xref: /openbmc/linux/drivers/dma/ti/edma.c (revision a2cab953)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TI EDMA DMA engine driver
4  *
5  * Copyright 2012 Texas Instruments
6  */
7 
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/bitmap.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/module.h>
16 #include <linux/platform_device.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
23 #include <linux/of_device.h>
24 #include <linux/pm_runtime.h>
25 
26 #include <linux/platform_data/edma.h>
27 
28 #include "../dmaengine.h"
29 #include "../virt-dma.h"
30 
31 /* Offsets matching "struct edmacc_param" */
32 #define PARM_OPT		0x00
33 #define PARM_SRC		0x04
34 #define PARM_A_B_CNT		0x08
35 #define PARM_DST		0x0c
36 #define PARM_SRC_DST_BIDX	0x10
37 #define PARM_LINK_BCNTRLD	0x14
38 #define PARM_SRC_DST_CIDX	0x18
39 #define PARM_CCNT		0x1c
40 
41 #define PARM_SIZE		0x20
42 
43 /* Offsets for EDMA CC global channel registers and their shadows */
44 #define SH_ER			0x00	/* 64 bits */
45 #define SH_ECR			0x08	/* 64 bits */
46 #define SH_ESR			0x10	/* 64 bits */
47 #define SH_CER			0x18	/* 64 bits */
48 #define SH_EER			0x20	/* 64 bits */
49 #define SH_EECR			0x28	/* 64 bits */
50 #define SH_EESR			0x30	/* 64 bits */
51 #define SH_SER			0x38	/* 64 bits */
52 #define SH_SECR			0x40	/* 64 bits */
53 #define SH_IER			0x50	/* 64 bits */
54 #define SH_IECR			0x58	/* 64 bits */
55 #define SH_IESR			0x60	/* 64 bits */
56 #define SH_IPR			0x68	/* 64 bits */
57 #define SH_ICR			0x70	/* 64 bits */
58 #define SH_IEVAL		0x78
59 #define SH_QER			0x80
60 #define SH_QEER			0x84
61 #define SH_QEECR		0x88
62 #define SH_QEESR		0x8c
63 #define SH_QSER			0x90
64 #define SH_QSECR		0x94
65 #define SH_SIZE			0x200
66 
67 /* Offsets for EDMA CC global registers */
68 #define EDMA_REV		0x0000
69 #define EDMA_CCCFG		0x0004
70 #define EDMA_QCHMAP		0x0200	/* 8 registers */
71 #define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
72 #define EDMA_QDMAQNUM		0x0260
73 #define EDMA_QUETCMAP		0x0280
74 #define EDMA_QUEPRI		0x0284
75 #define EDMA_EMR		0x0300	/* 64 bits */
76 #define EDMA_EMCR		0x0308	/* 64 bits */
77 #define EDMA_QEMR		0x0310
78 #define EDMA_QEMCR		0x0314
79 #define EDMA_CCERR		0x0318
80 #define EDMA_CCERRCLR		0x031c
81 #define EDMA_EEVAL		0x0320
82 #define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
83 #define EDMA_QRAE		0x0380	/* 4 registers */
84 #define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
85 #define EDMA_QSTAT		0x0600	/* 2 registers */
86 #define EDMA_QWMTHRA		0x0620
87 #define EDMA_QWMTHRB		0x0624
88 #define EDMA_CCSTAT		0x0640
89 
90 #define EDMA_M			0x1000	/* global channel registers */
91 #define EDMA_ECR		0x1008
92 #define EDMA_ECRH		0x100C
93 #define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
94 #define EDMA_PARM		0x4000	/* PaRAM entries */
95 
96 #define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
97 
98 #define EDMA_DCHMAP		0x0100  /* 64 registers */
99 
100 /* CCCFG register */
101 #define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
102 #define GET_NUM_QDMACH(x)	((x & 0x70) >> 4) /* bits 4-6 */
103 #define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
104 #define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
105 #define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
106 #define CHMAP_EXIST		BIT(24)
107 
108 /* CCSTAT register */
109 #define EDMA_CCSTAT_ACTV	BIT(4)
110 
111 /*
112  * Max of 20 segments per channel to conserve PaRAM slots
113  * Also note that MAX_NR_SG should be at least the no.of periods
114  * that are required for ASoC, otherwise DMA prep calls will
115  * fail. Today davinci-pcm is the only user of this driver and
116  * requires at least 17 slots, so we setup the default to 20.
117  */
118 #define MAX_NR_SG		20
119 #define EDMA_MAX_SLOTS		MAX_NR_SG
120 #define EDMA_DESCRIPTORS	16
121 
122 #define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
123 #define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
124 #define EDMA_CONT_PARAMS_ANY		 1001
125 #define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
126 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
127 
128 /*
129  * 64bit array registers are split into two 32bit registers:
130  * reg0: channel/event 0-31
131  * reg1: channel/event 32-63
132  *
133  * bit 5 in the channel number tells the array index (0/1)
134  * bit 0-4 (0x1f) is the bit offset within the register
135  */
136 #define EDMA_REG_ARRAY_INDEX(channel)	((channel) >> 5)
137 #define EDMA_CHANNEL_BIT(channel)	(BIT((channel) & 0x1f))
138 
139 /* PaRAM slots are laid out like this */
140 struct edmacc_param {
141 	u32 opt;
142 	u32 src;
143 	u32 a_b_cnt;
144 	u32 dst;
145 	u32 src_dst_bidx;
146 	u32 link_bcntrld;
147 	u32 src_dst_cidx;
148 	u32 ccnt;
149 } __packed;
150 
151 /* fields in edmacc_param.opt */
152 #define SAM		BIT(0)
153 #define DAM		BIT(1)
154 #define SYNCDIM		BIT(2)
155 #define STATIC		BIT(3)
156 #define EDMA_FWID	(0x07 << 8)
157 #define TCCMODE		BIT(11)
158 #define EDMA_TCC(t)	((t) << 12)
159 #define TCINTEN		BIT(20)
160 #define ITCINTEN	BIT(21)
161 #define TCCHEN		BIT(22)
162 #define ITCCHEN		BIT(23)
163 
164 struct edma_pset {
165 	u32				len;
166 	dma_addr_t			addr;
167 	struct edmacc_param		param;
168 };
169 
170 struct edma_desc {
171 	struct virt_dma_desc		vdesc;
172 	struct list_head		node;
173 	enum dma_transfer_direction	direction;
174 	int				cyclic;
175 	bool				polled;
176 	int				absync;
177 	int				pset_nr;
178 	struct edma_chan		*echan;
179 	int				processed;
180 
181 	/*
182 	 * The following 4 elements are used for residue accounting.
183 	 *
184 	 * - processed_stat: the number of SG elements we have traversed
185 	 * so far to cover accounting. This is updated directly to processed
186 	 * during edma_callback and is always <= processed, because processed
187 	 * refers to the number of pending transfer (programmed to EDMA
188 	 * controller), where as processed_stat tracks number of transfers
189 	 * accounted for so far.
190 	 *
191 	 * - residue: The amount of bytes we have left to transfer for this desc
192 	 *
193 	 * - residue_stat: The residue in bytes of data we have covered
194 	 * so far for accounting. This is updated directly to residue
195 	 * during callbacks to keep it current.
196 	 *
197 	 * - sg_len: Tracks the length of the current intermediate transfer,
198 	 * this is required to update the residue during intermediate transfer
199 	 * completion callback.
200 	 */
201 	int				processed_stat;
202 	u32				sg_len;
203 	u32				residue;
204 	u32				residue_stat;
205 
206 	struct edma_pset		pset[];
207 };
208 
209 struct edma_cc;
210 
211 struct edma_tc {
212 	struct device_node		*node;
213 	u16				id;
214 };
215 
216 struct edma_chan {
217 	struct virt_dma_chan		vchan;
218 	struct list_head		node;
219 	struct edma_desc		*edesc;
220 	struct edma_cc			*ecc;
221 	struct edma_tc			*tc;
222 	int				ch_num;
223 	bool				alloced;
224 	bool				hw_triggered;
225 	int				slot[EDMA_MAX_SLOTS];
226 	int				missed;
227 	struct dma_slave_config		cfg;
228 };
229 
230 struct edma_cc {
231 	struct device			*dev;
232 	struct edma_soc_info		*info;
233 	void __iomem			*base;
234 	int				id;
235 	bool				legacy_mode;
236 
237 	/* eDMA3 resource information */
238 	unsigned			num_channels;
239 	unsigned			num_qchannels;
240 	unsigned			num_region;
241 	unsigned			num_slots;
242 	unsigned			num_tc;
243 	bool				chmap_exist;
244 	enum dma_event_q		default_queue;
245 
246 	unsigned int			ccint;
247 	unsigned int			ccerrint;
248 
249 	/*
250 	 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
251 	 * in use by Linux or if it is allocated to be used by DSP.
252 	 */
253 	unsigned long *slot_inuse;
254 
255 	/*
256 	 * For tracking reserved channels used by DSP.
257 	 * If the bit is cleared, the channel is allocated to be used by DSP
258 	 * and Linux must not touch it.
259 	 */
260 	unsigned long *channels_mask;
261 
262 	struct dma_device		dma_slave;
263 	struct dma_device		*dma_memcpy;
264 	struct edma_chan		*slave_chans;
265 	struct edma_tc			*tc_list;
266 	int				dummy_slot;
267 };
268 
269 /* dummy param set used to (re)initialize parameter RAM slots */
270 static const struct edmacc_param dummy_paramset = {
271 	.link_bcntrld = 0xffff,
272 	.ccnt = 1,
273 };
274 
275 #define EDMA_BINDING_LEGACY	0
276 #define EDMA_BINDING_TPCC	1
277 static const u32 edma_binding_type[] = {
278 	[EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
279 	[EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
280 };
281 
282 static const struct of_device_id edma_of_ids[] = {
283 	{
284 		.compatible = "ti,edma3",
285 		.data = &edma_binding_type[EDMA_BINDING_LEGACY],
286 	},
287 	{
288 		.compatible = "ti,edma3-tpcc",
289 		.data = &edma_binding_type[EDMA_BINDING_TPCC],
290 	},
291 	{}
292 };
293 MODULE_DEVICE_TABLE(of, edma_of_ids);
294 
295 static const struct of_device_id edma_tptc_of_ids[] = {
296 	{ .compatible = "ti,edma3-tptc", },
297 	{}
298 };
299 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
300 
301 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
302 {
303 	return (unsigned int)__raw_readl(ecc->base + offset);
304 }
305 
306 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
307 {
308 	__raw_writel(val, ecc->base + offset);
309 }
310 
311 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
312 			       unsigned or)
313 {
314 	unsigned val = edma_read(ecc, offset);
315 
316 	val &= and;
317 	val |= or;
318 	edma_write(ecc, offset, val);
319 }
320 
321 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
322 {
323 	unsigned val = edma_read(ecc, offset);
324 
325 	val &= and;
326 	edma_write(ecc, offset, val);
327 }
328 
329 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
330 {
331 	unsigned val = edma_read(ecc, offset);
332 
333 	val |= or;
334 	edma_write(ecc, offset, val);
335 }
336 
337 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
338 					   int i)
339 {
340 	return edma_read(ecc, offset + (i << 2));
341 }
342 
343 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
344 				    unsigned val)
345 {
346 	edma_write(ecc, offset + (i << 2), val);
347 }
348 
349 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
350 				     unsigned and, unsigned or)
351 {
352 	edma_modify(ecc, offset + (i << 2), and, or);
353 }
354 
355 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
356 				  unsigned or)
357 {
358 	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
359 }
360 
361 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
362 				     int j, unsigned val)
363 {
364 	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
365 }
366 
367 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
368 						   int offset, int i)
369 {
370 	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
371 }
372 
373 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
374 				      unsigned val)
375 {
376 	edma_write(ecc, EDMA_SHADOW0 + offset, val);
377 }
378 
379 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
380 					    int i, unsigned val)
381 {
382 	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
383 }
384 
385 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
386 				     int param_no, unsigned and, unsigned or)
387 {
388 	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
389 }
390 
391 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
392 					  int priority)
393 {
394 	int bit = queue_no * 4;
395 
396 	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
397 }
398 
399 static void edma_set_chmap(struct edma_chan *echan, int slot)
400 {
401 	struct edma_cc *ecc = echan->ecc;
402 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
403 
404 	if (ecc->chmap_exist) {
405 		slot = EDMA_CHAN_SLOT(slot);
406 		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
407 	}
408 }
409 
410 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
411 {
412 	struct edma_cc *ecc = echan->ecc;
413 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
414 	int idx = EDMA_REG_ARRAY_INDEX(channel);
415 	int ch_bit = EDMA_CHANNEL_BIT(channel);
416 
417 	if (enable) {
418 		edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
419 		edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit);
420 	} else {
421 		edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit);
422 	}
423 }
424 
425 /*
426  * paRAM slot management functions
427  */
428 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
429 			    const struct edmacc_param *param)
430 {
431 	slot = EDMA_CHAN_SLOT(slot);
432 	if (slot >= ecc->num_slots)
433 		return;
434 	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
435 }
436 
437 static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
438 			   struct edmacc_param *param)
439 {
440 	slot = EDMA_CHAN_SLOT(slot);
441 	if (slot >= ecc->num_slots)
442 		return -EINVAL;
443 	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
444 
445 	return 0;
446 }
447 
448 /**
449  * edma_alloc_slot - allocate DMA parameter RAM
450  * @ecc: pointer to edma_cc struct
451  * @slot: specific slot to allocate; negative for "any unused slot"
452  *
453  * This allocates a parameter RAM slot, initializing it to hold a
454  * dummy transfer.  Slots allocated using this routine have not been
455  * mapped to a hardware DMA channel, and will normally be used by
456  * linking to them from a slot associated with a DMA channel.
457  *
458  * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
459  * slots may be allocated on behalf of DSP firmware.
460  *
461  * Returns the number of the slot, else negative errno.
462  */
463 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
464 {
465 	if (slot >= 0) {
466 		slot = EDMA_CHAN_SLOT(slot);
467 		/* Requesting entry paRAM slot for a HW triggered channel. */
468 		if (ecc->chmap_exist && slot < ecc->num_channels)
469 			slot = EDMA_SLOT_ANY;
470 	}
471 
472 	if (slot < 0) {
473 		if (ecc->chmap_exist)
474 			slot = 0;
475 		else
476 			slot = ecc->num_channels;
477 		for (;;) {
478 			slot = find_next_zero_bit(ecc->slot_inuse,
479 						  ecc->num_slots,
480 						  slot);
481 			if (slot == ecc->num_slots)
482 				return -ENOMEM;
483 			if (!test_and_set_bit(slot, ecc->slot_inuse))
484 				break;
485 		}
486 	} else if (slot >= ecc->num_slots) {
487 		return -EINVAL;
488 	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
489 		return -EBUSY;
490 	}
491 
492 	edma_write_slot(ecc, slot, &dummy_paramset);
493 
494 	return EDMA_CTLR_CHAN(ecc->id, slot);
495 }
496 
497 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
498 {
499 	slot = EDMA_CHAN_SLOT(slot);
500 	if (slot >= ecc->num_slots)
501 		return;
502 
503 	edma_write_slot(ecc, slot, &dummy_paramset);
504 	clear_bit(slot, ecc->slot_inuse);
505 }
506 
507 /**
508  * edma_link - link one parameter RAM slot to another
509  * @ecc: pointer to edma_cc struct
510  * @from: parameter RAM slot originating the link
511  * @to: parameter RAM slot which is the link target
512  *
513  * The originating slot should not be part of any active DMA transfer.
514  */
515 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
516 {
517 	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
518 		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
519 
520 	from = EDMA_CHAN_SLOT(from);
521 	to = EDMA_CHAN_SLOT(to);
522 	if (from >= ecc->num_slots || to >= ecc->num_slots)
523 		return;
524 
525 	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
526 			  PARM_OFFSET(to));
527 }
528 
529 /**
530  * edma_get_position - returns the current transfer point
531  * @ecc: pointer to edma_cc struct
532  * @slot: parameter RAM slot being examined
533  * @dst:  true selects the dest position, false the source
534  *
535  * Returns the position of the current active slot
536  */
537 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
538 				    bool dst)
539 {
540 	u32 offs;
541 
542 	slot = EDMA_CHAN_SLOT(slot);
543 	offs = PARM_OFFSET(slot);
544 	offs += dst ? PARM_DST : PARM_SRC;
545 
546 	return edma_read(ecc, offs);
547 }
548 
549 /*
550  * Channels with event associations will be triggered by their hardware
551  * events, and channels without such associations will be triggered by
552  * software.  (At this writing there is no interface for using software
553  * triggers except with channels that don't support hardware triggers.)
554  */
555 static void edma_start(struct edma_chan *echan)
556 {
557 	struct edma_cc *ecc = echan->ecc;
558 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
559 	int idx = EDMA_REG_ARRAY_INDEX(channel);
560 	int ch_bit = EDMA_CHANNEL_BIT(channel);
561 
562 	if (!echan->hw_triggered) {
563 		/* EDMA channels without event association */
564 		dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
565 			edma_shadow0_read_array(ecc, SH_ESR, idx));
566 		edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
567 	} else {
568 		/* EDMA channel with event association */
569 		dev_dbg(ecc->dev, "ER%d %08x\n", idx,
570 			edma_shadow0_read_array(ecc, SH_ER, idx));
571 		/* Clear any pending event or error */
572 		edma_write_array(ecc, EDMA_ECR, idx, ch_bit);
573 		edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
574 		/* Clear any SER */
575 		edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
576 		edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit);
577 		dev_dbg(ecc->dev, "EER%d %08x\n", idx,
578 			edma_shadow0_read_array(ecc, SH_EER, idx));
579 	}
580 }
581 
582 static void edma_stop(struct edma_chan *echan)
583 {
584 	struct edma_cc *ecc = echan->ecc;
585 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
586 	int idx = EDMA_REG_ARRAY_INDEX(channel);
587 	int ch_bit = EDMA_CHANNEL_BIT(channel);
588 
589 	edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit);
590 	edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
591 	edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
592 	edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
593 
594 	/* clear possibly pending completion interrupt */
595 	edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
596 
597 	dev_dbg(ecc->dev, "EER%d %08x\n", idx,
598 		edma_shadow0_read_array(ecc, SH_EER, idx));
599 
600 	/* REVISIT:  consider guarding against inappropriate event
601 	 * chaining by overwriting with dummy_paramset.
602 	 */
603 }
604 
605 /*
606  * Temporarily disable EDMA hardware events on the specified channel,
607  * preventing them from triggering new transfers
608  */
609 static void edma_pause(struct edma_chan *echan)
610 {
611 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
612 
613 	edma_shadow0_write_array(echan->ecc, SH_EECR,
614 				 EDMA_REG_ARRAY_INDEX(channel),
615 				 EDMA_CHANNEL_BIT(channel));
616 }
617 
618 /* Re-enable EDMA hardware events on the specified channel.  */
619 static void edma_resume(struct edma_chan *echan)
620 {
621 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
622 
623 	edma_shadow0_write_array(echan->ecc, SH_EESR,
624 				 EDMA_REG_ARRAY_INDEX(channel),
625 				 EDMA_CHANNEL_BIT(channel));
626 }
627 
628 static void edma_trigger_channel(struct edma_chan *echan)
629 {
630 	struct edma_cc *ecc = echan->ecc;
631 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
632 	int idx = EDMA_REG_ARRAY_INDEX(channel);
633 	int ch_bit = EDMA_CHANNEL_BIT(channel);
634 
635 	edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
636 
637 	dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
638 		edma_shadow0_read_array(ecc, SH_ESR, idx));
639 }
640 
641 static void edma_clean_channel(struct edma_chan *echan)
642 {
643 	struct edma_cc *ecc = echan->ecc;
644 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
645 	int idx = EDMA_REG_ARRAY_INDEX(channel);
646 	int ch_bit = EDMA_CHANNEL_BIT(channel);
647 
648 	dev_dbg(ecc->dev, "EMR%d %08x\n", idx,
649 		edma_read_array(ecc, EDMA_EMR, idx));
650 	edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
651 	/* Clear the corresponding EMR bits */
652 	edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
653 	/* Clear any SER */
654 	edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
655 	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
656 }
657 
658 /* Move channel to a specific event queue */
659 static void edma_assign_channel_eventq(struct edma_chan *echan,
660 				       enum dma_event_q eventq_no)
661 {
662 	struct edma_cc *ecc = echan->ecc;
663 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
664 	int bit = (channel & 0x7) * 4;
665 
666 	/* default to low priority queue */
667 	if (eventq_no == EVENTQ_DEFAULT)
668 		eventq_no = ecc->default_queue;
669 	if (eventq_no >= ecc->num_tc)
670 		return;
671 
672 	eventq_no &= 7;
673 	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
674 			  eventq_no << bit);
675 }
676 
677 static int edma_alloc_channel(struct edma_chan *echan,
678 			      enum dma_event_q eventq_no)
679 {
680 	struct edma_cc *ecc = echan->ecc;
681 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
682 
683 	if (!test_bit(echan->ch_num, ecc->channels_mask)) {
684 		dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n",
685 			echan->ch_num);
686 		return -EINVAL;
687 	}
688 
689 	/* ensure access through shadow region 0 */
690 	edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel),
691 		       EDMA_CHANNEL_BIT(channel));
692 
693 	/* ensure no events are pending */
694 	edma_stop(echan);
695 
696 	edma_setup_interrupt(echan, true);
697 
698 	edma_assign_channel_eventq(echan, eventq_no);
699 
700 	return 0;
701 }
702 
703 static void edma_free_channel(struct edma_chan *echan)
704 {
705 	/* ensure no events are pending */
706 	edma_stop(echan);
707 	/* REVISIT should probably take out of shadow region 0 */
708 	edma_setup_interrupt(echan, false);
709 }
710 
711 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
712 {
713 	return container_of(c, struct edma_chan, vchan.chan);
714 }
715 
716 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
717 {
718 	return container_of(tx, struct edma_desc, vdesc.tx);
719 }
720 
721 static void edma_desc_free(struct virt_dma_desc *vdesc)
722 {
723 	kfree(container_of(vdesc, struct edma_desc, vdesc));
724 }
725 
726 /* Dispatch a queued descriptor to the controller (caller holds lock) */
727 static void edma_execute(struct edma_chan *echan)
728 {
729 	struct edma_cc *ecc = echan->ecc;
730 	struct virt_dma_desc *vdesc;
731 	struct edma_desc *edesc;
732 	struct device *dev = echan->vchan.chan.device->dev;
733 	int i, j, left, nslots;
734 
735 	if (!echan->edesc) {
736 		/* Setup is needed for the first transfer */
737 		vdesc = vchan_next_desc(&echan->vchan);
738 		if (!vdesc)
739 			return;
740 		list_del(&vdesc->node);
741 		echan->edesc = to_edma_desc(&vdesc->tx);
742 	}
743 
744 	edesc = echan->edesc;
745 
746 	/* Find out how many left */
747 	left = edesc->pset_nr - edesc->processed;
748 	nslots = min(MAX_NR_SG, left);
749 	edesc->sg_len = 0;
750 
751 	/* Write descriptor PaRAM set(s) */
752 	for (i = 0; i < nslots; i++) {
753 		j = i + edesc->processed;
754 		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
755 		edesc->sg_len += edesc->pset[j].len;
756 		dev_vdbg(dev,
757 			 "\n pset[%d]:\n"
758 			 "  chnum\t%d\n"
759 			 "  slot\t%d\n"
760 			 "  opt\t%08x\n"
761 			 "  src\t%08x\n"
762 			 "  dst\t%08x\n"
763 			 "  abcnt\t%08x\n"
764 			 "  ccnt\t%08x\n"
765 			 "  bidx\t%08x\n"
766 			 "  cidx\t%08x\n"
767 			 "  lkrld\t%08x\n",
768 			 j, echan->ch_num, echan->slot[i],
769 			 edesc->pset[j].param.opt,
770 			 edesc->pset[j].param.src,
771 			 edesc->pset[j].param.dst,
772 			 edesc->pset[j].param.a_b_cnt,
773 			 edesc->pset[j].param.ccnt,
774 			 edesc->pset[j].param.src_dst_bidx,
775 			 edesc->pset[j].param.src_dst_cidx,
776 			 edesc->pset[j].param.link_bcntrld);
777 		/* Link to the previous slot if not the last set */
778 		if (i != (nslots - 1))
779 			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
780 	}
781 
782 	edesc->processed += nslots;
783 
784 	/*
785 	 * If this is either the last set in a set of SG-list transactions
786 	 * then setup a link to the dummy slot, this results in all future
787 	 * events being absorbed and that's OK because we're done
788 	 */
789 	if (edesc->processed == edesc->pset_nr) {
790 		if (edesc->cyclic)
791 			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
792 		else
793 			edma_link(ecc, echan->slot[nslots - 1],
794 				  echan->ecc->dummy_slot);
795 	}
796 
797 	if (echan->missed) {
798 		/*
799 		 * This happens due to setup times between intermediate
800 		 * transfers in long SG lists which have to be broken up into
801 		 * transfers of MAX_NR_SG
802 		 */
803 		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
804 		edma_clean_channel(echan);
805 		edma_stop(echan);
806 		edma_start(echan);
807 		edma_trigger_channel(echan);
808 		echan->missed = 0;
809 	} else if (edesc->processed <= MAX_NR_SG) {
810 		dev_dbg(dev, "first transfer starting on channel %d\n",
811 			echan->ch_num);
812 		edma_start(echan);
813 	} else {
814 		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
815 			echan->ch_num, edesc->processed);
816 		edma_resume(echan);
817 	}
818 }
819 
820 static int edma_terminate_all(struct dma_chan *chan)
821 {
822 	struct edma_chan *echan = to_edma_chan(chan);
823 	unsigned long flags;
824 	LIST_HEAD(head);
825 
826 	spin_lock_irqsave(&echan->vchan.lock, flags);
827 
828 	/*
829 	 * Stop DMA activity: we assume the callback will not be called
830 	 * after edma_dma() returns (even if it does, it will see
831 	 * echan->edesc is NULL and exit.)
832 	 */
833 	if (echan->edesc) {
834 		edma_stop(echan);
835 		/* Move the cyclic channel back to default queue */
836 		if (!echan->tc && echan->edesc->cyclic)
837 			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
838 
839 		vchan_terminate_vdesc(&echan->edesc->vdesc);
840 		echan->edesc = NULL;
841 	}
842 
843 	vchan_get_all_descriptors(&echan->vchan, &head);
844 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
845 	vchan_dma_desc_free_list(&echan->vchan, &head);
846 
847 	return 0;
848 }
849 
850 static void edma_synchronize(struct dma_chan *chan)
851 {
852 	struct edma_chan *echan = to_edma_chan(chan);
853 
854 	vchan_synchronize(&echan->vchan);
855 }
856 
857 static int edma_slave_config(struct dma_chan *chan,
858 	struct dma_slave_config *cfg)
859 {
860 	struct edma_chan *echan = to_edma_chan(chan);
861 
862 	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
863 	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
864 		return -EINVAL;
865 
866 	if (cfg->src_maxburst > chan->device->max_burst ||
867 	    cfg->dst_maxburst > chan->device->max_burst)
868 		return -EINVAL;
869 
870 	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
871 
872 	return 0;
873 }
874 
875 static int edma_dma_pause(struct dma_chan *chan)
876 {
877 	struct edma_chan *echan = to_edma_chan(chan);
878 
879 	if (!echan->edesc)
880 		return -EINVAL;
881 
882 	edma_pause(echan);
883 	return 0;
884 }
885 
886 static int edma_dma_resume(struct dma_chan *chan)
887 {
888 	struct edma_chan *echan = to_edma_chan(chan);
889 
890 	edma_resume(echan);
891 	return 0;
892 }
893 
894 /*
895  * A PaRAM set configuration abstraction used by other modes
896  * @chan: Channel who's PaRAM set we're configuring
897  * @pset: PaRAM set to initialize and setup.
898  * @src_addr: Source address of the DMA
899  * @dst_addr: Destination address of the DMA
900  * @burst: In units of dev_width, how much to send
901  * @dev_width: How much is the dev_width
902  * @dma_length: Total length of the DMA transfer
903  * @direction: Direction of the transfer
904  */
905 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
906 			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
907 			    unsigned int acnt, unsigned int dma_length,
908 			    enum dma_transfer_direction direction)
909 {
910 	struct edma_chan *echan = to_edma_chan(chan);
911 	struct device *dev = chan->device->dev;
912 	struct edmacc_param *param = &epset->param;
913 	int bcnt, ccnt, cidx;
914 	int src_bidx, dst_bidx, src_cidx, dst_cidx;
915 	int absync;
916 
917 	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
918 	if (!burst)
919 		burst = 1;
920 	/*
921 	 * If the maxburst is equal to the fifo width, use
922 	 * A-synced transfers. This allows for large contiguous
923 	 * buffer transfers using only one PaRAM set.
924 	 */
925 	if (burst == 1) {
926 		/*
927 		 * For the A-sync case, bcnt and ccnt are the remainder
928 		 * and quotient respectively of the division of:
929 		 * (dma_length / acnt) by (SZ_64K -1). This is so
930 		 * that in case bcnt over flows, we have ccnt to use.
931 		 * Note: In A-sync transfer only, bcntrld is used, but it
932 		 * only applies for sg_dma_len(sg) >= SZ_64K.
933 		 * In this case, the best way adopted is- bccnt for the
934 		 * first frame will be the remainder below. Then for
935 		 * every successive frame, bcnt will be SZ_64K-1. This
936 		 * is assured as bcntrld = 0xffff in end of function.
937 		 */
938 		absync = false;
939 		ccnt = dma_length / acnt / (SZ_64K - 1);
940 		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
941 		/*
942 		 * If bcnt is non-zero, we have a remainder and hence an
943 		 * extra frame to transfer, so increment ccnt.
944 		 */
945 		if (bcnt)
946 			ccnt++;
947 		else
948 			bcnt = SZ_64K - 1;
949 		cidx = acnt;
950 	} else {
951 		/*
952 		 * If maxburst is greater than the fifo address_width,
953 		 * use AB-synced transfers where A count is the fifo
954 		 * address_width and B count is the maxburst. In this
955 		 * case, we are limited to transfers of C count frames
956 		 * of (address_width * maxburst) where C count is limited
957 		 * to SZ_64K-1. This places an upper bound on the length
958 		 * of an SG segment that can be handled.
959 		 */
960 		absync = true;
961 		bcnt = burst;
962 		ccnt = dma_length / (acnt * bcnt);
963 		if (ccnt > (SZ_64K - 1)) {
964 			dev_err(dev, "Exceeded max SG segment size\n");
965 			return -EINVAL;
966 		}
967 		cidx = acnt * bcnt;
968 	}
969 
970 	epset->len = dma_length;
971 
972 	if (direction == DMA_MEM_TO_DEV) {
973 		src_bidx = acnt;
974 		src_cidx = cidx;
975 		dst_bidx = 0;
976 		dst_cidx = 0;
977 		epset->addr = src_addr;
978 	} else if (direction == DMA_DEV_TO_MEM)  {
979 		src_bidx = 0;
980 		src_cidx = 0;
981 		dst_bidx = acnt;
982 		dst_cidx = cidx;
983 		epset->addr = dst_addr;
984 	} else if (direction == DMA_MEM_TO_MEM)  {
985 		src_bidx = acnt;
986 		src_cidx = cidx;
987 		dst_bidx = acnt;
988 		dst_cidx = cidx;
989 		epset->addr = src_addr;
990 	} else {
991 		dev_err(dev, "%s: direction not implemented yet\n", __func__);
992 		return -EINVAL;
993 	}
994 
995 	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
996 	/* Configure A or AB synchronized transfers */
997 	if (absync)
998 		param->opt |= SYNCDIM;
999 
1000 	param->src = src_addr;
1001 	param->dst = dst_addr;
1002 
1003 	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1004 	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1005 
1006 	param->a_b_cnt = bcnt << 16 | acnt;
1007 	param->ccnt = ccnt;
1008 	/*
1009 	 * Only time when (bcntrld) auto reload is required is for
1010 	 * A-sync case, and in this case, a requirement of reload value
1011 	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1012 	 * and then later will be populated by edma_execute.
1013 	 */
1014 	param->link_bcntrld = 0xffffffff;
1015 	return absync;
1016 }
1017 
1018 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1019 	struct dma_chan *chan, struct scatterlist *sgl,
1020 	unsigned int sg_len, enum dma_transfer_direction direction,
1021 	unsigned long tx_flags, void *context)
1022 {
1023 	struct edma_chan *echan = to_edma_chan(chan);
1024 	struct device *dev = chan->device->dev;
1025 	struct edma_desc *edesc;
1026 	dma_addr_t src_addr = 0, dst_addr = 0;
1027 	enum dma_slave_buswidth dev_width;
1028 	u32 burst;
1029 	struct scatterlist *sg;
1030 	int i, nslots, ret;
1031 
1032 	if (unlikely(!echan || !sgl || !sg_len))
1033 		return NULL;
1034 
1035 	if (direction == DMA_DEV_TO_MEM) {
1036 		src_addr = echan->cfg.src_addr;
1037 		dev_width = echan->cfg.src_addr_width;
1038 		burst = echan->cfg.src_maxburst;
1039 	} else if (direction == DMA_MEM_TO_DEV) {
1040 		dst_addr = echan->cfg.dst_addr;
1041 		dev_width = echan->cfg.dst_addr_width;
1042 		burst = echan->cfg.dst_maxburst;
1043 	} else {
1044 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1045 		return NULL;
1046 	}
1047 
1048 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1049 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1050 		return NULL;
1051 	}
1052 
1053 	edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
1054 	if (!edesc)
1055 		return NULL;
1056 
1057 	edesc->pset_nr = sg_len;
1058 	edesc->residue = 0;
1059 	edesc->direction = direction;
1060 	edesc->echan = echan;
1061 
1062 	/* Allocate a PaRAM slot, if needed */
1063 	nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1064 
1065 	for (i = 0; i < nslots; i++) {
1066 		if (echan->slot[i] < 0) {
1067 			echan->slot[i] =
1068 				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1069 			if (echan->slot[i] < 0) {
1070 				kfree(edesc);
1071 				dev_err(dev, "%s: Failed to allocate slot\n",
1072 					__func__);
1073 				return NULL;
1074 			}
1075 		}
1076 	}
1077 
1078 	/* Configure PaRAM sets for each SG */
1079 	for_each_sg(sgl, sg, sg_len, i) {
1080 		/* Get address for each SG */
1081 		if (direction == DMA_DEV_TO_MEM)
1082 			dst_addr = sg_dma_address(sg);
1083 		else
1084 			src_addr = sg_dma_address(sg);
1085 
1086 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1087 				       dst_addr, burst, dev_width,
1088 				       sg_dma_len(sg), direction);
1089 		if (ret < 0) {
1090 			kfree(edesc);
1091 			return NULL;
1092 		}
1093 
1094 		edesc->absync = ret;
1095 		edesc->residue += sg_dma_len(sg);
1096 
1097 		if (i == sg_len - 1)
1098 			/* Enable completion interrupt */
1099 			edesc->pset[i].param.opt |= TCINTEN;
1100 		else if (!((i+1) % MAX_NR_SG))
1101 			/*
1102 			 * Enable early completion interrupt for the
1103 			 * intermediateset. In this case the driver will be
1104 			 * notified when the paRAM set is submitted to TC. This
1105 			 * will allow more time to set up the next set of slots.
1106 			 */
1107 			edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1108 	}
1109 	edesc->residue_stat = edesc->residue;
1110 
1111 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1112 }
1113 
1114 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1115 	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1116 	size_t len, unsigned long tx_flags)
1117 {
1118 	int ret, nslots;
1119 	struct edma_desc *edesc;
1120 	struct device *dev = chan->device->dev;
1121 	struct edma_chan *echan = to_edma_chan(chan);
1122 	unsigned int width, pset_len, array_size;
1123 
1124 	if (unlikely(!echan || !len))
1125 		return NULL;
1126 
1127 	/* Align the array size (acnt block) with the transfer properties */
1128 	switch (__ffs((src | dest | len))) {
1129 	case 0:
1130 		array_size = SZ_32K - 1;
1131 		break;
1132 	case 1:
1133 		array_size = SZ_32K - 2;
1134 		break;
1135 	default:
1136 		array_size = SZ_32K - 4;
1137 		break;
1138 	}
1139 
1140 	if (len < SZ_64K) {
1141 		/*
1142 		 * Transfer size less than 64K can be handled with one paRAM
1143 		 * slot and with one burst.
1144 		 * ACNT = length
1145 		 */
1146 		width = len;
1147 		pset_len = len;
1148 		nslots = 1;
1149 	} else {
1150 		/*
1151 		 * Transfer size bigger than 64K will be handled with maximum of
1152 		 * two paRAM slots.
1153 		 * slot1: (full_length / 32767) times 32767 bytes bursts.
1154 		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
1155 		 * slot2: the remaining amount of data after slot1.
1156 		 *	  ACNT = full_length - length1, length2 = ACNT
1157 		 *
1158 		 * When the full_length is a multiple of 32767 one slot can be
1159 		 * used to complete the transfer.
1160 		 */
1161 		width = array_size;
1162 		pset_len = rounddown(len, width);
1163 		/* One slot is enough for lengths multiple of (SZ_32K -1) */
1164 		if (unlikely(pset_len == len))
1165 			nslots = 1;
1166 		else
1167 			nslots = 2;
1168 	}
1169 
1170 	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1171 	if (!edesc)
1172 		return NULL;
1173 
1174 	edesc->pset_nr = nslots;
1175 	edesc->residue = edesc->residue_stat = len;
1176 	edesc->direction = DMA_MEM_TO_MEM;
1177 	edesc->echan = echan;
1178 
1179 	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1180 			       width, pset_len, DMA_MEM_TO_MEM);
1181 	if (ret < 0) {
1182 		kfree(edesc);
1183 		return NULL;
1184 	}
1185 
1186 	edesc->absync = ret;
1187 
1188 	edesc->pset[0].param.opt |= ITCCHEN;
1189 	if (nslots == 1) {
1190 		/* Enable transfer complete interrupt if requested */
1191 		if (tx_flags & DMA_PREP_INTERRUPT)
1192 			edesc->pset[0].param.opt |= TCINTEN;
1193 	} else {
1194 		/* Enable transfer complete chaining for the first slot */
1195 		edesc->pset[0].param.opt |= TCCHEN;
1196 
1197 		if (echan->slot[1] < 0) {
1198 			echan->slot[1] = edma_alloc_slot(echan->ecc,
1199 							 EDMA_SLOT_ANY);
1200 			if (echan->slot[1] < 0) {
1201 				kfree(edesc);
1202 				dev_err(dev, "%s: Failed to allocate slot\n",
1203 					__func__);
1204 				return NULL;
1205 			}
1206 		}
1207 		dest += pset_len;
1208 		src += pset_len;
1209 		pset_len = width = len % array_size;
1210 
1211 		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1212 				       width, pset_len, DMA_MEM_TO_MEM);
1213 		if (ret < 0) {
1214 			kfree(edesc);
1215 			return NULL;
1216 		}
1217 
1218 		edesc->pset[1].param.opt |= ITCCHEN;
1219 		/* Enable transfer complete interrupt if requested */
1220 		if (tx_flags & DMA_PREP_INTERRUPT)
1221 			edesc->pset[1].param.opt |= TCINTEN;
1222 	}
1223 
1224 	if (!(tx_flags & DMA_PREP_INTERRUPT))
1225 		edesc->polled = true;
1226 
1227 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1228 }
1229 
1230 static struct dma_async_tx_descriptor *
1231 edma_prep_dma_interleaved(struct dma_chan *chan,
1232 			  struct dma_interleaved_template *xt,
1233 			  unsigned long tx_flags)
1234 {
1235 	struct device *dev = chan->device->dev;
1236 	struct edma_chan *echan = to_edma_chan(chan);
1237 	struct edmacc_param *param;
1238 	struct edma_desc *edesc;
1239 	size_t src_icg, dst_icg;
1240 	int src_bidx, dst_bidx;
1241 
1242 	/* Slave mode is not supported */
1243 	if (is_slave_direction(xt->dir))
1244 		return NULL;
1245 
1246 	if (xt->frame_size != 1 || xt->numf == 0)
1247 		return NULL;
1248 
1249 	if (xt->sgl[0].size > SZ_64K || xt->numf > SZ_64K)
1250 		return NULL;
1251 
1252 	src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
1253 	if (src_icg) {
1254 		src_bidx = src_icg + xt->sgl[0].size;
1255 	} else if (xt->src_inc) {
1256 		src_bidx = xt->sgl[0].size;
1257 	} else {
1258 		dev_err(dev, "%s: SRC constant addressing is not supported\n",
1259 			__func__);
1260 		return NULL;
1261 	}
1262 
1263 	dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
1264 	if (dst_icg) {
1265 		dst_bidx = dst_icg + xt->sgl[0].size;
1266 	} else if (xt->dst_inc) {
1267 		dst_bidx = xt->sgl[0].size;
1268 	} else {
1269 		dev_err(dev, "%s: DST constant addressing is not supported\n",
1270 			__func__);
1271 		return NULL;
1272 	}
1273 
1274 	if (src_bidx > SZ_64K || dst_bidx > SZ_64K)
1275 		return NULL;
1276 
1277 	edesc = kzalloc(struct_size(edesc, pset, 1), GFP_ATOMIC);
1278 	if (!edesc)
1279 		return NULL;
1280 
1281 	edesc->direction = DMA_MEM_TO_MEM;
1282 	edesc->echan = echan;
1283 	edesc->pset_nr = 1;
1284 
1285 	param = &edesc->pset[0].param;
1286 
1287 	param->src = xt->src_start;
1288 	param->dst = xt->dst_start;
1289 	param->a_b_cnt = xt->numf << 16 | xt->sgl[0].size;
1290 	param->ccnt = 1;
1291 	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1292 	param->src_dst_cidx = 0;
1293 
1294 	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1295 	param->opt |= ITCCHEN;
1296 	/* Enable transfer complete interrupt if requested */
1297 	if (tx_flags & DMA_PREP_INTERRUPT)
1298 		param->opt |= TCINTEN;
1299 	else
1300 		edesc->polled = true;
1301 
1302 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1303 }
1304 
1305 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1306 	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1307 	size_t period_len, enum dma_transfer_direction direction,
1308 	unsigned long tx_flags)
1309 {
1310 	struct edma_chan *echan = to_edma_chan(chan);
1311 	struct device *dev = chan->device->dev;
1312 	struct edma_desc *edesc;
1313 	dma_addr_t src_addr, dst_addr;
1314 	enum dma_slave_buswidth dev_width;
1315 	bool use_intermediate = false;
1316 	u32 burst;
1317 	int i, ret, nslots;
1318 
1319 	if (unlikely(!echan || !buf_len || !period_len))
1320 		return NULL;
1321 
1322 	if (direction == DMA_DEV_TO_MEM) {
1323 		src_addr = echan->cfg.src_addr;
1324 		dst_addr = buf_addr;
1325 		dev_width = echan->cfg.src_addr_width;
1326 		burst = echan->cfg.src_maxburst;
1327 	} else if (direction == DMA_MEM_TO_DEV) {
1328 		src_addr = buf_addr;
1329 		dst_addr = echan->cfg.dst_addr;
1330 		dev_width = echan->cfg.dst_addr_width;
1331 		burst = echan->cfg.dst_maxburst;
1332 	} else {
1333 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1334 		return NULL;
1335 	}
1336 
1337 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1338 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1339 		return NULL;
1340 	}
1341 
1342 	if (unlikely(buf_len % period_len)) {
1343 		dev_err(dev, "Period should be multiple of Buffer length\n");
1344 		return NULL;
1345 	}
1346 
1347 	nslots = (buf_len / period_len) + 1;
1348 
1349 	/*
1350 	 * Cyclic DMA users such as audio cannot tolerate delays introduced
1351 	 * by cases where the number of periods is more than the maximum
1352 	 * number of SGs the EDMA driver can handle at a time. For DMA types
1353 	 * such as Slave SGs, such delays are tolerable and synchronized,
1354 	 * but the synchronization is difficult to achieve with Cyclic and
1355 	 * cannot be guaranteed, so we error out early.
1356 	 */
1357 	if (nslots > MAX_NR_SG) {
1358 		/*
1359 		 * If the burst and period sizes are the same, we can put
1360 		 * the full buffer into a single period and activate
1361 		 * intermediate interrupts. This will produce interrupts
1362 		 * after each burst, which is also after each desired period.
1363 		 */
1364 		if (burst == period_len) {
1365 			period_len = buf_len;
1366 			nslots = 2;
1367 			use_intermediate = true;
1368 		} else {
1369 			return NULL;
1370 		}
1371 	}
1372 
1373 	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1374 	if (!edesc)
1375 		return NULL;
1376 
1377 	edesc->cyclic = 1;
1378 	edesc->pset_nr = nslots;
1379 	edesc->residue = edesc->residue_stat = buf_len;
1380 	edesc->direction = direction;
1381 	edesc->echan = echan;
1382 
1383 	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1384 		__func__, echan->ch_num, nslots, period_len, buf_len);
1385 
1386 	for (i = 0; i < nslots; i++) {
1387 		/* Allocate a PaRAM slot, if needed */
1388 		if (echan->slot[i] < 0) {
1389 			echan->slot[i] =
1390 				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1391 			if (echan->slot[i] < 0) {
1392 				kfree(edesc);
1393 				dev_err(dev, "%s: Failed to allocate slot\n",
1394 					__func__);
1395 				return NULL;
1396 			}
1397 		}
1398 
1399 		if (i == nslots - 1) {
1400 			memcpy(&edesc->pset[i], &edesc->pset[0],
1401 			       sizeof(edesc->pset[0]));
1402 			break;
1403 		}
1404 
1405 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1406 				       dst_addr, burst, dev_width, period_len,
1407 				       direction);
1408 		if (ret < 0) {
1409 			kfree(edesc);
1410 			return NULL;
1411 		}
1412 
1413 		if (direction == DMA_DEV_TO_MEM)
1414 			dst_addr += period_len;
1415 		else
1416 			src_addr += period_len;
1417 
1418 		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1419 		dev_vdbg(dev,
1420 			"\n pset[%d]:\n"
1421 			"  chnum\t%d\n"
1422 			"  slot\t%d\n"
1423 			"  opt\t%08x\n"
1424 			"  src\t%08x\n"
1425 			"  dst\t%08x\n"
1426 			"  abcnt\t%08x\n"
1427 			"  ccnt\t%08x\n"
1428 			"  bidx\t%08x\n"
1429 			"  cidx\t%08x\n"
1430 			"  lkrld\t%08x\n",
1431 			i, echan->ch_num, echan->slot[i],
1432 			edesc->pset[i].param.opt,
1433 			edesc->pset[i].param.src,
1434 			edesc->pset[i].param.dst,
1435 			edesc->pset[i].param.a_b_cnt,
1436 			edesc->pset[i].param.ccnt,
1437 			edesc->pset[i].param.src_dst_bidx,
1438 			edesc->pset[i].param.src_dst_cidx,
1439 			edesc->pset[i].param.link_bcntrld);
1440 
1441 		edesc->absync = ret;
1442 
1443 		/*
1444 		 * Enable period interrupt only if it is requested
1445 		 */
1446 		if (tx_flags & DMA_PREP_INTERRUPT) {
1447 			edesc->pset[i].param.opt |= TCINTEN;
1448 
1449 			/* Also enable intermediate interrupts if necessary */
1450 			if (use_intermediate)
1451 				edesc->pset[i].param.opt |= ITCINTEN;
1452 		}
1453 	}
1454 
1455 	/* Place the cyclic channel to highest priority queue */
1456 	if (!echan->tc)
1457 		edma_assign_channel_eventq(echan, EVENTQ_0);
1458 
1459 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1460 }
1461 
1462 static void edma_completion_handler(struct edma_chan *echan)
1463 {
1464 	struct device *dev = echan->vchan.chan.device->dev;
1465 	struct edma_desc *edesc;
1466 
1467 	spin_lock(&echan->vchan.lock);
1468 	edesc = echan->edesc;
1469 	if (edesc) {
1470 		if (edesc->cyclic) {
1471 			vchan_cyclic_callback(&edesc->vdesc);
1472 			spin_unlock(&echan->vchan.lock);
1473 			return;
1474 		} else if (edesc->processed == edesc->pset_nr) {
1475 			edesc->residue = 0;
1476 			edma_stop(echan);
1477 			vchan_cookie_complete(&edesc->vdesc);
1478 			echan->edesc = NULL;
1479 
1480 			dev_dbg(dev, "Transfer completed on channel %d\n",
1481 				echan->ch_num);
1482 		} else {
1483 			dev_dbg(dev, "Sub transfer completed on channel %d\n",
1484 				echan->ch_num);
1485 
1486 			edma_pause(echan);
1487 
1488 			/* Update statistics for tx_status */
1489 			edesc->residue -= edesc->sg_len;
1490 			edesc->residue_stat = edesc->residue;
1491 			edesc->processed_stat = edesc->processed;
1492 		}
1493 		edma_execute(echan);
1494 	}
1495 
1496 	spin_unlock(&echan->vchan.lock);
1497 }
1498 
1499 /* eDMA interrupt handler */
1500 static irqreturn_t dma_irq_handler(int irq, void *data)
1501 {
1502 	struct edma_cc *ecc = data;
1503 	int ctlr;
1504 	u32 sh_ier;
1505 	u32 sh_ipr;
1506 	u32 bank;
1507 
1508 	ctlr = ecc->id;
1509 	if (ctlr < 0)
1510 		return IRQ_NONE;
1511 
1512 	dev_vdbg(ecc->dev, "dma_irq_handler\n");
1513 
1514 	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1515 	if (!sh_ipr) {
1516 		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1517 		if (!sh_ipr)
1518 			return IRQ_NONE;
1519 		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1520 		bank = 1;
1521 	} else {
1522 		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1523 		bank = 0;
1524 	}
1525 
1526 	do {
1527 		u32 slot;
1528 		u32 channel;
1529 
1530 		slot = __ffs(sh_ipr);
1531 		sh_ipr &= ~(BIT(slot));
1532 
1533 		if (sh_ier & BIT(slot)) {
1534 			channel = (bank << 5) | slot;
1535 			/* Clear the corresponding IPR bits */
1536 			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1537 			edma_completion_handler(&ecc->slave_chans[channel]);
1538 		}
1539 	} while (sh_ipr);
1540 
1541 	edma_shadow0_write(ecc, SH_IEVAL, 1);
1542 	return IRQ_HANDLED;
1543 }
1544 
1545 static void edma_error_handler(struct edma_chan *echan)
1546 {
1547 	struct edma_cc *ecc = echan->ecc;
1548 	struct device *dev = echan->vchan.chan.device->dev;
1549 	struct edmacc_param p;
1550 	int err;
1551 
1552 	if (!echan->edesc)
1553 		return;
1554 
1555 	spin_lock(&echan->vchan.lock);
1556 
1557 	err = edma_read_slot(ecc, echan->slot[0], &p);
1558 
1559 	/*
1560 	 * Issue later based on missed flag which will be sure
1561 	 * to happen as:
1562 	 * (1) we finished transmitting an intermediate slot and
1563 	 *     edma_execute is coming up.
1564 	 * (2) or we finished current transfer and issue will
1565 	 *     call edma_execute.
1566 	 *
1567 	 * Important note: issuing can be dangerous here and
1568 	 * lead to some nasty recursion when we are in a NULL
1569 	 * slot. So we avoid doing so and set the missed flag.
1570 	 */
1571 	if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1572 		dev_dbg(dev, "Error on null slot, setting miss\n");
1573 		echan->missed = 1;
1574 	} else {
1575 		/*
1576 		 * The slot is already programmed but the event got
1577 		 * missed, so its safe to issue it here.
1578 		 */
1579 		dev_dbg(dev, "Missed event, TRIGGERING\n");
1580 		edma_clean_channel(echan);
1581 		edma_stop(echan);
1582 		edma_start(echan);
1583 		edma_trigger_channel(echan);
1584 	}
1585 	spin_unlock(&echan->vchan.lock);
1586 }
1587 
1588 static inline bool edma_error_pending(struct edma_cc *ecc)
1589 {
1590 	if (edma_read_array(ecc, EDMA_EMR, 0) ||
1591 	    edma_read_array(ecc, EDMA_EMR, 1) ||
1592 	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1593 		return true;
1594 
1595 	return false;
1596 }
1597 
1598 /* eDMA error interrupt handler */
1599 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1600 {
1601 	struct edma_cc *ecc = data;
1602 	int i, j;
1603 	int ctlr;
1604 	unsigned int cnt = 0;
1605 	unsigned int val;
1606 
1607 	ctlr = ecc->id;
1608 	if (ctlr < 0)
1609 		return IRQ_NONE;
1610 
1611 	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1612 
1613 	if (!edma_error_pending(ecc)) {
1614 		/*
1615 		 * The registers indicate no pending error event but the irq
1616 		 * handler has been called.
1617 		 * Ask eDMA to re-evaluate the error registers.
1618 		 */
1619 		dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1620 			__func__);
1621 		edma_write(ecc, EDMA_EEVAL, 1);
1622 		return IRQ_NONE;
1623 	}
1624 
1625 	while (1) {
1626 		/* Event missed register(s) */
1627 		for (j = 0; j < 2; j++) {
1628 			unsigned long emr;
1629 
1630 			val = edma_read_array(ecc, EDMA_EMR, j);
1631 			if (!val)
1632 				continue;
1633 
1634 			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1635 			emr = val;
1636 			for_each_set_bit(i, &emr, 32) {
1637 				int k = (j << 5) + i;
1638 
1639 				/* Clear the corresponding EMR bits */
1640 				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1641 				/* Clear any SER */
1642 				edma_shadow0_write_array(ecc, SH_SECR, j,
1643 							 BIT(i));
1644 				edma_error_handler(&ecc->slave_chans[k]);
1645 			}
1646 		}
1647 
1648 		val = edma_read(ecc, EDMA_QEMR);
1649 		if (val) {
1650 			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1651 			/* Not reported, just clear the interrupt reason. */
1652 			edma_write(ecc, EDMA_QEMCR, val);
1653 			edma_shadow0_write(ecc, SH_QSECR, val);
1654 		}
1655 
1656 		val = edma_read(ecc, EDMA_CCERR);
1657 		if (val) {
1658 			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1659 			/* Not reported, just clear the interrupt reason. */
1660 			edma_write(ecc, EDMA_CCERRCLR, val);
1661 		}
1662 
1663 		if (!edma_error_pending(ecc))
1664 			break;
1665 		cnt++;
1666 		if (cnt > 10)
1667 			break;
1668 	}
1669 	edma_write(ecc, EDMA_EEVAL, 1);
1670 	return IRQ_HANDLED;
1671 }
1672 
1673 /* Alloc channel resources */
1674 static int edma_alloc_chan_resources(struct dma_chan *chan)
1675 {
1676 	struct edma_chan *echan = to_edma_chan(chan);
1677 	struct edma_cc *ecc = echan->ecc;
1678 	struct device *dev = ecc->dev;
1679 	enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1680 	int ret;
1681 
1682 	if (echan->tc) {
1683 		eventq_no = echan->tc->id;
1684 	} else if (ecc->tc_list) {
1685 		/* memcpy channel */
1686 		echan->tc = &ecc->tc_list[ecc->info->default_queue];
1687 		eventq_no = echan->tc->id;
1688 	}
1689 
1690 	ret = edma_alloc_channel(echan, eventq_no);
1691 	if (ret)
1692 		return ret;
1693 
1694 	echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1695 	if (echan->slot[0] < 0) {
1696 		dev_err(dev, "Entry slot allocation failed for channel %u\n",
1697 			EDMA_CHAN_SLOT(echan->ch_num));
1698 		ret = echan->slot[0];
1699 		goto err_slot;
1700 	}
1701 
1702 	/* Set up channel -> slot mapping for the entry slot */
1703 	edma_set_chmap(echan, echan->slot[0]);
1704 	echan->alloced = true;
1705 
1706 	dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1707 		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1708 		echan->hw_triggered ? "HW" : "SW");
1709 
1710 	return 0;
1711 
1712 err_slot:
1713 	edma_free_channel(echan);
1714 	return ret;
1715 }
1716 
1717 /* Free channel resources */
1718 static void edma_free_chan_resources(struct dma_chan *chan)
1719 {
1720 	struct edma_chan *echan = to_edma_chan(chan);
1721 	struct device *dev = echan->ecc->dev;
1722 	int i;
1723 
1724 	/* Terminate transfers */
1725 	edma_stop(echan);
1726 
1727 	vchan_free_chan_resources(&echan->vchan);
1728 
1729 	/* Free EDMA PaRAM slots */
1730 	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1731 		if (echan->slot[i] >= 0) {
1732 			edma_free_slot(echan->ecc, echan->slot[i]);
1733 			echan->slot[i] = -1;
1734 		}
1735 	}
1736 
1737 	/* Set entry slot to the dummy slot */
1738 	edma_set_chmap(echan, echan->ecc->dummy_slot);
1739 
1740 	/* Free EDMA channel */
1741 	if (echan->alloced) {
1742 		edma_free_channel(echan);
1743 		echan->alloced = false;
1744 	}
1745 
1746 	echan->tc = NULL;
1747 	echan->hw_triggered = false;
1748 
1749 	dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1750 		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1751 }
1752 
1753 /* Send pending descriptor to hardware */
1754 static void edma_issue_pending(struct dma_chan *chan)
1755 {
1756 	struct edma_chan *echan = to_edma_chan(chan);
1757 	unsigned long flags;
1758 
1759 	spin_lock_irqsave(&echan->vchan.lock, flags);
1760 	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1761 		edma_execute(echan);
1762 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1763 }
1764 
1765 /*
1766  * This limit exists to avoid a possible infinite loop when waiting for proof
1767  * that a particular transfer is completed. This limit can be hit if there
1768  * are large bursts to/from slow devices or the CPU is never able to catch
1769  * the DMA hardware idle. On an AM335x transferring 48 bytes from the UART
1770  * RX-FIFO, as many as 55 loops have been seen.
1771  */
1772 #define EDMA_MAX_TR_WAIT_LOOPS 1000
1773 
1774 static u32 edma_residue(struct edma_desc *edesc)
1775 {
1776 	bool dst = edesc->direction == DMA_DEV_TO_MEM;
1777 	int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1778 	struct edma_chan *echan = edesc->echan;
1779 	struct edma_pset *pset = edesc->pset;
1780 	dma_addr_t done, pos, pos_old;
1781 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
1782 	int idx = EDMA_REG_ARRAY_INDEX(channel);
1783 	int ch_bit = EDMA_CHANNEL_BIT(channel);
1784 	int event_reg;
1785 	int i;
1786 
1787 	/*
1788 	 * We always read the dst/src position from the first RamPar
1789 	 * pset. That's the one which is active now.
1790 	 */
1791 	pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1792 
1793 	/*
1794 	 * "pos" may represent a transfer request that is still being
1795 	 * processed by the EDMACC or EDMATC. We will busy wait until
1796 	 * any one of the situations occurs:
1797 	 *   1. while and event is pending for the channel
1798 	 *   2. a position updated
1799 	 *   3. we hit the loop limit
1800 	 */
1801 	if (is_slave_direction(edesc->direction))
1802 		event_reg = SH_ER;
1803 	else
1804 		event_reg = SH_ESR;
1805 
1806 	pos_old = pos;
1807 	while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) {
1808 		pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1809 		if (pos != pos_old)
1810 			break;
1811 
1812 		if (!--loop_count) {
1813 			dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1814 				"%s: timeout waiting for PaRAM update\n",
1815 				__func__);
1816 			break;
1817 		}
1818 
1819 		cpu_relax();
1820 	}
1821 
1822 	/*
1823 	 * Cyclic is simple. Just subtract pset[0].addr from pos.
1824 	 *
1825 	 * We never update edesc->residue in the cyclic case, so we
1826 	 * can tell the remaining room to the end of the circular
1827 	 * buffer.
1828 	 */
1829 	if (edesc->cyclic) {
1830 		done = pos - pset->addr;
1831 		edesc->residue_stat = edesc->residue - done;
1832 		return edesc->residue_stat;
1833 	}
1834 
1835 	/*
1836 	 * If the position is 0, then EDMA loaded the closing dummy slot, the
1837 	 * transfer is completed
1838 	 */
1839 	if (!pos)
1840 		return 0;
1841 	/*
1842 	 * For SG operation we catch up with the last processed
1843 	 * status.
1844 	 */
1845 	pset += edesc->processed_stat;
1846 
1847 	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1848 		/*
1849 		 * If we are inside this pset address range, we know
1850 		 * this is the active one. Get the current delta and
1851 		 * stop walking the psets.
1852 		 */
1853 		if (pos >= pset->addr && pos < pset->addr + pset->len)
1854 			return edesc->residue_stat - (pos - pset->addr);
1855 
1856 		/* Otherwise mark it done and update residue_stat. */
1857 		edesc->processed_stat++;
1858 		edesc->residue_stat -= pset->len;
1859 	}
1860 	return edesc->residue_stat;
1861 }
1862 
1863 /* Check request completion status */
1864 static enum dma_status edma_tx_status(struct dma_chan *chan,
1865 				      dma_cookie_t cookie,
1866 				      struct dma_tx_state *txstate)
1867 {
1868 	struct edma_chan *echan = to_edma_chan(chan);
1869 	struct dma_tx_state txstate_tmp;
1870 	enum dma_status ret;
1871 	unsigned long flags;
1872 
1873 	ret = dma_cookie_status(chan, cookie, txstate);
1874 
1875 	if (ret == DMA_COMPLETE)
1876 		return ret;
1877 
1878 	/* Provide a dummy dma_tx_state for completion checking */
1879 	if (!txstate)
1880 		txstate = &txstate_tmp;
1881 
1882 	spin_lock_irqsave(&echan->vchan.lock, flags);
1883 	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
1884 		txstate->residue = edma_residue(echan->edesc);
1885 	} else {
1886 		struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan,
1887 							      cookie);
1888 
1889 		if (vdesc)
1890 			txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1891 		else
1892 			txstate->residue = 0;
1893 	}
1894 
1895 	/*
1896 	 * Mark the cookie completed if the residue is 0 for non cyclic
1897 	 * transfers
1898 	 */
1899 	if (ret != DMA_COMPLETE && !txstate->residue &&
1900 	    echan->edesc && echan->edesc->polled &&
1901 	    echan->edesc->vdesc.tx.cookie == cookie) {
1902 		edma_stop(echan);
1903 		vchan_cookie_complete(&echan->edesc->vdesc);
1904 		echan->edesc = NULL;
1905 		edma_execute(echan);
1906 		ret = DMA_COMPLETE;
1907 	}
1908 
1909 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1910 
1911 	return ret;
1912 }
1913 
1914 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1915 {
1916 	if (!memcpy_channels)
1917 		return false;
1918 	while (*memcpy_channels != -1) {
1919 		if (*memcpy_channels == ch_num)
1920 			return true;
1921 		memcpy_channels++;
1922 	}
1923 	return false;
1924 }
1925 
1926 #define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1927 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1928 				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1929 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1930 
1931 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1932 {
1933 	struct dma_device *s_ddev = &ecc->dma_slave;
1934 	struct dma_device *m_ddev = NULL;
1935 	s32 *memcpy_channels = ecc->info->memcpy_channels;
1936 	int i, j;
1937 
1938 	dma_cap_zero(s_ddev->cap_mask);
1939 	dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1940 	dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1941 	if (ecc->legacy_mode && !memcpy_channels) {
1942 		dev_warn(ecc->dev,
1943 			 "Legacy memcpy is enabled, things might not work\n");
1944 
1945 		dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1946 		dma_cap_set(DMA_INTERLEAVE, s_ddev->cap_mask);
1947 		s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1948 		s_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1949 		s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1950 	}
1951 
1952 	s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1953 	s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1954 	s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1955 	s_ddev->device_free_chan_resources = edma_free_chan_resources;
1956 	s_ddev->device_issue_pending = edma_issue_pending;
1957 	s_ddev->device_tx_status = edma_tx_status;
1958 	s_ddev->device_config = edma_slave_config;
1959 	s_ddev->device_pause = edma_dma_pause;
1960 	s_ddev->device_resume = edma_dma_resume;
1961 	s_ddev->device_terminate_all = edma_terminate_all;
1962 	s_ddev->device_synchronize = edma_synchronize;
1963 
1964 	s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1965 	s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1966 	s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1967 	s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1968 	s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
1969 
1970 	s_ddev->dev = ecc->dev;
1971 	INIT_LIST_HEAD(&s_ddev->channels);
1972 
1973 	if (memcpy_channels) {
1974 		m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1975 		if (!m_ddev) {
1976 			dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
1977 			memcpy_channels = NULL;
1978 			goto ch_setup;
1979 		}
1980 		ecc->dma_memcpy = m_ddev;
1981 
1982 		dma_cap_zero(m_ddev->cap_mask);
1983 		dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1984 		dma_cap_set(DMA_INTERLEAVE, m_ddev->cap_mask);
1985 
1986 		m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1987 		m_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1988 		m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1989 		m_ddev->device_free_chan_resources = edma_free_chan_resources;
1990 		m_ddev->device_issue_pending = edma_issue_pending;
1991 		m_ddev->device_tx_status = edma_tx_status;
1992 		m_ddev->device_config = edma_slave_config;
1993 		m_ddev->device_pause = edma_dma_pause;
1994 		m_ddev->device_resume = edma_dma_resume;
1995 		m_ddev->device_terminate_all = edma_terminate_all;
1996 		m_ddev->device_synchronize = edma_synchronize;
1997 
1998 		m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1999 		m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
2000 		m_ddev->directions = BIT(DMA_MEM_TO_MEM);
2001 		m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2002 
2003 		m_ddev->dev = ecc->dev;
2004 		INIT_LIST_HEAD(&m_ddev->channels);
2005 	} else if (!ecc->legacy_mode) {
2006 		dev_info(ecc->dev, "memcpy is disabled\n");
2007 	}
2008 
2009 ch_setup:
2010 	for (i = 0; i < ecc->num_channels; i++) {
2011 		struct edma_chan *echan = &ecc->slave_chans[i];
2012 		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
2013 		echan->ecc = ecc;
2014 		echan->vchan.desc_free = edma_desc_free;
2015 
2016 		if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
2017 			vchan_init(&echan->vchan, m_ddev);
2018 		else
2019 			vchan_init(&echan->vchan, s_ddev);
2020 
2021 		INIT_LIST_HEAD(&echan->node);
2022 		for (j = 0; j < EDMA_MAX_SLOTS; j++)
2023 			echan->slot[j] = -1;
2024 	}
2025 }
2026 
2027 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
2028 			      struct edma_cc *ecc)
2029 {
2030 	int i;
2031 	u32 value, cccfg;
2032 	s8 (*queue_priority_map)[2];
2033 
2034 	/* Decode the eDMA3 configuration from CCCFG register */
2035 	cccfg = edma_read(ecc, EDMA_CCCFG);
2036 
2037 	value = GET_NUM_REGN(cccfg);
2038 	ecc->num_region = BIT(value);
2039 
2040 	value = GET_NUM_DMACH(cccfg);
2041 	ecc->num_channels = BIT(value + 1);
2042 
2043 	value = GET_NUM_QDMACH(cccfg);
2044 	ecc->num_qchannels = value * 2;
2045 
2046 	value = GET_NUM_PAENTRY(cccfg);
2047 	ecc->num_slots = BIT(value + 4);
2048 
2049 	value = GET_NUM_EVQUE(cccfg);
2050 	ecc->num_tc = value + 1;
2051 
2052 	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
2053 
2054 	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
2055 	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
2056 	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
2057 	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
2058 	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
2059 	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
2060 	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
2061 
2062 	/* Nothing need to be done if queue priority is provided */
2063 	if (pdata->queue_priority_mapping)
2064 		return 0;
2065 
2066 	/*
2067 	 * Configure TC/queue priority as follows:
2068 	 * Q0 - priority 0
2069 	 * Q1 - priority 1
2070 	 * Q2 - priority 2
2071 	 * ...
2072 	 * The meaning of priority numbers: 0 highest priority, 7 lowest
2073 	 * priority. So Q0 is the highest priority queue and the last queue has
2074 	 * the lowest priority.
2075 	 */
2076 	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
2077 					  GFP_KERNEL);
2078 	if (!queue_priority_map)
2079 		return -ENOMEM;
2080 
2081 	for (i = 0; i < ecc->num_tc; i++) {
2082 		queue_priority_map[i][0] = i;
2083 		queue_priority_map[i][1] = i;
2084 	}
2085 	queue_priority_map[i][0] = -1;
2086 	queue_priority_map[i][1] = -1;
2087 
2088 	pdata->queue_priority_mapping = queue_priority_map;
2089 	/* Default queue has the lowest priority */
2090 	pdata->default_queue = i - 1;
2091 
2092 	return 0;
2093 }
2094 
2095 #if IS_ENABLED(CONFIG_OF)
2096 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
2097 			       size_t sz)
2098 {
2099 	const char pname[] = "ti,edma-xbar-event-map";
2100 	struct resource res;
2101 	void __iomem *xbar;
2102 	s16 (*xbar_chans)[2];
2103 	size_t nelm = sz / sizeof(s16);
2104 	u32 shift, offset, mux;
2105 	int ret, i;
2106 
2107 	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2108 	if (!xbar_chans)
2109 		return -ENOMEM;
2110 
2111 	ret = of_address_to_resource(dev->of_node, 1, &res);
2112 	if (ret)
2113 		return -ENOMEM;
2114 
2115 	xbar = devm_ioremap(dev, res.start, resource_size(&res));
2116 	if (!xbar)
2117 		return -ENOMEM;
2118 
2119 	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2120 					 nelm);
2121 	if (ret)
2122 		return -EIO;
2123 
2124 	/* Invalidate last entry for the other user of this mess */
2125 	nelm >>= 1;
2126 	xbar_chans[nelm][0] = -1;
2127 	xbar_chans[nelm][1] = -1;
2128 
2129 	for (i = 0; i < nelm; i++) {
2130 		shift = (xbar_chans[i][1] & 0x03) << 3;
2131 		offset = xbar_chans[i][1] & 0xfffffffc;
2132 		mux = readl(xbar + offset);
2133 		mux &= ~(0xff << shift);
2134 		mux |= xbar_chans[i][0] << shift;
2135 		writel(mux, (xbar + offset));
2136 	}
2137 
2138 	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2139 	return 0;
2140 }
2141 
2142 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2143 						     bool legacy_mode)
2144 {
2145 	struct edma_soc_info *info;
2146 	struct property *prop;
2147 	int sz, ret;
2148 
2149 	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2150 	if (!info)
2151 		return ERR_PTR(-ENOMEM);
2152 
2153 	if (legacy_mode) {
2154 		prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2155 					&sz);
2156 		if (prop) {
2157 			ret = edma_xbar_event_map(dev, info, sz);
2158 			if (ret)
2159 				return ERR_PTR(ret);
2160 		}
2161 		return info;
2162 	}
2163 
2164 	/* Get the list of channels allocated to be used for memcpy */
2165 	prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2166 	if (prop) {
2167 		const char pname[] = "ti,edma-memcpy-channels";
2168 		size_t nelm = sz / sizeof(s32);
2169 		s32 *memcpy_ch;
2170 
2171 		memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2172 					 GFP_KERNEL);
2173 		if (!memcpy_ch)
2174 			return ERR_PTR(-ENOMEM);
2175 
2176 		ret = of_property_read_u32_array(dev->of_node, pname,
2177 						 (u32 *)memcpy_ch, nelm);
2178 		if (ret)
2179 			return ERR_PTR(ret);
2180 
2181 		memcpy_ch[nelm] = -1;
2182 		info->memcpy_channels = memcpy_ch;
2183 	}
2184 
2185 	prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2186 				&sz);
2187 	if (prop) {
2188 		const char pname[] = "ti,edma-reserved-slot-ranges";
2189 		u32 (*tmp)[2];
2190 		s16 (*rsv_slots)[2];
2191 		size_t nelm = sz / sizeof(*tmp);
2192 		struct edma_rsv_info *rsv_info;
2193 		int i;
2194 
2195 		if (!nelm)
2196 			return info;
2197 
2198 		tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2199 		if (!tmp)
2200 			return ERR_PTR(-ENOMEM);
2201 
2202 		rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2203 		if (!rsv_info) {
2204 			kfree(tmp);
2205 			return ERR_PTR(-ENOMEM);
2206 		}
2207 
2208 		rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2209 					 GFP_KERNEL);
2210 		if (!rsv_slots) {
2211 			kfree(tmp);
2212 			return ERR_PTR(-ENOMEM);
2213 		}
2214 
2215 		ret = of_property_read_u32_array(dev->of_node, pname,
2216 						 (u32 *)tmp, nelm * 2);
2217 		if (ret) {
2218 			kfree(tmp);
2219 			return ERR_PTR(ret);
2220 		}
2221 
2222 		for (i = 0; i < nelm; i++) {
2223 			rsv_slots[i][0] = tmp[i][0];
2224 			rsv_slots[i][1] = tmp[i][1];
2225 		}
2226 		rsv_slots[nelm][0] = -1;
2227 		rsv_slots[nelm][1] = -1;
2228 
2229 		info->rsv = rsv_info;
2230 		info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2231 
2232 		kfree(tmp);
2233 	}
2234 
2235 	return info;
2236 }
2237 
2238 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2239 				      struct of_dma *ofdma)
2240 {
2241 	struct edma_cc *ecc = ofdma->of_dma_data;
2242 	struct dma_chan *chan = NULL;
2243 	struct edma_chan *echan;
2244 	int i;
2245 
2246 	if (!ecc || dma_spec->args_count < 1)
2247 		return NULL;
2248 
2249 	for (i = 0; i < ecc->num_channels; i++) {
2250 		echan = &ecc->slave_chans[i];
2251 		if (echan->ch_num == dma_spec->args[0]) {
2252 			chan = &echan->vchan.chan;
2253 			break;
2254 		}
2255 	}
2256 
2257 	if (!chan)
2258 		return NULL;
2259 
2260 	if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2261 		goto out;
2262 
2263 	if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2264 	    dma_spec->args[1] < echan->ecc->num_tc) {
2265 		echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2266 		goto out;
2267 	}
2268 
2269 	return NULL;
2270 out:
2271 	/* The channel is going to be used as HW synchronized */
2272 	echan->hw_triggered = true;
2273 	return dma_get_slave_channel(chan);
2274 }
2275 #else
2276 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2277 						     bool legacy_mode)
2278 {
2279 	return ERR_PTR(-EINVAL);
2280 }
2281 
2282 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2283 				      struct of_dma *ofdma)
2284 {
2285 	return NULL;
2286 }
2287 #endif
2288 
2289 static bool edma_filter_fn(struct dma_chan *chan, void *param);
2290 
2291 static int edma_probe(struct platform_device *pdev)
2292 {
2293 	struct edma_soc_info	*info = pdev->dev.platform_data;
2294 	s8			(*queue_priority_mapping)[2];
2295 	const s16		(*reserved)[2];
2296 	int			i, irq;
2297 	char			*irq_name;
2298 	struct resource		*mem;
2299 	struct device_node	*node = pdev->dev.of_node;
2300 	struct device		*dev = &pdev->dev;
2301 	struct edma_cc		*ecc;
2302 	bool			legacy_mode = true;
2303 	int ret;
2304 
2305 	if (node) {
2306 		const struct of_device_id *match;
2307 
2308 		match = of_match_node(edma_of_ids, node);
2309 		if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2310 			legacy_mode = false;
2311 
2312 		info = edma_setup_info_from_dt(dev, legacy_mode);
2313 		if (IS_ERR(info)) {
2314 			dev_err(dev, "failed to get DT data\n");
2315 			return PTR_ERR(info);
2316 		}
2317 	}
2318 
2319 	if (!info)
2320 		return -ENODEV;
2321 
2322 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2323 	if (ret)
2324 		return ret;
2325 
2326 	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2327 	if (!ecc)
2328 		return -ENOMEM;
2329 
2330 	ecc->dev = dev;
2331 	ecc->id = pdev->id;
2332 	ecc->legacy_mode = legacy_mode;
2333 	/* When booting with DT the pdev->id is -1 */
2334 	if (ecc->id < 0)
2335 		ecc->id = 0;
2336 
2337 	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2338 	if (!mem) {
2339 		dev_dbg(dev, "mem resource not found, using index 0\n");
2340 		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2341 		if (!mem) {
2342 			dev_err(dev, "no mem resource?\n");
2343 			return -ENODEV;
2344 		}
2345 	}
2346 	ecc->base = devm_ioremap_resource(dev, mem);
2347 	if (IS_ERR(ecc->base))
2348 		return PTR_ERR(ecc->base);
2349 
2350 	platform_set_drvdata(pdev, ecc);
2351 
2352 	pm_runtime_enable(dev);
2353 	ret = pm_runtime_get_sync(dev);
2354 	if (ret < 0) {
2355 		dev_err(dev, "pm_runtime_get_sync() failed\n");
2356 		pm_runtime_disable(dev);
2357 		return ret;
2358 	}
2359 
2360 	/* Get eDMA3 configuration from IP */
2361 	ret = edma_setup_from_hw(dev, info, ecc);
2362 	if (ret)
2363 		goto err_disable_pm;
2364 
2365 	/* Allocate memory based on the information we got from the IP */
2366 	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2367 					sizeof(*ecc->slave_chans), GFP_KERNEL);
2368 
2369 	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2370 				       sizeof(unsigned long), GFP_KERNEL);
2371 
2372 	ecc->channels_mask = devm_kcalloc(dev,
2373 					   BITS_TO_LONGS(ecc->num_channels),
2374 					   sizeof(unsigned long), GFP_KERNEL);
2375 	if (!ecc->slave_chans || !ecc->slot_inuse || !ecc->channels_mask) {
2376 		ret = -ENOMEM;
2377 		goto err_disable_pm;
2378 	}
2379 
2380 	/* Mark all channels available initially */
2381 	bitmap_fill(ecc->channels_mask, ecc->num_channels);
2382 
2383 	ecc->default_queue = info->default_queue;
2384 
2385 	if (info->rsv) {
2386 		/* Set the reserved slots in inuse list */
2387 		reserved = info->rsv->rsv_slots;
2388 		if (reserved) {
2389 			for (i = 0; reserved[i][0] != -1; i++)
2390 				bitmap_set(ecc->slot_inuse, reserved[i][0],
2391 					   reserved[i][1]);
2392 		}
2393 
2394 		/* Clear channels not usable for Linux */
2395 		reserved = info->rsv->rsv_chans;
2396 		if (reserved) {
2397 			for (i = 0; reserved[i][0] != -1; i++)
2398 				bitmap_clear(ecc->channels_mask, reserved[i][0],
2399 					     reserved[i][1]);
2400 		}
2401 	}
2402 
2403 	for (i = 0; i < ecc->num_slots; i++) {
2404 		/* Reset only unused - not reserved - paRAM slots */
2405 		if (!test_bit(i, ecc->slot_inuse))
2406 			edma_write_slot(ecc, i, &dummy_paramset);
2407 	}
2408 
2409 	irq = platform_get_irq_byname(pdev, "edma3_ccint");
2410 	if (irq < 0 && node)
2411 		irq = irq_of_parse_and_map(node, 0);
2412 
2413 	if (irq >= 0) {
2414 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2415 					  dev_name(dev));
2416 		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2417 				       ecc);
2418 		if (ret) {
2419 			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2420 			goto err_disable_pm;
2421 		}
2422 		ecc->ccint = irq;
2423 	}
2424 
2425 	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2426 	if (irq < 0 && node)
2427 		irq = irq_of_parse_and_map(node, 2);
2428 
2429 	if (irq >= 0) {
2430 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2431 					  dev_name(dev));
2432 		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2433 				       ecc);
2434 		if (ret) {
2435 			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2436 			goto err_disable_pm;
2437 		}
2438 		ecc->ccerrint = irq;
2439 	}
2440 
2441 	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2442 	if (ecc->dummy_slot < 0) {
2443 		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2444 		ret = ecc->dummy_slot;
2445 		goto err_disable_pm;
2446 	}
2447 
2448 	queue_priority_mapping = info->queue_priority_mapping;
2449 
2450 	if (!ecc->legacy_mode) {
2451 		int lowest_priority = 0;
2452 		unsigned int array_max;
2453 		struct of_phandle_args tc_args;
2454 
2455 		ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2456 					    sizeof(*ecc->tc_list), GFP_KERNEL);
2457 		if (!ecc->tc_list) {
2458 			ret = -ENOMEM;
2459 			goto err_reg1;
2460 		}
2461 
2462 		for (i = 0;; i++) {
2463 			ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2464 							       1, i, &tc_args);
2465 			if (ret || i == ecc->num_tc)
2466 				break;
2467 
2468 			ecc->tc_list[i].node = tc_args.np;
2469 			ecc->tc_list[i].id = i;
2470 			queue_priority_mapping[i][1] = tc_args.args[0];
2471 			if (queue_priority_mapping[i][1] > lowest_priority) {
2472 				lowest_priority = queue_priority_mapping[i][1];
2473 				info->default_queue = i;
2474 			}
2475 		}
2476 
2477 		/* See if we have optional dma-channel-mask array */
2478 		array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32));
2479 		ret = of_property_read_variable_u32_array(node,
2480 						"dma-channel-mask",
2481 						(u32 *)ecc->channels_mask,
2482 						1, array_max);
2483 		if (ret > 0 && ret != array_max)
2484 			dev_warn(dev, "dma-channel-mask is not complete.\n");
2485 		else if (ret == -EOVERFLOW || ret == -ENODATA)
2486 			dev_warn(dev,
2487 				 "dma-channel-mask is out of range or empty\n");
2488 	}
2489 
2490 	/* Event queue priority mapping */
2491 	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2492 		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2493 					      queue_priority_mapping[i][1]);
2494 
2495 	edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0);
2496 	edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0);
2497 	edma_write_array(ecc, EDMA_QRAE, 0, 0x0);
2498 
2499 	ecc->info = info;
2500 
2501 	/* Init the dma device and channels */
2502 	edma_dma_init(ecc, legacy_mode);
2503 
2504 	for (i = 0; i < ecc->num_channels; i++) {
2505 		/* Do not touch reserved channels */
2506 		if (!test_bit(i, ecc->channels_mask))
2507 			continue;
2508 
2509 		/* Assign all channels to the default queue */
2510 		edma_assign_channel_eventq(&ecc->slave_chans[i],
2511 					   info->default_queue);
2512 		/* Set entry slot to the dummy slot */
2513 		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2514 	}
2515 
2516 	ecc->dma_slave.filter.map = info->slave_map;
2517 	ecc->dma_slave.filter.mapcnt = info->slavecnt;
2518 	ecc->dma_slave.filter.fn = edma_filter_fn;
2519 
2520 	ret = dma_async_device_register(&ecc->dma_slave);
2521 	if (ret) {
2522 		dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2523 		goto err_reg1;
2524 	}
2525 
2526 	if (ecc->dma_memcpy) {
2527 		ret = dma_async_device_register(ecc->dma_memcpy);
2528 		if (ret) {
2529 			dev_err(dev, "memcpy ddev registration failed (%d)\n",
2530 				ret);
2531 			dma_async_device_unregister(&ecc->dma_slave);
2532 			goto err_reg1;
2533 		}
2534 	}
2535 
2536 	if (node)
2537 		of_dma_controller_register(node, of_edma_xlate, ecc);
2538 
2539 	dev_info(dev, "TI EDMA DMA engine driver\n");
2540 
2541 	return 0;
2542 
2543 err_reg1:
2544 	edma_free_slot(ecc, ecc->dummy_slot);
2545 err_disable_pm:
2546 	pm_runtime_put_sync(dev);
2547 	pm_runtime_disable(dev);
2548 	return ret;
2549 }
2550 
2551 static void edma_cleanupp_vchan(struct dma_device *dmadev)
2552 {
2553 	struct edma_chan *echan, *_echan;
2554 
2555 	list_for_each_entry_safe(echan, _echan,
2556 			&dmadev->channels, vchan.chan.device_node) {
2557 		list_del(&echan->vchan.chan.device_node);
2558 		tasklet_kill(&echan->vchan.task);
2559 	}
2560 }
2561 
2562 static int edma_remove(struct platform_device *pdev)
2563 {
2564 	struct device *dev = &pdev->dev;
2565 	struct edma_cc *ecc = dev_get_drvdata(dev);
2566 
2567 	devm_free_irq(dev, ecc->ccint, ecc);
2568 	devm_free_irq(dev, ecc->ccerrint, ecc);
2569 
2570 	edma_cleanupp_vchan(&ecc->dma_slave);
2571 
2572 	if (dev->of_node)
2573 		of_dma_controller_free(dev->of_node);
2574 	dma_async_device_unregister(&ecc->dma_slave);
2575 	if (ecc->dma_memcpy)
2576 		dma_async_device_unregister(ecc->dma_memcpy);
2577 	edma_free_slot(ecc, ecc->dummy_slot);
2578 	pm_runtime_put_sync(dev);
2579 	pm_runtime_disable(dev);
2580 
2581 	return 0;
2582 }
2583 
2584 #ifdef CONFIG_PM_SLEEP
2585 static int edma_pm_suspend(struct device *dev)
2586 {
2587 	struct edma_cc *ecc = dev_get_drvdata(dev);
2588 	struct edma_chan *echan = ecc->slave_chans;
2589 	int i;
2590 
2591 	for (i = 0; i < ecc->num_channels; i++) {
2592 		if (echan[i].alloced)
2593 			edma_setup_interrupt(&echan[i], false);
2594 	}
2595 
2596 	return 0;
2597 }
2598 
2599 static int edma_pm_resume(struct device *dev)
2600 {
2601 	struct edma_cc *ecc = dev_get_drvdata(dev);
2602 	struct edma_chan *echan = ecc->slave_chans;
2603 	int i;
2604 	s8 (*queue_priority_mapping)[2];
2605 
2606 	/* re initialize dummy slot to dummy param set */
2607 	edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2608 
2609 	queue_priority_mapping = ecc->info->queue_priority_mapping;
2610 
2611 	/* Event queue priority mapping */
2612 	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2613 		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2614 					      queue_priority_mapping[i][1]);
2615 
2616 	for (i = 0; i < ecc->num_channels; i++) {
2617 		if (echan[i].alloced) {
2618 			/* ensure access through shadow region 0 */
2619 			edma_or_array2(ecc, EDMA_DRAE, 0,
2620 				       EDMA_REG_ARRAY_INDEX(i),
2621 				       EDMA_CHANNEL_BIT(i));
2622 
2623 			edma_setup_interrupt(&echan[i], true);
2624 
2625 			/* Set up channel -> slot mapping for the entry slot */
2626 			edma_set_chmap(&echan[i], echan[i].slot[0]);
2627 		}
2628 	}
2629 
2630 	return 0;
2631 }
2632 #endif
2633 
2634 static const struct dev_pm_ops edma_pm_ops = {
2635 	SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2636 };
2637 
2638 static struct platform_driver edma_driver = {
2639 	.probe		= edma_probe,
2640 	.remove		= edma_remove,
2641 	.driver = {
2642 		.name	= "edma",
2643 		.pm	= &edma_pm_ops,
2644 		.of_match_table = edma_of_ids,
2645 	},
2646 };
2647 
2648 static int edma_tptc_probe(struct platform_device *pdev)
2649 {
2650 	pm_runtime_enable(&pdev->dev);
2651 	return pm_runtime_get_sync(&pdev->dev);
2652 }
2653 
2654 static struct platform_driver edma_tptc_driver = {
2655 	.probe		= edma_tptc_probe,
2656 	.driver = {
2657 		.name	= "edma3-tptc",
2658 		.of_match_table = edma_tptc_of_ids,
2659 	},
2660 };
2661 
2662 static bool edma_filter_fn(struct dma_chan *chan, void *param)
2663 {
2664 	bool match = false;
2665 
2666 	if (chan->device->dev->driver == &edma_driver.driver) {
2667 		struct edma_chan *echan = to_edma_chan(chan);
2668 		unsigned ch_req = *(unsigned *)param;
2669 		if (ch_req == echan->ch_num) {
2670 			/* The channel is going to be used as HW synchronized */
2671 			echan->hw_triggered = true;
2672 			match = true;
2673 		}
2674 	}
2675 	return match;
2676 }
2677 
2678 static int edma_init(void)
2679 {
2680 	int ret;
2681 
2682 	ret = platform_driver_register(&edma_tptc_driver);
2683 	if (ret)
2684 		return ret;
2685 
2686 	return platform_driver_register(&edma_driver);
2687 }
2688 subsys_initcall(edma_init);
2689 
2690 static void __exit edma_exit(void)
2691 {
2692 	platform_driver_unregister(&edma_driver);
2693 	platform_driver_unregister(&edma_tptc_driver);
2694 }
2695 module_exit(edma_exit);
2696 
2697 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2698 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2699 MODULE_LICENSE("GPL v2");
2700