | dest | len))) { 1129 case 0: 1130 array_size = SZ_32K - 1; 1131 break; 1132 case 1: 1133 array_size = SZ_32K - 2; 1134 break; 1135 default: 1136 array_size = SZ_32K - 4; 1137 break; 1138 } 1139 1140 if (len < SZ_64K) { 1141 /* 1142 * Transfer size less than 64K can be handled with one paRAM 1143 * slot and with one burst. 1144 * ACNT = length 1145 */ 1146 width = len; 1147 pset_len = len; 1148 nslots = 1; 1149 } else { 1150 /* 1151 * Transfer size bigger than 64K will be handled with maximum of 1152 * two paRAM slots. 1153 * slot1: (full_length / 32767) times 32767 bytes bursts. 1154 * ACNT = 32767, length1: (full_length / 32767) * 32767 1155 * slot2: the remaining amount of data after slot1. 1156 * ACNT = full_length - length1, length2 = ACNT 1157 * 1158 * When the full_length is a multiple of 32767 one slot can be 1159 * used to complete the transfer. 1160 */ 1161 width = array_size; 1162 pset_len = rounddown(len, width); 1163 /* One slot is enough for lengths multiple of (SZ_32K -1) */ 1164 if (unlikely(pset_len == len)) 1165 nslots = 1; 1166 else 1167 nslots = 2; 1168 } 1169 1170 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC); 1171 if (!edesc) 1172 return NULL; 1173 1174 edesc->pset_nr = nslots; 1175 edesc->residue = edesc->residue_stat = len; 1176 edesc->direction = DMA_MEM_TO_MEM; 1177 edesc->echan = echan; 1178 1179 ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1, 1180 width, pset_len, DMA_MEM_TO_MEM); 1181 if (ret < 0) { 1182 kfree(edesc); 1183 return NULL; 1184 } 1185 1186 edesc->absync = ret; 1187 1188 edesc->pset[0].param.opt |= ITCCHEN; 1189 if (nslots == 1) { 1190 /* Enable transfer complete interrupt if requested */ 1191 if (tx_flags & DMA_PREP_INTERRUPT) 1192 edesc->pset[0].param.opt |= TCINTEN; 1193 } else { 1194 /* Enable transfer complete chaining for the first slot */ 1195 edesc->pset[0].param.opt |= TCCHEN; 1196 1197 if (echan->slot[1] < 0) { 1198 echan->slot[1] = edma_alloc_slot(echan->ecc, 1199 EDMA_SLOT_ANY); 1200 if (echan->slot[1] < 0) { 1201 kfree(edesc); 1202 dev_err(dev, "%s: Failed to allocate slot\n", 1203 __func__); 1204 return NULL; 1205 } 1206 } 1207 dest += pset_len; 1208 src += pset_len; 1209 pset_len = width = len % array_size; 1210 1211 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1, 1212 width, pset_len, DMA_MEM_TO_MEM); 1213 if (ret < 0) { 1214 kfree(edesc); 1215 return NULL; 1216 } 1217 1218 edesc->pset[1].param.opt |= ITCCHEN; 1219 /* Enable transfer complete interrupt if requested */ 1220 if (tx_flags & DMA_PREP_INTERRUPT) 1221 edesc->pset[1].param.opt |= TCINTEN; 1222 } 1223 1224 if (!(tx_flags & DMA_PREP_INTERRUPT)) 1225 edesc->polled = true; 1226 1227 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1228 } 1229 1230 static struct dma_async_tx_descriptor * 1231 edma_prep_dma_interleaved(struct dma_chan *chan, 1232 struct dma_interleaved_template *xt, 1233 unsigned long tx_flags) 1234 { 1235 struct device *dev = chan->device->dev; 1236 struct edma_chan *echan = to_edma_chan(chan); 1237 struct edmacc_param *param; 1238 struct edma_desc *edesc; 1239 size_t src_icg, dst_icg; 1240 int src_bidx, dst_bidx; 1241 1242 /* Slave mode is not supported */ 1243 if (is_slave_direction(xt->dir)) 1244 return NULL; 1245 1246 if (xt->frame_size != 1 || xt->numf == 0) 1247 return NULL; 1248 1249 if (xt->sgl[0].size > SZ_64K || xt->numf > SZ_64K) 1250 return NULL; 1251 1252 src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]); 1253 if (src_icg) { 1254 src_bidx = src_icg + xt->sgl[0].size; 1255 } else if (xt->src_inc) { 1256 src_bidx = xt->sgl[0].size; 1257 } else { 1258 dev_err(dev, "%s: SRC constant addressing is not supported\n", 1259 __func__); 1260 return NULL; 1261 } 1262 1263 dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]); 1264 if (dst_icg) { 1265 dst_bidx = dst_icg + xt->sgl[0].size; 1266 } else if (xt->dst_inc) { 1267 dst_bidx = xt->sgl[0].size; 1268 } else { 1269 dev_err(dev, "%s: DST constant addressing is not supported\n", 1270 __func__); 1271 return NULL; 1272 } 1273 1274 if (src_bidx > SZ_64K || dst_bidx > SZ_64K) 1275 return NULL; 1276 1277 edesc = kzalloc(struct_size(edesc, pset, 1), GFP_ATOMIC); 1278 if (!edesc) 1279 return NULL; 1280 1281 edesc->direction = DMA_MEM_TO_MEM; 1282 edesc->echan = echan; 1283 edesc->pset_nr = 1; 1284 1285 param = &edesc->pset[0].param; 1286 1287 param->src = xt->src_start; 1288 param->dst = xt->dst_start; 1289 param->a_b_cnt = xt->numf << 16 | xt->sgl[0].size; 1290 param->ccnt = 1; 1291 param->src_dst_bidx = (dst_bidx << 16) | src_bidx; 1292 param->src_dst_cidx = 0; 1293 1294 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); 1295 param->opt |= ITCCHEN; 1296 /* Enable transfer complete interrupt if requested */ 1297 if (tx_flags & DMA_PREP_INTERRUPT) 1298 param->opt |= TCINTEN; 1299 else 1300 edesc->polled = true; 1301 1302 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1303 } 1304 1305 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic( 1306 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1307 size_t period_len, enum dma_transfer_direction direction, 1308 unsigned long tx_flags) 1309 { 1310 struct edma_chan *echan = to_edma_chan(chan); 1311 struct device *dev = chan->device->dev; 1312 struct edma_desc *edesc; 1313 dma_addr_t src_addr, dst_addr; 1314 enum dma_slave_buswidth dev_width; 1315 bool use_intermediate = false; 1316 u32 burst; 1317 int i, ret, nslots; 1318 1319 if (unlikely(!echan || !buf_len || !period_len)) 1320 return NULL; 1321 1322 if (direction == DMA_DEV_TO_MEM) { 1323 src_addr = echan->cfg.src_addr; 1324 dst_addr = buf_addr; 1325 dev_width = echan->cfg.src_addr_width; 1326 burst = echan->cfg.src_maxburst; 1327 } else if (direction == DMA_MEM_TO_DEV) { 1328 src_addr = buf_addr; 1329 dst_addr = echan->cfg.dst_addr; 1330 dev_width = echan->cfg.dst_addr_width; 1331 burst = echan->cfg.dst_maxburst; 1332 } else { 1333 dev_err(dev, "%s: bad direction: %d\n", __func__, direction); 1334 return NULL; 1335 } 1336 1337 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { 1338 dev_err(dev, "%s: Undefined slave buswidth\n", __func__); 1339 return NULL; 1340 } 1341 1342 if (unlikely(buf_len % period_len)) { 1343 dev_err(dev, "Period should be multiple of Buffer length\n"); 1344 return NULL; 1345 } 1346 1347 nslots = (buf_len / period_len) + 1; 1348 1349 /* 1350 * Cyclic DMA users such as audio cannot tolerate delays introduced 1351 * by cases where the number of periods is more than the maximum 1352 * number of SGs the EDMA driver can handle at a time. For DMA types 1353 * such as Slave SGs, such delays are tolerable and synchronized, 1354 * but the synchronization is difficult to achieve with Cyclic and 1355 * cannot be guaranteed, so we error out early. 1356 */ 1357 if (nslots > MAX_NR_SG) { 1358 /* 1359 * If the burst and period sizes are the same, we can put 1360 * the full buffer into a single period and activate 1361 * intermediate interrupts. This will produce interrupts 1362 * after each burst, which is also after each desired period. 1363 */ 1364 if (burst == period_len) { 1365 period_len = buf_len; 1366 nslots = 2; 1367 use_intermediate = true; 1368 } else { 1369 return NULL; 1370 } 1371 } 1372 1373 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC); 1374 if (!edesc) 1375 return NULL; 1376 1377 edesc->cyclic = 1; 1378 edesc->pset_nr = nslots; 1379 edesc->residue = edesc->residue_stat = buf_len; 1380 edesc->direction = direction; 1381 edesc->echan = echan; 1382 1383 dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n", 1384 __func__, echan->ch_num, nslots, period_len, buf_len); 1385 1386 for (i = 0; i < nslots; i++) { 1387 /* Allocate a PaRAM slot, if needed */ 1388 if (echan->slot[i] < 0) { 1389 echan->slot[i] = 1390 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); 1391 if (echan->slot[i] < 0) { 1392 kfree(edesc); 1393 dev_err(dev, "%s: Failed to allocate slot\n", 1394 __func__); 1395 return NULL; 1396 } 1397 } 1398 1399 if (i == nslots - 1) { 1400 memcpy(&edesc->pset[i], &edesc->pset[0], 1401 sizeof(edesc->pset[0])); 1402 break; 1403 } 1404 1405 ret = edma_config_pset(chan, &edesc->pset[i], src_addr, 1406 dst_addr, burst, dev_width, period_len, 1407 direction); 1408 if (ret < 0) { 1409 kfree(edesc); 1410 return NULL; 1411 } 1412 1413 if (direction == DMA_DEV_TO_MEM) 1414 dst_addr += period_len; 1415 else 1416 src_addr += period_len; 1417 1418 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i); 1419 dev_vdbg(dev, 1420 "\n pset[%d]:\n" 1421 " chnum\t%d\n" 1422 " slot\t%d\n" 1423 " opt\t%08x\n" 1424 " src\t%08x\n" 1425 " dst\t%08x\n" 1426 " abcnt\t%08x\n" 1427 " ccnt\t%08x\n" 1428 " bidx\t%08x\n" 1429 " cidx\t%08x\n" 1430 " lkrld\t%08x\n", 1431 i, echan->ch_num, echan->slot[i], 1432 edesc->pset[i].param.opt, 1433 edesc->pset[i].param.src, 1434 edesc->pset[i].param.dst, 1435 edesc->pset[i].param.a_b_cnt, 1436 edesc->pset[i].param.ccnt, 1437 edesc->pset[i].param.src_dst_bidx, 1438 edesc->pset[i].param.src_dst_cidx, 1439 edesc->pset[i].param.link_bcntrld); 1440 1441 edesc->absync = ret; 1442 1443 /* 1444 * Enable period interrupt only if it is requested 1445 */ 1446 if (tx_flags & DMA_PREP_INTERRUPT) { 1447 edesc->pset[i].param.opt |= TCINTEN; 1448 1449 /* Also enable intermediate interrupts if necessary */ 1450 if (use_intermediate) 1451 edesc->pset[i].param.opt |= ITCINTEN; 1452 } 1453 } 1454 1455 /* Place the cyclic channel to highest priority queue */ 1456 if (!echan->tc) 1457 edma_assign_channel_eventq(echan, EVENTQ_0); 1458 1459 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1460 } 1461 1462 static void edma_completion_handler(struct edma_chan *echan) 1463 { 1464 struct device *dev = echan->vchan.chan.device->dev; 1465 struct edma_desc *edesc; 1466 1467 spin_lock(&echan->vchan.lock); 1468 edesc = echan->edesc; 1469 if (edesc) { 1470 if (edesc->cyclic) { 1471 vchan_cyclic_callback(&edesc->vdesc); 1472 spin_unlock(&echan->vchan.lock); 1473 return; 1474 } else if (edesc->processed == edesc->pset_nr) { 1475 edesc->residue = 0; 1476 edma_stop(echan); 1477 vchan_cookie_complete(&edesc->vdesc); 1478 echan->edesc = NULL; 1479 1480 dev_dbg(dev, "Transfer completed on channel %d\n", 1481 echan->ch_num); 1482 } else { 1483 dev_dbg(dev, "Sub transfer completed on channel %d\n", 1484 echan->ch_num); 1485 1486 edma_pause(echan); 1487 1488 /* Update statistics for tx_status */ 1489 edesc->residue -= edesc->sg_len; 1490 edesc->residue_stat = edesc->residue; 1491 edesc->processed_stat = edesc->processed; 1492 } 1493 edma_execute(echan); 1494 } 1495 1496 spin_unlock(&echan->vchan.lock); 1497 } 1498 1499 /* eDMA interrupt handler */ 1500 static irqreturn_t dma_irq_handler(int irq, void *data) 1501 { 1502 struct edma_cc *ecc = data; 1503 int ctlr; 1504 u32 sh_ier; 1505 u32 sh_ipr; 1506 u32 bank; 1507 1508 ctlr = ecc->id; 1509 if (ctlr < 0) 1510 return IRQ_NONE; 1511 1512 dev_vdbg(ecc->dev, "dma_irq_handler\n"); 1513 1514 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0); 1515 if (!sh_ipr) { 1516 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1); 1517 if (!sh_ipr) 1518 return IRQ_NONE; 1519 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1); 1520 bank = 1; 1521 } else { 1522 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0); 1523 bank = 0; 1524 } 1525 1526 do { 1527 u32 slot; 1528 u32 channel; 1529 1530 slot = __ffs(sh_ipr); 1531 sh_ipr &= ~(BIT(slot)); 1532 1533 if (sh_ier & BIT(slot)) { 1534 channel = (bank << 5) | slot; 1535 /* Clear the corresponding IPR bits */ 1536 edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot)); 1537 edma_completion_handler(&ecc->slave_chans[channel]); 1538 } 1539 } while (sh_ipr); 1540 1541 edma_shadow0_write(ecc, SH_IEVAL, 1); 1542 return IRQ_HANDLED; 1543 } 1544 1545 static void edma_error_handler(struct edma_chan *echan) 1546 { 1547 struct edma_cc *ecc = echan->ecc; 1548 struct device *dev = echan->vchan.chan.device->dev; 1549 struct edmacc_param p; 1550 int err; 1551 1552 if (!echan->edesc) 1553 return; 1554 1555 spin_lock(&echan->vchan.lock); 1556 1557 err = edma_read_slot(ecc, echan->slot[0], &p); 1558 1559 /* 1560 * Issue later based on missed flag which will be sure 1561 * to happen as: 1562 * (1) we finished transmitting an intermediate slot and 1563 * edma_execute is coming up. 1564 * (2) or we finished current transfer and issue will 1565 * call edma_execute. 1566 * 1567 * Important note: issuing can be dangerous here and 1568 * lead to some nasty recursion when we are in a NULL 1569 * slot. So we avoid doing so and set the missed flag. 1570 */ 1571 if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) { 1572 dev_dbg(dev, "Error on null slot, setting miss\n"); 1573 echan->missed = 1; 1574 } else { 1575 /* 1576 * The slot is already programmed but the event got 1577 * missed, so its safe to issue it here. 1578 */ 1579 dev_dbg(dev, "Missed event, TRIGGERING\n"); 1580 edma_clean_channel(echan); 1581 edma_stop(echan); 1582 edma_start(echan); 1583 edma_trigger_channel(echan); 1584 } 1585 spin_unlock(&echan->vchan.lock); 1586 } 1587 1588 static inline bool edma_error_pending(struct edma_cc *ecc) 1589 { 1590 if (edma_read_array(ecc, EDMA_EMR, 0) || 1591 edma_read_array(ecc, EDMA_EMR, 1) || 1592 edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR)) 1593 return true; 1594 1595 return false; 1596 } 1597 1598 /* eDMA error interrupt handler */ 1599 static irqreturn_t dma_ccerr_handler(int irq, void *data) 1600 { 1601 struct edma_cc *ecc = data; 1602 int i, j; 1603 int ctlr; 1604 unsigned int cnt = 0; 1605 unsigned int val; 1606 1607 ctlr = ecc->id; 1608 if (ctlr < 0) 1609 return IRQ_NONE; 1610 1611 dev_vdbg(ecc->dev, "dma_ccerr_handler\n"); 1612 1613 if (!edma_error_pending(ecc)) { 1614 /* 1615 * The registers indicate no pending error event but the irq 1616 * handler has been called. 1617 * Ask eDMA to re-evaluate the error registers. 1618 */ 1619 dev_err(ecc->dev, "%s: Error interrupt without error event!\n", 1620 __func__); 1621 edma_write(ecc, EDMA_EEVAL, 1); 1622 return IRQ_NONE; 1623 } 1624 1625 while (1) { 1626 /* Event missed register(s) */ 1627 for (j = 0; j < 2; j++) { 1628 unsigned long emr; 1629 1630 val = edma_read_array(ecc, EDMA_EMR, j); 1631 if (!val) 1632 continue; 1633 1634 dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val); 1635 emr = val; 1636 for_each_set_bit(i, &emr, 32) { 1637 int k = (j << 5) + i; 1638 1639 /* Clear the corresponding EMR bits */ 1640 edma_write_array(ecc, EDMA_EMCR, j, BIT(i)); 1641 /* Clear any SER */ 1642 edma_shadow0_write_array(ecc, SH_SECR, j, 1643 BIT(i)); 1644 edma_error_handler(&ecc->slave_chans[k]); 1645 } 1646 } 1647 1648 val = edma_read(ecc, EDMA_QEMR); 1649 if (val) { 1650 dev_dbg(ecc->dev, "QEMR 0x%02x\n", val); 1651 /* Not reported, just clear the interrupt reason. */ 1652 edma_write(ecc, EDMA_QEMCR, val); 1653 edma_shadow0_write(ecc, SH_QSECR, val); 1654 } 1655 1656 val = edma_read(ecc, EDMA_CCERR); 1657 if (val) { 1658 dev_warn(ecc->dev, "CCERR 0x%08x\n", val); 1659 /* Not reported, just clear the interrupt reason. */ 1660 edma_write(ecc, EDMA_CCERRCLR, val); 1661 } 1662 1663 if (!edma_error_pending(ecc)) 1664 break; 1665 cnt++; 1666 if (cnt > 10) 1667 break; 1668 } 1669 edma_write(ecc, EDMA_EEVAL, 1); 1670 return IRQ_HANDLED; 1671 } 1672 1673 /* Alloc channel resources */ 1674 static int edma_alloc_chan_resources(struct dma_chan *chan) 1675 { 1676 struct edma_chan *echan = to_edma_chan(chan); 1677 struct edma_cc *ecc = echan->ecc; 1678 struct device *dev = ecc->dev; 1679 enum dma_event_q eventq_no = EVENTQ_DEFAULT; 1680 int ret; 1681 1682 if (echan->tc) { 1683 eventq_no = echan->tc->id; 1684 } else if (ecc->tc_list) { 1685 /* memcpy channel */ 1686 echan->tc = &ecc->tc_list[ecc->info->default_queue]; 1687 eventq_no = echan->tc->id; 1688 } 1689 1690 ret = edma_alloc_channel(echan, eventq_no); 1691 if (ret) 1692 return ret; 1693 1694 echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num); 1695 if (echan->slot[0] < 0) { 1696 dev_err(dev, "Entry slot allocation failed for channel %u\n", 1697 EDMA_CHAN_SLOT(echan->ch_num)); 1698 ret = echan->slot[0]; 1699 goto err_slot; 1700 } 1701 1702 /* Set up channel -> slot mapping for the entry slot */ 1703 edma_set_chmap(echan, echan->slot[0]); 1704 echan->alloced = true; 1705 1706 dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n", 1707 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id, 1708 echan->hw_triggered ? "HW" : "SW"); 1709 1710 return 0; 1711 1712 err_slot: 1713 edma_free_channel(echan); 1714 return ret; 1715 } 1716 1717 /* Free channel resources */ 1718 static void edma_free_chan_resources(struct dma_chan *chan) 1719 { 1720 struct edma_chan *echan = to_edma_chan(chan); 1721 struct device *dev = echan->ecc->dev; 1722 int i; 1723 1724 /* Terminate transfers */ 1725 edma_stop(echan); 1726 1727 vchan_free_chan_resources(&echan->vchan); 1728 1729 /* Free EDMA PaRAM slots */ 1730 for (i = 0; i < EDMA_MAX_SLOTS; i++) { 1731 if (echan->slot[i] >= 0) { 1732 edma_free_slot(echan->ecc, echan->slot[i]); 1733 echan->slot[i] = -1; 1734 } 1735 } 1736 1737 /* Set entry slot to the dummy slot */ 1738 edma_set_chmap(echan, echan->ecc->dummy_slot); 1739 1740 /* Free EDMA channel */ 1741 if (echan->alloced) { 1742 edma_free_channel(echan); 1743 echan->alloced = false; 1744 } 1745 1746 echan->tc = NULL; 1747 echan->hw_triggered = false; 1748 1749 dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n", 1750 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id); 1751 } 1752 1753 /* Send pending descriptor to hardware */ 1754 static void edma_issue_pending(struct dma_chan *chan) 1755 { 1756 struct edma_chan *echan = to_edma_chan(chan); 1757 unsigned long flags; 1758 1759 spin_lock_irqsave(&echan->vchan.lock, flags); 1760 if (vchan_issue_pending(&echan->vchan) && !echan->edesc) 1761 edma_execute(echan); 1762 spin_unlock_irqrestore(&echan->vchan.lock, flags); 1763 } 1764 1765 /* 1766 * This limit exists to avoid a possible infinite loop when waiting for proof 1767 * that a particular transfer is completed. This limit can be hit if there 1768 * are large bursts to/from slow devices or the CPU is never able to catch 1769 * the DMA hardware idle. On an AM335x transferring 48 bytes from the UART 1770 * RX-FIFO, as many as 55 loops have been seen. 1771 */ 1772 #define EDMA_MAX_TR_WAIT_LOOPS 1000 1773 1774 static u32 edma_residue(struct edma_desc *edesc) 1775 { 1776 bool dst = edesc->direction == DMA_DEV_TO_MEM; 1777 int loop_count = EDMA_MAX_TR_WAIT_LOOPS; 1778 struct edma_chan *echan = edesc->echan; 1779 struct edma_pset *pset = edesc->pset; 1780 dma_addr_t done, pos, pos_old; 1781 int channel = EDMA_CHAN_SLOT(echan->ch_num); 1782 int idx = EDMA_REG_ARRAY_INDEX(channel); 1783 int ch_bit = EDMA_CHANNEL_BIT(channel); 1784 int event_reg; 1785 int i; 1786 1787 /* 1788 * We always read the dst/src position from the first RamPar 1789 * pset. That's the one which is active now. 1790 */ 1791 pos = edma_get_position(echan->ecc, echan->slot[0], dst); 1792 1793 /* 1794 * "pos" may represent a transfer request that is still being 1795 * processed by the EDMACC or EDMATC. We will busy wait until 1796 * any one of the situations occurs: 1797 * 1. while and event is pending for the channel 1798 * 2. a position updated 1799 * 3. we hit the loop limit 1800 */ 1801 if (is_slave_direction(edesc->direction)) 1802 event_reg = SH_ER; 1803 else 1804 event_reg = SH_ESR; 1805 1806 pos_old = pos; 1807 while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) { 1808 pos = edma_get_position(echan->ecc, echan->slot[0], dst); 1809 if (pos != pos_old) 1810 break; 1811 1812 if (!--loop_count) { 1813 dev_dbg_ratelimited(echan->vchan.chan.device->dev, 1814 "%s: timeout waiting for PaRAM update\n", 1815 __func__); 1816 break; 1817 } 1818 1819 cpu_relax(); 1820 } 1821 1822 /* 1823 * Cyclic is simple. Just subtract pset[0].addr from pos. 1824 * 1825 * We never update edesc->residue in the cyclic case, so we 1826 * can tell the remaining room to the end of the circular 1827 * buffer. 1828 */ 1829 if (edesc->cyclic) { 1830 done = pos - pset->addr; 1831 edesc->residue_stat = edesc->residue - done; 1832 return edesc->residue_stat; 1833 } 1834 1835 /* 1836 * If the position is 0, then EDMA loaded the closing dummy slot, the 1837 * transfer is completed 1838 */ 1839 if (!pos) 1840 return 0; 1841 /* 1842 * For SG operation we catch up with the last processed 1843 * status. 1844 */ 1845 pset += edesc->processed_stat; 1846 1847 for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) { 1848 /* 1849 * If we are inside this pset address range, we know 1850 * this is the active one. Get the current delta and 1851 * stop walking the psets. 1852 */ 1853 if (pos >= pset->addr && pos < pset->addr + pset->len) 1854 return edesc->residue_stat - (pos - pset->addr); 1855 1856 /* Otherwise mark it done and update residue_stat. */ 1857 edesc->processed_stat++; 1858 edesc->residue_stat -= pset->len; 1859 } 1860 return edesc->residue_stat; 1861 } 1862 1863 /* Check request completion status */ 1864 static enum dma_status edma_tx_status(struct dma_chan *chan, 1865 dma_cookie_t cookie, 1866 struct dma_tx_state *txstate) 1867 { 1868 struct edma_chan *echan = to_edma_chan(chan); 1869 struct dma_tx_state txstate_tmp; 1870 enum dma_status ret; 1871 unsigned long flags; 1872 1873 ret = dma_cookie_status(chan, cookie, txstate); 1874 1875 if (ret == DMA_COMPLETE) 1876 return ret; 1877 1878 /* Provide a dummy dma_tx_state for completion checking */ 1879 if (!txstate) 1880 txstate = &txstate_tmp; 1881 1882 spin_lock_irqsave(&echan->vchan.lock, flags); 1883 if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) { 1884 txstate->residue = edma_residue(echan->edesc); 1885 } else { 1886 struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan, 1887 cookie); 1888 1889 if (vdesc) 1890 txstate->residue = to_edma_desc(&vdesc->tx)->residue; 1891 else 1892 txstate->residue = 0; 1893 } 1894 1895 /* 1896 * Mark the cookie completed if the residue is 0 for non cyclic 1897 * transfers 1898 */ 1899 if (ret != DMA_COMPLETE && !txstate->residue && 1900 echan->edesc && echan->edesc->polled && 1901 echan->edesc->vdesc.tx.cookie == cookie) { 1902 edma_stop(echan); 1903 vchan_cookie_complete(&echan->edesc->vdesc); 1904 echan->edesc = NULL; 1905 edma_execute(echan); 1906 ret = DMA_COMPLETE; 1907 } 1908 1909 spin_unlock_irqrestore(&echan->vchan.lock, flags); 1910 1911 return ret; 1912 } 1913 1914 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels) 1915 { 1916 if (!memcpy_channels) 1917 return false; 1918 while (*memcpy_channels != -1) { 1919 if (*memcpy_channels == ch_num) 1920 return true; 1921 memcpy_channels++; 1922 } 1923 return false; 1924 } 1925 1926 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 1927 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 1928 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ 1929 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 1930 1931 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode) 1932 { 1933 struct dma_device *s_ddev = &ecc->dma_slave; 1934 struct dma_device *m_ddev = NULL; 1935 s32 *memcpy_channels = ecc->info->memcpy_channels; 1936 int i, j; 1937 1938 dma_cap_zero(s_ddev->cap_mask); 1939 dma_cap_set(DMA_SLAVE, s_ddev->cap_mask); 1940 dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask); 1941 if (ecc->legacy_mode && !memcpy_channels) { 1942 dev_warn(ecc->dev, 1943 "Legacy memcpy is enabled, things might not work\n"); 1944 1945 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask); 1946 dma_cap_set(DMA_INTERLEAVE, s_ddev->cap_mask); 1947 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; 1948 s_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved; 1949 s_ddev->directions = BIT(DMA_MEM_TO_MEM); 1950 } 1951 1952 s_ddev->device_prep_slave_sg = edma_prep_slave_sg; 1953 s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic; 1954 s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; 1955 s_ddev->device_free_chan_resources = edma_free_chan_resources; 1956 s_ddev->device_issue_pending = edma_issue_pending; 1957 s_ddev->device_tx_status = edma_tx_status; 1958 s_ddev->device_config = edma_slave_config; 1959 s_ddev->device_pause = edma_dma_pause; 1960 s_ddev->device_resume = edma_dma_resume; 1961 s_ddev->device_terminate_all = edma_terminate_all; 1962 s_ddev->device_synchronize = edma_synchronize; 1963 1964 s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; 1965 s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; 1966 s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV)); 1967 s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1968 s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */ 1969 1970 s_ddev->dev = ecc->dev; 1971 INIT_LIST_HEAD(&s_ddev->channels); 1972 1973 if (memcpy_channels) { 1974 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL); 1975 if (!m_ddev) { 1976 dev_warn(ecc->dev, "memcpy is disabled due to OoM\n"); 1977 memcpy_channels = NULL; 1978 goto ch_setup; 1979 } 1980 ecc->dma_memcpy = m_ddev; 1981 1982 dma_cap_zero(m_ddev->cap_mask); 1983 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask); 1984 dma_cap_set(DMA_INTERLEAVE, m_ddev->cap_mask); 1985 1986 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; 1987 m_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved; 1988 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; 1989 m_ddev->device_free_chan_resources = edma_free_chan_resources; 1990 m_ddev->device_issue_pending = edma_issue_pending; 1991 m_ddev->device_tx_status = edma_tx_status; 1992 m_ddev->device_config = edma_slave_config; 1993 m_ddev->device_pause = edma_dma_pause; 1994 m_ddev->device_resume = edma_dma_resume; 1995 m_ddev->device_terminate_all = edma_terminate_all; 1996 m_ddev->device_synchronize = edma_synchronize; 1997 1998 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; 1999 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; 2000 m_ddev->directions = BIT(DMA_MEM_TO_MEM); 2001 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 2002 2003 m_ddev->dev = ecc->dev; 2004 INIT_LIST_HEAD(&m_ddev->channels); 2005 } else if (!ecc->legacy_mode) { 2006 dev_info(ecc->dev, "memcpy is disabled\n"); 2007 } 2008 2009 ch_setup: 2010 for (i = 0; i < ecc->num_channels; i++) { 2011 struct edma_chan *echan = &ecc->slave_chans[i]; 2012 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i); 2013 echan->ecc = ecc; 2014 echan->vchan.desc_free = edma_desc_free; 2015 2016 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels)) 2017 vchan_init(&echan->vchan, m_ddev); 2018 else 2019 vchan_init(&echan->vchan, s_ddev); 2020 2021 INIT_LIST_HEAD(&echan->node); 2022 for (j = 0; j < EDMA_MAX_SLOTS; j++) 2023 echan->slot[j] = -1; 2024 } 2025 } 2026 2027 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata, 2028 struct edma_cc *ecc) 2029 { 2030 int i; 2031 u32 value, cccfg; 2032 s8 (*queue_priority_map)[2]; 2033 2034 /* Decode the eDMA3 configuration from CCCFG register */ 2035 cccfg = edma_read(ecc, EDMA_CCCFG); 2036 2037 value = GET_NUM_REGN(cccfg); 2038 ecc->num_region = BIT(value); 2039 2040 value = GET_NUM_DMACH(cccfg); 2041 ecc->num_channels = BIT(value + 1); 2042 2043 value = GET_NUM_QDMACH(cccfg); 2044 ecc->num_qchannels = value * 2; 2045 2046 value = GET_NUM_PAENTRY(cccfg); 2047 ecc->num_slots = BIT(value + 4); 2048 2049 value = GET_NUM_EVQUE(cccfg); 2050 ecc->num_tc = value + 1; 2051 2052 ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false; 2053 2054 dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg); 2055 dev_dbg(dev, "num_region: %u\n", ecc->num_region); 2056 dev_dbg(dev, "num_channels: %u\n", ecc->num_channels); 2057 dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels); 2058 dev_dbg(dev, "num_slots: %u\n", ecc->num_slots); 2059 dev_dbg(dev, "num_tc: %u\n", ecc->num_tc); 2060 dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no"); 2061 2062 /* Nothing need to be done if queue priority is provided */ 2063 if (pdata->queue_priority_mapping) 2064 return 0; 2065 2066 /* 2067 * Configure TC/queue priority as follows: 2068 * Q0 - priority 0 2069 * Q1 - priority 1 2070 * Q2 - priority 2 2071 * ... 2072 * The meaning of priority numbers: 0 highest priority, 7 lowest 2073 * priority. So Q0 is the highest priority queue and the last queue has 2074 * the lowest priority. 2075 */ 2076 queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8), 2077 GFP_KERNEL); 2078 if (!queue_priority_map) 2079 return -ENOMEM; 2080 2081 for (i = 0; i < ecc->num_tc; i++) { 2082 queue_priority_map[i][0] = i; 2083 queue_priority_map[i][1] = i; 2084 } 2085 queue_priority_map[i][0] = -1; 2086 queue_priority_map[i][1] = -1; 2087 2088 pdata->queue_priority_mapping = queue_priority_map; 2089 /* Default queue has the lowest priority */ 2090 pdata->default_queue = i - 1; 2091 2092 return 0; 2093 } 2094 2095 #if IS_ENABLED(CONFIG_OF) 2096 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata, 2097 size_t sz) 2098 { 2099 const char pname[] = "ti,edma-xbar-event-map"; 2100 struct resource res; 2101 void __iomem *xbar; 2102 s16 (*xbar_chans)[2]; 2103 size_t nelm = sz / sizeof(s16); 2104 u32 shift, offset, mux; 2105 int ret, i; 2106 2107 xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL); 2108 if (!xbar_chans) 2109 return -ENOMEM; 2110 2111 ret = of_address_to_resource(dev->of_node, 1, &res); 2112 if (ret) 2113 return -ENOMEM; 2114 2115 xbar = devm_ioremap(dev, res.start, resource_size(&res)); 2116 if (!xbar) 2117 return -ENOMEM; 2118 2119 ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans, 2120 nelm); 2121 if (ret) 2122 return -EIO; 2123 2124 /* Invalidate last entry for the other user of this mess */ 2125 nelm >>= 1; 2126 xbar_chans[nelm][0] = -1; 2127 xbar_chans[nelm][1] = -1; 2128 2129 for (i = 0; i < nelm; i++) { 2130 shift = (xbar_chans[i][1] & 0x03) << 3; 2131 offset = xbar_chans[i][1] & 0xfffffffc; 2132 mux = readl(xbar + offset); 2133 mux &= ~(0xff << shift); 2134 mux |= xbar_chans[i][0] << shift; 2135 writel(mux, (xbar + offset)); 2136 } 2137 2138 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans; 2139 return 0; 2140 } 2141 2142 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, 2143 bool legacy_mode) 2144 { 2145 struct edma_soc_info *info; 2146 struct property *prop; 2147 int sz, ret; 2148 2149 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL); 2150 if (!info) 2151 return ERR_PTR(-ENOMEM); 2152 2153 if (legacy_mode) { 2154 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map", 2155 &sz); 2156 if (prop) { 2157 ret = edma_xbar_event_map(dev, info, sz); 2158 if (ret) 2159 return ERR_PTR(ret); 2160 } 2161 return info; 2162 } 2163 2164 /* Get the list of channels allocated to be used for memcpy */ 2165 prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz); 2166 if (prop) { 2167 const char pname[] = "ti,edma-memcpy-channels"; 2168 size_t nelm = sz / sizeof(s32); 2169 s32 *memcpy_ch; 2170 2171 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32), 2172 GFP_KERNEL); 2173 if (!memcpy_ch) 2174 return ERR_PTR(-ENOMEM); 2175 2176 ret = of_property_read_u32_array(dev->of_node, pname, 2177 (u32 *)memcpy_ch, nelm); 2178 if (ret) 2179 return ERR_PTR(ret); 2180 2181 memcpy_ch[nelm] = -1; 2182 info->memcpy_channels = memcpy_ch; 2183 } 2184 2185 prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges", 2186 &sz); 2187 if (prop) { 2188 const char pname[] = "ti,edma-reserved-slot-ranges"; 2189 u32 (*tmp)[2]; 2190 s16 (*rsv_slots)[2]; 2191 size_t nelm = sz / sizeof(*tmp); 2192 struct edma_rsv_info *rsv_info; 2193 int i; 2194 2195 if (!nelm) 2196 return info; 2197 2198 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL); 2199 if (!tmp) 2200 return ERR_PTR(-ENOMEM); 2201 2202 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL); 2203 if (!rsv_info) { 2204 kfree(tmp); 2205 return ERR_PTR(-ENOMEM); 2206 } 2207 2208 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots), 2209 GFP_KERNEL); 2210 if (!rsv_slots) { 2211 kfree(tmp); 2212 return ERR_PTR(-ENOMEM); 2213 } 2214 2215 ret = of_property_read_u32_array(dev->of_node, pname, 2216 (u32 *)tmp, nelm * 2); 2217 if (ret) { 2218 kfree(tmp); 2219 return ERR_PTR(ret); 2220 } 2221 2222 for (i = 0; i < nelm; i++) { 2223 rsv_slots[i][0] = tmp[i][0]; 2224 rsv_slots[i][1] = tmp[i][1]; 2225 } 2226 rsv_slots[nelm][0] = -1; 2227 rsv_slots[nelm][1] = -1; 2228 2229 info->rsv = rsv_info; 2230 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots; 2231 2232 kfree(tmp); 2233 } 2234 2235 return info; 2236 } 2237 2238 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, 2239 struct of_dma *ofdma) 2240 { 2241 struct edma_cc *ecc = ofdma->of_dma_data; 2242 struct dma_chan *chan = NULL; 2243 struct edma_chan *echan; 2244 int i; 2245 2246 if (!ecc || dma_spec->args_count < 1) 2247 return NULL; 2248 2249 for (i = 0; i < ecc->num_channels; i++) { 2250 echan = &ecc->slave_chans[i]; 2251 if (echan->ch_num == dma_spec->args[0]) { 2252 chan = &echan->vchan.chan; 2253 break; 2254 } 2255 } 2256 2257 if (!chan) 2258 return NULL; 2259 2260 if (echan->ecc->legacy_mode && dma_spec->args_count == 1) 2261 goto out; 2262 2263 if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 && 2264 dma_spec->args[1] < echan->ecc->num_tc) { 2265 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]]; 2266 goto out; 2267 } 2268 2269 return NULL; 2270 out: 2271 /* The channel is going to be used as HW synchronized */ 2272 echan->hw_triggered = true; 2273 return dma_get_slave_channel(chan); 2274 } 2275 #else 2276 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, 2277 bool legacy_mode) 2278 { 2279 return ERR_PTR(-EINVAL); 2280 } 2281 2282 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, 2283 struct of_dma *ofdma) 2284 { 2285 return NULL; 2286 } 2287 #endif 2288 2289 static bool edma_filter_fn(struct dma_chan *chan, void *param); 2290 2291 static int edma_probe(struct platform_device *pdev) 2292 { 2293 struct edma_soc_info *info = pdev->dev.platform_data; 2294 s8 (*queue_priority_mapping)[2]; 2295 const s16 (*reserved)[2]; 2296 int i, irq; 2297 char *irq_name; 2298 struct resource *mem; 2299 struct device_node *node = pdev->dev.of_node; 2300 struct device *dev = &pdev->dev; 2301 struct edma_cc *ecc; 2302 bool legacy_mode = true; 2303 int ret; 2304 2305 if (node) { 2306 const struct of_device_id *match; 2307 2308 match = of_match_node(edma_of_ids, node); 2309 if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC) 2310 legacy_mode = false; 2311 2312 info = edma_setup_info_from_dt(dev, legacy_mode); 2313 if (IS_ERR(info)) { 2314 dev_err(dev, "failed to get DT data\n"); 2315 return PTR_ERR(info); 2316 } 2317 } 2318 2319 if (!info) 2320 return -ENODEV; 2321 2322 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 2323 if (ret) 2324 return ret; 2325 2326 ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); 2327 if (!ecc) 2328 return -ENOMEM; 2329 2330 ecc->dev = dev; 2331 ecc->id = pdev->id; 2332 ecc->legacy_mode = legacy_mode; 2333 /* When booting with DT the pdev->id is -1 */ 2334 if (ecc->id < 0) 2335 ecc->id = 0; 2336 2337 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc"); 2338 if (!mem) { 2339 dev_dbg(dev, "mem resource not found, using index 0\n"); 2340 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2341 if (!mem) { 2342 dev_err(dev, "no mem resource?\n"); 2343 return -ENODEV; 2344 } 2345 } 2346 ecc->base = devm_ioremap_resource(dev, mem); 2347 if (IS_ERR(ecc->base)) 2348 return PTR_ERR(ecc->base); 2349 2350 platform_set_drvdata(pdev, ecc); 2351 2352 pm_runtime_enable(dev); 2353 ret = pm_runtime_get_sync(dev); 2354 if (ret < 0) { 2355 dev_err(dev, "pm_runtime_get_sync() failed\n"); 2356 pm_runtime_disable(dev); 2357 return ret; 2358 } 2359 2360 /* Get eDMA3 configuration from IP */ 2361 ret = edma_setup_from_hw(dev, info, ecc); 2362 if (ret) 2363 goto err_disable_pm; 2364 2365 /* Allocate memory based on the information we got from the IP */ 2366 ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels, 2367 sizeof(*ecc->slave_chans), GFP_KERNEL); 2368 2369 ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots), 2370 sizeof(unsigned long), GFP_KERNEL); 2371 2372 ecc->channels_mask = devm_kcalloc(dev, 2373 BITS_TO_LONGS(ecc->num_channels), 2374 sizeof(unsigned long), GFP_KERNEL); 2375 if (!ecc->slave_chans || !ecc->slot_inuse || !ecc->channels_mask) { 2376 ret = -ENOMEM; 2377 goto err_disable_pm; 2378 } 2379 2380 /* Mark all channels available initially */ 2381 bitmap_fill(ecc->channels_mask, ecc->num_channels); 2382 2383 ecc->default_queue = info->default_queue; 2384 2385 if (info->rsv) { 2386 /* Set the reserved slots in inuse list */ 2387 reserved = info->rsv->rsv_slots; 2388 if (reserved) { 2389 for (i = 0; reserved[i][0] != -1; i++) 2390 bitmap_set(ecc->slot_inuse, reserved[i][0], 2391 reserved[i][1]); 2392 } 2393 2394 /* Clear channels not usable for Linux */ 2395 reserved = info->rsv->rsv_chans; 2396 if (reserved) { 2397 for (i = 0; reserved[i][0] != -1; i++) 2398 bitmap_clear(ecc->channels_mask, reserved[i][0], 2399 reserved[i][1]); 2400 } 2401 } 2402 2403 for (i = 0; i < ecc->num_slots; i++) { 2404 /* Reset only unused - not reserved - paRAM slots */ 2405 if (!test_bit(i, ecc->slot_inuse)) 2406 edma_write_slot(ecc, i, &dummy_paramset); 2407 } 2408 2409 irq = platform_get_irq_byname(pdev, "edma3_ccint"); 2410 if (irq < 0 && node) 2411 irq = irq_of_parse_and_map(node, 0); 2412 2413 if (irq >= 0) { 2414 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint", 2415 dev_name(dev)); 2416 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name, 2417 ecc); 2418 if (ret) { 2419 dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret); 2420 goto err_disable_pm; 2421 } 2422 ecc->ccint = irq; 2423 } 2424 2425 irq = platform_get_irq_byname(pdev, "edma3_ccerrint"); 2426 if (irq < 0 && node) 2427 irq = irq_of_parse_and_map(node, 2); 2428 2429 if (irq >= 0) { 2430 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint", 2431 dev_name(dev)); 2432 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name, 2433 ecc); 2434 if (ret) { 2435 dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret); 2436 goto err_disable_pm; 2437 } 2438 ecc->ccerrint = irq; 2439 } 2440 2441 ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY); 2442 if (ecc->dummy_slot < 0) { 2443 dev_err(dev, "Can't allocate PaRAM dummy slot\n"); 2444 ret = ecc->dummy_slot; 2445 goto err_disable_pm; 2446 } 2447 2448 queue_priority_mapping = info->queue_priority_mapping; 2449 2450 if (!ecc->legacy_mode) { 2451 int lowest_priority = 0; 2452 unsigned int array_max; 2453 struct of_phandle_args tc_args; 2454 2455 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc, 2456 sizeof(*ecc->tc_list), GFP_KERNEL); 2457 if (!ecc->tc_list) { 2458 ret = -ENOMEM; 2459 goto err_reg1; 2460 } 2461 2462 for (i = 0;; i++) { 2463 ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs", 2464 1, i, &tc_args); 2465 if (ret || i == ecc->num_tc) 2466 break; 2467 2468 ecc->tc_list[i].node = tc_args.np; 2469 ecc->tc_list[i].id = i; 2470 queue_priority_mapping[i][1] = tc_args.args[0]; 2471 if (queue_priority_mapping[i][1] > lowest_priority) { 2472 lowest_priority = queue_priority_mapping[i][1]; 2473 info->default_queue = i; 2474 } 2475 } 2476 2477 /* See if we have optional dma-channel-mask array */ 2478 array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32)); 2479 ret = of_property_read_variable_u32_array(node, 2480 "dma-channel-mask", 2481 (u32 *)ecc->channels_mask, 2482 1, array_max); 2483 if (ret > 0 && ret != array_max) 2484 dev_warn(dev, "dma-channel-mask is not complete.\n"); 2485 else if (ret == -EOVERFLOW || ret == -ENODATA) 2486 dev_warn(dev, 2487 "dma-channel-mask is out of range or empty\n"); 2488 } 2489 2490 /* Event queue priority mapping */ 2491 for (i = 0; queue_priority_mapping[i][0] != -1; i++) 2492 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], 2493 queue_priority_mapping[i][1]); 2494 2495 edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0); 2496 edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0); 2497 edma_write_array(ecc, EDMA_QRAE, 0, 0x0); 2498 2499 ecc->info = info; 2500 2501 /* Init the dma device and channels */ 2502 edma_dma_init(ecc, legacy_mode); 2503 2504 for (i = 0; i < ecc->num_channels; i++) { 2505 /* Do not touch reserved channels */ 2506 if (!test_bit(i, ecc->channels_mask)) 2507 continue; 2508 2509 /* Assign all channels to the default queue */ 2510 edma_assign_channel_eventq(&ecc->slave_chans[i], 2511 info->default_queue); 2512 /* Set entry slot to the dummy slot */ 2513 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot); 2514 } 2515 2516 ecc->dma_slave.filter.map = info->slave_map; 2517 ecc->dma_slave.filter.mapcnt = info->slavecnt; 2518 ecc->dma_slave.filter.fn = edma_filter_fn; 2519 2520 ret = dma_async_device_register(&ecc->dma_slave); 2521 if (ret) { 2522 dev_err(dev, "slave ddev registration failed (%d)\n", ret); 2523 goto err_reg1; 2524 } 2525 2526 if (ecc->dma_memcpy) { 2527 ret = dma_async_device_register(ecc->dma_memcpy); 2528 if (ret) { 2529 dev_err(dev, "memcpy ddev registration failed (%d)\n", 2530 ret); 2531 dma_async_device_unregister(&ecc->dma_slave); 2532 goto err_reg1; 2533 } 2534 } 2535 2536 if (node) 2537 of_dma_controller_register(node, of_edma_xlate, ecc); 2538 2539 dev_info(dev, "TI EDMA DMA engine driver\n"); 2540 2541 return 0; 2542 2543 err_reg1: 2544 edma_free_slot(ecc, ecc->dummy_slot); 2545 err_disable_pm: 2546 pm_runtime_put_sync(dev); 2547 pm_runtime_disable(dev); 2548 return ret; 2549 } 2550 2551 static void edma_cleanupp_vchan(struct dma_device *dmadev) 2552 { 2553 struct edma_chan *echan, *_echan; 2554 2555 list_for_each_entry_safe(echan, _echan, 2556 &dmadev->channels, vchan.chan.device_node) { 2557 list_del(&echan->vchan.chan.device_node); 2558 tasklet_kill(&echan->vchan.task); 2559 } 2560 } 2561 2562 static int edma_remove(struct platform_device *pdev) 2563 { 2564 struct device *dev = &pdev->dev; 2565 struct edma_cc *ecc = dev_get_drvdata(dev); 2566 2567 devm_free_irq(dev, ecc->ccint, ecc); 2568 devm_free_irq(dev, ecc->ccerrint, ecc); 2569 2570 edma_cleanupp_vchan(&ecc->dma_slave); 2571 2572 if (dev->of_node) 2573 of_dma_controller_free(dev->of_node); 2574 dma_async_device_unregister(&ecc->dma_slave); 2575 if (ecc->dma_memcpy) 2576 dma_async_device_unregister(ecc->dma_memcpy); 2577 edma_free_slot(ecc, ecc->dummy_slot); 2578 pm_runtime_put_sync(dev); 2579 pm_runtime_disable(dev); 2580 2581 return 0; 2582 } 2583 2584 #ifdef CONFIG_PM_SLEEP 2585 static int edma_pm_suspend(struct device *dev) 2586 { 2587 struct edma_cc *ecc = dev_get_drvdata(dev); 2588 struct edma_chan *echan = ecc->slave_chans; 2589 int i; 2590 2591 for (i = 0; i < ecc->num_channels; i++) { 2592 if (echan[i].alloced) 2593 edma_setup_interrupt(&echan[i], false); 2594 } 2595 2596 return 0; 2597 } 2598 2599 static int edma_pm_resume(struct device *dev) 2600 { 2601 struct edma_cc *ecc = dev_get_drvdata(dev); 2602 struct edma_chan *echan = ecc->slave_chans; 2603 int i; 2604 s8 (*queue_priority_mapping)[2]; 2605 2606 /* re initialize dummy slot to dummy param set */ 2607 edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset); 2608 2609 queue_priority_mapping = ecc->info->queue_priority_mapping; 2610 2611 /* Event queue priority mapping */ 2612 for (i = 0; queue_priority_mapping[i][0] != -1; i++) 2613 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], 2614 queue_priority_mapping[i][1]); 2615 2616 for (i = 0; i < ecc->num_channels; i++) { 2617 if (echan[i].alloced) { 2618 /* ensure access through shadow region 0 */ 2619 edma_or_array2(ecc, EDMA_DRAE, 0, 2620 EDMA_REG_ARRAY_INDEX(i), 2621 EDMA_CHANNEL_BIT(i)); 2622 2623 edma_setup_interrupt(&echan[i], true); 2624 2625 /* Set up channel -> slot mapping for the entry slot */ 2626 edma_set_chmap(&echan[i], echan[i].slot[0]); 2627 } 2628 } 2629 2630 return 0; 2631 } 2632 #endif 2633 2634 static const struct dev_pm_ops edma_pm_ops = { 2635 SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume) 2636 }; 2637 2638 static struct platform_driver edma_driver = { 2639 .probe = edma_probe, 2640 .remove = edma_remove, 2641 .driver = { 2642 .name = "edma", 2643 .pm = &edma_pm_ops, 2644 .of_match_table = edma_of_ids, 2645 }, 2646 }; 2647 2648 static int edma_tptc_probe(struct platform_device *pdev) 2649 { 2650 pm_runtime_enable(&pdev->dev); 2651 return pm_runtime_get_sync(&pdev->dev); 2652 } 2653 2654 static struct platform_driver edma_tptc_driver = { 2655 .probe = edma_tptc_probe, 2656 .driver = { 2657 .name = "edma3-tptc", 2658 .of_match_table = edma_tptc_of_ids, 2659 }, 2660 }; 2661 2662 static bool edma_filter_fn(struct dma_chan *chan, void *param) 2663 { 2664 bool match = false; 2665 2666 if (chan->device->dev->driver == &edma_driver.driver) { 2667 struct edma_chan *echan = to_edma_chan(chan); 2668 unsigned ch_req = *(unsigned *)param; 2669 if (ch_req == echan->ch_num) { 2670 /* The channel is going to be used as HW synchronized */ 2671 echan->hw_triggered = true; 2672 match = true; 2673 } 2674 } 2675 return match; 2676 } 2677 2678 static int edma_init(void) 2679 { 2680 int ret; 2681 2682 ret = platform_driver_register(&edma_tptc_driver); 2683 if (ret) 2684 return ret; 2685 2686 return platform_driver_register(&edma_driver); 2687 } 2688 subsys_initcall(edma_init); 2689 2690 static void __exit edma_exit(void) 2691 { 2692 platform_driver_unregister(&edma_driver); 2693 platform_driver_unregister(&edma_tptc_driver); 2694 } 2695 module_exit(edma_exit); 2696 2697 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>"); 2698 MODULE_DESCRIPTION("TI EDMA DMA engine driver"); 2699 MODULE_LICENSE("GPL v2"); 2700