1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TI EDMA DMA engine driver 4 * 5 * Copyright 2012 Texas Instruments 6 */ 7 8 #include <linux/dmaengine.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/bitmap.h> 11 #include <linux/err.h> 12 #include <linux/init.h> 13 #include <linux/interrupt.h> 14 #include <linux/list.h> 15 #include <linux/module.h> 16 #include <linux/platform_device.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/of.h> 20 #include <linux/of_dma.h> 21 #include <linux/of_irq.h> 22 #include <linux/of_address.h> 23 #include <linux/of_device.h> 24 #include <linux/pm_runtime.h> 25 26 #include <linux/platform_data/edma.h> 27 28 #include "../dmaengine.h" 29 #include "../virt-dma.h" 30 31 /* Offsets matching "struct edmacc_param" */ 32 #define PARM_OPT 0x00 33 #define PARM_SRC 0x04 34 #define PARM_A_B_CNT 0x08 35 #define PARM_DST 0x0c 36 #define PARM_SRC_DST_BIDX 0x10 37 #define PARM_LINK_BCNTRLD 0x14 38 #define PARM_SRC_DST_CIDX 0x18 39 #define PARM_CCNT 0x1c 40 41 #define PARM_SIZE 0x20 42 43 /* Offsets for EDMA CC global channel registers and their shadows */ 44 #define SH_ER 0x00 /* 64 bits */ 45 #define SH_ECR 0x08 /* 64 bits */ 46 #define SH_ESR 0x10 /* 64 bits */ 47 #define SH_CER 0x18 /* 64 bits */ 48 #define SH_EER 0x20 /* 64 bits */ 49 #define SH_EECR 0x28 /* 64 bits */ 50 #define SH_EESR 0x30 /* 64 bits */ 51 #define SH_SER 0x38 /* 64 bits */ 52 #define SH_SECR 0x40 /* 64 bits */ 53 #define SH_IER 0x50 /* 64 bits */ 54 #define SH_IECR 0x58 /* 64 bits */ 55 #define SH_IESR 0x60 /* 64 bits */ 56 #define SH_IPR 0x68 /* 64 bits */ 57 #define SH_ICR 0x70 /* 64 bits */ 58 #define SH_IEVAL 0x78 59 #define SH_QER 0x80 60 #define SH_QEER 0x84 61 #define SH_QEECR 0x88 62 #define SH_QEESR 0x8c 63 #define SH_QSER 0x90 64 #define SH_QSECR 0x94 65 #define SH_SIZE 0x200 66 67 /* Offsets for EDMA CC global registers */ 68 #define EDMA_REV 0x0000 69 #define EDMA_CCCFG 0x0004 70 #define EDMA_QCHMAP 0x0200 /* 8 registers */ 71 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */ 72 #define EDMA_QDMAQNUM 0x0260 73 #define EDMA_QUETCMAP 0x0280 74 #define EDMA_QUEPRI 0x0284 75 #define EDMA_EMR 0x0300 /* 64 bits */ 76 #define EDMA_EMCR 0x0308 /* 64 bits */ 77 #define EDMA_QEMR 0x0310 78 #define EDMA_QEMCR 0x0314 79 #define EDMA_CCERR 0x0318 80 #define EDMA_CCERRCLR 0x031c 81 #define EDMA_EEVAL 0x0320 82 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/ 83 #define EDMA_QRAE 0x0380 /* 4 registers */ 84 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */ 85 #define EDMA_QSTAT 0x0600 /* 2 registers */ 86 #define EDMA_QWMTHRA 0x0620 87 #define EDMA_QWMTHRB 0x0624 88 #define EDMA_CCSTAT 0x0640 89 90 #define EDMA_M 0x1000 /* global channel registers */ 91 #define EDMA_ECR 0x1008 92 #define EDMA_ECRH 0x100C 93 #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */ 94 #define EDMA_PARM 0x4000 /* PaRAM entries */ 95 96 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5)) 97 98 #define EDMA_DCHMAP 0x0100 /* 64 registers */ 99 100 /* CCCFG register */ 101 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */ 102 #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */ 103 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */ 104 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */ 105 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */ 106 #define CHMAP_EXIST BIT(24) 107 108 /* CCSTAT register */ 109 #define EDMA_CCSTAT_ACTV BIT(4) 110 111 /* 112 * Max of 20 segments per channel to conserve PaRAM slots 113 * Also note that MAX_NR_SG should be at least the no.of periods 114 * that are required for ASoC, otherwise DMA prep calls will 115 * fail. Today davinci-pcm is the only user of this driver and 116 * requires at least 17 slots, so we setup the default to 20. 117 */ 118 #define MAX_NR_SG 20 119 #define EDMA_MAX_SLOTS MAX_NR_SG 120 #define EDMA_DESCRIPTORS 16 121 122 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */ 123 #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */ 124 #define EDMA_CONT_PARAMS_ANY 1001 125 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002 126 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003 127 128 /* 129 * 64bit array registers are split into two 32bit registers: 130 * reg0: channel/event 0-31 131 * reg1: channel/event 32-63 132 * 133 * bit 5 in the channel number tells the array index (0/1) 134 * bit 0-4 (0x1f) is the bit offset within the register 135 */ 136 #define EDMA_REG_ARRAY_INDEX(channel) ((channel) >> 5) 137 #define EDMA_CHANNEL_BIT(channel) (BIT((channel) & 0x1f)) 138 139 /* PaRAM slots are laid out like this */ 140 struct edmacc_param { 141 u32 opt; 142 u32 src; 143 u32 a_b_cnt; 144 u32 dst; 145 u32 src_dst_bidx; 146 u32 link_bcntrld; 147 u32 src_dst_cidx; 148 u32 ccnt; 149 } __packed; 150 151 /* fields in edmacc_param.opt */ 152 #define SAM BIT(0) 153 #define DAM BIT(1) 154 #define SYNCDIM BIT(2) 155 #define STATIC BIT(3) 156 #define EDMA_FWID (0x07 << 8) 157 #define TCCMODE BIT(11) 158 #define EDMA_TCC(t) ((t) << 12) 159 #define TCINTEN BIT(20) 160 #define ITCINTEN BIT(21) 161 #define TCCHEN BIT(22) 162 #define ITCCHEN BIT(23) 163 164 struct edma_pset { 165 u32 len; 166 dma_addr_t addr; 167 struct edmacc_param param; 168 }; 169 170 struct edma_desc { 171 struct virt_dma_desc vdesc; 172 struct list_head node; 173 enum dma_transfer_direction direction; 174 int cyclic; 175 bool polled; 176 int absync; 177 int pset_nr; 178 struct edma_chan *echan; 179 int processed; 180 181 /* 182 * The following 4 elements are used for residue accounting. 183 * 184 * - processed_stat: the number of SG elements we have traversed 185 * so far to cover accounting. This is updated directly to processed 186 * during edma_callback and is always <= processed, because processed 187 * refers to the number of pending transfer (programmed to EDMA 188 * controller), where as processed_stat tracks number of transfers 189 * accounted for so far. 190 * 191 * - residue: The amount of bytes we have left to transfer for this desc 192 * 193 * - residue_stat: The residue in bytes of data we have covered 194 * so far for accounting. This is updated directly to residue 195 * during callbacks to keep it current. 196 * 197 * - sg_len: Tracks the length of the current intermediate transfer, 198 * this is required to update the residue during intermediate transfer 199 * completion callback. 200 */ 201 int processed_stat; 202 u32 sg_len; 203 u32 residue; 204 u32 residue_stat; 205 206 struct edma_pset pset[]; 207 }; 208 209 struct edma_cc; 210 211 struct edma_tc { 212 struct device_node *node; 213 u16 id; 214 }; 215 216 struct edma_chan { 217 struct virt_dma_chan vchan; 218 struct list_head node; 219 struct edma_desc *edesc; 220 struct edma_cc *ecc; 221 struct edma_tc *tc; 222 int ch_num; 223 bool alloced; 224 bool hw_triggered; 225 int slot[EDMA_MAX_SLOTS]; 226 int missed; 227 struct dma_slave_config cfg; 228 }; 229 230 struct edma_cc { 231 struct device *dev; 232 struct edma_soc_info *info; 233 void __iomem *base; 234 int id; 235 bool legacy_mode; 236 237 /* eDMA3 resource information */ 238 unsigned num_channels; 239 unsigned num_qchannels; 240 unsigned num_region; 241 unsigned num_slots; 242 unsigned num_tc; 243 bool chmap_exist; 244 enum dma_event_q default_queue; 245 246 unsigned int ccint; 247 unsigned int ccerrint; 248 249 /* 250 * The slot_inuse bit for each PaRAM slot is clear unless the slot is 251 * in use by Linux or if it is allocated to be used by DSP. 252 */ 253 unsigned long *slot_inuse; 254 255 /* 256 * For tracking reserved channels used by DSP. 257 * If the bit is cleared, the channel is allocated to be used by DSP 258 * and Linux must not touch it. 259 */ 260 unsigned long *channels_mask; 261 262 struct dma_device dma_slave; 263 struct dma_device *dma_memcpy; 264 struct edma_chan *slave_chans; 265 struct edma_tc *tc_list; 266 int dummy_slot; 267 }; 268 269 /* dummy param set used to (re)initialize parameter RAM slots */ 270 static const struct edmacc_param dummy_paramset = { 271 .link_bcntrld = 0xffff, 272 .ccnt = 1, 273 }; 274 275 #define EDMA_BINDING_LEGACY 0 276 #define EDMA_BINDING_TPCC 1 277 static const u32 edma_binding_type[] = { 278 [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY, 279 [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC, 280 }; 281 282 static const struct of_device_id edma_of_ids[] = { 283 { 284 .compatible = "ti,edma3", 285 .data = &edma_binding_type[EDMA_BINDING_LEGACY], 286 }, 287 { 288 .compatible = "ti,edma3-tpcc", 289 .data = &edma_binding_type[EDMA_BINDING_TPCC], 290 }, 291 {} 292 }; 293 MODULE_DEVICE_TABLE(of, edma_of_ids); 294 295 static const struct of_device_id edma_tptc_of_ids[] = { 296 { .compatible = "ti,edma3-tptc", }, 297 {} 298 }; 299 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids); 300 301 static inline unsigned int edma_read(struct edma_cc *ecc, int offset) 302 { 303 return (unsigned int)__raw_readl(ecc->base + offset); 304 } 305 306 static inline void edma_write(struct edma_cc *ecc, int offset, int val) 307 { 308 __raw_writel(val, ecc->base + offset); 309 } 310 311 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and, 312 unsigned or) 313 { 314 unsigned val = edma_read(ecc, offset); 315 316 val &= and; 317 val |= or; 318 edma_write(ecc, offset, val); 319 } 320 321 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and) 322 { 323 unsigned val = edma_read(ecc, offset); 324 325 val &= and; 326 edma_write(ecc, offset, val); 327 } 328 329 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or) 330 { 331 unsigned val = edma_read(ecc, offset); 332 333 val |= or; 334 edma_write(ecc, offset, val); 335 } 336 337 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset, 338 int i) 339 { 340 return edma_read(ecc, offset + (i << 2)); 341 } 342 343 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i, 344 unsigned val) 345 { 346 edma_write(ecc, offset + (i << 2), val); 347 } 348 349 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i, 350 unsigned and, unsigned or) 351 { 352 edma_modify(ecc, offset + (i << 2), and, or); 353 } 354 355 static inline void edma_or_array(struct edma_cc *ecc, int offset, int i, 356 unsigned or) 357 { 358 edma_or(ecc, offset + (i << 2), or); 359 } 360 361 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j, 362 unsigned or) 363 { 364 edma_or(ecc, offset + ((i * 2 + j) << 2), or); 365 } 366 367 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i, 368 int j, unsigned val) 369 { 370 edma_write(ecc, offset + ((i * 2 + j) << 2), val); 371 } 372 373 static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset) 374 { 375 return edma_read(ecc, EDMA_SHADOW0 + offset); 376 } 377 378 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc, 379 int offset, int i) 380 { 381 return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2)); 382 } 383 384 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset, 385 unsigned val) 386 { 387 edma_write(ecc, EDMA_SHADOW0 + offset, val); 388 } 389 390 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset, 391 int i, unsigned val) 392 { 393 edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val); 394 } 395 396 static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset, 397 int param_no) 398 { 399 return edma_read(ecc, EDMA_PARM + offset + (param_no << 5)); 400 } 401 402 static inline void edma_param_write(struct edma_cc *ecc, int offset, 403 int param_no, unsigned val) 404 { 405 edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val); 406 } 407 408 static inline void edma_param_modify(struct edma_cc *ecc, int offset, 409 int param_no, unsigned and, unsigned or) 410 { 411 edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or); 412 } 413 414 static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no, 415 unsigned and) 416 { 417 edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and); 418 } 419 420 static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no, 421 unsigned or) 422 { 423 edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or); 424 } 425 426 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no, 427 int priority) 428 { 429 int bit = queue_no * 4; 430 431 edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit)); 432 } 433 434 static void edma_set_chmap(struct edma_chan *echan, int slot) 435 { 436 struct edma_cc *ecc = echan->ecc; 437 int channel = EDMA_CHAN_SLOT(echan->ch_num); 438 439 if (ecc->chmap_exist) { 440 slot = EDMA_CHAN_SLOT(slot); 441 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5)); 442 } 443 } 444 445 static void edma_setup_interrupt(struct edma_chan *echan, bool enable) 446 { 447 struct edma_cc *ecc = echan->ecc; 448 int channel = EDMA_CHAN_SLOT(echan->ch_num); 449 int idx = EDMA_REG_ARRAY_INDEX(channel); 450 int ch_bit = EDMA_CHANNEL_BIT(channel); 451 452 if (enable) { 453 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit); 454 edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit); 455 } else { 456 edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit); 457 } 458 } 459 460 /* 461 * paRAM slot management functions 462 */ 463 static void edma_write_slot(struct edma_cc *ecc, unsigned slot, 464 const struct edmacc_param *param) 465 { 466 slot = EDMA_CHAN_SLOT(slot); 467 if (slot >= ecc->num_slots) 468 return; 469 memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE); 470 } 471 472 static int edma_read_slot(struct edma_cc *ecc, unsigned slot, 473 struct edmacc_param *param) 474 { 475 slot = EDMA_CHAN_SLOT(slot); 476 if (slot >= ecc->num_slots) 477 return -EINVAL; 478 memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE); 479 480 return 0; 481 } 482 483 /** 484 * edma_alloc_slot - allocate DMA parameter RAM 485 * @ecc: pointer to edma_cc struct 486 * @slot: specific slot to allocate; negative for "any unused slot" 487 * 488 * This allocates a parameter RAM slot, initializing it to hold a 489 * dummy transfer. Slots allocated using this routine have not been 490 * mapped to a hardware DMA channel, and will normally be used by 491 * linking to them from a slot associated with a DMA channel. 492 * 493 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific 494 * slots may be allocated on behalf of DSP firmware. 495 * 496 * Returns the number of the slot, else negative errno. 497 */ 498 static int edma_alloc_slot(struct edma_cc *ecc, int slot) 499 { 500 if (slot >= 0) { 501 slot = EDMA_CHAN_SLOT(slot); 502 /* Requesting entry paRAM slot for a HW triggered channel. */ 503 if (ecc->chmap_exist && slot < ecc->num_channels) 504 slot = EDMA_SLOT_ANY; 505 } 506 507 if (slot < 0) { 508 if (ecc->chmap_exist) 509 slot = 0; 510 else 511 slot = ecc->num_channels; 512 for (;;) { 513 slot = find_next_zero_bit(ecc->slot_inuse, 514 ecc->num_slots, 515 slot); 516 if (slot == ecc->num_slots) 517 return -ENOMEM; 518 if (!test_and_set_bit(slot, ecc->slot_inuse)) 519 break; 520 } 521 } else if (slot >= ecc->num_slots) { 522 return -EINVAL; 523 } else if (test_and_set_bit(slot, ecc->slot_inuse)) { 524 return -EBUSY; 525 } 526 527 edma_write_slot(ecc, slot, &dummy_paramset); 528 529 return EDMA_CTLR_CHAN(ecc->id, slot); 530 } 531 532 static void edma_free_slot(struct edma_cc *ecc, unsigned slot) 533 { 534 slot = EDMA_CHAN_SLOT(slot); 535 if (slot >= ecc->num_slots) 536 return; 537 538 edma_write_slot(ecc, slot, &dummy_paramset); 539 clear_bit(slot, ecc->slot_inuse); 540 } 541 542 /** 543 * edma_link - link one parameter RAM slot to another 544 * @ecc: pointer to edma_cc struct 545 * @from: parameter RAM slot originating the link 546 * @to: parameter RAM slot which is the link target 547 * 548 * The originating slot should not be part of any active DMA transfer. 549 */ 550 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to) 551 { 552 if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to))) 553 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n"); 554 555 from = EDMA_CHAN_SLOT(from); 556 to = EDMA_CHAN_SLOT(to); 557 if (from >= ecc->num_slots || to >= ecc->num_slots) 558 return; 559 560 edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000, 561 PARM_OFFSET(to)); 562 } 563 564 /** 565 * edma_get_position - returns the current transfer point 566 * @ecc: pointer to edma_cc struct 567 * @slot: parameter RAM slot being examined 568 * @dst: true selects the dest position, false the source 569 * 570 * Returns the position of the current active slot 571 */ 572 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot, 573 bool dst) 574 { 575 u32 offs; 576 577 slot = EDMA_CHAN_SLOT(slot); 578 offs = PARM_OFFSET(slot); 579 offs += dst ? PARM_DST : PARM_SRC; 580 581 return edma_read(ecc, offs); 582 } 583 584 /* 585 * Channels with event associations will be triggered by their hardware 586 * events, and channels without such associations will be triggered by 587 * software. (At this writing there is no interface for using software 588 * triggers except with channels that don't support hardware triggers.) 589 */ 590 static void edma_start(struct edma_chan *echan) 591 { 592 struct edma_cc *ecc = echan->ecc; 593 int channel = EDMA_CHAN_SLOT(echan->ch_num); 594 int idx = EDMA_REG_ARRAY_INDEX(channel); 595 int ch_bit = EDMA_CHANNEL_BIT(channel); 596 597 if (!echan->hw_triggered) { 598 /* EDMA channels without event association */ 599 dev_dbg(ecc->dev, "ESR%d %08x\n", idx, 600 edma_shadow0_read_array(ecc, SH_ESR, idx)); 601 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit); 602 } else { 603 /* EDMA channel with event association */ 604 dev_dbg(ecc->dev, "ER%d %08x\n", idx, 605 edma_shadow0_read_array(ecc, SH_ER, idx)); 606 /* Clear any pending event or error */ 607 edma_write_array(ecc, EDMA_ECR, idx, ch_bit); 608 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); 609 /* Clear any SER */ 610 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); 611 edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit); 612 dev_dbg(ecc->dev, "EER%d %08x\n", idx, 613 edma_shadow0_read_array(ecc, SH_EER, idx)); 614 } 615 } 616 617 static void edma_stop(struct edma_chan *echan) 618 { 619 struct edma_cc *ecc = echan->ecc; 620 int channel = EDMA_CHAN_SLOT(echan->ch_num); 621 int idx = EDMA_REG_ARRAY_INDEX(channel); 622 int ch_bit = EDMA_CHANNEL_BIT(channel); 623 624 edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit); 625 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit); 626 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); 627 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); 628 629 /* clear possibly pending completion interrupt */ 630 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit); 631 632 dev_dbg(ecc->dev, "EER%d %08x\n", idx, 633 edma_shadow0_read_array(ecc, SH_EER, idx)); 634 635 /* REVISIT: consider guarding against inappropriate event 636 * chaining by overwriting with dummy_paramset. 637 */ 638 } 639 640 /* 641 * Temporarily disable EDMA hardware events on the specified channel, 642 * preventing them from triggering new transfers 643 */ 644 static void edma_pause(struct edma_chan *echan) 645 { 646 int channel = EDMA_CHAN_SLOT(echan->ch_num); 647 648 edma_shadow0_write_array(echan->ecc, SH_EECR, 649 EDMA_REG_ARRAY_INDEX(channel), 650 EDMA_CHANNEL_BIT(channel)); 651 } 652 653 /* Re-enable EDMA hardware events on the specified channel. */ 654 static void edma_resume(struct edma_chan *echan) 655 { 656 int channel = EDMA_CHAN_SLOT(echan->ch_num); 657 658 edma_shadow0_write_array(echan->ecc, SH_EESR, 659 EDMA_REG_ARRAY_INDEX(channel), 660 EDMA_CHANNEL_BIT(channel)); 661 } 662 663 static void edma_trigger_channel(struct edma_chan *echan) 664 { 665 struct edma_cc *ecc = echan->ecc; 666 int channel = EDMA_CHAN_SLOT(echan->ch_num); 667 int idx = EDMA_REG_ARRAY_INDEX(channel); 668 int ch_bit = EDMA_CHANNEL_BIT(channel); 669 670 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit); 671 672 dev_dbg(ecc->dev, "ESR%d %08x\n", idx, 673 edma_shadow0_read_array(ecc, SH_ESR, idx)); 674 } 675 676 static void edma_clean_channel(struct edma_chan *echan) 677 { 678 struct edma_cc *ecc = echan->ecc; 679 int channel = EDMA_CHAN_SLOT(echan->ch_num); 680 int idx = EDMA_REG_ARRAY_INDEX(channel); 681 int ch_bit = EDMA_CHANNEL_BIT(channel); 682 683 dev_dbg(ecc->dev, "EMR%d %08x\n", idx, 684 edma_read_array(ecc, EDMA_EMR, idx)); 685 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit); 686 /* Clear the corresponding EMR bits */ 687 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); 688 /* Clear any SER */ 689 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); 690 edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0)); 691 } 692 693 /* Move channel to a specific event queue */ 694 static void edma_assign_channel_eventq(struct edma_chan *echan, 695 enum dma_event_q eventq_no) 696 { 697 struct edma_cc *ecc = echan->ecc; 698 int channel = EDMA_CHAN_SLOT(echan->ch_num); 699 int bit = (channel & 0x7) * 4; 700 701 /* default to low priority queue */ 702 if (eventq_no == EVENTQ_DEFAULT) 703 eventq_no = ecc->default_queue; 704 if (eventq_no >= ecc->num_tc) 705 return; 706 707 eventq_no &= 7; 708 edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit), 709 eventq_no << bit); 710 } 711 712 static int edma_alloc_channel(struct edma_chan *echan, 713 enum dma_event_q eventq_no) 714 { 715 struct edma_cc *ecc = echan->ecc; 716 int channel = EDMA_CHAN_SLOT(echan->ch_num); 717 718 if (!test_bit(echan->ch_num, ecc->channels_mask)) { 719 dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n", 720 echan->ch_num); 721 return -EINVAL; 722 } 723 724 /* ensure access through shadow region 0 */ 725 edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel), 726 EDMA_CHANNEL_BIT(channel)); 727 728 /* ensure no events are pending */ 729 edma_stop(echan); 730 731 edma_setup_interrupt(echan, true); 732 733 edma_assign_channel_eventq(echan, eventq_no); 734 735 return 0; 736 } 737 738 static void edma_free_channel(struct edma_chan *echan) 739 { 740 /* ensure no events are pending */ 741 edma_stop(echan); 742 /* REVISIT should probably take out of shadow region 0 */ 743 edma_setup_interrupt(echan, false); 744 } 745 746 static inline struct edma_cc *to_edma_cc(struct dma_device *d) 747 { 748 return container_of(d, struct edma_cc, dma_slave); 749 } 750 751 static inline struct edma_chan *to_edma_chan(struct dma_chan *c) 752 { 753 return container_of(c, struct edma_chan, vchan.chan); 754 } 755 756 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx) 757 { 758 return container_of(tx, struct edma_desc, vdesc.tx); 759 } 760 761 static void edma_desc_free(struct virt_dma_desc *vdesc) 762 { 763 kfree(container_of(vdesc, struct edma_desc, vdesc)); 764 } 765 766 /* Dispatch a queued descriptor to the controller (caller holds lock) */ 767 static void edma_execute(struct edma_chan *echan) 768 { 769 struct edma_cc *ecc = echan->ecc; 770 struct virt_dma_desc *vdesc; 771 struct edma_desc *edesc; 772 struct device *dev = echan->vchan.chan.device->dev; 773 int i, j, left, nslots; 774 775 if (!echan->edesc) { 776 /* Setup is needed for the first transfer */ 777 vdesc = vchan_next_desc(&echan->vchan); 778 if (!vdesc) 779 return; 780 list_del(&vdesc->node); 781 echan->edesc = to_edma_desc(&vdesc->tx); 782 } 783 784 edesc = echan->edesc; 785 786 /* Find out how many left */ 787 left = edesc->pset_nr - edesc->processed; 788 nslots = min(MAX_NR_SG, left); 789 edesc->sg_len = 0; 790 791 /* Write descriptor PaRAM set(s) */ 792 for (i = 0; i < nslots; i++) { 793 j = i + edesc->processed; 794 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param); 795 edesc->sg_len += edesc->pset[j].len; 796 dev_vdbg(dev, 797 "\n pset[%d]:\n" 798 " chnum\t%d\n" 799 " slot\t%d\n" 800 " opt\t%08x\n" 801 " src\t%08x\n" 802 " dst\t%08x\n" 803 " abcnt\t%08x\n" 804 " ccnt\t%08x\n" 805 " bidx\t%08x\n" 806 " cidx\t%08x\n" 807 " lkrld\t%08x\n", 808 j, echan->ch_num, echan->slot[i], 809 edesc->pset[j].param.opt, 810 edesc->pset[j].param.src, 811 edesc->pset[j].param.dst, 812 edesc->pset[j].param.a_b_cnt, 813 edesc->pset[j].param.ccnt, 814 edesc->pset[j].param.src_dst_bidx, 815 edesc->pset[j].param.src_dst_cidx, 816 edesc->pset[j].param.link_bcntrld); 817 /* Link to the previous slot if not the last set */ 818 if (i != (nslots - 1)) 819 edma_link(ecc, echan->slot[i], echan->slot[i + 1]); 820 } 821 822 edesc->processed += nslots; 823 824 /* 825 * If this is either the last set in a set of SG-list transactions 826 * then setup a link to the dummy slot, this results in all future 827 * events being absorbed and that's OK because we're done 828 */ 829 if (edesc->processed == edesc->pset_nr) { 830 if (edesc->cyclic) 831 edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]); 832 else 833 edma_link(ecc, echan->slot[nslots - 1], 834 echan->ecc->dummy_slot); 835 } 836 837 if (echan->missed) { 838 /* 839 * This happens due to setup times between intermediate 840 * transfers in long SG lists which have to be broken up into 841 * transfers of MAX_NR_SG 842 */ 843 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num); 844 edma_clean_channel(echan); 845 edma_stop(echan); 846 edma_start(echan); 847 edma_trigger_channel(echan); 848 echan->missed = 0; 849 } else if (edesc->processed <= MAX_NR_SG) { 850 dev_dbg(dev, "first transfer starting on channel %d\n", 851 echan->ch_num); 852 edma_start(echan); 853 } else { 854 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n", 855 echan->ch_num, edesc->processed); 856 edma_resume(echan); 857 } 858 } 859 860 static int edma_terminate_all(struct dma_chan *chan) 861 { 862 struct edma_chan *echan = to_edma_chan(chan); 863 unsigned long flags; 864 LIST_HEAD(head); 865 866 spin_lock_irqsave(&echan->vchan.lock, flags); 867 868 /* 869 * Stop DMA activity: we assume the callback will not be called 870 * after edma_dma() returns (even if it does, it will see 871 * echan->edesc is NULL and exit.) 872 */ 873 if (echan->edesc) { 874 edma_stop(echan); 875 /* Move the cyclic channel back to default queue */ 876 if (!echan->tc && echan->edesc->cyclic) 877 edma_assign_channel_eventq(echan, EVENTQ_DEFAULT); 878 879 vchan_terminate_vdesc(&echan->edesc->vdesc); 880 echan->edesc = NULL; 881 } 882 883 vchan_get_all_descriptors(&echan->vchan, &head); 884 spin_unlock_irqrestore(&echan->vchan.lock, flags); 885 vchan_dma_desc_free_list(&echan->vchan, &head); 886 887 return 0; 888 } 889 890 static void edma_synchronize(struct dma_chan *chan) 891 { 892 struct edma_chan *echan = to_edma_chan(chan); 893 894 vchan_synchronize(&echan->vchan); 895 } 896 897 static int edma_slave_config(struct dma_chan *chan, 898 struct dma_slave_config *cfg) 899 { 900 struct edma_chan *echan = to_edma_chan(chan); 901 902 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || 903 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) 904 return -EINVAL; 905 906 if (cfg->src_maxburst > chan->device->max_burst || 907 cfg->dst_maxburst > chan->device->max_burst) 908 return -EINVAL; 909 910 memcpy(&echan->cfg, cfg, sizeof(echan->cfg)); 911 912 return 0; 913 } 914 915 static int edma_dma_pause(struct dma_chan *chan) 916 { 917 struct edma_chan *echan = to_edma_chan(chan); 918 919 if (!echan->edesc) 920 return -EINVAL; 921 922 edma_pause(echan); 923 return 0; 924 } 925 926 static int edma_dma_resume(struct dma_chan *chan) 927 { 928 struct edma_chan *echan = to_edma_chan(chan); 929 930 edma_resume(echan); 931 return 0; 932 } 933 934 /* 935 * A PaRAM set configuration abstraction used by other modes 936 * @chan: Channel who's PaRAM set we're configuring 937 * @pset: PaRAM set to initialize and setup. 938 * @src_addr: Source address of the DMA 939 * @dst_addr: Destination address of the DMA 940 * @burst: In units of dev_width, how much to send 941 * @dev_width: How much is the dev_width 942 * @dma_length: Total length of the DMA transfer 943 * @direction: Direction of the transfer 944 */ 945 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset, 946 dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst, 947 unsigned int acnt, unsigned int dma_length, 948 enum dma_transfer_direction direction) 949 { 950 struct edma_chan *echan = to_edma_chan(chan); 951 struct device *dev = chan->device->dev; 952 struct edmacc_param *param = &epset->param; 953 int bcnt, ccnt, cidx; 954 int src_bidx, dst_bidx, src_cidx, dst_cidx; 955 int absync; 956 957 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */ 958 if (!burst) 959 burst = 1; 960 /* 961 * If the maxburst is equal to the fifo width, use 962 * A-synced transfers. This allows for large contiguous 963 * buffer transfers using only one PaRAM set. 964 */ 965 if (burst == 1) { 966 /* 967 * For the A-sync case, bcnt and ccnt are the remainder 968 * and quotient respectively of the division of: 969 * (dma_length / acnt) by (SZ_64K -1). This is so 970 * that in case bcnt over flows, we have ccnt to use. 971 * Note: In A-sync transfer only, bcntrld is used, but it 972 * only applies for sg_dma_len(sg) >= SZ_64K. 973 * In this case, the best way adopted is- bccnt for the 974 * first frame will be the remainder below. Then for 975 * every successive frame, bcnt will be SZ_64K-1. This 976 * is assured as bcntrld = 0xffff in end of function. 977 */ 978 absync = false; 979 ccnt = dma_length / acnt / (SZ_64K - 1); 980 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1); 981 /* 982 * If bcnt is non-zero, we have a remainder and hence an 983 * extra frame to transfer, so increment ccnt. 984 */ 985 if (bcnt) 986 ccnt++; 987 else 988 bcnt = SZ_64K - 1; 989 cidx = acnt; 990 } else { 991 /* 992 * If maxburst is greater than the fifo address_width, 993 * use AB-synced transfers where A count is the fifo 994 * address_width and B count is the maxburst. In this 995 * case, we are limited to transfers of C count frames 996 * of (address_width * maxburst) where C count is limited 997 * to SZ_64K-1. This places an upper bound on the length 998 * of an SG segment that can be handled. 999 */ 1000 absync = true; 1001 bcnt = burst; 1002 ccnt = dma_length / (acnt * bcnt); 1003 if (ccnt > (SZ_64K - 1)) { 1004 dev_err(dev, "Exceeded max SG segment size\n"); 1005 return -EINVAL; 1006 } 1007 cidx = acnt * bcnt; 1008 } 1009 1010 epset->len = dma_length; 1011 1012 if (direction == DMA_MEM_TO_DEV) { 1013 src_bidx = acnt; 1014 src_cidx = cidx; 1015 dst_bidx = 0; 1016 dst_cidx = 0; 1017 epset->addr = src_addr; 1018 } else if (direction == DMA_DEV_TO_MEM) { 1019 src_bidx = 0; 1020 src_cidx = 0; 1021 dst_bidx = acnt; 1022 dst_cidx = cidx; 1023 epset->addr = dst_addr; 1024 } else if (direction == DMA_MEM_TO_MEM) { 1025 src_bidx = acnt; 1026 src_cidx = cidx; 1027 dst_bidx = acnt; 1028 dst_cidx = cidx; 1029 epset->addr = src_addr; 1030 } else { 1031 dev_err(dev, "%s: direction not implemented yet\n", __func__); 1032 return -EINVAL; 1033 } 1034 1035 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); 1036 /* Configure A or AB synchronized transfers */ 1037 if (absync) 1038 param->opt |= SYNCDIM; 1039 1040 param->src = src_addr; 1041 param->dst = dst_addr; 1042 1043 param->src_dst_bidx = (dst_bidx << 16) | src_bidx; 1044 param->src_dst_cidx = (dst_cidx << 16) | src_cidx; 1045 1046 param->a_b_cnt = bcnt << 16 | acnt; 1047 param->ccnt = ccnt; 1048 /* 1049 * Only time when (bcntrld) auto reload is required is for 1050 * A-sync case, and in this case, a requirement of reload value 1051 * of SZ_64K-1 only is assured. 'link' is initially set to NULL 1052 * and then later will be populated by edma_execute. 1053 */ 1054 param->link_bcntrld = 0xffffffff; 1055 return absync; 1056 } 1057 1058 static struct dma_async_tx_descriptor *edma_prep_slave_sg( 1059 struct dma_chan *chan, struct scatterlist *sgl, 1060 unsigned int sg_len, enum dma_transfer_direction direction, 1061 unsigned long tx_flags, void *context) 1062 { 1063 struct edma_chan *echan = to_edma_chan(chan); 1064 struct device *dev = chan->device->dev; 1065 struct edma_desc *edesc; 1066 dma_addr_t src_addr = 0, dst_addr = 0; 1067 enum dma_slave_buswidth dev_width; 1068 u32 burst; 1069 struct scatterlist *sg; 1070 int i, nslots, ret; 1071 1072 if (unlikely(!echan || !sgl || !sg_len)) 1073 return NULL; 1074 1075 if (direction == DMA_DEV_TO_MEM) { 1076 src_addr = echan->cfg.src_addr; 1077 dev_width = echan->cfg.src_addr_width; 1078 burst = echan->cfg.src_maxburst; 1079 } else if (direction == DMA_MEM_TO_DEV) { 1080 dst_addr = echan->cfg.dst_addr; 1081 dev_width = echan->cfg.dst_addr_width; 1082 burst = echan->cfg.dst_maxburst; 1083 } else { 1084 dev_err(dev, "%s: bad direction: %d\n", __func__, direction); 1085 return NULL; 1086 } 1087 1088 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { 1089 dev_err(dev, "%s: Undefined slave buswidth\n", __func__); 1090 return NULL; 1091 } 1092 1093 edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC); 1094 if (!edesc) 1095 return NULL; 1096 1097 edesc->pset_nr = sg_len; 1098 edesc->residue = 0; 1099 edesc->direction = direction; 1100 edesc->echan = echan; 1101 1102 /* Allocate a PaRAM slot, if needed */ 1103 nslots = min_t(unsigned, MAX_NR_SG, sg_len); 1104 1105 for (i = 0; i < nslots; i++) { 1106 if (echan->slot[i] < 0) { 1107 echan->slot[i] = 1108 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); 1109 if (echan->slot[i] < 0) { 1110 kfree(edesc); 1111 dev_err(dev, "%s: Failed to allocate slot\n", 1112 __func__); 1113 return NULL; 1114 } 1115 } 1116 } 1117 1118 /* Configure PaRAM sets for each SG */ 1119 for_each_sg(sgl, sg, sg_len, i) { 1120 /* Get address for each SG */ 1121 if (direction == DMA_DEV_TO_MEM) 1122 dst_addr = sg_dma_address(sg); 1123 else 1124 src_addr = sg_dma_address(sg); 1125 1126 ret = edma_config_pset(chan, &edesc->pset[i], src_addr, 1127 dst_addr, burst, dev_width, 1128 sg_dma_len(sg), direction); 1129 if (ret < 0) { 1130 kfree(edesc); 1131 return NULL; 1132 } 1133 1134 edesc->absync = ret; 1135 edesc->residue += sg_dma_len(sg); 1136 1137 if (i == sg_len - 1) 1138 /* Enable completion interrupt */ 1139 edesc->pset[i].param.opt |= TCINTEN; 1140 else if (!((i+1) % MAX_NR_SG)) 1141 /* 1142 * Enable early completion interrupt for the 1143 * intermediateset. In this case the driver will be 1144 * notified when the paRAM set is submitted to TC. This 1145 * will allow more time to set up the next set of slots. 1146 */ 1147 edesc->pset[i].param.opt |= (TCINTEN | TCCMODE); 1148 } 1149 edesc->residue_stat = edesc->residue; 1150 1151 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1152 } 1153 1154 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy( 1155 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1156 size_t len, unsigned long tx_flags) 1157 { 1158 int ret, nslots; 1159 struct edma_desc *edesc; 1160 struct device *dev = chan->device->dev; 1161 struct edma_chan *echan = to_edma_chan(chan); 1162 unsigned int width, pset_len, array_size; 1163 1164 if (unlikely(!echan || !len)) 1165 return NULL; 1166 1167 /* Align the array size (acnt block) with the transfer properties */ 1168 switch (__ffs((src | dest | len))) { 1169 case 0: 1170 array_size = SZ_32K - 1; 1171 break; 1172 case 1: 1173 array_size = SZ_32K - 2; 1174 break; 1175 default: 1176 array_size = SZ_32K - 4; 1177 break; 1178 } 1179 1180 if (len < SZ_64K) { 1181 /* 1182 * Transfer size less than 64K can be handled with one paRAM 1183 * slot and with one burst. 1184 * ACNT = length 1185 */ 1186 width = len; 1187 pset_len = len; 1188 nslots = 1; 1189 } else { 1190 /* 1191 * Transfer size bigger than 64K will be handled with maximum of 1192 * two paRAM slots. 1193 * slot1: (full_length / 32767) times 32767 bytes bursts. 1194 * ACNT = 32767, length1: (full_length / 32767) * 32767 1195 * slot2: the remaining amount of data after slot1. 1196 * ACNT = full_length - length1, length2 = ACNT 1197 * 1198 * When the full_length is a multiple of 32767 one slot can be 1199 * used to complete the transfer. 1200 */ 1201 width = array_size; 1202 pset_len = rounddown(len, width); 1203 /* One slot is enough for lengths multiple of (SZ_32K -1) */ 1204 if (unlikely(pset_len == len)) 1205 nslots = 1; 1206 else 1207 nslots = 2; 1208 } 1209 1210 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC); 1211 if (!edesc) 1212 return NULL; 1213 1214 edesc->pset_nr = nslots; 1215 edesc->residue = edesc->residue_stat = len; 1216 edesc->direction = DMA_MEM_TO_MEM; 1217 edesc->echan = echan; 1218 1219 ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1, 1220 width, pset_len, DMA_MEM_TO_MEM); 1221 if (ret < 0) { 1222 kfree(edesc); 1223 return NULL; 1224 } 1225 1226 edesc->absync = ret; 1227 1228 edesc->pset[0].param.opt |= ITCCHEN; 1229 if (nslots == 1) { 1230 /* Enable transfer complete interrupt if requested */ 1231 if (tx_flags & DMA_PREP_INTERRUPT) 1232 edesc->pset[0].param.opt |= TCINTEN; 1233 } else { 1234 /* Enable transfer complete chaining for the first slot */ 1235 edesc->pset[0].param.opt |= TCCHEN; 1236 1237 if (echan->slot[1] < 0) { 1238 echan->slot[1] = edma_alloc_slot(echan->ecc, 1239 EDMA_SLOT_ANY); 1240 if (echan->slot[1] < 0) { 1241 kfree(edesc); 1242 dev_err(dev, "%s: Failed to allocate slot\n", 1243 __func__); 1244 return NULL; 1245 } 1246 } 1247 dest += pset_len; 1248 src += pset_len; 1249 pset_len = width = len % array_size; 1250 1251 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1, 1252 width, pset_len, DMA_MEM_TO_MEM); 1253 if (ret < 0) { 1254 kfree(edesc); 1255 return NULL; 1256 } 1257 1258 edesc->pset[1].param.opt |= ITCCHEN; 1259 /* Enable transfer complete interrupt if requested */ 1260 if (tx_flags & DMA_PREP_INTERRUPT) 1261 edesc->pset[1].param.opt |= TCINTEN; 1262 } 1263 1264 if (!(tx_flags & DMA_PREP_INTERRUPT)) 1265 edesc->polled = true; 1266 1267 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1268 } 1269 1270 static struct dma_async_tx_descriptor * 1271 edma_prep_dma_interleaved(struct dma_chan *chan, 1272 struct dma_interleaved_template *xt, 1273 unsigned long tx_flags) 1274 { 1275 struct device *dev = chan->device->dev; 1276 struct edma_chan *echan = to_edma_chan(chan); 1277 struct edmacc_param *param; 1278 struct edma_desc *edesc; 1279 size_t src_icg, dst_icg; 1280 int src_bidx, dst_bidx; 1281 1282 /* Slave mode is not supported */ 1283 if (is_slave_direction(xt->dir)) 1284 return NULL; 1285 1286 if (xt->frame_size != 1 || xt->numf == 0) 1287 return NULL; 1288 1289 if (xt->sgl[0].size > SZ_64K || xt->numf > SZ_64K) 1290 return NULL; 1291 1292 src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]); 1293 if (src_icg) { 1294 src_bidx = src_icg + xt->sgl[0].size; 1295 } else if (xt->src_inc) { 1296 src_bidx = xt->sgl[0].size; 1297 } else { 1298 dev_err(dev, "%s: SRC constant addressing is not supported\n", 1299 __func__); 1300 return NULL; 1301 } 1302 1303 dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]); 1304 if (dst_icg) { 1305 dst_bidx = dst_icg + xt->sgl[0].size; 1306 } else if (xt->dst_inc) { 1307 dst_bidx = xt->sgl[0].size; 1308 } else { 1309 dev_err(dev, "%s: DST constant addressing is not supported\n", 1310 __func__); 1311 return NULL; 1312 } 1313 1314 if (src_bidx > SZ_64K || dst_bidx > SZ_64K) 1315 return NULL; 1316 1317 edesc = kzalloc(struct_size(edesc, pset, 1), GFP_ATOMIC); 1318 if (!edesc) 1319 return NULL; 1320 1321 edesc->direction = DMA_MEM_TO_MEM; 1322 edesc->echan = echan; 1323 edesc->pset_nr = 1; 1324 1325 param = &edesc->pset[0].param; 1326 1327 param->src = xt->src_start; 1328 param->dst = xt->dst_start; 1329 param->a_b_cnt = xt->numf << 16 | xt->sgl[0].size; 1330 param->ccnt = 1; 1331 param->src_dst_bidx = (dst_bidx << 16) | src_bidx; 1332 param->src_dst_cidx = 0; 1333 1334 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); 1335 param->opt |= ITCCHEN; 1336 /* Enable transfer complete interrupt if requested */ 1337 if (tx_flags & DMA_PREP_INTERRUPT) 1338 param->opt |= TCINTEN; 1339 else 1340 edesc->polled = true; 1341 1342 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1343 } 1344 1345 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic( 1346 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1347 size_t period_len, enum dma_transfer_direction direction, 1348 unsigned long tx_flags) 1349 { 1350 struct edma_chan *echan = to_edma_chan(chan); 1351 struct device *dev = chan->device->dev; 1352 struct edma_desc *edesc; 1353 dma_addr_t src_addr, dst_addr; 1354 enum dma_slave_buswidth dev_width; 1355 bool use_intermediate = false; 1356 u32 burst; 1357 int i, ret, nslots; 1358 1359 if (unlikely(!echan || !buf_len || !period_len)) 1360 return NULL; 1361 1362 if (direction == DMA_DEV_TO_MEM) { 1363 src_addr = echan->cfg.src_addr; 1364 dst_addr = buf_addr; 1365 dev_width = echan->cfg.src_addr_width; 1366 burst = echan->cfg.src_maxburst; 1367 } else if (direction == DMA_MEM_TO_DEV) { 1368 src_addr = buf_addr; 1369 dst_addr = echan->cfg.dst_addr; 1370 dev_width = echan->cfg.dst_addr_width; 1371 burst = echan->cfg.dst_maxburst; 1372 } else { 1373 dev_err(dev, "%s: bad direction: %d\n", __func__, direction); 1374 return NULL; 1375 } 1376 1377 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { 1378 dev_err(dev, "%s: Undefined slave buswidth\n", __func__); 1379 return NULL; 1380 } 1381 1382 if (unlikely(buf_len % period_len)) { 1383 dev_err(dev, "Period should be multiple of Buffer length\n"); 1384 return NULL; 1385 } 1386 1387 nslots = (buf_len / period_len) + 1; 1388 1389 /* 1390 * Cyclic DMA users such as audio cannot tolerate delays introduced 1391 * by cases where the number of periods is more than the maximum 1392 * number of SGs the EDMA driver can handle at a time. For DMA types 1393 * such as Slave SGs, such delays are tolerable and synchronized, 1394 * but the synchronization is difficult to achieve with Cyclic and 1395 * cannot be guaranteed, so we error out early. 1396 */ 1397 if (nslots > MAX_NR_SG) { 1398 /* 1399 * If the burst and period sizes are the same, we can put 1400 * the full buffer into a single period and activate 1401 * intermediate interrupts. This will produce interrupts 1402 * after each burst, which is also after each desired period. 1403 */ 1404 if (burst == period_len) { 1405 period_len = buf_len; 1406 nslots = 2; 1407 use_intermediate = true; 1408 } else { 1409 return NULL; 1410 } 1411 } 1412 1413 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC); 1414 if (!edesc) 1415 return NULL; 1416 1417 edesc->cyclic = 1; 1418 edesc->pset_nr = nslots; 1419 edesc->residue = edesc->residue_stat = buf_len; 1420 edesc->direction = direction; 1421 edesc->echan = echan; 1422 1423 dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n", 1424 __func__, echan->ch_num, nslots, period_len, buf_len); 1425 1426 for (i = 0; i < nslots; i++) { 1427 /* Allocate a PaRAM slot, if needed */ 1428 if (echan->slot[i] < 0) { 1429 echan->slot[i] = 1430 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); 1431 if (echan->slot[i] < 0) { 1432 kfree(edesc); 1433 dev_err(dev, "%s: Failed to allocate slot\n", 1434 __func__); 1435 return NULL; 1436 } 1437 } 1438 1439 if (i == nslots - 1) { 1440 memcpy(&edesc->pset[i], &edesc->pset[0], 1441 sizeof(edesc->pset[0])); 1442 break; 1443 } 1444 1445 ret = edma_config_pset(chan, &edesc->pset[i], src_addr, 1446 dst_addr, burst, dev_width, period_len, 1447 direction); 1448 if (ret < 0) { 1449 kfree(edesc); 1450 return NULL; 1451 } 1452 1453 if (direction == DMA_DEV_TO_MEM) 1454 dst_addr += period_len; 1455 else 1456 src_addr += period_len; 1457 1458 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i); 1459 dev_vdbg(dev, 1460 "\n pset[%d]:\n" 1461 " chnum\t%d\n" 1462 " slot\t%d\n" 1463 " opt\t%08x\n" 1464 " src\t%08x\n" 1465 " dst\t%08x\n" 1466 " abcnt\t%08x\n" 1467 " ccnt\t%08x\n" 1468 " bidx\t%08x\n" 1469 " cidx\t%08x\n" 1470 " lkrld\t%08x\n", 1471 i, echan->ch_num, echan->slot[i], 1472 edesc->pset[i].param.opt, 1473 edesc->pset[i].param.src, 1474 edesc->pset[i].param.dst, 1475 edesc->pset[i].param.a_b_cnt, 1476 edesc->pset[i].param.ccnt, 1477 edesc->pset[i].param.src_dst_bidx, 1478 edesc->pset[i].param.src_dst_cidx, 1479 edesc->pset[i].param.link_bcntrld); 1480 1481 edesc->absync = ret; 1482 1483 /* 1484 * Enable period interrupt only if it is requested 1485 */ 1486 if (tx_flags & DMA_PREP_INTERRUPT) { 1487 edesc->pset[i].param.opt |= TCINTEN; 1488 1489 /* Also enable intermediate interrupts if necessary */ 1490 if (use_intermediate) 1491 edesc->pset[i].param.opt |= ITCINTEN; 1492 } 1493 } 1494 1495 /* Place the cyclic channel to highest priority queue */ 1496 if (!echan->tc) 1497 edma_assign_channel_eventq(echan, EVENTQ_0); 1498 1499 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1500 } 1501 1502 static void edma_completion_handler(struct edma_chan *echan) 1503 { 1504 struct device *dev = echan->vchan.chan.device->dev; 1505 struct edma_desc *edesc; 1506 1507 spin_lock(&echan->vchan.lock); 1508 edesc = echan->edesc; 1509 if (edesc) { 1510 if (edesc->cyclic) { 1511 vchan_cyclic_callback(&edesc->vdesc); 1512 spin_unlock(&echan->vchan.lock); 1513 return; 1514 } else if (edesc->processed == edesc->pset_nr) { 1515 edesc->residue = 0; 1516 edma_stop(echan); 1517 vchan_cookie_complete(&edesc->vdesc); 1518 echan->edesc = NULL; 1519 1520 dev_dbg(dev, "Transfer completed on channel %d\n", 1521 echan->ch_num); 1522 } else { 1523 dev_dbg(dev, "Sub transfer completed on channel %d\n", 1524 echan->ch_num); 1525 1526 edma_pause(echan); 1527 1528 /* Update statistics for tx_status */ 1529 edesc->residue -= edesc->sg_len; 1530 edesc->residue_stat = edesc->residue; 1531 edesc->processed_stat = edesc->processed; 1532 } 1533 edma_execute(echan); 1534 } 1535 1536 spin_unlock(&echan->vchan.lock); 1537 } 1538 1539 /* eDMA interrupt handler */ 1540 static irqreturn_t dma_irq_handler(int irq, void *data) 1541 { 1542 struct edma_cc *ecc = data; 1543 int ctlr; 1544 u32 sh_ier; 1545 u32 sh_ipr; 1546 u32 bank; 1547 1548 ctlr = ecc->id; 1549 if (ctlr < 0) 1550 return IRQ_NONE; 1551 1552 dev_vdbg(ecc->dev, "dma_irq_handler\n"); 1553 1554 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0); 1555 if (!sh_ipr) { 1556 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1); 1557 if (!sh_ipr) 1558 return IRQ_NONE; 1559 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1); 1560 bank = 1; 1561 } else { 1562 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0); 1563 bank = 0; 1564 } 1565 1566 do { 1567 u32 slot; 1568 u32 channel; 1569 1570 slot = __ffs(sh_ipr); 1571 sh_ipr &= ~(BIT(slot)); 1572 1573 if (sh_ier & BIT(slot)) { 1574 channel = (bank << 5) | slot; 1575 /* Clear the corresponding IPR bits */ 1576 edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot)); 1577 edma_completion_handler(&ecc->slave_chans[channel]); 1578 } 1579 } while (sh_ipr); 1580 1581 edma_shadow0_write(ecc, SH_IEVAL, 1); 1582 return IRQ_HANDLED; 1583 } 1584 1585 static void edma_error_handler(struct edma_chan *echan) 1586 { 1587 struct edma_cc *ecc = echan->ecc; 1588 struct device *dev = echan->vchan.chan.device->dev; 1589 struct edmacc_param p; 1590 int err; 1591 1592 if (!echan->edesc) 1593 return; 1594 1595 spin_lock(&echan->vchan.lock); 1596 1597 err = edma_read_slot(ecc, echan->slot[0], &p); 1598 1599 /* 1600 * Issue later based on missed flag which will be sure 1601 * to happen as: 1602 * (1) we finished transmitting an intermediate slot and 1603 * edma_execute is coming up. 1604 * (2) or we finished current transfer and issue will 1605 * call edma_execute. 1606 * 1607 * Important note: issuing can be dangerous here and 1608 * lead to some nasty recursion when we are in a NULL 1609 * slot. So we avoid doing so and set the missed flag. 1610 */ 1611 if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) { 1612 dev_dbg(dev, "Error on null slot, setting miss\n"); 1613 echan->missed = 1; 1614 } else { 1615 /* 1616 * The slot is already programmed but the event got 1617 * missed, so its safe to issue it here. 1618 */ 1619 dev_dbg(dev, "Missed event, TRIGGERING\n"); 1620 edma_clean_channel(echan); 1621 edma_stop(echan); 1622 edma_start(echan); 1623 edma_trigger_channel(echan); 1624 } 1625 spin_unlock(&echan->vchan.lock); 1626 } 1627 1628 static inline bool edma_error_pending(struct edma_cc *ecc) 1629 { 1630 if (edma_read_array(ecc, EDMA_EMR, 0) || 1631 edma_read_array(ecc, EDMA_EMR, 1) || 1632 edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR)) 1633 return true; 1634 1635 return false; 1636 } 1637 1638 /* eDMA error interrupt handler */ 1639 static irqreturn_t dma_ccerr_handler(int irq, void *data) 1640 { 1641 struct edma_cc *ecc = data; 1642 int i, j; 1643 int ctlr; 1644 unsigned int cnt = 0; 1645 unsigned int val; 1646 1647 ctlr = ecc->id; 1648 if (ctlr < 0) 1649 return IRQ_NONE; 1650 1651 dev_vdbg(ecc->dev, "dma_ccerr_handler\n"); 1652 1653 if (!edma_error_pending(ecc)) { 1654 /* 1655 * The registers indicate no pending error event but the irq 1656 * handler has been called. 1657 * Ask eDMA to re-evaluate the error registers. 1658 */ 1659 dev_err(ecc->dev, "%s: Error interrupt without error event!\n", 1660 __func__); 1661 edma_write(ecc, EDMA_EEVAL, 1); 1662 return IRQ_NONE; 1663 } 1664 1665 while (1) { 1666 /* Event missed register(s) */ 1667 for (j = 0; j < 2; j++) { 1668 unsigned long emr; 1669 1670 val = edma_read_array(ecc, EDMA_EMR, j); 1671 if (!val) 1672 continue; 1673 1674 dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val); 1675 emr = val; 1676 for_each_set_bit(i, &emr, 32) { 1677 int k = (j << 5) + i; 1678 1679 /* Clear the corresponding EMR bits */ 1680 edma_write_array(ecc, EDMA_EMCR, j, BIT(i)); 1681 /* Clear any SER */ 1682 edma_shadow0_write_array(ecc, SH_SECR, j, 1683 BIT(i)); 1684 edma_error_handler(&ecc->slave_chans[k]); 1685 } 1686 } 1687 1688 val = edma_read(ecc, EDMA_QEMR); 1689 if (val) { 1690 dev_dbg(ecc->dev, "QEMR 0x%02x\n", val); 1691 /* Not reported, just clear the interrupt reason. */ 1692 edma_write(ecc, EDMA_QEMCR, val); 1693 edma_shadow0_write(ecc, SH_QSECR, val); 1694 } 1695 1696 val = edma_read(ecc, EDMA_CCERR); 1697 if (val) { 1698 dev_warn(ecc->dev, "CCERR 0x%08x\n", val); 1699 /* Not reported, just clear the interrupt reason. */ 1700 edma_write(ecc, EDMA_CCERRCLR, val); 1701 } 1702 1703 if (!edma_error_pending(ecc)) 1704 break; 1705 cnt++; 1706 if (cnt > 10) 1707 break; 1708 } 1709 edma_write(ecc, EDMA_EEVAL, 1); 1710 return IRQ_HANDLED; 1711 } 1712 1713 /* Alloc channel resources */ 1714 static int edma_alloc_chan_resources(struct dma_chan *chan) 1715 { 1716 struct edma_chan *echan = to_edma_chan(chan); 1717 struct edma_cc *ecc = echan->ecc; 1718 struct device *dev = ecc->dev; 1719 enum dma_event_q eventq_no = EVENTQ_DEFAULT; 1720 int ret; 1721 1722 if (echan->tc) { 1723 eventq_no = echan->tc->id; 1724 } else if (ecc->tc_list) { 1725 /* memcpy channel */ 1726 echan->tc = &ecc->tc_list[ecc->info->default_queue]; 1727 eventq_no = echan->tc->id; 1728 } 1729 1730 ret = edma_alloc_channel(echan, eventq_no); 1731 if (ret) 1732 return ret; 1733 1734 echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num); 1735 if (echan->slot[0] < 0) { 1736 dev_err(dev, "Entry slot allocation failed for channel %u\n", 1737 EDMA_CHAN_SLOT(echan->ch_num)); 1738 ret = echan->slot[0]; 1739 goto err_slot; 1740 } 1741 1742 /* Set up channel -> slot mapping for the entry slot */ 1743 edma_set_chmap(echan, echan->slot[0]); 1744 echan->alloced = true; 1745 1746 dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n", 1747 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id, 1748 echan->hw_triggered ? "HW" : "SW"); 1749 1750 return 0; 1751 1752 err_slot: 1753 edma_free_channel(echan); 1754 return ret; 1755 } 1756 1757 /* Free channel resources */ 1758 static void edma_free_chan_resources(struct dma_chan *chan) 1759 { 1760 struct edma_chan *echan = to_edma_chan(chan); 1761 struct device *dev = echan->ecc->dev; 1762 int i; 1763 1764 /* Terminate transfers */ 1765 edma_stop(echan); 1766 1767 vchan_free_chan_resources(&echan->vchan); 1768 1769 /* Free EDMA PaRAM slots */ 1770 for (i = 0; i < EDMA_MAX_SLOTS; i++) { 1771 if (echan->slot[i] >= 0) { 1772 edma_free_slot(echan->ecc, echan->slot[i]); 1773 echan->slot[i] = -1; 1774 } 1775 } 1776 1777 /* Set entry slot to the dummy slot */ 1778 edma_set_chmap(echan, echan->ecc->dummy_slot); 1779 1780 /* Free EDMA channel */ 1781 if (echan->alloced) { 1782 edma_free_channel(echan); 1783 echan->alloced = false; 1784 } 1785 1786 echan->tc = NULL; 1787 echan->hw_triggered = false; 1788 1789 dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n", 1790 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id); 1791 } 1792 1793 /* Send pending descriptor to hardware */ 1794 static void edma_issue_pending(struct dma_chan *chan) 1795 { 1796 struct edma_chan *echan = to_edma_chan(chan); 1797 unsigned long flags; 1798 1799 spin_lock_irqsave(&echan->vchan.lock, flags); 1800 if (vchan_issue_pending(&echan->vchan) && !echan->edesc) 1801 edma_execute(echan); 1802 spin_unlock_irqrestore(&echan->vchan.lock, flags); 1803 } 1804 1805 /* 1806 * This limit exists to avoid a possible infinite loop when waiting for proof 1807 * that a particular transfer is completed. This limit can be hit if there 1808 * are large bursts to/from slow devices or the CPU is never able to catch 1809 * the DMA hardware idle. On an AM335x transferring 48 bytes from the UART 1810 * RX-FIFO, as many as 55 loops have been seen. 1811 */ 1812 #define EDMA_MAX_TR_WAIT_LOOPS 1000 1813 1814 static u32 edma_residue(struct edma_desc *edesc) 1815 { 1816 bool dst = edesc->direction == DMA_DEV_TO_MEM; 1817 int loop_count = EDMA_MAX_TR_WAIT_LOOPS; 1818 struct edma_chan *echan = edesc->echan; 1819 struct edma_pset *pset = edesc->pset; 1820 dma_addr_t done, pos, pos_old; 1821 int channel = EDMA_CHAN_SLOT(echan->ch_num); 1822 int idx = EDMA_REG_ARRAY_INDEX(channel); 1823 int ch_bit = EDMA_CHANNEL_BIT(channel); 1824 int event_reg; 1825 int i; 1826 1827 /* 1828 * We always read the dst/src position from the first RamPar 1829 * pset. That's the one which is active now. 1830 */ 1831 pos = edma_get_position(echan->ecc, echan->slot[0], dst); 1832 1833 /* 1834 * "pos" may represent a transfer request that is still being 1835 * processed by the EDMACC or EDMATC. We will busy wait until 1836 * any one of the situations occurs: 1837 * 1. while and event is pending for the channel 1838 * 2. a position updated 1839 * 3. we hit the loop limit 1840 */ 1841 if (is_slave_direction(edesc->direction)) 1842 event_reg = SH_ER; 1843 else 1844 event_reg = SH_ESR; 1845 1846 pos_old = pos; 1847 while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) { 1848 pos = edma_get_position(echan->ecc, echan->slot[0], dst); 1849 if (pos != pos_old) 1850 break; 1851 1852 if (!--loop_count) { 1853 dev_dbg_ratelimited(echan->vchan.chan.device->dev, 1854 "%s: timeout waiting for PaRAM update\n", 1855 __func__); 1856 break; 1857 } 1858 1859 cpu_relax(); 1860 } 1861 1862 /* 1863 * Cyclic is simple. Just subtract pset[0].addr from pos. 1864 * 1865 * We never update edesc->residue in the cyclic case, so we 1866 * can tell the remaining room to the end of the circular 1867 * buffer. 1868 */ 1869 if (edesc->cyclic) { 1870 done = pos - pset->addr; 1871 edesc->residue_stat = edesc->residue - done; 1872 return edesc->residue_stat; 1873 } 1874 1875 /* 1876 * If the position is 0, then EDMA loaded the closing dummy slot, the 1877 * transfer is completed 1878 */ 1879 if (!pos) 1880 return 0; 1881 /* 1882 * For SG operation we catch up with the last processed 1883 * status. 1884 */ 1885 pset += edesc->processed_stat; 1886 1887 for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) { 1888 /* 1889 * If we are inside this pset address range, we know 1890 * this is the active one. Get the current delta and 1891 * stop walking the psets. 1892 */ 1893 if (pos >= pset->addr && pos < pset->addr + pset->len) 1894 return edesc->residue_stat - (pos - pset->addr); 1895 1896 /* Otherwise mark it done and update residue_stat. */ 1897 edesc->processed_stat++; 1898 edesc->residue_stat -= pset->len; 1899 } 1900 return edesc->residue_stat; 1901 } 1902 1903 /* Check request completion status */ 1904 static enum dma_status edma_tx_status(struct dma_chan *chan, 1905 dma_cookie_t cookie, 1906 struct dma_tx_state *txstate) 1907 { 1908 struct edma_chan *echan = to_edma_chan(chan); 1909 struct dma_tx_state txstate_tmp; 1910 enum dma_status ret; 1911 unsigned long flags; 1912 1913 ret = dma_cookie_status(chan, cookie, txstate); 1914 1915 if (ret == DMA_COMPLETE) 1916 return ret; 1917 1918 /* Provide a dummy dma_tx_state for completion checking */ 1919 if (!txstate) 1920 txstate = &txstate_tmp; 1921 1922 spin_lock_irqsave(&echan->vchan.lock, flags); 1923 if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) { 1924 txstate->residue = edma_residue(echan->edesc); 1925 } else { 1926 struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan, 1927 cookie); 1928 1929 if (vdesc) 1930 txstate->residue = to_edma_desc(&vdesc->tx)->residue; 1931 else 1932 txstate->residue = 0; 1933 } 1934 1935 /* 1936 * Mark the cookie completed if the residue is 0 for non cyclic 1937 * transfers 1938 */ 1939 if (ret != DMA_COMPLETE && !txstate->residue && 1940 echan->edesc && echan->edesc->polled && 1941 echan->edesc->vdesc.tx.cookie == cookie) { 1942 edma_stop(echan); 1943 vchan_cookie_complete(&echan->edesc->vdesc); 1944 echan->edesc = NULL; 1945 edma_execute(echan); 1946 ret = DMA_COMPLETE; 1947 } 1948 1949 spin_unlock_irqrestore(&echan->vchan.lock, flags); 1950 1951 return ret; 1952 } 1953 1954 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels) 1955 { 1956 if (!memcpy_channels) 1957 return false; 1958 while (*memcpy_channels != -1) { 1959 if (*memcpy_channels == ch_num) 1960 return true; 1961 memcpy_channels++; 1962 } 1963 return false; 1964 } 1965 1966 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 1967 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 1968 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ 1969 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 1970 1971 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode) 1972 { 1973 struct dma_device *s_ddev = &ecc->dma_slave; 1974 struct dma_device *m_ddev = NULL; 1975 s32 *memcpy_channels = ecc->info->memcpy_channels; 1976 int i, j; 1977 1978 dma_cap_zero(s_ddev->cap_mask); 1979 dma_cap_set(DMA_SLAVE, s_ddev->cap_mask); 1980 dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask); 1981 if (ecc->legacy_mode && !memcpy_channels) { 1982 dev_warn(ecc->dev, 1983 "Legacy memcpy is enabled, things might not work\n"); 1984 1985 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask); 1986 dma_cap_set(DMA_INTERLEAVE, s_ddev->cap_mask); 1987 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; 1988 s_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved; 1989 s_ddev->directions = BIT(DMA_MEM_TO_MEM); 1990 } 1991 1992 s_ddev->device_prep_slave_sg = edma_prep_slave_sg; 1993 s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic; 1994 s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; 1995 s_ddev->device_free_chan_resources = edma_free_chan_resources; 1996 s_ddev->device_issue_pending = edma_issue_pending; 1997 s_ddev->device_tx_status = edma_tx_status; 1998 s_ddev->device_config = edma_slave_config; 1999 s_ddev->device_pause = edma_dma_pause; 2000 s_ddev->device_resume = edma_dma_resume; 2001 s_ddev->device_terminate_all = edma_terminate_all; 2002 s_ddev->device_synchronize = edma_synchronize; 2003 2004 s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; 2005 s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; 2006 s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV)); 2007 s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 2008 s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */ 2009 2010 s_ddev->dev = ecc->dev; 2011 INIT_LIST_HEAD(&s_ddev->channels); 2012 2013 if (memcpy_channels) { 2014 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL); 2015 if (!m_ddev) { 2016 dev_warn(ecc->dev, "memcpy is disabled due to OoM\n"); 2017 memcpy_channels = NULL; 2018 goto ch_setup; 2019 } 2020 ecc->dma_memcpy = m_ddev; 2021 2022 dma_cap_zero(m_ddev->cap_mask); 2023 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask); 2024 dma_cap_set(DMA_INTERLEAVE, m_ddev->cap_mask); 2025 2026 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; 2027 m_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved; 2028 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; 2029 m_ddev->device_free_chan_resources = edma_free_chan_resources; 2030 m_ddev->device_issue_pending = edma_issue_pending; 2031 m_ddev->device_tx_status = edma_tx_status; 2032 m_ddev->device_config = edma_slave_config; 2033 m_ddev->device_pause = edma_dma_pause; 2034 m_ddev->device_resume = edma_dma_resume; 2035 m_ddev->device_terminate_all = edma_terminate_all; 2036 m_ddev->device_synchronize = edma_synchronize; 2037 2038 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; 2039 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; 2040 m_ddev->directions = BIT(DMA_MEM_TO_MEM); 2041 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 2042 2043 m_ddev->dev = ecc->dev; 2044 INIT_LIST_HEAD(&m_ddev->channels); 2045 } else if (!ecc->legacy_mode) { 2046 dev_info(ecc->dev, "memcpy is disabled\n"); 2047 } 2048 2049 ch_setup: 2050 for (i = 0; i < ecc->num_channels; i++) { 2051 struct edma_chan *echan = &ecc->slave_chans[i]; 2052 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i); 2053 echan->ecc = ecc; 2054 echan->vchan.desc_free = edma_desc_free; 2055 2056 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels)) 2057 vchan_init(&echan->vchan, m_ddev); 2058 else 2059 vchan_init(&echan->vchan, s_ddev); 2060 2061 INIT_LIST_HEAD(&echan->node); 2062 for (j = 0; j < EDMA_MAX_SLOTS; j++) 2063 echan->slot[j] = -1; 2064 } 2065 } 2066 2067 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata, 2068 struct edma_cc *ecc) 2069 { 2070 int i; 2071 u32 value, cccfg; 2072 s8 (*queue_priority_map)[2]; 2073 2074 /* Decode the eDMA3 configuration from CCCFG register */ 2075 cccfg = edma_read(ecc, EDMA_CCCFG); 2076 2077 value = GET_NUM_REGN(cccfg); 2078 ecc->num_region = BIT(value); 2079 2080 value = GET_NUM_DMACH(cccfg); 2081 ecc->num_channels = BIT(value + 1); 2082 2083 value = GET_NUM_QDMACH(cccfg); 2084 ecc->num_qchannels = value * 2; 2085 2086 value = GET_NUM_PAENTRY(cccfg); 2087 ecc->num_slots = BIT(value + 4); 2088 2089 value = GET_NUM_EVQUE(cccfg); 2090 ecc->num_tc = value + 1; 2091 2092 ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false; 2093 2094 dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg); 2095 dev_dbg(dev, "num_region: %u\n", ecc->num_region); 2096 dev_dbg(dev, "num_channels: %u\n", ecc->num_channels); 2097 dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels); 2098 dev_dbg(dev, "num_slots: %u\n", ecc->num_slots); 2099 dev_dbg(dev, "num_tc: %u\n", ecc->num_tc); 2100 dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no"); 2101 2102 /* Nothing need to be done if queue priority is provided */ 2103 if (pdata->queue_priority_mapping) 2104 return 0; 2105 2106 /* 2107 * Configure TC/queue priority as follows: 2108 * Q0 - priority 0 2109 * Q1 - priority 1 2110 * Q2 - priority 2 2111 * ... 2112 * The meaning of priority numbers: 0 highest priority, 7 lowest 2113 * priority. So Q0 is the highest priority queue and the last queue has 2114 * the lowest priority. 2115 */ 2116 queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8), 2117 GFP_KERNEL); 2118 if (!queue_priority_map) 2119 return -ENOMEM; 2120 2121 for (i = 0; i < ecc->num_tc; i++) { 2122 queue_priority_map[i][0] = i; 2123 queue_priority_map[i][1] = i; 2124 } 2125 queue_priority_map[i][0] = -1; 2126 queue_priority_map[i][1] = -1; 2127 2128 pdata->queue_priority_mapping = queue_priority_map; 2129 /* Default queue has the lowest priority */ 2130 pdata->default_queue = i - 1; 2131 2132 return 0; 2133 } 2134 2135 #if IS_ENABLED(CONFIG_OF) 2136 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata, 2137 size_t sz) 2138 { 2139 const char pname[] = "ti,edma-xbar-event-map"; 2140 struct resource res; 2141 void __iomem *xbar; 2142 s16 (*xbar_chans)[2]; 2143 size_t nelm = sz / sizeof(s16); 2144 u32 shift, offset, mux; 2145 int ret, i; 2146 2147 xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL); 2148 if (!xbar_chans) 2149 return -ENOMEM; 2150 2151 ret = of_address_to_resource(dev->of_node, 1, &res); 2152 if (ret) 2153 return -ENOMEM; 2154 2155 xbar = devm_ioremap(dev, res.start, resource_size(&res)); 2156 if (!xbar) 2157 return -ENOMEM; 2158 2159 ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans, 2160 nelm); 2161 if (ret) 2162 return -EIO; 2163 2164 /* Invalidate last entry for the other user of this mess */ 2165 nelm >>= 1; 2166 xbar_chans[nelm][0] = -1; 2167 xbar_chans[nelm][1] = -1; 2168 2169 for (i = 0; i < nelm; i++) { 2170 shift = (xbar_chans[i][1] & 0x03) << 3; 2171 offset = xbar_chans[i][1] & 0xfffffffc; 2172 mux = readl(xbar + offset); 2173 mux &= ~(0xff << shift); 2174 mux |= xbar_chans[i][0] << shift; 2175 writel(mux, (xbar + offset)); 2176 } 2177 2178 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans; 2179 return 0; 2180 } 2181 2182 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, 2183 bool legacy_mode) 2184 { 2185 struct edma_soc_info *info; 2186 struct property *prop; 2187 int sz, ret; 2188 2189 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL); 2190 if (!info) 2191 return ERR_PTR(-ENOMEM); 2192 2193 if (legacy_mode) { 2194 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map", 2195 &sz); 2196 if (prop) { 2197 ret = edma_xbar_event_map(dev, info, sz); 2198 if (ret) 2199 return ERR_PTR(ret); 2200 } 2201 return info; 2202 } 2203 2204 /* Get the list of channels allocated to be used for memcpy */ 2205 prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz); 2206 if (prop) { 2207 const char pname[] = "ti,edma-memcpy-channels"; 2208 size_t nelm = sz / sizeof(s32); 2209 s32 *memcpy_ch; 2210 2211 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32), 2212 GFP_KERNEL); 2213 if (!memcpy_ch) 2214 return ERR_PTR(-ENOMEM); 2215 2216 ret = of_property_read_u32_array(dev->of_node, pname, 2217 (u32 *)memcpy_ch, nelm); 2218 if (ret) 2219 return ERR_PTR(ret); 2220 2221 memcpy_ch[nelm] = -1; 2222 info->memcpy_channels = memcpy_ch; 2223 } 2224 2225 prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges", 2226 &sz); 2227 if (prop) { 2228 const char pname[] = "ti,edma-reserved-slot-ranges"; 2229 u32 (*tmp)[2]; 2230 s16 (*rsv_slots)[2]; 2231 size_t nelm = sz / sizeof(*tmp); 2232 struct edma_rsv_info *rsv_info; 2233 int i; 2234 2235 if (!nelm) 2236 return info; 2237 2238 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL); 2239 if (!tmp) 2240 return ERR_PTR(-ENOMEM); 2241 2242 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL); 2243 if (!rsv_info) { 2244 kfree(tmp); 2245 return ERR_PTR(-ENOMEM); 2246 } 2247 2248 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots), 2249 GFP_KERNEL); 2250 if (!rsv_slots) { 2251 kfree(tmp); 2252 return ERR_PTR(-ENOMEM); 2253 } 2254 2255 ret = of_property_read_u32_array(dev->of_node, pname, 2256 (u32 *)tmp, nelm * 2); 2257 if (ret) { 2258 kfree(tmp); 2259 return ERR_PTR(ret); 2260 } 2261 2262 for (i = 0; i < nelm; i++) { 2263 rsv_slots[i][0] = tmp[i][0]; 2264 rsv_slots[i][1] = tmp[i][1]; 2265 } 2266 rsv_slots[nelm][0] = -1; 2267 rsv_slots[nelm][1] = -1; 2268 2269 info->rsv = rsv_info; 2270 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots; 2271 2272 kfree(tmp); 2273 } 2274 2275 return info; 2276 } 2277 2278 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, 2279 struct of_dma *ofdma) 2280 { 2281 struct edma_cc *ecc = ofdma->of_dma_data; 2282 struct dma_chan *chan = NULL; 2283 struct edma_chan *echan; 2284 int i; 2285 2286 if (!ecc || dma_spec->args_count < 1) 2287 return NULL; 2288 2289 for (i = 0; i < ecc->num_channels; i++) { 2290 echan = &ecc->slave_chans[i]; 2291 if (echan->ch_num == dma_spec->args[0]) { 2292 chan = &echan->vchan.chan; 2293 break; 2294 } 2295 } 2296 2297 if (!chan) 2298 return NULL; 2299 2300 if (echan->ecc->legacy_mode && dma_spec->args_count == 1) 2301 goto out; 2302 2303 if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 && 2304 dma_spec->args[1] < echan->ecc->num_tc) { 2305 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]]; 2306 goto out; 2307 } 2308 2309 return NULL; 2310 out: 2311 /* The channel is going to be used as HW synchronized */ 2312 echan->hw_triggered = true; 2313 return dma_get_slave_channel(chan); 2314 } 2315 #else 2316 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, 2317 bool legacy_mode) 2318 { 2319 return ERR_PTR(-EINVAL); 2320 } 2321 2322 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, 2323 struct of_dma *ofdma) 2324 { 2325 return NULL; 2326 } 2327 #endif 2328 2329 static bool edma_filter_fn(struct dma_chan *chan, void *param); 2330 2331 static int edma_probe(struct platform_device *pdev) 2332 { 2333 struct edma_soc_info *info = pdev->dev.platform_data; 2334 s8 (*queue_priority_mapping)[2]; 2335 const s16 (*reserved)[2]; 2336 int i, irq; 2337 char *irq_name; 2338 struct resource *mem; 2339 struct device_node *node = pdev->dev.of_node; 2340 struct device *dev = &pdev->dev; 2341 struct edma_cc *ecc; 2342 bool legacy_mode = true; 2343 int ret; 2344 2345 if (node) { 2346 const struct of_device_id *match; 2347 2348 match = of_match_node(edma_of_ids, node); 2349 if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC) 2350 legacy_mode = false; 2351 2352 info = edma_setup_info_from_dt(dev, legacy_mode); 2353 if (IS_ERR(info)) { 2354 dev_err(dev, "failed to get DT data\n"); 2355 return PTR_ERR(info); 2356 } 2357 } 2358 2359 if (!info) 2360 return -ENODEV; 2361 2362 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 2363 if (ret) 2364 return ret; 2365 2366 ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); 2367 if (!ecc) 2368 return -ENOMEM; 2369 2370 ecc->dev = dev; 2371 ecc->id = pdev->id; 2372 ecc->legacy_mode = legacy_mode; 2373 /* When booting with DT the pdev->id is -1 */ 2374 if (ecc->id < 0) 2375 ecc->id = 0; 2376 2377 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc"); 2378 if (!mem) { 2379 dev_dbg(dev, "mem resource not found, using index 0\n"); 2380 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2381 if (!mem) { 2382 dev_err(dev, "no mem resource?\n"); 2383 return -ENODEV; 2384 } 2385 } 2386 ecc->base = devm_ioremap_resource(dev, mem); 2387 if (IS_ERR(ecc->base)) 2388 return PTR_ERR(ecc->base); 2389 2390 platform_set_drvdata(pdev, ecc); 2391 2392 pm_runtime_enable(dev); 2393 ret = pm_runtime_get_sync(dev); 2394 if (ret < 0) { 2395 dev_err(dev, "pm_runtime_get_sync() failed\n"); 2396 pm_runtime_disable(dev); 2397 return ret; 2398 } 2399 2400 /* Get eDMA3 configuration from IP */ 2401 ret = edma_setup_from_hw(dev, info, ecc); 2402 if (ret) 2403 goto err_disable_pm; 2404 2405 /* Allocate memory based on the information we got from the IP */ 2406 ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels, 2407 sizeof(*ecc->slave_chans), GFP_KERNEL); 2408 2409 ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots), 2410 sizeof(unsigned long), GFP_KERNEL); 2411 2412 ecc->channels_mask = devm_kcalloc(dev, 2413 BITS_TO_LONGS(ecc->num_channels), 2414 sizeof(unsigned long), GFP_KERNEL); 2415 if (!ecc->slave_chans || !ecc->slot_inuse || !ecc->channels_mask) { 2416 ret = -ENOMEM; 2417 goto err_disable_pm; 2418 } 2419 2420 /* Mark all channels available initially */ 2421 bitmap_fill(ecc->channels_mask, ecc->num_channels); 2422 2423 ecc->default_queue = info->default_queue; 2424 2425 if (info->rsv) { 2426 /* Set the reserved slots in inuse list */ 2427 reserved = info->rsv->rsv_slots; 2428 if (reserved) { 2429 for (i = 0; reserved[i][0] != -1; i++) 2430 bitmap_set(ecc->slot_inuse, reserved[i][0], 2431 reserved[i][1]); 2432 } 2433 2434 /* Clear channels not usable for Linux */ 2435 reserved = info->rsv->rsv_chans; 2436 if (reserved) { 2437 for (i = 0; reserved[i][0] != -1; i++) 2438 bitmap_clear(ecc->channels_mask, reserved[i][0], 2439 reserved[i][1]); 2440 } 2441 } 2442 2443 for (i = 0; i < ecc->num_slots; i++) { 2444 /* Reset only unused - not reserved - paRAM slots */ 2445 if (!test_bit(i, ecc->slot_inuse)) 2446 edma_write_slot(ecc, i, &dummy_paramset); 2447 } 2448 2449 irq = platform_get_irq_byname(pdev, "edma3_ccint"); 2450 if (irq < 0 && node) 2451 irq = irq_of_parse_and_map(node, 0); 2452 2453 if (irq >= 0) { 2454 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint", 2455 dev_name(dev)); 2456 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name, 2457 ecc); 2458 if (ret) { 2459 dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret); 2460 goto err_disable_pm; 2461 } 2462 ecc->ccint = irq; 2463 } 2464 2465 irq = platform_get_irq_byname(pdev, "edma3_ccerrint"); 2466 if (irq < 0 && node) 2467 irq = irq_of_parse_and_map(node, 2); 2468 2469 if (irq >= 0) { 2470 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint", 2471 dev_name(dev)); 2472 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name, 2473 ecc); 2474 if (ret) { 2475 dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret); 2476 goto err_disable_pm; 2477 } 2478 ecc->ccerrint = irq; 2479 } 2480 2481 ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY); 2482 if (ecc->dummy_slot < 0) { 2483 dev_err(dev, "Can't allocate PaRAM dummy slot\n"); 2484 ret = ecc->dummy_slot; 2485 goto err_disable_pm; 2486 } 2487 2488 queue_priority_mapping = info->queue_priority_mapping; 2489 2490 if (!ecc->legacy_mode) { 2491 int lowest_priority = 0; 2492 unsigned int array_max; 2493 struct of_phandle_args tc_args; 2494 2495 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc, 2496 sizeof(*ecc->tc_list), GFP_KERNEL); 2497 if (!ecc->tc_list) { 2498 ret = -ENOMEM; 2499 goto err_reg1; 2500 } 2501 2502 for (i = 0;; i++) { 2503 ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs", 2504 1, i, &tc_args); 2505 if (ret || i == ecc->num_tc) 2506 break; 2507 2508 ecc->tc_list[i].node = tc_args.np; 2509 ecc->tc_list[i].id = i; 2510 queue_priority_mapping[i][1] = tc_args.args[0]; 2511 if (queue_priority_mapping[i][1] > lowest_priority) { 2512 lowest_priority = queue_priority_mapping[i][1]; 2513 info->default_queue = i; 2514 } 2515 } 2516 2517 /* See if we have optional dma-channel-mask array */ 2518 array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32)); 2519 ret = of_property_read_variable_u32_array(node, 2520 "dma-channel-mask", 2521 (u32 *)ecc->channels_mask, 2522 1, array_max); 2523 if (ret > 0 && ret != array_max) 2524 dev_warn(dev, "dma-channel-mask is not complete.\n"); 2525 else if (ret == -EOVERFLOW || ret == -ENODATA) 2526 dev_warn(dev, 2527 "dma-channel-mask is out of range or empty\n"); 2528 } 2529 2530 /* Event queue priority mapping */ 2531 for (i = 0; queue_priority_mapping[i][0] != -1; i++) 2532 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], 2533 queue_priority_mapping[i][1]); 2534 2535 edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0); 2536 edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0); 2537 edma_write_array(ecc, EDMA_QRAE, 0, 0x0); 2538 2539 ecc->info = info; 2540 2541 /* Init the dma device and channels */ 2542 edma_dma_init(ecc, legacy_mode); 2543 2544 for (i = 0; i < ecc->num_channels; i++) { 2545 /* Do not touch reserved channels */ 2546 if (!test_bit(i, ecc->channels_mask)) 2547 continue; 2548 2549 /* Assign all channels to the default queue */ 2550 edma_assign_channel_eventq(&ecc->slave_chans[i], 2551 info->default_queue); 2552 /* Set entry slot to the dummy slot */ 2553 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot); 2554 } 2555 2556 ecc->dma_slave.filter.map = info->slave_map; 2557 ecc->dma_slave.filter.mapcnt = info->slavecnt; 2558 ecc->dma_slave.filter.fn = edma_filter_fn; 2559 2560 ret = dma_async_device_register(&ecc->dma_slave); 2561 if (ret) { 2562 dev_err(dev, "slave ddev registration failed (%d)\n", ret); 2563 goto err_reg1; 2564 } 2565 2566 if (ecc->dma_memcpy) { 2567 ret = dma_async_device_register(ecc->dma_memcpy); 2568 if (ret) { 2569 dev_err(dev, "memcpy ddev registration failed (%d)\n", 2570 ret); 2571 dma_async_device_unregister(&ecc->dma_slave); 2572 goto err_reg1; 2573 } 2574 } 2575 2576 if (node) 2577 of_dma_controller_register(node, of_edma_xlate, ecc); 2578 2579 dev_info(dev, "TI EDMA DMA engine driver\n"); 2580 2581 return 0; 2582 2583 err_reg1: 2584 edma_free_slot(ecc, ecc->dummy_slot); 2585 err_disable_pm: 2586 pm_runtime_put_sync(dev); 2587 pm_runtime_disable(dev); 2588 return ret; 2589 } 2590 2591 static void edma_cleanupp_vchan(struct dma_device *dmadev) 2592 { 2593 struct edma_chan *echan, *_echan; 2594 2595 list_for_each_entry_safe(echan, _echan, 2596 &dmadev->channels, vchan.chan.device_node) { 2597 list_del(&echan->vchan.chan.device_node); 2598 tasklet_kill(&echan->vchan.task); 2599 } 2600 } 2601 2602 static int edma_remove(struct platform_device *pdev) 2603 { 2604 struct device *dev = &pdev->dev; 2605 struct edma_cc *ecc = dev_get_drvdata(dev); 2606 2607 devm_free_irq(dev, ecc->ccint, ecc); 2608 devm_free_irq(dev, ecc->ccerrint, ecc); 2609 2610 edma_cleanupp_vchan(&ecc->dma_slave); 2611 2612 if (dev->of_node) 2613 of_dma_controller_free(dev->of_node); 2614 dma_async_device_unregister(&ecc->dma_slave); 2615 if (ecc->dma_memcpy) 2616 dma_async_device_unregister(ecc->dma_memcpy); 2617 edma_free_slot(ecc, ecc->dummy_slot); 2618 pm_runtime_put_sync(dev); 2619 pm_runtime_disable(dev); 2620 2621 return 0; 2622 } 2623 2624 #ifdef CONFIG_PM_SLEEP 2625 static int edma_pm_suspend(struct device *dev) 2626 { 2627 struct edma_cc *ecc = dev_get_drvdata(dev); 2628 struct edma_chan *echan = ecc->slave_chans; 2629 int i; 2630 2631 for (i = 0; i < ecc->num_channels; i++) { 2632 if (echan[i].alloced) 2633 edma_setup_interrupt(&echan[i], false); 2634 } 2635 2636 return 0; 2637 } 2638 2639 static int edma_pm_resume(struct device *dev) 2640 { 2641 struct edma_cc *ecc = dev_get_drvdata(dev); 2642 struct edma_chan *echan = ecc->slave_chans; 2643 int i; 2644 s8 (*queue_priority_mapping)[2]; 2645 2646 /* re initialize dummy slot to dummy param set */ 2647 edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset); 2648 2649 queue_priority_mapping = ecc->info->queue_priority_mapping; 2650 2651 /* Event queue priority mapping */ 2652 for (i = 0; queue_priority_mapping[i][0] != -1; i++) 2653 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], 2654 queue_priority_mapping[i][1]); 2655 2656 for (i = 0; i < ecc->num_channels; i++) { 2657 if (echan[i].alloced) { 2658 /* ensure access through shadow region 0 */ 2659 edma_or_array2(ecc, EDMA_DRAE, 0, 2660 EDMA_REG_ARRAY_INDEX(i), 2661 EDMA_CHANNEL_BIT(i)); 2662 2663 edma_setup_interrupt(&echan[i], true); 2664 2665 /* Set up channel -> slot mapping for the entry slot */ 2666 edma_set_chmap(&echan[i], echan[i].slot[0]); 2667 } 2668 } 2669 2670 return 0; 2671 } 2672 #endif 2673 2674 static const struct dev_pm_ops edma_pm_ops = { 2675 SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume) 2676 }; 2677 2678 static struct platform_driver edma_driver = { 2679 .probe = edma_probe, 2680 .remove = edma_remove, 2681 .driver = { 2682 .name = "edma", 2683 .pm = &edma_pm_ops, 2684 .of_match_table = edma_of_ids, 2685 }, 2686 }; 2687 2688 static int edma_tptc_probe(struct platform_device *pdev) 2689 { 2690 pm_runtime_enable(&pdev->dev); 2691 return pm_runtime_get_sync(&pdev->dev); 2692 } 2693 2694 static struct platform_driver edma_tptc_driver = { 2695 .probe = edma_tptc_probe, 2696 .driver = { 2697 .name = "edma3-tptc", 2698 .of_match_table = edma_tptc_of_ids, 2699 }, 2700 }; 2701 2702 static bool edma_filter_fn(struct dma_chan *chan, void *param) 2703 { 2704 bool match = false; 2705 2706 if (chan->device->dev->driver == &edma_driver.driver) { 2707 struct edma_chan *echan = to_edma_chan(chan); 2708 unsigned ch_req = *(unsigned *)param; 2709 if (ch_req == echan->ch_num) { 2710 /* The channel is going to be used as HW synchronized */ 2711 echan->hw_triggered = true; 2712 match = true; 2713 } 2714 } 2715 return match; 2716 } 2717 2718 static int edma_init(void) 2719 { 2720 int ret; 2721 2722 ret = platform_driver_register(&edma_tptc_driver); 2723 if (ret) 2724 return ret; 2725 2726 return platform_driver_register(&edma_driver); 2727 } 2728 subsys_initcall(edma_init); 2729 2730 static void __exit edma_exit(void) 2731 { 2732 platform_driver_unregister(&edma_driver); 2733 platform_driver_unregister(&edma_tptc_driver); 2734 } 2735 module_exit(edma_exit); 2736 2737 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>"); 2738 MODULE_DESCRIPTION("TI EDMA DMA engine driver"); 2739 MODULE_LICENSE("GPL v2"); 2740