xref: /openbmc/linux/drivers/dma/ti/edma.c (revision a325f174)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TI EDMA DMA engine driver
4  *
5  * Copyright 2012 Texas Instruments
6  */
7 
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/bitmap.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/module.h>
16 #include <linux/platform_device.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
23 #include <linux/pm_runtime.h>
24 
25 #include <linux/platform_data/edma.h>
26 
27 #include "../dmaengine.h"
28 #include "../virt-dma.h"
29 
30 /* Offsets matching "struct edmacc_param" */
31 #define PARM_OPT		0x00
32 #define PARM_SRC		0x04
33 #define PARM_A_B_CNT		0x08
34 #define PARM_DST		0x0c
35 #define PARM_SRC_DST_BIDX	0x10
36 #define PARM_LINK_BCNTRLD	0x14
37 #define PARM_SRC_DST_CIDX	0x18
38 #define PARM_CCNT		0x1c
39 
40 #define PARM_SIZE		0x20
41 
42 /* Offsets for EDMA CC global channel registers and their shadows */
43 #define SH_ER			0x00	/* 64 bits */
44 #define SH_ECR			0x08	/* 64 bits */
45 #define SH_ESR			0x10	/* 64 bits */
46 #define SH_CER			0x18	/* 64 bits */
47 #define SH_EER			0x20	/* 64 bits */
48 #define SH_EECR			0x28	/* 64 bits */
49 #define SH_EESR			0x30	/* 64 bits */
50 #define SH_SER			0x38	/* 64 bits */
51 #define SH_SECR			0x40	/* 64 bits */
52 #define SH_IER			0x50	/* 64 bits */
53 #define SH_IECR			0x58	/* 64 bits */
54 #define SH_IESR			0x60	/* 64 bits */
55 #define SH_IPR			0x68	/* 64 bits */
56 #define SH_ICR			0x70	/* 64 bits */
57 #define SH_IEVAL		0x78
58 #define SH_QER			0x80
59 #define SH_QEER			0x84
60 #define SH_QEECR		0x88
61 #define SH_QEESR		0x8c
62 #define SH_QSER			0x90
63 #define SH_QSECR		0x94
64 #define SH_SIZE			0x200
65 
66 /* Offsets for EDMA CC global registers */
67 #define EDMA_REV		0x0000
68 #define EDMA_CCCFG		0x0004
69 #define EDMA_QCHMAP		0x0200	/* 8 registers */
70 #define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
71 #define EDMA_QDMAQNUM		0x0260
72 #define EDMA_QUETCMAP		0x0280
73 #define EDMA_QUEPRI		0x0284
74 #define EDMA_EMR		0x0300	/* 64 bits */
75 #define EDMA_EMCR		0x0308	/* 64 bits */
76 #define EDMA_QEMR		0x0310
77 #define EDMA_QEMCR		0x0314
78 #define EDMA_CCERR		0x0318
79 #define EDMA_CCERRCLR		0x031c
80 #define EDMA_EEVAL		0x0320
81 #define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
82 #define EDMA_QRAE		0x0380	/* 4 registers */
83 #define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
84 #define EDMA_QSTAT		0x0600	/* 2 registers */
85 #define EDMA_QWMTHRA		0x0620
86 #define EDMA_QWMTHRB		0x0624
87 #define EDMA_CCSTAT		0x0640
88 
89 #define EDMA_M			0x1000	/* global channel registers */
90 #define EDMA_ECR		0x1008
91 #define EDMA_ECRH		0x100C
92 #define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
93 #define EDMA_PARM		0x4000	/* PaRAM entries */
94 
95 #define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
96 
97 #define EDMA_DCHMAP		0x0100  /* 64 registers */
98 
99 /* CCCFG register */
100 #define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
101 #define GET_NUM_QDMACH(x)	((x & 0x70) >> 4) /* bits 4-6 */
102 #define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
103 #define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
104 #define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
105 #define CHMAP_EXIST		BIT(24)
106 
107 /* CCSTAT register */
108 #define EDMA_CCSTAT_ACTV	BIT(4)
109 
110 /*
111  * Max of 20 segments per channel to conserve PaRAM slots
112  * Also note that MAX_NR_SG should be at least the no.of periods
113  * that are required for ASoC, otherwise DMA prep calls will
114  * fail. Today davinci-pcm is the only user of this driver and
115  * requires at least 17 slots, so we setup the default to 20.
116  */
117 #define MAX_NR_SG		20
118 #define EDMA_MAX_SLOTS		MAX_NR_SG
119 #define EDMA_DESCRIPTORS	16
120 
121 #define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
122 #define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
123 #define EDMA_CONT_PARAMS_ANY		 1001
124 #define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
125 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
126 
127 /*
128  * 64bit array registers are split into two 32bit registers:
129  * reg0: channel/event 0-31
130  * reg1: channel/event 32-63
131  *
132  * bit 5 in the channel number tells the array index (0/1)
133  * bit 0-4 (0x1f) is the bit offset within the register
134  */
135 #define EDMA_REG_ARRAY_INDEX(channel)	((channel) >> 5)
136 #define EDMA_CHANNEL_BIT(channel)	(BIT((channel) & 0x1f))
137 
138 /* PaRAM slots are laid out like this */
139 struct edmacc_param {
140 	u32 opt;
141 	u32 src;
142 	u32 a_b_cnt;
143 	u32 dst;
144 	u32 src_dst_bidx;
145 	u32 link_bcntrld;
146 	u32 src_dst_cidx;
147 	u32 ccnt;
148 } __packed;
149 
150 /* fields in edmacc_param.opt */
151 #define SAM		BIT(0)
152 #define DAM		BIT(1)
153 #define SYNCDIM		BIT(2)
154 #define STATIC		BIT(3)
155 #define EDMA_FWID	(0x07 << 8)
156 #define TCCMODE		BIT(11)
157 #define EDMA_TCC(t)	((t) << 12)
158 #define TCINTEN		BIT(20)
159 #define ITCINTEN	BIT(21)
160 #define TCCHEN		BIT(22)
161 #define ITCCHEN		BIT(23)
162 
163 struct edma_pset {
164 	u32				len;
165 	dma_addr_t			addr;
166 	struct edmacc_param		param;
167 };
168 
169 struct edma_desc {
170 	struct virt_dma_desc		vdesc;
171 	struct list_head		node;
172 	enum dma_transfer_direction	direction;
173 	int				cyclic;
174 	bool				polled;
175 	int				absync;
176 	int				pset_nr;
177 	struct edma_chan		*echan;
178 	int				processed;
179 
180 	/*
181 	 * The following 4 elements are used for residue accounting.
182 	 *
183 	 * - processed_stat: the number of SG elements we have traversed
184 	 * so far to cover accounting. This is updated directly to processed
185 	 * during edma_callback and is always <= processed, because processed
186 	 * refers to the number of pending transfer (programmed to EDMA
187 	 * controller), where as processed_stat tracks number of transfers
188 	 * accounted for so far.
189 	 *
190 	 * - residue: The amount of bytes we have left to transfer for this desc
191 	 *
192 	 * - residue_stat: The residue in bytes of data we have covered
193 	 * so far for accounting. This is updated directly to residue
194 	 * during callbacks to keep it current.
195 	 *
196 	 * - sg_len: Tracks the length of the current intermediate transfer,
197 	 * this is required to update the residue during intermediate transfer
198 	 * completion callback.
199 	 */
200 	int				processed_stat;
201 	u32				sg_len;
202 	u32				residue;
203 	u32				residue_stat;
204 
205 	struct edma_pset		pset[];
206 };
207 
208 struct edma_cc;
209 
210 struct edma_tc {
211 	struct device_node		*node;
212 	u16				id;
213 };
214 
215 struct edma_chan {
216 	struct virt_dma_chan		vchan;
217 	struct list_head		node;
218 	struct edma_desc		*edesc;
219 	struct edma_cc			*ecc;
220 	struct edma_tc			*tc;
221 	int				ch_num;
222 	bool				alloced;
223 	bool				hw_triggered;
224 	int				slot[EDMA_MAX_SLOTS];
225 	int				missed;
226 	struct dma_slave_config		cfg;
227 };
228 
229 struct edma_cc {
230 	struct device			*dev;
231 	struct edma_soc_info		*info;
232 	void __iomem			*base;
233 	int				id;
234 	bool				legacy_mode;
235 
236 	/* eDMA3 resource information */
237 	unsigned			num_channels;
238 	unsigned			num_qchannels;
239 	unsigned			num_region;
240 	unsigned			num_slots;
241 	unsigned			num_tc;
242 	bool				chmap_exist;
243 	enum dma_event_q		default_queue;
244 
245 	unsigned int			ccint;
246 	unsigned int			ccerrint;
247 
248 	/*
249 	 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
250 	 * in use by Linux or if it is allocated to be used by DSP.
251 	 */
252 	unsigned long *slot_inuse;
253 
254 	/*
255 	 * For tracking reserved channels used by DSP.
256 	 * If the bit is cleared, the channel is allocated to be used by DSP
257 	 * and Linux must not touch it.
258 	 */
259 	unsigned long *channels_mask;
260 
261 	struct dma_device		dma_slave;
262 	struct dma_device		*dma_memcpy;
263 	struct edma_chan		*slave_chans;
264 	struct edma_tc			*tc_list;
265 	int				dummy_slot;
266 };
267 
268 /* dummy param set used to (re)initialize parameter RAM slots */
269 static const struct edmacc_param dummy_paramset = {
270 	.link_bcntrld = 0xffff,
271 	.ccnt = 1,
272 };
273 
274 #define EDMA_BINDING_LEGACY	0
275 #define EDMA_BINDING_TPCC	1
276 static const u32 edma_binding_type[] = {
277 	[EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
278 	[EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
279 };
280 
281 static const struct of_device_id edma_of_ids[] = {
282 	{
283 		.compatible = "ti,edma3",
284 		.data = &edma_binding_type[EDMA_BINDING_LEGACY],
285 	},
286 	{
287 		.compatible = "ti,edma3-tpcc",
288 		.data = &edma_binding_type[EDMA_BINDING_TPCC],
289 	},
290 	{}
291 };
292 MODULE_DEVICE_TABLE(of, edma_of_ids);
293 
294 static const struct of_device_id edma_tptc_of_ids[] = {
295 	{ .compatible = "ti,edma3-tptc", },
296 	{}
297 };
298 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
299 
300 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
301 {
302 	return (unsigned int)__raw_readl(ecc->base + offset);
303 }
304 
305 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
306 {
307 	__raw_writel(val, ecc->base + offset);
308 }
309 
310 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
311 			       unsigned or)
312 {
313 	unsigned val = edma_read(ecc, offset);
314 
315 	val &= and;
316 	val |= or;
317 	edma_write(ecc, offset, val);
318 }
319 
320 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
321 {
322 	unsigned val = edma_read(ecc, offset);
323 
324 	val |= or;
325 	edma_write(ecc, offset, val);
326 }
327 
328 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
329 					   int i)
330 {
331 	return edma_read(ecc, offset + (i << 2));
332 }
333 
334 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
335 				    unsigned val)
336 {
337 	edma_write(ecc, offset + (i << 2), val);
338 }
339 
340 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
341 				     unsigned and, unsigned or)
342 {
343 	edma_modify(ecc, offset + (i << 2), and, or);
344 }
345 
346 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
347 				  unsigned or)
348 {
349 	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
350 }
351 
352 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
353 				     int j, unsigned val)
354 {
355 	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
356 }
357 
358 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
359 						   int offset, int i)
360 {
361 	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
362 }
363 
364 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
365 				      unsigned val)
366 {
367 	edma_write(ecc, EDMA_SHADOW0 + offset, val);
368 }
369 
370 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
371 					    int i, unsigned val)
372 {
373 	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
374 }
375 
376 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
377 				     int param_no, unsigned and, unsigned or)
378 {
379 	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
380 }
381 
382 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
383 					  int priority)
384 {
385 	int bit = queue_no * 4;
386 
387 	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
388 }
389 
390 static void edma_set_chmap(struct edma_chan *echan, int slot)
391 {
392 	struct edma_cc *ecc = echan->ecc;
393 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
394 
395 	if (ecc->chmap_exist) {
396 		slot = EDMA_CHAN_SLOT(slot);
397 		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
398 	}
399 }
400 
401 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
402 {
403 	struct edma_cc *ecc = echan->ecc;
404 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
405 	int idx = EDMA_REG_ARRAY_INDEX(channel);
406 	int ch_bit = EDMA_CHANNEL_BIT(channel);
407 
408 	if (enable) {
409 		edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
410 		edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit);
411 	} else {
412 		edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit);
413 	}
414 }
415 
416 /*
417  * paRAM slot management functions
418  */
419 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
420 			    const struct edmacc_param *param)
421 {
422 	slot = EDMA_CHAN_SLOT(slot);
423 	if (slot >= ecc->num_slots)
424 		return;
425 	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
426 }
427 
428 static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
429 			   struct edmacc_param *param)
430 {
431 	slot = EDMA_CHAN_SLOT(slot);
432 	if (slot >= ecc->num_slots)
433 		return -EINVAL;
434 	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
435 
436 	return 0;
437 }
438 
439 /**
440  * edma_alloc_slot - allocate DMA parameter RAM
441  * @ecc: pointer to edma_cc struct
442  * @slot: specific slot to allocate; negative for "any unused slot"
443  *
444  * This allocates a parameter RAM slot, initializing it to hold a
445  * dummy transfer.  Slots allocated using this routine have not been
446  * mapped to a hardware DMA channel, and will normally be used by
447  * linking to them from a slot associated with a DMA channel.
448  *
449  * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
450  * slots may be allocated on behalf of DSP firmware.
451  *
452  * Returns the number of the slot, else negative errno.
453  */
454 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
455 {
456 	if (slot >= 0) {
457 		slot = EDMA_CHAN_SLOT(slot);
458 		/* Requesting entry paRAM slot for a HW triggered channel. */
459 		if (ecc->chmap_exist && slot < ecc->num_channels)
460 			slot = EDMA_SLOT_ANY;
461 	}
462 
463 	if (slot < 0) {
464 		if (ecc->chmap_exist)
465 			slot = 0;
466 		else
467 			slot = ecc->num_channels;
468 		for (;;) {
469 			slot = find_next_zero_bit(ecc->slot_inuse,
470 						  ecc->num_slots,
471 						  slot);
472 			if (slot == ecc->num_slots)
473 				return -ENOMEM;
474 			if (!test_and_set_bit(slot, ecc->slot_inuse))
475 				break;
476 		}
477 	} else if (slot >= ecc->num_slots) {
478 		return -EINVAL;
479 	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
480 		return -EBUSY;
481 	}
482 
483 	edma_write_slot(ecc, slot, &dummy_paramset);
484 
485 	return EDMA_CTLR_CHAN(ecc->id, slot);
486 }
487 
488 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
489 {
490 	slot = EDMA_CHAN_SLOT(slot);
491 	if (slot >= ecc->num_slots)
492 		return;
493 
494 	edma_write_slot(ecc, slot, &dummy_paramset);
495 	clear_bit(slot, ecc->slot_inuse);
496 }
497 
498 /**
499  * edma_link - link one parameter RAM slot to another
500  * @ecc: pointer to edma_cc struct
501  * @from: parameter RAM slot originating the link
502  * @to: parameter RAM slot which is the link target
503  *
504  * The originating slot should not be part of any active DMA transfer.
505  */
506 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
507 {
508 	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
509 		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
510 
511 	from = EDMA_CHAN_SLOT(from);
512 	to = EDMA_CHAN_SLOT(to);
513 	if (from >= ecc->num_slots || to >= ecc->num_slots)
514 		return;
515 
516 	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
517 			  PARM_OFFSET(to));
518 }
519 
520 /**
521  * edma_get_position - returns the current transfer point
522  * @ecc: pointer to edma_cc struct
523  * @slot: parameter RAM slot being examined
524  * @dst:  true selects the dest position, false the source
525  *
526  * Returns the position of the current active slot
527  */
528 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
529 				    bool dst)
530 {
531 	u32 offs;
532 
533 	slot = EDMA_CHAN_SLOT(slot);
534 	offs = PARM_OFFSET(slot);
535 	offs += dst ? PARM_DST : PARM_SRC;
536 
537 	return edma_read(ecc, offs);
538 }
539 
540 /*
541  * Channels with event associations will be triggered by their hardware
542  * events, and channels without such associations will be triggered by
543  * software.  (At this writing there is no interface for using software
544  * triggers except with channels that don't support hardware triggers.)
545  */
546 static void edma_start(struct edma_chan *echan)
547 {
548 	struct edma_cc *ecc = echan->ecc;
549 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
550 	int idx = EDMA_REG_ARRAY_INDEX(channel);
551 	int ch_bit = EDMA_CHANNEL_BIT(channel);
552 
553 	if (!echan->hw_triggered) {
554 		/* EDMA channels without event association */
555 		dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
556 			edma_shadow0_read_array(ecc, SH_ESR, idx));
557 		edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
558 	} else {
559 		/* EDMA channel with event association */
560 		dev_dbg(ecc->dev, "ER%d %08x\n", idx,
561 			edma_shadow0_read_array(ecc, SH_ER, idx));
562 		/* Clear any pending event or error */
563 		edma_write_array(ecc, EDMA_ECR, idx, ch_bit);
564 		edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
565 		/* Clear any SER */
566 		edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
567 		edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit);
568 		dev_dbg(ecc->dev, "EER%d %08x\n", idx,
569 			edma_shadow0_read_array(ecc, SH_EER, idx));
570 	}
571 }
572 
573 static void edma_stop(struct edma_chan *echan)
574 {
575 	struct edma_cc *ecc = echan->ecc;
576 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
577 	int idx = EDMA_REG_ARRAY_INDEX(channel);
578 	int ch_bit = EDMA_CHANNEL_BIT(channel);
579 
580 	edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit);
581 	edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
582 	edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
583 	edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
584 
585 	/* clear possibly pending completion interrupt */
586 	edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
587 
588 	dev_dbg(ecc->dev, "EER%d %08x\n", idx,
589 		edma_shadow0_read_array(ecc, SH_EER, idx));
590 
591 	/* REVISIT:  consider guarding against inappropriate event
592 	 * chaining by overwriting with dummy_paramset.
593 	 */
594 }
595 
596 /*
597  * Temporarily disable EDMA hardware events on the specified channel,
598  * preventing them from triggering new transfers
599  */
600 static void edma_pause(struct edma_chan *echan)
601 {
602 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
603 
604 	edma_shadow0_write_array(echan->ecc, SH_EECR,
605 				 EDMA_REG_ARRAY_INDEX(channel),
606 				 EDMA_CHANNEL_BIT(channel));
607 }
608 
609 /* Re-enable EDMA hardware events on the specified channel.  */
610 static void edma_resume(struct edma_chan *echan)
611 {
612 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
613 
614 	edma_shadow0_write_array(echan->ecc, SH_EESR,
615 				 EDMA_REG_ARRAY_INDEX(channel),
616 				 EDMA_CHANNEL_BIT(channel));
617 }
618 
619 static void edma_trigger_channel(struct edma_chan *echan)
620 {
621 	struct edma_cc *ecc = echan->ecc;
622 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
623 	int idx = EDMA_REG_ARRAY_INDEX(channel);
624 	int ch_bit = EDMA_CHANNEL_BIT(channel);
625 
626 	edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
627 
628 	dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
629 		edma_shadow0_read_array(ecc, SH_ESR, idx));
630 }
631 
632 static void edma_clean_channel(struct edma_chan *echan)
633 {
634 	struct edma_cc *ecc = echan->ecc;
635 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
636 	int idx = EDMA_REG_ARRAY_INDEX(channel);
637 	int ch_bit = EDMA_CHANNEL_BIT(channel);
638 
639 	dev_dbg(ecc->dev, "EMR%d %08x\n", idx,
640 		edma_read_array(ecc, EDMA_EMR, idx));
641 	edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
642 	/* Clear the corresponding EMR bits */
643 	edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
644 	/* Clear any SER */
645 	edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
646 	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
647 }
648 
649 /* Move channel to a specific event queue */
650 static void edma_assign_channel_eventq(struct edma_chan *echan,
651 				       enum dma_event_q eventq_no)
652 {
653 	struct edma_cc *ecc = echan->ecc;
654 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
655 	int bit = (channel & 0x7) * 4;
656 
657 	/* default to low priority queue */
658 	if (eventq_no == EVENTQ_DEFAULT)
659 		eventq_no = ecc->default_queue;
660 	if (eventq_no >= ecc->num_tc)
661 		return;
662 
663 	eventq_no &= 7;
664 	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
665 			  eventq_no << bit);
666 }
667 
668 static int edma_alloc_channel(struct edma_chan *echan,
669 			      enum dma_event_q eventq_no)
670 {
671 	struct edma_cc *ecc = echan->ecc;
672 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
673 
674 	if (!test_bit(echan->ch_num, ecc->channels_mask)) {
675 		dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n",
676 			echan->ch_num);
677 		return -EINVAL;
678 	}
679 
680 	/* ensure access through shadow region 0 */
681 	edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel),
682 		       EDMA_CHANNEL_BIT(channel));
683 
684 	/* ensure no events are pending */
685 	edma_stop(echan);
686 
687 	edma_setup_interrupt(echan, true);
688 
689 	edma_assign_channel_eventq(echan, eventq_no);
690 
691 	return 0;
692 }
693 
694 static void edma_free_channel(struct edma_chan *echan)
695 {
696 	/* ensure no events are pending */
697 	edma_stop(echan);
698 	/* REVISIT should probably take out of shadow region 0 */
699 	edma_setup_interrupt(echan, false);
700 }
701 
702 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
703 {
704 	return container_of(c, struct edma_chan, vchan.chan);
705 }
706 
707 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
708 {
709 	return container_of(tx, struct edma_desc, vdesc.tx);
710 }
711 
712 static void edma_desc_free(struct virt_dma_desc *vdesc)
713 {
714 	kfree(container_of(vdesc, struct edma_desc, vdesc));
715 }
716 
717 /* Dispatch a queued descriptor to the controller (caller holds lock) */
718 static void edma_execute(struct edma_chan *echan)
719 {
720 	struct edma_cc *ecc = echan->ecc;
721 	struct virt_dma_desc *vdesc;
722 	struct edma_desc *edesc;
723 	struct device *dev = echan->vchan.chan.device->dev;
724 	int i, j, left, nslots;
725 
726 	if (!echan->edesc) {
727 		/* Setup is needed for the first transfer */
728 		vdesc = vchan_next_desc(&echan->vchan);
729 		if (!vdesc)
730 			return;
731 		list_del(&vdesc->node);
732 		echan->edesc = to_edma_desc(&vdesc->tx);
733 	}
734 
735 	edesc = echan->edesc;
736 
737 	/* Find out how many left */
738 	left = edesc->pset_nr - edesc->processed;
739 	nslots = min(MAX_NR_SG, left);
740 	edesc->sg_len = 0;
741 
742 	/* Write descriptor PaRAM set(s) */
743 	for (i = 0; i < nslots; i++) {
744 		j = i + edesc->processed;
745 		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
746 		edesc->sg_len += edesc->pset[j].len;
747 		dev_vdbg(dev,
748 			 "\n pset[%d]:\n"
749 			 "  chnum\t%d\n"
750 			 "  slot\t%d\n"
751 			 "  opt\t%08x\n"
752 			 "  src\t%08x\n"
753 			 "  dst\t%08x\n"
754 			 "  abcnt\t%08x\n"
755 			 "  ccnt\t%08x\n"
756 			 "  bidx\t%08x\n"
757 			 "  cidx\t%08x\n"
758 			 "  lkrld\t%08x\n",
759 			 j, echan->ch_num, echan->slot[i],
760 			 edesc->pset[j].param.opt,
761 			 edesc->pset[j].param.src,
762 			 edesc->pset[j].param.dst,
763 			 edesc->pset[j].param.a_b_cnt,
764 			 edesc->pset[j].param.ccnt,
765 			 edesc->pset[j].param.src_dst_bidx,
766 			 edesc->pset[j].param.src_dst_cidx,
767 			 edesc->pset[j].param.link_bcntrld);
768 		/* Link to the previous slot if not the last set */
769 		if (i != (nslots - 1))
770 			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
771 	}
772 
773 	edesc->processed += nslots;
774 
775 	/*
776 	 * If this is either the last set in a set of SG-list transactions
777 	 * then setup a link to the dummy slot, this results in all future
778 	 * events being absorbed and that's OK because we're done
779 	 */
780 	if (edesc->processed == edesc->pset_nr) {
781 		if (edesc->cyclic)
782 			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
783 		else
784 			edma_link(ecc, echan->slot[nslots - 1],
785 				  echan->ecc->dummy_slot);
786 	}
787 
788 	if (echan->missed) {
789 		/*
790 		 * This happens due to setup times between intermediate
791 		 * transfers in long SG lists which have to be broken up into
792 		 * transfers of MAX_NR_SG
793 		 */
794 		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
795 		edma_clean_channel(echan);
796 		edma_stop(echan);
797 		edma_start(echan);
798 		edma_trigger_channel(echan);
799 		echan->missed = 0;
800 	} else if (edesc->processed <= MAX_NR_SG) {
801 		dev_dbg(dev, "first transfer starting on channel %d\n",
802 			echan->ch_num);
803 		edma_start(echan);
804 	} else {
805 		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
806 			echan->ch_num, edesc->processed);
807 		edma_resume(echan);
808 	}
809 }
810 
811 static int edma_terminate_all(struct dma_chan *chan)
812 {
813 	struct edma_chan *echan = to_edma_chan(chan);
814 	unsigned long flags;
815 	LIST_HEAD(head);
816 
817 	spin_lock_irqsave(&echan->vchan.lock, flags);
818 
819 	/*
820 	 * Stop DMA activity: we assume the callback will not be called
821 	 * after edma_dma() returns (even if it does, it will see
822 	 * echan->edesc is NULL and exit.)
823 	 */
824 	if (echan->edesc) {
825 		edma_stop(echan);
826 		/* Move the cyclic channel back to default queue */
827 		if (!echan->tc && echan->edesc->cyclic)
828 			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
829 
830 		vchan_terminate_vdesc(&echan->edesc->vdesc);
831 		echan->edesc = NULL;
832 	}
833 
834 	vchan_get_all_descriptors(&echan->vchan, &head);
835 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
836 	vchan_dma_desc_free_list(&echan->vchan, &head);
837 
838 	return 0;
839 }
840 
841 static void edma_synchronize(struct dma_chan *chan)
842 {
843 	struct edma_chan *echan = to_edma_chan(chan);
844 
845 	vchan_synchronize(&echan->vchan);
846 }
847 
848 static int edma_slave_config(struct dma_chan *chan,
849 	struct dma_slave_config *cfg)
850 {
851 	struct edma_chan *echan = to_edma_chan(chan);
852 
853 	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
854 	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
855 		return -EINVAL;
856 
857 	if (cfg->src_maxburst > chan->device->max_burst ||
858 	    cfg->dst_maxburst > chan->device->max_burst)
859 		return -EINVAL;
860 
861 	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
862 
863 	return 0;
864 }
865 
866 static int edma_dma_pause(struct dma_chan *chan)
867 {
868 	struct edma_chan *echan = to_edma_chan(chan);
869 
870 	if (!echan->edesc)
871 		return -EINVAL;
872 
873 	edma_pause(echan);
874 	return 0;
875 }
876 
877 static int edma_dma_resume(struct dma_chan *chan)
878 {
879 	struct edma_chan *echan = to_edma_chan(chan);
880 
881 	edma_resume(echan);
882 	return 0;
883 }
884 
885 /*
886  * A PaRAM set configuration abstraction used by other modes
887  * @chan: Channel who's PaRAM set we're configuring
888  * @pset: PaRAM set to initialize and setup.
889  * @src_addr: Source address of the DMA
890  * @dst_addr: Destination address of the DMA
891  * @burst: In units of dev_width, how much to send
892  * @dev_width: How much is the dev_width
893  * @dma_length: Total length of the DMA transfer
894  * @direction: Direction of the transfer
895  */
896 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
897 			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
898 			    unsigned int acnt, unsigned int dma_length,
899 			    enum dma_transfer_direction direction)
900 {
901 	struct edma_chan *echan = to_edma_chan(chan);
902 	struct device *dev = chan->device->dev;
903 	struct edmacc_param *param = &epset->param;
904 	int bcnt, ccnt, cidx;
905 	int src_bidx, dst_bidx, src_cidx, dst_cidx;
906 	int absync;
907 
908 	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
909 	if (!burst)
910 		burst = 1;
911 	/*
912 	 * If the maxburst is equal to the fifo width, use
913 	 * A-synced transfers. This allows for large contiguous
914 	 * buffer transfers using only one PaRAM set.
915 	 */
916 	if (burst == 1) {
917 		/*
918 		 * For the A-sync case, bcnt and ccnt are the remainder
919 		 * and quotient respectively of the division of:
920 		 * (dma_length / acnt) by (SZ_64K -1). This is so
921 		 * that in case bcnt over flows, we have ccnt to use.
922 		 * Note: In A-sync transfer only, bcntrld is used, but it
923 		 * only applies for sg_dma_len(sg) >= SZ_64K.
924 		 * In this case, the best way adopted is- bccnt for the
925 		 * first frame will be the remainder below. Then for
926 		 * every successive frame, bcnt will be SZ_64K-1. This
927 		 * is assured as bcntrld = 0xffff in end of function.
928 		 */
929 		absync = false;
930 		ccnt = dma_length / acnt / (SZ_64K - 1);
931 		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
932 		/*
933 		 * If bcnt is non-zero, we have a remainder and hence an
934 		 * extra frame to transfer, so increment ccnt.
935 		 */
936 		if (bcnt)
937 			ccnt++;
938 		else
939 			bcnt = SZ_64K - 1;
940 		cidx = acnt;
941 	} else {
942 		/*
943 		 * If maxburst is greater than the fifo address_width,
944 		 * use AB-synced transfers where A count is the fifo
945 		 * address_width and B count is the maxburst. In this
946 		 * case, we are limited to transfers of C count frames
947 		 * of (address_width * maxburst) where C count is limited
948 		 * to SZ_64K-1. This places an upper bound on the length
949 		 * of an SG segment that can be handled.
950 		 */
951 		absync = true;
952 		bcnt = burst;
953 		ccnt = dma_length / (acnt * bcnt);
954 		if (ccnt > (SZ_64K - 1)) {
955 			dev_err(dev, "Exceeded max SG segment size\n");
956 			return -EINVAL;
957 		}
958 		cidx = acnt * bcnt;
959 	}
960 
961 	epset->len = dma_length;
962 
963 	if (direction == DMA_MEM_TO_DEV) {
964 		src_bidx = acnt;
965 		src_cidx = cidx;
966 		dst_bidx = 0;
967 		dst_cidx = 0;
968 		epset->addr = src_addr;
969 	} else if (direction == DMA_DEV_TO_MEM)  {
970 		src_bidx = 0;
971 		src_cidx = 0;
972 		dst_bidx = acnt;
973 		dst_cidx = cidx;
974 		epset->addr = dst_addr;
975 	} else if (direction == DMA_MEM_TO_MEM)  {
976 		src_bidx = acnt;
977 		src_cidx = cidx;
978 		dst_bidx = acnt;
979 		dst_cidx = cidx;
980 		epset->addr = src_addr;
981 	} else {
982 		dev_err(dev, "%s: direction not implemented yet\n", __func__);
983 		return -EINVAL;
984 	}
985 
986 	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
987 	/* Configure A or AB synchronized transfers */
988 	if (absync)
989 		param->opt |= SYNCDIM;
990 
991 	param->src = src_addr;
992 	param->dst = dst_addr;
993 
994 	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
995 	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
996 
997 	param->a_b_cnt = bcnt << 16 | acnt;
998 	param->ccnt = ccnt;
999 	/*
1000 	 * Only time when (bcntrld) auto reload is required is for
1001 	 * A-sync case, and in this case, a requirement of reload value
1002 	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1003 	 * and then later will be populated by edma_execute.
1004 	 */
1005 	param->link_bcntrld = 0xffffffff;
1006 	return absync;
1007 }
1008 
1009 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1010 	struct dma_chan *chan, struct scatterlist *sgl,
1011 	unsigned int sg_len, enum dma_transfer_direction direction,
1012 	unsigned long tx_flags, void *context)
1013 {
1014 	struct edma_chan *echan = to_edma_chan(chan);
1015 	struct device *dev = chan->device->dev;
1016 	struct edma_desc *edesc;
1017 	dma_addr_t src_addr = 0, dst_addr = 0;
1018 	enum dma_slave_buswidth dev_width;
1019 	u32 burst;
1020 	struct scatterlist *sg;
1021 	int i, nslots, ret;
1022 
1023 	if (unlikely(!echan || !sgl || !sg_len))
1024 		return NULL;
1025 
1026 	if (direction == DMA_DEV_TO_MEM) {
1027 		src_addr = echan->cfg.src_addr;
1028 		dev_width = echan->cfg.src_addr_width;
1029 		burst = echan->cfg.src_maxburst;
1030 	} else if (direction == DMA_MEM_TO_DEV) {
1031 		dst_addr = echan->cfg.dst_addr;
1032 		dev_width = echan->cfg.dst_addr_width;
1033 		burst = echan->cfg.dst_maxburst;
1034 	} else {
1035 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1036 		return NULL;
1037 	}
1038 
1039 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1040 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1041 		return NULL;
1042 	}
1043 
1044 	edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
1045 	if (!edesc)
1046 		return NULL;
1047 
1048 	edesc->pset_nr = sg_len;
1049 	edesc->residue = 0;
1050 	edesc->direction = direction;
1051 	edesc->echan = echan;
1052 
1053 	/* Allocate a PaRAM slot, if needed */
1054 	nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1055 
1056 	for (i = 0; i < nslots; i++) {
1057 		if (echan->slot[i] < 0) {
1058 			echan->slot[i] =
1059 				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1060 			if (echan->slot[i] < 0) {
1061 				kfree(edesc);
1062 				dev_err(dev, "%s: Failed to allocate slot\n",
1063 					__func__);
1064 				return NULL;
1065 			}
1066 		}
1067 	}
1068 
1069 	/* Configure PaRAM sets for each SG */
1070 	for_each_sg(sgl, sg, sg_len, i) {
1071 		/* Get address for each SG */
1072 		if (direction == DMA_DEV_TO_MEM)
1073 			dst_addr = sg_dma_address(sg);
1074 		else
1075 			src_addr = sg_dma_address(sg);
1076 
1077 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1078 				       dst_addr, burst, dev_width,
1079 				       sg_dma_len(sg), direction);
1080 		if (ret < 0) {
1081 			kfree(edesc);
1082 			return NULL;
1083 		}
1084 
1085 		edesc->absync = ret;
1086 		edesc->residue += sg_dma_len(sg);
1087 
1088 		if (i == sg_len - 1)
1089 			/* Enable completion interrupt */
1090 			edesc->pset[i].param.opt |= TCINTEN;
1091 		else if (!((i+1) % MAX_NR_SG))
1092 			/*
1093 			 * Enable early completion interrupt for the
1094 			 * intermediateset. In this case the driver will be
1095 			 * notified when the paRAM set is submitted to TC. This
1096 			 * will allow more time to set up the next set of slots.
1097 			 */
1098 			edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1099 	}
1100 	edesc->residue_stat = edesc->residue;
1101 
1102 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1103 }
1104 
1105 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1106 	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1107 	size_t len, unsigned long tx_flags)
1108 {
1109 	int ret, nslots;
1110 	struct edma_desc *edesc;
1111 	struct device *dev = chan->device->dev;
1112 	struct edma_chan *echan = to_edma_chan(chan);
1113 	unsigned int width, pset_len, array_size;
1114 
1115 	if (unlikely(!echan || !len))
1116 		return NULL;
1117 
1118 	/* Align the array size (acnt block) with the transfer properties */
1119 	switch (__ffs((src | dest | len))) {
1120 	case 0:
1121 		array_size = SZ_32K - 1;
1122 		break;
1123 	case 1:
1124 		array_size = SZ_32K - 2;
1125 		break;
1126 	default:
1127 		array_size = SZ_32K - 4;
1128 		break;
1129 	}
1130 
1131 	if (len < SZ_64K) {
1132 		/*
1133 		 * Transfer size less than 64K can be handled with one paRAM
1134 		 * slot and with one burst.
1135 		 * ACNT = length
1136 		 */
1137 		width = len;
1138 		pset_len = len;
1139 		nslots = 1;
1140 	} else {
1141 		/*
1142 		 * Transfer size bigger than 64K will be handled with maximum of
1143 		 * two paRAM slots.
1144 		 * slot1: (full_length / 32767) times 32767 bytes bursts.
1145 		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
1146 		 * slot2: the remaining amount of data after slot1.
1147 		 *	  ACNT = full_length - length1, length2 = ACNT
1148 		 *
1149 		 * When the full_length is a multiple of 32767 one slot can be
1150 		 * used to complete the transfer.
1151 		 */
1152 		width = array_size;
1153 		pset_len = rounddown(len, width);
1154 		/* One slot is enough for lengths multiple of (SZ_32K -1) */
1155 		if (unlikely(pset_len == len))
1156 			nslots = 1;
1157 		else
1158 			nslots = 2;
1159 	}
1160 
1161 	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1162 	if (!edesc)
1163 		return NULL;
1164 
1165 	edesc->pset_nr = nslots;
1166 	edesc->residue = edesc->residue_stat = len;
1167 	edesc->direction = DMA_MEM_TO_MEM;
1168 	edesc->echan = echan;
1169 
1170 	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1171 			       width, pset_len, DMA_MEM_TO_MEM);
1172 	if (ret < 0) {
1173 		kfree(edesc);
1174 		return NULL;
1175 	}
1176 
1177 	edesc->absync = ret;
1178 
1179 	edesc->pset[0].param.opt |= ITCCHEN;
1180 	if (nslots == 1) {
1181 		/* Enable transfer complete interrupt if requested */
1182 		if (tx_flags & DMA_PREP_INTERRUPT)
1183 			edesc->pset[0].param.opt |= TCINTEN;
1184 	} else {
1185 		/* Enable transfer complete chaining for the first slot */
1186 		edesc->pset[0].param.opt |= TCCHEN;
1187 
1188 		if (echan->slot[1] < 0) {
1189 			echan->slot[1] = edma_alloc_slot(echan->ecc,
1190 							 EDMA_SLOT_ANY);
1191 			if (echan->slot[1] < 0) {
1192 				kfree(edesc);
1193 				dev_err(dev, "%s: Failed to allocate slot\n",
1194 					__func__);
1195 				return NULL;
1196 			}
1197 		}
1198 		dest += pset_len;
1199 		src += pset_len;
1200 		pset_len = width = len % array_size;
1201 
1202 		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1203 				       width, pset_len, DMA_MEM_TO_MEM);
1204 		if (ret < 0) {
1205 			kfree(edesc);
1206 			return NULL;
1207 		}
1208 
1209 		edesc->pset[1].param.opt |= ITCCHEN;
1210 		/* Enable transfer complete interrupt if requested */
1211 		if (tx_flags & DMA_PREP_INTERRUPT)
1212 			edesc->pset[1].param.opt |= TCINTEN;
1213 	}
1214 
1215 	if (!(tx_flags & DMA_PREP_INTERRUPT))
1216 		edesc->polled = true;
1217 
1218 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1219 }
1220 
1221 static struct dma_async_tx_descriptor *
1222 edma_prep_dma_interleaved(struct dma_chan *chan,
1223 			  struct dma_interleaved_template *xt,
1224 			  unsigned long tx_flags)
1225 {
1226 	struct device *dev = chan->device->dev;
1227 	struct edma_chan *echan = to_edma_chan(chan);
1228 	struct edmacc_param *param;
1229 	struct edma_desc *edesc;
1230 	size_t src_icg, dst_icg;
1231 	int src_bidx, dst_bidx;
1232 
1233 	/* Slave mode is not supported */
1234 	if (is_slave_direction(xt->dir))
1235 		return NULL;
1236 
1237 	if (xt->frame_size != 1 || xt->numf == 0)
1238 		return NULL;
1239 
1240 	if (xt->sgl[0].size > SZ_64K || xt->numf > SZ_64K)
1241 		return NULL;
1242 
1243 	src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
1244 	if (src_icg) {
1245 		src_bidx = src_icg + xt->sgl[0].size;
1246 	} else if (xt->src_inc) {
1247 		src_bidx = xt->sgl[0].size;
1248 	} else {
1249 		dev_err(dev, "%s: SRC constant addressing is not supported\n",
1250 			__func__);
1251 		return NULL;
1252 	}
1253 
1254 	dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
1255 	if (dst_icg) {
1256 		dst_bidx = dst_icg + xt->sgl[0].size;
1257 	} else if (xt->dst_inc) {
1258 		dst_bidx = xt->sgl[0].size;
1259 	} else {
1260 		dev_err(dev, "%s: DST constant addressing is not supported\n",
1261 			__func__);
1262 		return NULL;
1263 	}
1264 
1265 	if (src_bidx > SZ_64K || dst_bidx > SZ_64K)
1266 		return NULL;
1267 
1268 	edesc = kzalloc(struct_size(edesc, pset, 1), GFP_ATOMIC);
1269 	if (!edesc)
1270 		return NULL;
1271 
1272 	edesc->direction = DMA_MEM_TO_MEM;
1273 	edesc->echan = echan;
1274 	edesc->pset_nr = 1;
1275 
1276 	param = &edesc->pset[0].param;
1277 
1278 	param->src = xt->src_start;
1279 	param->dst = xt->dst_start;
1280 	param->a_b_cnt = xt->numf << 16 | xt->sgl[0].size;
1281 	param->ccnt = 1;
1282 	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1283 	param->src_dst_cidx = 0;
1284 
1285 	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1286 	param->opt |= ITCCHEN;
1287 	/* Enable transfer complete interrupt if requested */
1288 	if (tx_flags & DMA_PREP_INTERRUPT)
1289 		param->opt |= TCINTEN;
1290 	else
1291 		edesc->polled = true;
1292 
1293 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1294 }
1295 
1296 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1297 	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1298 	size_t period_len, enum dma_transfer_direction direction,
1299 	unsigned long tx_flags)
1300 {
1301 	struct edma_chan *echan = to_edma_chan(chan);
1302 	struct device *dev = chan->device->dev;
1303 	struct edma_desc *edesc;
1304 	dma_addr_t src_addr, dst_addr;
1305 	enum dma_slave_buswidth dev_width;
1306 	bool use_intermediate = false;
1307 	u32 burst;
1308 	int i, ret, nslots;
1309 
1310 	if (unlikely(!echan || !buf_len || !period_len))
1311 		return NULL;
1312 
1313 	if (direction == DMA_DEV_TO_MEM) {
1314 		src_addr = echan->cfg.src_addr;
1315 		dst_addr = buf_addr;
1316 		dev_width = echan->cfg.src_addr_width;
1317 		burst = echan->cfg.src_maxburst;
1318 	} else if (direction == DMA_MEM_TO_DEV) {
1319 		src_addr = buf_addr;
1320 		dst_addr = echan->cfg.dst_addr;
1321 		dev_width = echan->cfg.dst_addr_width;
1322 		burst = echan->cfg.dst_maxburst;
1323 	} else {
1324 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1325 		return NULL;
1326 	}
1327 
1328 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1329 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1330 		return NULL;
1331 	}
1332 
1333 	if (unlikely(buf_len % period_len)) {
1334 		dev_err(dev, "Period should be multiple of Buffer length\n");
1335 		return NULL;
1336 	}
1337 
1338 	nslots = (buf_len / period_len) + 1;
1339 
1340 	/*
1341 	 * Cyclic DMA users such as audio cannot tolerate delays introduced
1342 	 * by cases where the number of periods is more than the maximum
1343 	 * number of SGs the EDMA driver can handle at a time. For DMA types
1344 	 * such as Slave SGs, such delays are tolerable and synchronized,
1345 	 * but the synchronization is difficult to achieve with Cyclic and
1346 	 * cannot be guaranteed, so we error out early.
1347 	 */
1348 	if (nslots > MAX_NR_SG) {
1349 		/*
1350 		 * If the burst and period sizes are the same, we can put
1351 		 * the full buffer into a single period and activate
1352 		 * intermediate interrupts. This will produce interrupts
1353 		 * after each burst, which is also after each desired period.
1354 		 */
1355 		if (burst == period_len) {
1356 			period_len = buf_len;
1357 			nslots = 2;
1358 			use_intermediate = true;
1359 		} else {
1360 			return NULL;
1361 		}
1362 	}
1363 
1364 	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1365 	if (!edesc)
1366 		return NULL;
1367 
1368 	edesc->cyclic = 1;
1369 	edesc->pset_nr = nslots;
1370 	edesc->residue = edesc->residue_stat = buf_len;
1371 	edesc->direction = direction;
1372 	edesc->echan = echan;
1373 
1374 	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1375 		__func__, echan->ch_num, nslots, period_len, buf_len);
1376 
1377 	for (i = 0; i < nslots; i++) {
1378 		/* Allocate a PaRAM slot, if needed */
1379 		if (echan->slot[i] < 0) {
1380 			echan->slot[i] =
1381 				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1382 			if (echan->slot[i] < 0) {
1383 				kfree(edesc);
1384 				dev_err(dev, "%s: Failed to allocate slot\n",
1385 					__func__);
1386 				return NULL;
1387 			}
1388 		}
1389 
1390 		if (i == nslots - 1) {
1391 			memcpy(&edesc->pset[i], &edesc->pset[0],
1392 			       sizeof(edesc->pset[0]));
1393 			break;
1394 		}
1395 
1396 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1397 				       dst_addr, burst, dev_width, period_len,
1398 				       direction);
1399 		if (ret < 0) {
1400 			kfree(edesc);
1401 			return NULL;
1402 		}
1403 
1404 		if (direction == DMA_DEV_TO_MEM)
1405 			dst_addr += period_len;
1406 		else
1407 			src_addr += period_len;
1408 
1409 		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1410 		dev_vdbg(dev,
1411 			"\n pset[%d]:\n"
1412 			"  chnum\t%d\n"
1413 			"  slot\t%d\n"
1414 			"  opt\t%08x\n"
1415 			"  src\t%08x\n"
1416 			"  dst\t%08x\n"
1417 			"  abcnt\t%08x\n"
1418 			"  ccnt\t%08x\n"
1419 			"  bidx\t%08x\n"
1420 			"  cidx\t%08x\n"
1421 			"  lkrld\t%08x\n",
1422 			i, echan->ch_num, echan->slot[i],
1423 			edesc->pset[i].param.opt,
1424 			edesc->pset[i].param.src,
1425 			edesc->pset[i].param.dst,
1426 			edesc->pset[i].param.a_b_cnt,
1427 			edesc->pset[i].param.ccnt,
1428 			edesc->pset[i].param.src_dst_bidx,
1429 			edesc->pset[i].param.src_dst_cidx,
1430 			edesc->pset[i].param.link_bcntrld);
1431 
1432 		edesc->absync = ret;
1433 
1434 		/*
1435 		 * Enable period interrupt only if it is requested
1436 		 */
1437 		if (tx_flags & DMA_PREP_INTERRUPT) {
1438 			edesc->pset[i].param.opt |= TCINTEN;
1439 
1440 			/* Also enable intermediate interrupts if necessary */
1441 			if (use_intermediate)
1442 				edesc->pset[i].param.opt |= ITCINTEN;
1443 		}
1444 	}
1445 
1446 	/* Place the cyclic channel to highest priority queue */
1447 	if (!echan->tc)
1448 		edma_assign_channel_eventq(echan, EVENTQ_0);
1449 
1450 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1451 }
1452 
1453 static void edma_completion_handler(struct edma_chan *echan)
1454 {
1455 	struct device *dev = echan->vchan.chan.device->dev;
1456 	struct edma_desc *edesc;
1457 
1458 	spin_lock(&echan->vchan.lock);
1459 	edesc = echan->edesc;
1460 	if (edesc) {
1461 		if (edesc->cyclic) {
1462 			vchan_cyclic_callback(&edesc->vdesc);
1463 			spin_unlock(&echan->vchan.lock);
1464 			return;
1465 		} else if (edesc->processed == edesc->pset_nr) {
1466 			edesc->residue = 0;
1467 			edma_stop(echan);
1468 			vchan_cookie_complete(&edesc->vdesc);
1469 			echan->edesc = NULL;
1470 
1471 			dev_dbg(dev, "Transfer completed on channel %d\n",
1472 				echan->ch_num);
1473 		} else {
1474 			dev_dbg(dev, "Sub transfer completed on channel %d\n",
1475 				echan->ch_num);
1476 
1477 			edma_pause(echan);
1478 
1479 			/* Update statistics for tx_status */
1480 			edesc->residue -= edesc->sg_len;
1481 			edesc->residue_stat = edesc->residue;
1482 			edesc->processed_stat = edesc->processed;
1483 		}
1484 		edma_execute(echan);
1485 	}
1486 
1487 	spin_unlock(&echan->vchan.lock);
1488 }
1489 
1490 /* eDMA interrupt handler */
1491 static irqreturn_t dma_irq_handler(int irq, void *data)
1492 {
1493 	struct edma_cc *ecc = data;
1494 	int ctlr;
1495 	u32 sh_ier;
1496 	u32 sh_ipr;
1497 	u32 bank;
1498 
1499 	ctlr = ecc->id;
1500 	if (ctlr < 0)
1501 		return IRQ_NONE;
1502 
1503 	dev_vdbg(ecc->dev, "dma_irq_handler\n");
1504 
1505 	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1506 	if (!sh_ipr) {
1507 		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1508 		if (!sh_ipr)
1509 			return IRQ_NONE;
1510 		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1511 		bank = 1;
1512 	} else {
1513 		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1514 		bank = 0;
1515 	}
1516 
1517 	do {
1518 		u32 slot;
1519 		u32 channel;
1520 
1521 		slot = __ffs(sh_ipr);
1522 		sh_ipr &= ~(BIT(slot));
1523 
1524 		if (sh_ier & BIT(slot)) {
1525 			channel = (bank << 5) | slot;
1526 			/* Clear the corresponding IPR bits */
1527 			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1528 			edma_completion_handler(&ecc->slave_chans[channel]);
1529 		}
1530 	} while (sh_ipr);
1531 
1532 	edma_shadow0_write(ecc, SH_IEVAL, 1);
1533 	return IRQ_HANDLED;
1534 }
1535 
1536 static void edma_error_handler(struct edma_chan *echan)
1537 {
1538 	struct edma_cc *ecc = echan->ecc;
1539 	struct device *dev = echan->vchan.chan.device->dev;
1540 	struct edmacc_param p;
1541 	int err;
1542 
1543 	if (!echan->edesc)
1544 		return;
1545 
1546 	spin_lock(&echan->vchan.lock);
1547 
1548 	err = edma_read_slot(ecc, echan->slot[0], &p);
1549 
1550 	/*
1551 	 * Issue later based on missed flag which will be sure
1552 	 * to happen as:
1553 	 * (1) we finished transmitting an intermediate slot and
1554 	 *     edma_execute is coming up.
1555 	 * (2) or we finished current transfer and issue will
1556 	 *     call edma_execute.
1557 	 *
1558 	 * Important note: issuing can be dangerous here and
1559 	 * lead to some nasty recursion when we are in a NULL
1560 	 * slot. So we avoid doing so and set the missed flag.
1561 	 */
1562 	if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1563 		dev_dbg(dev, "Error on null slot, setting miss\n");
1564 		echan->missed = 1;
1565 	} else {
1566 		/*
1567 		 * The slot is already programmed but the event got
1568 		 * missed, so its safe to issue it here.
1569 		 */
1570 		dev_dbg(dev, "Missed event, TRIGGERING\n");
1571 		edma_clean_channel(echan);
1572 		edma_stop(echan);
1573 		edma_start(echan);
1574 		edma_trigger_channel(echan);
1575 	}
1576 	spin_unlock(&echan->vchan.lock);
1577 }
1578 
1579 static inline bool edma_error_pending(struct edma_cc *ecc)
1580 {
1581 	if (edma_read_array(ecc, EDMA_EMR, 0) ||
1582 	    edma_read_array(ecc, EDMA_EMR, 1) ||
1583 	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1584 		return true;
1585 
1586 	return false;
1587 }
1588 
1589 /* eDMA error interrupt handler */
1590 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1591 {
1592 	struct edma_cc *ecc = data;
1593 	int i, j;
1594 	int ctlr;
1595 	unsigned int cnt = 0;
1596 	unsigned int val;
1597 
1598 	ctlr = ecc->id;
1599 	if (ctlr < 0)
1600 		return IRQ_NONE;
1601 
1602 	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1603 
1604 	if (!edma_error_pending(ecc)) {
1605 		/*
1606 		 * The registers indicate no pending error event but the irq
1607 		 * handler has been called.
1608 		 * Ask eDMA to re-evaluate the error registers.
1609 		 */
1610 		dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1611 			__func__);
1612 		edma_write(ecc, EDMA_EEVAL, 1);
1613 		return IRQ_NONE;
1614 	}
1615 
1616 	while (1) {
1617 		/* Event missed register(s) */
1618 		for (j = 0; j < 2; j++) {
1619 			unsigned long emr;
1620 
1621 			val = edma_read_array(ecc, EDMA_EMR, j);
1622 			if (!val)
1623 				continue;
1624 
1625 			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1626 			emr = val;
1627 			for_each_set_bit(i, &emr, 32) {
1628 				int k = (j << 5) + i;
1629 
1630 				/* Clear the corresponding EMR bits */
1631 				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1632 				/* Clear any SER */
1633 				edma_shadow0_write_array(ecc, SH_SECR, j,
1634 							 BIT(i));
1635 				edma_error_handler(&ecc->slave_chans[k]);
1636 			}
1637 		}
1638 
1639 		val = edma_read(ecc, EDMA_QEMR);
1640 		if (val) {
1641 			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1642 			/* Not reported, just clear the interrupt reason. */
1643 			edma_write(ecc, EDMA_QEMCR, val);
1644 			edma_shadow0_write(ecc, SH_QSECR, val);
1645 		}
1646 
1647 		val = edma_read(ecc, EDMA_CCERR);
1648 		if (val) {
1649 			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1650 			/* Not reported, just clear the interrupt reason. */
1651 			edma_write(ecc, EDMA_CCERRCLR, val);
1652 		}
1653 
1654 		if (!edma_error_pending(ecc))
1655 			break;
1656 		cnt++;
1657 		if (cnt > 10)
1658 			break;
1659 	}
1660 	edma_write(ecc, EDMA_EEVAL, 1);
1661 	return IRQ_HANDLED;
1662 }
1663 
1664 /* Alloc channel resources */
1665 static int edma_alloc_chan_resources(struct dma_chan *chan)
1666 {
1667 	struct edma_chan *echan = to_edma_chan(chan);
1668 	struct edma_cc *ecc = echan->ecc;
1669 	struct device *dev = ecc->dev;
1670 	enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1671 	int ret;
1672 
1673 	if (echan->tc) {
1674 		eventq_no = echan->tc->id;
1675 	} else if (ecc->tc_list) {
1676 		/* memcpy channel */
1677 		echan->tc = &ecc->tc_list[ecc->info->default_queue];
1678 		eventq_no = echan->tc->id;
1679 	}
1680 
1681 	ret = edma_alloc_channel(echan, eventq_no);
1682 	if (ret)
1683 		return ret;
1684 
1685 	echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1686 	if (echan->slot[0] < 0) {
1687 		dev_err(dev, "Entry slot allocation failed for channel %u\n",
1688 			EDMA_CHAN_SLOT(echan->ch_num));
1689 		ret = echan->slot[0];
1690 		goto err_slot;
1691 	}
1692 
1693 	/* Set up channel -> slot mapping for the entry slot */
1694 	edma_set_chmap(echan, echan->slot[0]);
1695 	echan->alloced = true;
1696 
1697 	dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1698 		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1699 		echan->hw_triggered ? "HW" : "SW");
1700 
1701 	return 0;
1702 
1703 err_slot:
1704 	edma_free_channel(echan);
1705 	return ret;
1706 }
1707 
1708 /* Free channel resources */
1709 static void edma_free_chan_resources(struct dma_chan *chan)
1710 {
1711 	struct edma_chan *echan = to_edma_chan(chan);
1712 	struct device *dev = echan->ecc->dev;
1713 	int i;
1714 
1715 	/* Terminate transfers */
1716 	edma_stop(echan);
1717 
1718 	vchan_free_chan_resources(&echan->vchan);
1719 
1720 	/* Free EDMA PaRAM slots */
1721 	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1722 		if (echan->slot[i] >= 0) {
1723 			edma_free_slot(echan->ecc, echan->slot[i]);
1724 			echan->slot[i] = -1;
1725 		}
1726 	}
1727 
1728 	/* Set entry slot to the dummy slot */
1729 	edma_set_chmap(echan, echan->ecc->dummy_slot);
1730 
1731 	/* Free EDMA channel */
1732 	if (echan->alloced) {
1733 		edma_free_channel(echan);
1734 		echan->alloced = false;
1735 	}
1736 
1737 	echan->tc = NULL;
1738 	echan->hw_triggered = false;
1739 
1740 	dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1741 		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1742 }
1743 
1744 /* Send pending descriptor to hardware */
1745 static void edma_issue_pending(struct dma_chan *chan)
1746 {
1747 	struct edma_chan *echan = to_edma_chan(chan);
1748 	unsigned long flags;
1749 
1750 	spin_lock_irqsave(&echan->vchan.lock, flags);
1751 	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1752 		edma_execute(echan);
1753 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1754 }
1755 
1756 /*
1757  * This limit exists to avoid a possible infinite loop when waiting for proof
1758  * that a particular transfer is completed. This limit can be hit if there
1759  * are large bursts to/from slow devices or the CPU is never able to catch
1760  * the DMA hardware idle. On an AM335x transferring 48 bytes from the UART
1761  * RX-FIFO, as many as 55 loops have been seen.
1762  */
1763 #define EDMA_MAX_TR_WAIT_LOOPS 1000
1764 
1765 static u32 edma_residue(struct edma_desc *edesc)
1766 {
1767 	bool dst = edesc->direction == DMA_DEV_TO_MEM;
1768 	int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1769 	struct edma_chan *echan = edesc->echan;
1770 	struct edma_pset *pset = edesc->pset;
1771 	dma_addr_t done, pos, pos_old;
1772 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
1773 	int idx = EDMA_REG_ARRAY_INDEX(channel);
1774 	int ch_bit = EDMA_CHANNEL_BIT(channel);
1775 	int event_reg;
1776 	int i;
1777 
1778 	/*
1779 	 * We always read the dst/src position from the first RamPar
1780 	 * pset. That's the one which is active now.
1781 	 */
1782 	pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1783 
1784 	/*
1785 	 * "pos" may represent a transfer request that is still being
1786 	 * processed by the EDMACC or EDMATC. We will busy wait until
1787 	 * any one of the situations occurs:
1788 	 *   1. while and event is pending for the channel
1789 	 *   2. a position updated
1790 	 *   3. we hit the loop limit
1791 	 */
1792 	if (is_slave_direction(edesc->direction))
1793 		event_reg = SH_ER;
1794 	else
1795 		event_reg = SH_ESR;
1796 
1797 	pos_old = pos;
1798 	while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) {
1799 		pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1800 		if (pos != pos_old)
1801 			break;
1802 
1803 		if (!--loop_count) {
1804 			dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1805 				"%s: timeout waiting for PaRAM update\n",
1806 				__func__);
1807 			break;
1808 		}
1809 
1810 		cpu_relax();
1811 	}
1812 
1813 	/*
1814 	 * Cyclic is simple. Just subtract pset[0].addr from pos.
1815 	 *
1816 	 * We never update edesc->residue in the cyclic case, so we
1817 	 * can tell the remaining room to the end of the circular
1818 	 * buffer.
1819 	 */
1820 	if (edesc->cyclic) {
1821 		done = pos - pset->addr;
1822 		edesc->residue_stat = edesc->residue - done;
1823 		return edesc->residue_stat;
1824 	}
1825 
1826 	/*
1827 	 * If the position is 0, then EDMA loaded the closing dummy slot, the
1828 	 * transfer is completed
1829 	 */
1830 	if (!pos)
1831 		return 0;
1832 	/*
1833 	 * For SG operation we catch up with the last processed
1834 	 * status.
1835 	 */
1836 	pset += edesc->processed_stat;
1837 
1838 	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1839 		/*
1840 		 * If we are inside this pset address range, we know
1841 		 * this is the active one. Get the current delta and
1842 		 * stop walking the psets.
1843 		 */
1844 		if (pos >= pset->addr && pos < pset->addr + pset->len)
1845 			return edesc->residue_stat - (pos - pset->addr);
1846 
1847 		/* Otherwise mark it done and update residue_stat. */
1848 		edesc->processed_stat++;
1849 		edesc->residue_stat -= pset->len;
1850 	}
1851 	return edesc->residue_stat;
1852 }
1853 
1854 /* Check request completion status */
1855 static enum dma_status edma_tx_status(struct dma_chan *chan,
1856 				      dma_cookie_t cookie,
1857 				      struct dma_tx_state *txstate)
1858 {
1859 	struct edma_chan *echan = to_edma_chan(chan);
1860 	struct dma_tx_state txstate_tmp;
1861 	enum dma_status ret;
1862 	unsigned long flags;
1863 
1864 	ret = dma_cookie_status(chan, cookie, txstate);
1865 
1866 	if (ret == DMA_COMPLETE)
1867 		return ret;
1868 
1869 	/* Provide a dummy dma_tx_state for completion checking */
1870 	if (!txstate)
1871 		txstate = &txstate_tmp;
1872 
1873 	spin_lock_irqsave(&echan->vchan.lock, flags);
1874 	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
1875 		txstate->residue = edma_residue(echan->edesc);
1876 	} else {
1877 		struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan,
1878 							      cookie);
1879 
1880 		if (vdesc)
1881 			txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1882 		else
1883 			txstate->residue = 0;
1884 	}
1885 
1886 	/*
1887 	 * Mark the cookie completed if the residue is 0 for non cyclic
1888 	 * transfers
1889 	 */
1890 	if (ret != DMA_COMPLETE && !txstate->residue &&
1891 	    echan->edesc && echan->edesc->polled &&
1892 	    echan->edesc->vdesc.tx.cookie == cookie) {
1893 		edma_stop(echan);
1894 		vchan_cookie_complete(&echan->edesc->vdesc);
1895 		echan->edesc = NULL;
1896 		edma_execute(echan);
1897 		ret = DMA_COMPLETE;
1898 	}
1899 
1900 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1901 
1902 	return ret;
1903 }
1904 
1905 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1906 {
1907 	if (!memcpy_channels)
1908 		return false;
1909 	while (*memcpy_channels != -1) {
1910 		if (*memcpy_channels == ch_num)
1911 			return true;
1912 		memcpy_channels++;
1913 	}
1914 	return false;
1915 }
1916 
1917 #define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1918 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1919 				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1920 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1921 
1922 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1923 {
1924 	struct dma_device *s_ddev = &ecc->dma_slave;
1925 	struct dma_device *m_ddev = NULL;
1926 	s32 *memcpy_channels = ecc->info->memcpy_channels;
1927 	int i, j;
1928 
1929 	dma_cap_zero(s_ddev->cap_mask);
1930 	dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1931 	dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1932 	if (ecc->legacy_mode && !memcpy_channels) {
1933 		dev_warn(ecc->dev,
1934 			 "Legacy memcpy is enabled, things might not work\n");
1935 
1936 		dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1937 		dma_cap_set(DMA_INTERLEAVE, s_ddev->cap_mask);
1938 		s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1939 		s_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1940 		s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1941 	}
1942 
1943 	s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1944 	s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1945 	s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1946 	s_ddev->device_free_chan_resources = edma_free_chan_resources;
1947 	s_ddev->device_issue_pending = edma_issue_pending;
1948 	s_ddev->device_tx_status = edma_tx_status;
1949 	s_ddev->device_config = edma_slave_config;
1950 	s_ddev->device_pause = edma_dma_pause;
1951 	s_ddev->device_resume = edma_dma_resume;
1952 	s_ddev->device_terminate_all = edma_terminate_all;
1953 	s_ddev->device_synchronize = edma_synchronize;
1954 
1955 	s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1956 	s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1957 	s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1958 	s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1959 	s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
1960 
1961 	s_ddev->dev = ecc->dev;
1962 	INIT_LIST_HEAD(&s_ddev->channels);
1963 
1964 	if (memcpy_channels) {
1965 		m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1966 		if (!m_ddev) {
1967 			dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
1968 			memcpy_channels = NULL;
1969 			goto ch_setup;
1970 		}
1971 		ecc->dma_memcpy = m_ddev;
1972 
1973 		dma_cap_zero(m_ddev->cap_mask);
1974 		dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1975 		dma_cap_set(DMA_INTERLEAVE, m_ddev->cap_mask);
1976 
1977 		m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1978 		m_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1979 		m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1980 		m_ddev->device_free_chan_resources = edma_free_chan_resources;
1981 		m_ddev->device_issue_pending = edma_issue_pending;
1982 		m_ddev->device_tx_status = edma_tx_status;
1983 		m_ddev->device_config = edma_slave_config;
1984 		m_ddev->device_pause = edma_dma_pause;
1985 		m_ddev->device_resume = edma_dma_resume;
1986 		m_ddev->device_terminate_all = edma_terminate_all;
1987 		m_ddev->device_synchronize = edma_synchronize;
1988 
1989 		m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1990 		m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1991 		m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1992 		m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1993 
1994 		m_ddev->dev = ecc->dev;
1995 		INIT_LIST_HEAD(&m_ddev->channels);
1996 	} else if (!ecc->legacy_mode) {
1997 		dev_info(ecc->dev, "memcpy is disabled\n");
1998 	}
1999 
2000 ch_setup:
2001 	for (i = 0; i < ecc->num_channels; i++) {
2002 		struct edma_chan *echan = &ecc->slave_chans[i];
2003 		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
2004 		echan->ecc = ecc;
2005 		echan->vchan.desc_free = edma_desc_free;
2006 
2007 		if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
2008 			vchan_init(&echan->vchan, m_ddev);
2009 		else
2010 			vchan_init(&echan->vchan, s_ddev);
2011 
2012 		INIT_LIST_HEAD(&echan->node);
2013 		for (j = 0; j < EDMA_MAX_SLOTS; j++)
2014 			echan->slot[j] = -1;
2015 	}
2016 }
2017 
2018 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
2019 			      struct edma_cc *ecc)
2020 {
2021 	int i;
2022 	u32 value, cccfg;
2023 	s8 (*queue_priority_map)[2];
2024 
2025 	/* Decode the eDMA3 configuration from CCCFG register */
2026 	cccfg = edma_read(ecc, EDMA_CCCFG);
2027 
2028 	value = GET_NUM_REGN(cccfg);
2029 	ecc->num_region = BIT(value);
2030 
2031 	value = GET_NUM_DMACH(cccfg);
2032 	ecc->num_channels = BIT(value + 1);
2033 
2034 	value = GET_NUM_QDMACH(cccfg);
2035 	ecc->num_qchannels = value * 2;
2036 
2037 	value = GET_NUM_PAENTRY(cccfg);
2038 	ecc->num_slots = BIT(value + 4);
2039 
2040 	value = GET_NUM_EVQUE(cccfg);
2041 	ecc->num_tc = value + 1;
2042 
2043 	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
2044 
2045 	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
2046 	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
2047 	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
2048 	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
2049 	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
2050 	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
2051 	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
2052 
2053 	/* Nothing need to be done if queue priority is provided */
2054 	if (pdata->queue_priority_mapping)
2055 		return 0;
2056 
2057 	/*
2058 	 * Configure TC/queue priority as follows:
2059 	 * Q0 - priority 0
2060 	 * Q1 - priority 1
2061 	 * Q2 - priority 2
2062 	 * ...
2063 	 * The meaning of priority numbers: 0 highest priority, 7 lowest
2064 	 * priority. So Q0 is the highest priority queue and the last queue has
2065 	 * the lowest priority.
2066 	 */
2067 	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
2068 					  GFP_KERNEL);
2069 	if (!queue_priority_map)
2070 		return -ENOMEM;
2071 
2072 	for (i = 0; i < ecc->num_tc; i++) {
2073 		queue_priority_map[i][0] = i;
2074 		queue_priority_map[i][1] = i;
2075 	}
2076 	queue_priority_map[i][0] = -1;
2077 	queue_priority_map[i][1] = -1;
2078 
2079 	pdata->queue_priority_mapping = queue_priority_map;
2080 	/* Default queue has the lowest priority */
2081 	pdata->default_queue = i - 1;
2082 
2083 	return 0;
2084 }
2085 
2086 #if IS_ENABLED(CONFIG_OF)
2087 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
2088 			       size_t sz)
2089 {
2090 	const char pname[] = "ti,edma-xbar-event-map";
2091 	struct resource res;
2092 	void __iomem *xbar;
2093 	s16 (*xbar_chans)[2];
2094 	size_t nelm = sz / sizeof(s16);
2095 	u32 shift, offset, mux;
2096 	int ret, i;
2097 
2098 	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2099 	if (!xbar_chans)
2100 		return -ENOMEM;
2101 
2102 	ret = of_address_to_resource(dev->of_node, 1, &res);
2103 	if (ret)
2104 		return -ENOMEM;
2105 
2106 	xbar = devm_ioremap(dev, res.start, resource_size(&res));
2107 	if (!xbar)
2108 		return -ENOMEM;
2109 
2110 	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2111 					 nelm);
2112 	if (ret)
2113 		return -EIO;
2114 
2115 	/* Invalidate last entry for the other user of this mess */
2116 	nelm >>= 1;
2117 	xbar_chans[nelm][0] = -1;
2118 	xbar_chans[nelm][1] = -1;
2119 
2120 	for (i = 0; i < nelm; i++) {
2121 		shift = (xbar_chans[i][1] & 0x03) << 3;
2122 		offset = xbar_chans[i][1] & 0xfffffffc;
2123 		mux = readl(xbar + offset);
2124 		mux &= ~(0xff << shift);
2125 		mux |= xbar_chans[i][0] << shift;
2126 		writel(mux, (xbar + offset));
2127 	}
2128 
2129 	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2130 	return 0;
2131 }
2132 
2133 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2134 						     bool legacy_mode)
2135 {
2136 	struct edma_soc_info *info;
2137 	struct property *prop;
2138 	int sz, ret;
2139 
2140 	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2141 	if (!info)
2142 		return ERR_PTR(-ENOMEM);
2143 
2144 	if (legacy_mode) {
2145 		prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2146 					&sz);
2147 		if (prop) {
2148 			ret = edma_xbar_event_map(dev, info, sz);
2149 			if (ret)
2150 				return ERR_PTR(ret);
2151 		}
2152 		return info;
2153 	}
2154 
2155 	/* Get the list of channels allocated to be used for memcpy */
2156 	prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2157 	if (prop) {
2158 		const char pname[] = "ti,edma-memcpy-channels";
2159 		size_t nelm = sz / sizeof(s32);
2160 		s32 *memcpy_ch;
2161 
2162 		memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2163 					 GFP_KERNEL);
2164 		if (!memcpy_ch)
2165 			return ERR_PTR(-ENOMEM);
2166 
2167 		ret = of_property_read_u32_array(dev->of_node, pname,
2168 						 (u32 *)memcpy_ch, nelm);
2169 		if (ret)
2170 			return ERR_PTR(ret);
2171 
2172 		memcpy_ch[nelm] = -1;
2173 		info->memcpy_channels = memcpy_ch;
2174 	}
2175 
2176 	prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2177 				&sz);
2178 	if (prop) {
2179 		const char pname[] = "ti,edma-reserved-slot-ranges";
2180 		u32 (*tmp)[2];
2181 		s16 (*rsv_slots)[2];
2182 		size_t nelm = sz / sizeof(*tmp);
2183 		struct edma_rsv_info *rsv_info;
2184 		int i;
2185 
2186 		if (!nelm)
2187 			return info;
2188 
2189 		tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2190 		if (!tmp)
2191 			return ERR_PTR(-ENOMEM);
2192 
2193 		rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2194 		if (!rsv_info) {
2195 			kfree(tmp);
2196 			return ERR_PTR(-ENOMEM);
2197 		}
2198 
2199 		rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2200 					 GFP_KERNEL);
2201 		if (!rsv_slots) {
2202 			kfree(tmp);
2203 			return ERR_PTR(-ENOMEM);
2204 		}
2205 
2206 		ret = of_property_read_u32_array(dev->of_node, pname,
2207 						 (u32 *)tmp, nelm * 2);
2208 		if (ret) {
2209 			kfree(tmp);
2210 			return ERR_PTR(ret);
2211 		}
2212 
2213 		for (i = 0; i < nelm; i++) {
2214 			rsv_slots[i][0] = tmp[i][0];
2215 			rsv_slots[i][1] = tmp[i][1];
2216 		}
2217 		rsv_slots[nelm][0] = -1;
2218 		rsv_slots[nelm][1] = -1;
2219 
2220 		info->rsv = rsv_info;
2221 		info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2222 
2223 		kfree(tmp);
2224 	}
2225 
2226 	return info;
2227 }
2228 
2229 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2230 				      struct of_dma *ofdma)
2231 {
2232 	struct edma_cc *ecc = ofdma->of_dma_data;
2233 	struct dma_chan *chan = NULL;
2234 	struct edma_chan *echan;
2235 	int i;
2236 
2237 	if (!ecc || dma_spec->args_count < 1)
2238 		return NULL;
2239 
2240 	for (i = 0; i < ecc->num_channels; i++) {
2241 		echan = &ecc->slave_chans[i];
2242 		if (echan->ch_num == dma_spec->args[0]) {
2243 			chan = &echan->vchan.chan;
2244 			break;
2245 		}
2246 	}
2247 
2248 	if (!chan)
2249 		return NULL;
2250 
2251 	if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2252 		goto out;
2253 
2254 	if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2255 	    dma_spec->args[1] < echan->ecc->num_tc) {
2256 		echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2257 		goto out;
2258 	}
2259 
2260 	return NULL;
2261 out:
2262 	/* The channel is going to be used as HW synchronized */
2263 	echan->hw_triggered = true;
2264 	return dma_get_slave_channel(chan);
2265 }
2266 #else
2267 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2268 						     bool legacy_mode)
2269 {
2270 	return ERR_PTR(-EINVAL);
2271 }
2272 
2273 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2274 				      struct of_dma *ofdma)
2275 {
2276 	return NULL;
2277 }
2278 #endif
2279 
2280 static bool edma_filter_fn(struct dma_chan *chan, void *param);
2281 
2282 static int edma_probe(struct platform_device *pdev)
2283 {
2284 	struct edma_soc_info	*info = pdev->dev.platform_data;
2285 	s8			(*queue_priority_mapping)[2];
2286 	const s16		(*reserved)[2];
2287 	int			i, irq;
2288 	char			*irq_name;
2289 	struct resource		*mem;
2290 	struct device_node	*node = pdev->dev.of_node;
2291 	struct device		*dev = &pdev->dev;
2292 	struct edma_cc		*ecc;
2293 	bool			legacy_mode = true;
2294 	int ret;
2295 
2296 	if (node) {
2297 		const struct of_device_id *match;
2298 
2299 		match = of_match_node(edma_of_ids, node);
2300 		if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2301 			legacy_mode = false;
2302 
2303 		info = edma_setup_info_from_dt(dev, legacy_mode);
2304 		if (IS_ERR(info)) {
2305 			dev_err(dev, "failed to get DT data\n");
2306 			return PTR_ERR(info);
2307 		}
2308 	}
2309 
2310 	if (!info)
2311 		return -ENODEV;
2312 
2313 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2314 	if (ret)
2315 		return ret;
2316 
2317 	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2318 	if (!ecc)
2319 		return -ENOMEM;
2320 
2321 	ecc->dev = dev;
2322 	ecc->id = pdev->id;
2323 	ecc->legacy_mode = legacy_mode;
2324 	/* When booting with DT the pdev->id is -1 */
2325 	if (ecc->id < 0)
2326 		ecc->id = 0;
2327 
2328 	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2329 	if (!mem) {
2330 		dev_dbg(dev, "mem resource not found, using index 0\n");
2331 		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2332 		if (!mem) {
2333 			dev_err(dev, "no mem resource?\n");
2334 			return -ENODEV;
2335 		}
2336 	}
2337 	ecc->base = devm_ioremap_resource(dev, mem);
2338 	if (IS_ERR(ecc->base))
2339 		return PTR_ERR(ecc->base);
2340 
2341 	platform_set_drvdata(pdev, ecc);
2342 
2343 	pm_runtime_enable(dev);
2344 	ret = pm_runtime_get_sync(dev);
2345 	if (ret < 0) {
2346 		dev_err(dev, "pm_runtime_get_sync() failed\n");
2347 		pm_runtime_disable(dev);
2348 		return ret;
2349 	}
2350 
2351 	/* Get eDMA3 configuration from IP */
2352 	ret = edma_setup_from_hw(dev, info, ecc);
2353 	if (ret)
2354 		goto err_disable_pm;
2355 
2356 	/* Allocate memory based on the information we got from the IP */
2357 	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2358 					sizeof(*ecc->slave_chans), GFP_KERNEL);
2359 
2360 	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2361 				       sizeof(unsigned long), GFP_KERNEL);
2362 
2363 	ecc->channels_mask = devm_kcalloc(dev,
2364 					   BITS_TO_LONGS(ecc->num_channels),
2365 					   sizeof(unsigned long), GFP_KERNEL);
2366 	if (!ecc->slave_chans || !ecc->slot_inuse || !ecc->channels_mask) {
2367 		ret = -ENOMEM;
2368 		goto err_disable_pm;
2369 	}
2370 
2371 	/* Mark all channels available initially */
2372 	bitmap_fill(ecc->channels_mask, ecc->num_channels);
2373 
2374 	ecc->default_queue = info->default_queue;
2375 
2376 	if (info->rsv) {
2377 		/* Set the reserved slots in inuse list */
2378 		reserved = info->rsv->rsv_slots;
2379 		if (reserved) {
2380 			for (i = 0; reserved[i][0] != -1; i++)
2381 				bitmap_set(ecc->slot_inuse, reserved[i][0],
2382 					   reserved[i][1]);
2383 		}
2384 
2385 		/* Clear channels not usable for Linux */
2386 		reserved = info->rsv->rsv_chans;
2387 		if (reserved) {
2388 			for (i = 0; reserved[i][0] != -1; i++)
2389 				bitmap_clear(ecc->channels_mask, reserved[i][0],
2390 					     reserved[i][1]);
2391 		}
2392 	}
2393 
2394 	for (i = 0; i < ecc->num_slots; i++) {
2395 		/* Reset only unused - not reserved - paRAM slots */
2396 		if (!test_bit(i, ecc->slot_inuse))
2397 			edma_write_slot(ecc, i, &dummy_paramset);
2398 	}
2399 
2400 	irq = platform_get_irq_byname(pdev, "edma3_ccint");
2401 	if (irq < 0 && node)
2402 		irq = irq_of_parse_and_map(node, 0);
2403 
2404 	if (irq >= 0) {
2405 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2406 					  dev_name(dev));
2407 		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2408 				       ecc);
2409 		if (ret) {
2410 			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2411 			goto err_disable_pm;
2412 		}
2413 		ecc->ccint = irq;
2414 	}
2415 
2416 	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2417 	if (irq < 0 && node)
2418 		irq = irq_of_parse_and_map(node, 2);
2419 
2420 	if (irq >= 0) {
2421 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2422 					  dev_name(dev));
2423 		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2424 				       ecc);
2425 		if (ret) {
2426 			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2427 			goto err_disable_pm;
2428 		}
2429 		ecc->ccerrint = irq;
2430 	}
2431 
2432 	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2433 	if (ecc->dummy_slot < 0) {
2434 		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2435 		ret = ecc->dummy_slot;
2436 		goto err_disable_pm;
2437 	}
2438 
2439 	queue_priority_mapping = info->queue_priority_mapping;
2440 
2441 	if (!ecc->legacy_mode) {
2442 		int lowest_priority = 0;
2443 		unsigned int array_max;
2444 		struct of_phandle_args tc_args;
2445 
2446 		ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2447 					    sizeof(*ecc->tc_list), GFP_KERNEL);
2448 		if (!ecc->tc_list) {
2449 			ret = -ENOMEM;
2450 			goto err_reg1;
2451 		}
2452 
2453 		for (i = 0;; i++) {
2454 			ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2455 							       1, i, &tc_args);
2456 			if (ret || i == ecc->num_tc)
2457 				break;
2458 
2459 			ecc->tc_list[i].node = tc_args.np;
2460 			ecc->tc_list[i].id = i;
2461 			queue_priority_mapping[i][1] = tc_args.args[0];
2462 			if (queue_priority_mapping[i][1] > lowest_priority) {
2463 				lowest_priority = queue_priority_mapping[i][1];
2464 				info->default_queue = i;
2465 			}
2466 		}
2467 
2468 		/* See if we have optional dma-channel-mask array */
2469 		array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32));
2470 		ret = of_property_read_variable_u32_array(node,
2471 						"dma-channel-mask",
2472 						(u32 *)ecc->channels_mask,
2473 						1, array_max);
2474 		if (ret > 0 && ret != array_max)
2475 			dev_warn(dev, "dma-channel-mask is not complete.\n");
2476 		else if (ret == -EOVERFLOW || ret == -ENODATA)
2477 			dev_warn(dev,
2478 				 "dma-channel-mask is out of range or empty\n");
2479 	}
2480 
2481 	/* Event queue priority mapping */
2482 	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2483 		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2484 					      queue_priority_mapping[i][1]);
2485 
2486 	edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0);
2487 	edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0);
2488 	edma_write_array(ecc, EDMA_QRAE, 0, 0x0);
2489 
2490 	ecc->info = info;
2491 
2492 	/* Init the dma device and channels */
2493 	edma_dma_init(ecc, legacy_mode);
2494 
2495 	for (i = 0; i < ecc->num_channels; i++) {
2496 		/* Do not touch reserved channels */
2497 		if (!test_bit(i, ecc->channels_mask))
2498 			continue;
2499 
2500 		/* Assign all channels to the default queue */
2501 		edma_assign_channel_eventq(&ecc->slave_chans[i],
2502 					   info->default_queue);
2503 		/* Set entry slot to the dummy slot */
2504 		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2505 	}
2506 
2507 	ecc->dma_slave.filter.map = info->slave_map;
2508 	ecc->dma_slave.filter.mapcnt = info->slavecnt;
2509 	ecc->dma_slave.filter.fn = edma_filter_fn;
2510 
2511 	ret = dma_async_device_register(&ecc->dma_slave);
2512 	if (ret) {
2513 		dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2514 		goto err_reg1;
2515 	}
2516 
2517 	if (ecc->dma_memcpy) {
2518 		ret = dma_async_device_register(ecc->dma_memcpy);
2519 		if (ret) {
2520 			dev_err(dev, "memcpy ddev registration failed (%d)\n",
2521 				ret);
2522 			dma_async_device_unregister(&ecc->dma_slave);
2523 			goto err_reg1;
2524 		}
2525 	}
2526 
2527 	if (node)
2528 		of_dma_controller_register(node, of_edma_xlate, ecc);
2529 
2530 	dev_info(dev, "TI EDMA DMA engine driver\n");
2531 
2532 	return 0;
2533 
2534 err_reg1:
2535 	edma_free_slot(ecc, ecc->dummy_slot);
2536 err_disable_pm:
2537 	pm_runtime_put_sync(dev);
2538 	pm_runtime_disable(dev);
2539 	return ret;
2540 }
2541 
2542 static void edma_cleanupp_vchan(struct dma_device *dmadev)
2543 {
2544 	struct edma_chan *echan, *_echan;
2545 
2546 	list_for_each_entry_safe(echan, _echan,
2547 			&dmadev->channels, vchan.chan.device_node) {
2548 		list_del(&echan->vchan.chan.device_node);
2549 		tasklet_kill(&echan->vchan.task);
2550 	}
2551 }
2552 
2553 static int edma_remove(struct platform_device *pdev)
2554 {
2555 	struct device *dev = &pdev->dev;
2556 	struct edma_cc *ecc = dev_get_drvdata(dev);
2557 
2558 	devm_free_irq(dev, ecc->ccint, ecc);
2559 	devm_free_irq(dev, ecc->ccerrint, ecc);
2560 
2561 	edma_cleanupp_vchan(&ecc->dma_slave);
2562 
2563 	if (dev->of_node)
2564 		of_dma_controller_free(dev->of_node);
2565 	dma_async_device_unregister(&ecc->dma_slave);
2566 	if (ecc->dma_memcpy)
2567 		dma_async_device_unregister(ecc->dma_memcpy);
2568 	edma_free_slot(ecc, ecc->dummy_slot);
2569 	pm_runtime_put_sync(dev);
2570 	pm_runtime_disable(dev);
2571 
2572 	return 0;
2573 }
2574 
2575 #ifdef CONFIG_PM_SLEEP
2576 static int edma_pm_suspend(struct device *dev)
2577 {
2578 	struct edma_cc *ecc = dev_get_drvdata(dev);
2579 	struct edma_chan *echan = ecc->slave_chans;
2580 	int i;
2581 
2582 	for (i = 0; i < ecc->num_channels; i++) {
2583 		if (echan[i].alloced)
2584 			edma_setup_interrupt(&echan[i], false);
2585 	}
2586 
2587 	return 0;
2588 }
2589 
2590 static int edma_pm_resume(struct device *dev)
2591 {
2592 	struct edma_cc *ecc = dev_get_drvdata(dev);
2593 	struct edma_chan *echan = ecc->slave_chans;
2594 	int i;
2595 	s8 (*queue_priority_mapping)[2];
2596 
2597 	/* re initialize dummy slot to dummy param set */
2598 	edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2599 
2600 	queue_priority_mapping = ecc->info->queue_priority_mapping;
2601 
2602 	/* Event queue priority mapping */
2603 	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2604 		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2605 					      queue_priority_mapping[i][1]);
2606 
2607 	for (i = 0; i < ecc->num_channels; i++) {
2608 		if (echan[i].alloced) {
2609 			/* ensure access through shadow region 0 */
2610 			edma_or_array2(ecc, EDMA_DRAE, 0,
2611 				       EDMA_REG_ARRAY_INDEX(i),
2612 				       EDMA_CHANNEL_BIT(i));
2613 
2614 			edma_setup_interrupt(&echan[i], true);
2615 
2616 			/* Set up channel -> slot mapping for the entry slot */
2617 			edma_set_chmap(&echan[i], echan[i].slot[0]);
2618 		}
2619 	}
2620 
2621 	return 0;
2622 }
2623 #endif
2624 
2625 static const struct dev_pm_ops edma_pm_ops = {
2626 	SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2627 };
2628 
2629 static struct platform_driver edma_driver = {
2630 	.probe		= edma_probe,
2631 	.remove		= edma_remove,
2632 	.driver = {
2633 		.name	= "edma",
2634 		.pm	= &edma_pm_ops,
2635 		.of_match_table = edma_of_ids,
2636 	},
2637 };
2638 
2639 static int edma_tptc_probe(struct platform_device *pdev)
2640 {
2641 	pm_runtime_enable(&pdev->dev);
2642 	return pm_runtime_get_sync(&pdev->dev);
2643 }
2644 
2645 static struct platform_driver edma_tptc_driver = {
2646 	.probe		= edma_tptc_probe,
2647 	.driver = {
2648 		.name	= "edma3-tptc",
2649 		.of_match_table = edma_tptc_of_ids,
2650 	},
2651 };
2652 
2653 static bool edma_filter_fn(struct dma_chan *chan, void *param)
2654 {
2655 	bool match = false;
2656 
2657 	if (chan->device->dev->driver == &edma_driver.driver) {
2658 		struct edma_chan *echan = to_edma_chan(chan);
2659 		unsigned ch_req = *(unsigned *)param;
2660 		if (ch_req == echan->ch_num) {
2661 			/* The channel is going to be used as HW synchronized */
2662 			echan->hw_triggered = true;
2663 			match = true;
2664 		}
2665 	}
2666 	return match;
2667 }
2668 
2669 static int edma_init(void)
2670 {
2671 	int ret;
2672 
2673 	ret = platform_driver_register(&edma_tptc_driver);
2674 	if (ret)
2675 		return ret;
2676 
2677 	return platform_driver_register(&edma_driver);
2678 }
2679 subsys_initcall(edma_init);
2680 
2681 static void __exit edma_exit(void)
2682 {
2683 	platform_driver_unregister(&edma_driver);
2684 	platform_driver_unregister(&edma_tptc_driver);
2685 }
2686 module_exit(edma_exit);
2687 
2688 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2689 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2690 MODULE_LICENSE("GPL v2");
2691