1 /* 2 * TI EDMA DMA engine driver 3 * 4 * Copyright 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/dmaengine.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/bitmap.h> 19 #include <linux/err.h> 20 #include <linux/init.h> 21 #include <linux/interrupt.h> 22 #include <linux/list.h> 23 #include <linux/module.h> 24 #include <linux/platform_device.h> 25 #include <linux/slab.h> 26 #include <linux/spinlock.h> 27 #include <linux/of.h> 28 #include <linux/of_dma.h> 29 #include <linux/of_irq.h> 30 #include <linux/of_address.h> 31 #include <linux/of_device.h> 32 #include <linux/pm_runtime.h> 33 34 #include <linux/platform_data/edma.h> 35 36 #include "../dmaengine.h" 37 #include "../virt-dma.h" 38 39 /* Offsets matching "struct edmacc_param" */ 40 #define PARM_OPT 0x00 41 #define PARM_SRC 0x04 42 #define PARM_A_B_CNT 0x08 43 #define PARM_DST 0x0c 44 #define PARM_SRC_DST_BIDX 0x10 45 #define PARM_LINK_BCNTRLD 0x14 46 #define PARM_SRC_DST_CIDX 0x18 47 #define PARM_CCNT 0x1c 48 49 #define PARM_SIZE 0x20 50 51 /* Offsets for EDMA CC global channel registers and their shadows */ 52 #define SH_ER 0x00 /* 64 bits */ 53 #define SH_ECR 0x08 /* 64 bits */ 54 #define SH_ESR 0x10 /* 64 bits */ 55 #define SH_CER 0x18 /* 64 bits */ 56 #define SH_EER 0x20 /* 64 bits */ 57 #define SH_EECR 0x28 /* 64 bits */ 58 #define SH_EESR 0x30 /* 64 bits */ 59 #define SH_SER 0x38 /* 64 bits */ 60 #define SH_SECR 0x40 /* 64 bits */ 61 #define SH_IER 0x50 /* 64 bits */ 62 #define SH_IECR 0x58 /* 64 bits */ 63 #define SH_IESR 0x60 /* 64 bits */ 64 #define SH_IPR 0x68 /* 64 bits */ 65 #define SH_ICR 0x70 /* 64 bits */ 66 #define SH_IEVAL 0x78 67 #define SH_QER 0x80 68 #define SH_QEER 0x84 69 #define SH_QEECR 0x88 70 #define SH_QEESR 0x8c 71 #define SH_QSER 0x90 72 #define SH_QSECR 0x94 73 #define SH_SIZE 0x200 74 75 /* Offsets for EDMA CC global registers */ 76 #define EDMA_REV 0x0000 77 #define EDMA_CCCFG 0x0004 78 #define EDMA_QCHMAP 0x0200 /* 8 registers */ 79 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */ 80 #define EDMA_QDMAQNUM 0x0260 81 #define EDMA_QUETCMAP 0x0280 82 #define EDMA_QUEPRI 0x0284 83 #define EDMA_EMR 0x0300 /* 64 bits */ 84 #define EDMA_EMCR 0x0308 /* 64 bits */ 85 #define EDMA_QEMR 0x0310 86 #define EDMA_QEMCR 0x0314 87 #define EDMA_CCERR 0x0318 88 #define EDMA_CCERRCLR 0x031c 89 #define EDMA_EEVAL 0x0320 90 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/ 91 #define EDMA_QRAE 0x0380 /* 4 registers */ 92 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */ 93 #define EDMA_QSTAT 0x0600 /* 2 registers */ 94 #define EDMA_QWMTHRA 0x0620 95 #define EDMA_QWMTHRB 0x0624 96 #define EDMA_CCSTAT 0x0640 97 98 #define EDMA_M 0x1000 /* global channel registers */ 99 #define EDMA_ECR 0x1008 100 #define EDMA_ECRH 0x100C 101 #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */ 102 #define EDMA_PARM 0x4000 /* PaRAM entries */ 103 104 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5)) 105 106 #define EDMA_DCHMAP 0x0100 /* 64 registers */ 107 108 /* CCCFG register */ 109 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */ 110 #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */ 111 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */ 112 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */ 113 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */ 114 #define CHMAP_EXIST BIT(24) 115 116 /* CCSTAT register */ 117 #define EDMA_CCSTAT_ACTV BIT(4) 118 119 /* 120 * Max of 20 segments per channel to conserve PaRAM slots 121 * Also note that MAX_NR_SG should be atleast the no.of periods 122 * that are required for ASoC, otherwise DMA prep calls will 123 * fail. Today davinci-pcm is the only user of this driver and 124 * requires atleast 17 slots, so we setup the default to 20. 125 */ 126 #define MAX_NR_SG 20 127 #define EDMA_MAX_SLOTS MAX_NR_SG 128 #define EDMA_DESCRIPTORS 16 129 130 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */ 131 #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */ 132 #define EDMA_CONT_PARAMS_ANY 1001 133 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002 134 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003 135 136 /* 137 * 64bit array registers are split into two 32bit registers: 138 * reg0: channel/event 0-31 139 * reg1: channel/event 32-63 140 * 141 * bit 5 in the channel number tells the array index (0/1) 142 * bit 0-4 (0x1f) is the bit offset within the register 143 */ 144 #define EDMA_REG_ARRAY_INDEX(channel) ((channel) >> 5) 145 #define EDMA_CHANNEL_BIT(channel) (BIT((channel) & 0x1f)) 146 147 /* PaRAM slots are laid out like this */ 148 struct edmacc_param { 149 u32 opt; 150 u32 src; 151 u32 a_b_cnt; 152 u32 dst; 153 u32 src_dst_bidx; 154 u32 link_bcntrld; 155 u32 src_dst_cidx; 156 u32 ccnt; 157 } __packed; 158 159 /* fields in edmacc_param.opt */ 160 #define SAM BIT(0) 161 #define DAM BIT(1) 162 #define SYNCDIM BIT(2) 163 #define STATIC BIT(3) 164 #define EDMA_FWID (0x07 << 8) 165 #define TCCMODE BIT(11) 166 #define EDMA_TCC(t) ((t) << 12) 167 #define TCINTEN BIT(20) 168 #define ITCINTEN BIT(21) 169 #define TCCHEN BIT(22) 170 #define ITCCHEN BIT(23) 171 172 struct edma_pset { 173 u32 len; 174 dma_addr_t addr; 175 struct edmacc_param param; 176 }; 177 178 struct edma_desc { 179 struct virt_dma_desc vdesc; 180 struct list_head node; 181 enum dma_transfer_direction direction; 182 int cyclic; 183 bool polled; 184 int absync; 185 int pset_nr; 186 struct edma_chan *echan; 187 int processed; 188 189 /* 190 * The following 4 elements are used for residue accounting. 191 * 192 * - processed_stat: the number of SG elements we have traversed 193 * so far to cover accounting. This is updated directly to processed 194 * during edma_callback and is always <= processed, because processed 195 * refers to the number of pending transfer (programmed to EDMA 196 * controller), where as processed_stat tracks number of transfers 197 * accounted for so far. 198 * 199 * - residue: The amount of bytes we have left to transfer for this desc 200 * 201 * - residue_stat: The residue in bytes of data we have covered 202 * so far for accounting. This is updated directly to residue 203 * during callbacks to keep it current. 204 * 205 * - sg_len: Tracks the length of the current intermediate transfer, 206 * this is required to update the residue during intermediate transfer 207 * completion callback. 208 */ 209 int processed_stat; 210 u32 sg_len; 211 u32 residue; 212 u32 residue_stat; 213 214 struct edma_pset pset[0]; 215 }; 216 217 struct edma_cc; 218 219 struct edma_tc { 220 struct device_node *node; 221 u16 id; 222 }; 223 224 struct edma_chan { 225 struct virt_dma_chan vchan; 226 struct list_head node; 227 struct edma_desc *edesc; 228 struct edma_cc *ecc; 229 struct edma_tc *tc; 230 int ch_num; 231 bool alloced; 232 bool hw_triggered; 233 int slot[EDMA_MAX_SLOTS]; 234 int missed; 235 struct dma_slave_config cfg; 236 }; 237 238 struct edma_cc { 239 struct device *dev; 240 struct edma_soc_info *info; 241 void __iomem *base; 242 int id; 243 bool legacy_mode; 244 245 /* eDMA3 resource information */ 246 unsigned num_channels; 247 unsigned num_qchannels; 248 unsigned num_region; 249 unsigned num_slots; 250 unsigned num_tc; 251 bool chmap_exist; 252 enum dma_event_q default_queue; 253 254 unsigned int ccint; 255 unsigned int ccerrint; 256 257 /* 258 * The slot_inuse bit for each PaRAM slot is clear unless the slot is 259 * in use by Linux or if it is allocated to be used by DSP. 260 */ 261 unsigned long *slot_inuse; 262 263 /* 264 * For tracking reserved channels used by DSP. 265 * If the bit is cleared, the channel is allocated to be used by DSP 266 * and Linux must not touch it. 267 */ 268 unsigned long *channels_mask; 269 270 struct dma_device dma_slave; 271 struct dma_device *dma_memcpy; 272 struct edma_chan *slave_chans; 273 struct edma_tc *tc_list; 274 int dummy_slot; 275 }; 276 277 /* dummy param set used to (re)initialize parameter RAM slots */ 278 static const struct edmacc_param dummy_paramset = { 279 .link_bcntrld = 0xffff, 280 .ccnt = 1, 281 }; 282 283 #define EDMA_BINDING_LEGACY 0 284 #define EDMA_BINDING_TPCC 1 285 static const u32 edma_binding_type[] = { 286 [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY, 287 [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC, 288 }; 289 290 static const struct of_device_id edma_of_ids[] = { 291 { 292 .compatible = "ti,edma3", 293 .data = &edma_binding_type[EDMA_BINDING_LEGACY], 294 }, 295 { 296 .compatible = "ti,edma3-tpcc", 297 .data = &edma_binding_type[EDMA_BINDING_TPCC], 298 }, 299 {} 300 }; 301 MODULE_DEVICE_TABLE(of, edma_of_ids); 302 303 static const struct of_device_id edma_tptc_of_ids[] = { 304 { .compatible = "ti,edma3-tptc", }, 305 {} 306 }; 307 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids); 308 309 static inline unsigned int edma_read(struct edma_cc *ecc, int offset) 310 { 311 return (unsigned int)__raw_readl(ecc->base + offset); 312 } 313 314 static inline void edma_write(struct edma_cc *ecc, int offset, int val) 315 { 316 __raw_writel(val, ecc->base + offset); 317 } 318 319 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and, 320 unsigned or) 321 { 322 unsigned val = edma_read(ecc, offset); 323 324 val &= and; 325 val |= or; 326 edma_write(ecc, offset, val); 327 } 328 329 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and) 330 { 331 unsigned val = edma_read(ecc, offset); 332 333 val &= and; 334 edma_write(ecc, offset, val); 335 } 336 337 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or) 338 { 339 unsigned val = edma_read(ecc, offset); 340 341 val |= or; 342 edma_write(ecc, offset, val); 343 } 344 345 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset, 346 int i) 347 { 348 return edma_read(ecc, offset + (i << 2)); 349 } 350 351 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i, 352 unsigned val) 353 { 354 edma_write(ecc, offset + (i << 2), val); 355 } 356 357 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i, 358 unsigned and, unsigned or) 359 { 360 edma_modify(ecc, offset + (i << 2), and, or); 361 } 362 363 static inline void edma_or_array(struct edma_cc *ecc, int offset, int i, 364 unsigned or) 365 { 366 edma_or(ecc, offset + (i << 2), or); 367 } 368 369 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j, 370 unsigned or) 371 { 372 edma_or(ecc, offset + ((i * 2 + j) << 2), or); 373 } 374 375 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i, 376 int j, unsigned val) 377 { 378 edma_write(ecc, offset + ((i * 2 + j) << 2), val); 379 } 380 381 static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset) 382 { 383 return edma_read(ecc, EDMA_SHADOW0 + offset); 384 } 385 386 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc, 387 int offset, int i) 388 { 389 return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2)); 390 } 391 392 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset, 393 unsigned val) 394 { 395 edma_write(ecc, EDMA_SHADOW0 + offset, val); 396 } 397 398 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset, 399 int i, unsigned val) 400 { 401 edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val); 402 } 403 404 static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset, 405 int param_no) 406 { 407 return edma_read(ecc, EDMA_PARM + offset + (param_no << 5)); 408 } 409 410 static inline void edma_param_write(struct edma_cc *ecc, int offset, 411 int param_no, unsigned val) 412 { 413 edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val); 414 } 415 416 static inline void edma_param_modify(struct edma_cc *ecc, int offset, 417 int param_no, unsigned and, unsigned or) 418 { 419 edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or); 420 } 421 422 static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no, 423 unsigned and) 424 { 425 edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and); 426 } 427 428 static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no, 429 unsigned or) 430 { 431 edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or); 432 } 433 434 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no, 435 int priority) 436 { 437 int bit = queue_no * 4; 438 439 edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit)); 440 } 441 442 static void edma_set_chmap(struct edma_chan *echan, int slot) 443 { 444 struct edma_cc *ecc = echan->ecc; 445 int channel = EDMA_CHAN_SLOT(echan->ch_num); 446 447 if (ecc->chmap_exist) { 448 slot = EDMA_CHAN_SLOT(slot); 449 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5)); 450 } 451 } 452 453 static void edma_setup_interrupt(struct edma_chan *echan, bool enable) 454 { 455 struct edma_cc *ecc = echan->ecc; 456 int channel = EDMA_CHAN_SLOT(echan->ch_num); 457 int idx = EDMA_REG_ARRAY_INDEX(channel); 458 int ch_bit = EDMA_CHANNEL_BIT(channel); 459 460 if (enable) { 461 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit); 462 edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit); 463 } else { 464 edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit); 465 } 466 } 467 468 /* 469 * paRAM slot management functions 470 */ 471 static void edma_write_slot(struct edma_cc *ecc, unsigned slot, 472 const struct edmacc_param *param) 473 { 474 slot = EDMA_CHAN_SLOT(slot); 475 if (slot >= ecc->num_slots) 476 return; 477 memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE); 478 } 479 480 static int edma_read_slot(struct edma_cc *ecc, unsigned slot, 481 struct edmacc_param *param) 482 { 483 slot = EDMA_CHAN_SLOT(slot); 484 if (slot >= ecc->num_slots) 485 return -EINVAL; 486 memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE); 487 488 return 0; 489 } 490 491 /** 492 * edma_alloc_slot - allocate DMA parameter RAM 493 * @ecc: pointer to edma_cc struct 494 * @slot: specific slot to allocate; negative for "any unused slot" 495 * 496 * This allocates a parameter RAM slot, initializing it to hold a 497 * dummy transfer. Slots allocated using this routine have not been 498 * mapped to a hardware DMA channel, and will normally be used by 499 * linking to them from a slot associated with a DMA channel. 500 * 501 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific 502 * slots may be allocated on behalf of DSP firmware. 503 * 504 * Returns the number of the slot, else negative errno. 505 */ 506 static int edma_alloc_slot(struct edma_cc *ecc, int slot) 507 { 508 if (slot >= 0) { 509 slot = EDMA_CHAN_SLOT(slot); 510 /* Requesting entry paRAM slot for a HW triggered channel. */ 511 if (ecc->chmap_exist && slot < ecc->num_channels) 512 slot = EDMA_SLOT_ANY; 513 } 514 515 if (slot < 0) { 516 if (ecc->chmap_exist) 517 slot = 0; 518 else 519 slot = ecc->num_channels; 520 for (;;) { 521 slot = find_next_zero_bit(ecc->slot_inuse, 522 ecc->num_slots, 523 slot); 524 if (slot == ecc->num_slots) 525 return -ENOMEM; 526 if (!test_and_set_bit(slot, ecc->slot_inuse)) 527 break; 528 } 529 } else if (slot >= ecc->num_slots) { 530 return -EINVAL; 531 } else if (test_and_set_bit(slot, ecc->slot_inuse)) { 532 return -EBUSY; 533 } 534 535 edma_write_slot(ecc, slot, &dummy_paramset); 536 537 return EDMA_CTLR_CHAN(ecc->id, slot); 538 } 539 540 static void edma_free_slot(struct edma_cc *ecc, unsigned slot) 541 { 542 slot = EDMA_CHAN_SLOT(slot); 543 if (slot >= ecc->num_slots) 544 return; 545 546 edma_write_slot(ecc, slot, &dummy_paramset); 547 clear_bit(slot, ecc->slot_inuse); 548 } 549 550 /** 551 * edma_link - link one parameter RAM slot to another 552 * @ecc: pointer to edma_cc struct 553 * @from: parameter RAM slot originating the link 554 * @to: parameter RAM slot which is the link target 555 * 556 * The originating slot should not be part of any active DMA transfer. 557 */ 558 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to) 559 { 560 if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to))) 561 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n"); 562 563 from = EDMA_CHAN_SLOT(from); 564 to = EDMA_CHAN_SLOT(to); 565 if (from >= ecc->num_slots || to >= ecc->num_slots) 566 return; 567 568 edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000, 569 PARM_OFFSET(to)); 570 } 571 572 /** 573 * edma_get_position - returns the current transfer point 574 * @ecc: pointer to edma_cc struct 575 * @slot: parameter RAM slot being examined 576 * @dst: true selects the dest position, false the source 577 * 578 * Returns the position of the current active slot 579 */ 580 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot, 581 bool dst) 582 { 583 u32 offs; 584 585 slot = EDMA_CHAN_SLOT(slot); 586 offs = PARM_OFFSET(slot); 587 offs += dst ? PARM_DST : PARM_SRC; 588 589 return edma_read(ecc, offs); 590 } 591 592 /* 593 * Channels with event associations will be triggered by their hardware 594 * events, and channels without such associations will be triggered by 595 * software. (At this writing there is no interface for using software 596 * triggers except with channels that don't support hardware triggers.) 597 */ 598 static void edma_start(struct edma_chan *echan) 599 { 600 struct edma_cc *ecc = echan->ecc; 601 int channel = EDMA_CHAN_SLOT(echan->ch_num); 602 int idx = EDMA_REG_ARRAY_INDEX(channel); 603 int ch_bit = EDMA_CHANNEL_BIT(channel); 604 605 if (!echan->hw_triggered) { 606 /* EDMA channels without event association */ 607 dev_dbg(ecc->dev, "ESR%d %08x\n", idx, 608 edma_shadow0_read_array(ecc, SH_ESR, idx)); 609 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit); 610 } else { 611 /* EDMA channel with event association */ 612 dev_dbg(ecc->dev, "ER%d %08x\n", idx, 613 edma_shadow0_read_array(ecc, SH_ER, idx)); 614 /* Clear any pending event or error */ 615 edma_write_array(ecc, EDMA_ECR, idx, ch_bit); 616 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); 617 /* Clear any SER */ 618 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); 619 edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit); 620 dev_dbg(ecc->dev, "EER%d %08x\n", idx, 621 edma_shadow0_read_array(ecc, SH_EER, idx)); 622 } 623 } 624 625 static void edma_stop(struct edma_chan *echan) 626 { 627 struct edma_cc *ecc = echan->ecc; 628 int channel = EDMA_CHAN_SLOT(echan->ch_num); 629 int idx = EDMA_REG_ARRAY_INDEX(channel); 630 int ch_bit = EDMA_CHANNEL_BIT(channel); 631 632 edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit); 633 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit); 634 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); 635 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); 636 637 /* clear possibly pending completion interrupt */ 638 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit); 639 640 dev_dbg(ecc->dev, "EER%d %08x\n", idx, 641 edma_shadow0_read_array(ecc, SH_EER, idx)); 642 643 /* REVISIT: consider guarding against inappropriate event 644 * chaining by overwriting with dummy_paramset. 645 */ 646 } 647 648 /* 649 * Temporarily disable EDMA hardware events on the specified channel, 650 * preventing them from triggering new transfers 651 */ 652 static void edma_pause(struct edma_chan *echan) 653 { 654 int channel = EDMA_CHAN_SLOT(echan->ch_num); 655 656 edma_shadow0_write_array(echan->ecc, SH_EECR, 657 EDMA_REG_ARRAY_INDEX(channel), 658 EDMA_CHANNEL_BIT(channel)); 659 } 660 661 /* Re-enable EDMA hardware events on the specified channel. */ 662 static void edma_resume(struct edma_chan *echan) 663 { 664 int channel = EDMA_CHAN_SLOT(echan->ch_num); 665 666 edma_shadow0_write_array(echan->ecc, SH_EESR, 667 EDMA_REG_ARRAY_INDEX(channel), 668 EDMA_CHANNEL_BIT(channel)); 669 } 670 671 static void edma_trigger_channel(struct edma_chan *echan) 672 { 673 struct edma_cc *ecc = echan->ecc; 674 int channel = EDMA_CHAN_SLOT(echan->ch_num); 675 int idx = EDMA_REG_ARRAY_INDEX(channel); 676 int ch_bit = EDMA_CHANNEL_BIT(channel); 677 678 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit); 679 680 dev_dbg(ecc->dev, "ESR%d %08x\n", idx, 681 edma_shadow0_read_array(ecc, SH_ESR, idx)); 682 } 683 684 static void edma_clean_channel(struct edma_chan *echan) 685 { 686 struct edma_cc *ecc = echan->ecc; 687 int channel = EDMA_CHAN_SLOT(echan->ch_num); 688 int idx = EDMA_REG_ARRAY_INDEX(channel); 689 int ch_bit = EDMA_CHANNEL_BIT(channel); 690 691 dev_dbg(ecc->dev, "EMR%d %08x\n", idx, 692 edma_read_array(ecc, EDMA_EMR, idx)); 693 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit); 694 /* Clear the corresponding EMR bits */ 695 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); 696 /* Clear any SER */ 697 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); 698 edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0)); 699 } 700 701 /* Move channel to a specific event queue */ 702 static void edma_assign_channel_eventq(struct edma_chan *echan, 703 enum dma_event_q eventq_no) 704 { 705 struct edma_cc *ecc = echan->ecc; 706 int channel = EDMA_CHAN_SLOT(echan->ch_num); 707 int bit = (channel & 0x7) * 4; 708 709 /* default to low priority queue */ 710 if (eventq_no == EVENTQ_DEFAULT) 711 eventq_no = ecc->default_queue; 712 if (eventq_no >= ecc->num_tc) 713 return; 714 715 eventq_no &= 7; 716 edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit), 717 eventq_no << bit); 718 } 719 720 static int edma_alloc_channel(struct edma_chan *echan, 721 enum dma_event_q eventq_no) 722 { 723 struct edma_cc *ecc = echan->ecc; 724 int channel = EDMA_CHAN_SLOT(echan->ch_num); 725 726 if (!test_bit(echan->ch_num, ecc->channels_mask)) { 727 dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n", 728 echan->ch_num); 729 return -EINVAL; 730 } 731 732 /* ensure access through shadow region 0 */ 733 edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel), 734 EDMA_CHANNEL_BIT(channel)); 735 736 /* ensure no events are pending */ 737 edma_stop(echan); 738 739 edma_setup_interrupt(echan, true); 740 741 edma_assign_channel_eventq(echan, eventq_no); 742 743 return 0; 744 } 745 746 static void edma_free_channel(struct edma_chan *echan) 747 { 748 /* ensure no events are pending */ 749 edma_stop(echan); 750 /* REVISIT should probably take out of shadow region 0 */ 751 edma_setup_interrupt(echan, false); 752 } 753 754 static inline struct edma_cc *to_edma_cc(struct dma_device *d) 755 { 756 return container_of(d, struct edma_cc, dma_slave); 757 } 758 759 static inline struct edma_chan *to_edma_chan(struct dma_chan *c) 760 { 761 return container_of(c, struct edma_chan, vchan.chan); 762 } 763 764 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx) 765 { 766 return container_of(tx, struct edma_desc, vdesc.tx); 767 } 768 769 static void edma_desc_free(struct virt_dma_desc *vdesc) 770 { 771 kfree(container_of(vdesc, struct edma_desc, vdesc)); 772 } 773 774 /* Dispatch a queued descriptor to the controller (caller holds lock) */ 775 static void edma_execute(struct edma_chan *echan) 776 { 777 struct edma_cc *ecc = echan->ecc; 778 struct virt_dma_desc *vdesc; 779 struct edma_desc *edesc; 780 struct device *dev = echan->vchan.chan.device->dev; 781 int i, j, left, nslots; 782 783 if (!echan->edesc) { 784 /* Setup is needed for the first transfer */ 785 vdesc = vchan_next_desc(&echan->vchan); 786 if (!vdesc) 787 return; 788 list_del(&vdesc->node); 789 echan->edesc = to_edma_desc(&vdesc->tx); 790 } 791 792 edesc = echan->edesc; 793 794 /* Find out how many left */ 795 left = edesc->pset_nr - edesc->processed; 796 nslots = min(MAX_NR_SG, left); 797 edesc->sg_len = 0; 798 799 /* Write descriptor PaRAM set(s) */ 800 for (i = 0; i < nslots; i++) { 801 j = i + edesc->processed; 802 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param); 803 edesc->sg_len += edesc->pset[j].len; 804 dev_vdbg(dev, 805 "\n pset[%d]:\n" 806 " chnum\t%d\n" 807 " slot\t%d\n" 808 " opt\t%08x\n" 809 " src\t%08x\n" 810 " dst\t%08x\n" 811 " abcnt\t%08x\n" 812 " ccnt\t%08x\n" 813 " bidx\t%08x\n" 814 " cidx\t%08x\n" 815 " lkrld\t%08x\n", 816 j, echan->ch_num, echan->slot[i], 817 edesc->pset[j].param.opt, 818 edesc->pset[j].param.src, 819 edesc->pset[j].param.dst, 820 edesc->pset[j].param.a_b_cnt, 821 edesc->pset[j].param.ccnt, 822 edesc->pset[j].param.src_dst_bidx, 823 edesc->pset[j].param.src_dst_cidx, 824 edesc->pset[j].param.link_bcntrld); 825 /* Link to the previous slot if not the last set */ 826 if (i != (nslots - 1)) 827 edma_link(ecc, echan->slot[i], echan->slot[i + 1]); 828 } 829 830 edesc->processed += nslots; 831 832 /* 833 * If this is either the last set in a set of SG-list transactions 834 * then setup a link to the dummy slot, this results in all future 835 * events being absorbed and that's OK because we're done 836 */ 837 if (edesc->processed == edesc->pset_nr) { 838 if (edesc->cyclic) 839 edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]); 840 else 841 edma_link(ecc, echan->slot[nslots - 1], 842 echan->ecc->dummy_slot); 843 } 844 845 if (echan->missed) { 846 /* 847 * This happens due to setup times between intermediate 848 * transfers in long SG lists which have to be broken up into 849 * transfers of MAX_NR_SG 850 */ 851 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num); 852 edma_clean_channel(echan); 853 edma_stop(echan); 854 edma_start(echan); 855 edma_trigger_channel(echan); 856 echan->missed = 0; 857 } else if (edesc->processed <= MAX_NR_SG) { 858 dev_dbg(dev, "first transfer starting on channel %d\n", 859 echan->ch_num); 860 edma_start(echan); 861 } else { 862 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n", 863 echan->ch_num, edesc->processed); 864 edma_resume(echan); 865 } 866 } 867 868 static int edma_terminate_all(struct dma_chan *chan) 869 { 870 struct edma_chan *echan = to_edma_chan(chan); 871 unsigned long flags; 872 LIST_HEAD(head); 873 874 spin_lock_irqsave(&echan->vchan.lock, flags); 875 876 /* 877 * Stop DMA activity: we assume the callback will not be called 878 * after edma_dma() returns (even if it does, it will see 879 * echan->edesc is NULL and exit.) 880 */ 881 if (echan->edesc) { 882 edma_stop(echan); 883 /* Move the cyclic channel back to default queue */ 884 if (!echan->tc && echan->edesc->cyclic) 885 edma_assign_channel_eventq(echan, EVENTQ_DEFAULT); 886 887 vchan_terminate_vdesc(&echan->edesc->vdesc); 888 echan->edesc = NULL; 889 } 890 891 vchan_get_all_descriptors(&echan->vchan, &head); 892 spin_unlock_irqrestore(&echan->vchan.lock, flags); 893 vchan_dma_desc_free_list(&echan->vchan, &head); 894 895 return 0; 896 } 897 898 static void edma_synchronize(struct dma_chan *chan) 899 { 900 struct edma_chan *echan = to_edma_chan(chan); 901 902 vchan_synchronize(&echan->vchan); 903 } 904 905 static int edma_slave_config(struct dma_chan *chan, 906 struct dma_slave_config *cfg) 907 { 908 struct edma_chan *echan = to_edma_chan(chan); 909 910 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || 911 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) 912 return -EINVAL; 913 914 if (cfg->src_maxburst > chan->device->max_burst || 915 cfg->dst_maxburst > chan->device->max_burst) 916 return -EINVAL; 917 918 memcpy(&echan->cfg, cfg, sizeof(echan->cfg)); 919 920 return 0; 921 } 922 923 static int edma_dma_pause(struct dma_chan *chan) 924 { 925 struct edma_chan *echan = to_edma_chan(chan); 926 927 if (!echan->edesc) 928 return -EINVAL; 929 930 edma_pause(echan); 931 return 0; 932 } 933 934 static int edma_dma_resume(struct dma_chan *chan) 935 { 936 struct edma_chan *echan = to_edma_chan(chan); 937 938 edma_resume(echan); 939 return 0; 940 } 941 942 /* 943 * A PaRAM set configuration abstraction used by other modes 944 * @chan: Channel who's PaRAM set we're configuring 945 * @pset: PaRAM set to initialize and setup. 946 * @src_addr: Source address of the DMA 947 * @dst_addr: Destination address of the DMA 948 * @burst: In units of dev_width, how much to send 949 * @dev_width: How much is the dev_width 950 * @dma_length: Total length of the DMA transfer 951 * @direction: Direction of the transfer 952 */ 953 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset, 954 dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst, 955 unsigned int acnt, unsigned int dma_length, 956 enum dma_transfer_direction direction) 957 { 958 struct edma_chan *echan = to_edma_chan(chan); 959 struct device *dev = chan->device->dev; 960 struct edmacc_param *param = &epset->param; 961 int bcnt, ccnt, cidx; 962 int src_bidx, dst_bidx, src_cidx, dst_cidx; 963 int absync; 964 965 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */ 966 if (!burst) 967 burst = 1; 968 /* 969 * If the maxburst is equal to the fifo width, use 970 * A-synced transfers. This allows for large contiguous 971 * buffer transfers using only one PaRAM set. 972 */ 973 if (burst == 1) { 974 /* 975 * For the A-sync case, bcnt and ccnt are the remainder 976 * and quotient respectively of the division of: 977 * (dma_length / acnt) by (SZ_64K -1). This is so 978 * that in case bcnt over flows, we have ccnt to use. 979 * Note: In A-sync tranfer only, bcntrld is used, but it 980 * only applies for sg_dma_len(sg) >= SZ_64K. 981 * In this case, the best way adopted is- bccnt for the 982 * first frame will be the remainder below. Then for 983 * every successive frame, bcnt will be SZ_64K-1. This 984 * is assured as bcntrld = 0xffff in end of function. 985 */ 986 absync = false; 987 ccnt = dma_length / acnt / (SZ_64K - 1); 988 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1); 989 /* 990 * If bcnt is non-zero, we have a remainder and hence an 991 * extra frame to transfer, so increment ccnt. 992 */ 993 if (bcnt) 994 ccnt++; 995 else 996 bcnt = SZ_64K - 1; 997 cidx = acnt; 998 } else { 999 /* 1000 * If maxburst is greater than the fifo address_width, 1001 * use AB-synced transfers where A count is the fifo 1002 * address_width and B count is the maxburst. In this 1003 * case, we are limited to transfers of C count frames 1004 * of (address_width * maxburst) where C count is limited 1005 * to SZ_64K-1. This places an upper bound on the length 1006 * of an SG segment that can be handled. 1007 */ 1008 absync = true; 1009 bcnt = burst; 1010 ccnt = dma_length / (acnt * bcnt); 1011 if (ccnt > (SZ_64K - 1)) { 1012 dev_err(dev, "Exceeded max SG segment size\n"); 1013 return -EINVAL; 1014 } 1015 cidx = acnt * bcnt; 1016 } 1017 1018 epset->len = dma_length; 1019 1020 if (direction == DMA_MEM_TO_DEV) { 1021 src_bidx = acnt; 1022 src_cidx = cidx; 1023 dst_bidx = 0; 1024 dst_cidx = 0; 1025 epset->addr = src_addr; 1026 } else if (direction == DMA_DEV_TO_MEM) { 1027 src_bidx = 0; 1028 src_cidx = 0; 1029 dst_bidx = acnt; 1030 dst_cidx = cidx; 1031 epset->addr = dst_addr; 1032 } else if (direction == DMA_MEM_TO_MEM) { 1033 src_bidx = acnt; 1034 src_cidx = cidx; 1035 dst_bidx = acnt; 1036 dst_cidx = cidx; 1037 epset->addr = src_addr; 1038 } else { 1039 dev_err(dev, "%s: direction not implemented yet\n", __func__); 1040 return -EINVAL; 1041 } 1042 1043 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); 1044 /* Configure A or AB synchronized transfers */ 1045 if (absync) 1046 param->opt |= SYNCDIM; 1047 1048 param->src = src_addr; 1049 param->dst = dst_addr; 1050 1051 param->src_dst_bidx = (dst_bidx << 16) | src_bidx; 1052 param->src_dst_cidx = (dst_cidx << 16) | src_cidx; 1053 1054 param->a_b_cnt = bcnt << 16 | acnt; 1055 param->ccnt = ccnt; 1056 /* 1057 * Only time when (bcntrld) auto reload is required is for 1058 * A-sync case, and in this case, a requirement of reload value 1059 * of SZ_64K-1 only is assured. 'link' is initially set to NULL 1060 * and then later will be populated by edma_execute. 1061 */ 1062 param->link_bcntrld = 0xffffffff; 1063 return absync; 1064 } 1065 1066 static struct dma_async_tx_descriptor *edma_prep_slave_sg( 1067 struct dma_chan *chan, struct scatterlist *sgl, 1068 unsigned int sg_len, enum dma_transfer_direction direction, 1069 unsigned long tx_flags, void *context) 1070 { 1071 struct edma_chan *echan = to_edma_chan(chan); 1072 struct device *dev = chan->device->dev; 1073 struct edma_desc *edesc; 1074 dma_addr_t src_addr = 0, dst_addr = 0; 1075 enum dma_slave_buswidth dev_width; 1076 u32 burst; 1077 struct scatterlist *sg; 1078 int i, nslots, ret; 1079 1080 if (unlikely(!echan || !sgl || !sg_len)) 1081 return NULL; 1082 1083 if (direction == DMA_DEV_TO_MEM) { 1084 src_addr = echan->cfg.src_addr; 1085 dev_width = echan->cfg.src_addr_width; 1086 burst = echan->cfg.src_maxburst; 1087 } else if (direction == DMA_MEM_TO_DEV) { 1088 dst_addr = echan->cfg.dst_addr; 1089 dev_width = echan->cfg.dst_addr_width; 1090 burst = echan->cfg.dst_maxburst; 1091 } else { 1092 dev_err(dev, "%s: bad direction: %d\n", __func__, direction); 1093 return NULL; 1094 } 1095 1096 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { 1097 dev_err(dev, "%s: Undefined slave buswidth\n", __func__); 1098 return NULL; 1099 } 1100 1101 edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC); 1102 if (!edesc) 1103 return NULL; 1104 1105 edesc->pset_nr = sg_len; 1106 edesc->residue = 0; 1107 edesc->direction = direction; 1108 edesc->echan = echan; 1109 1110 /* Allocate a PaRAM slot, if needed */ 1111 nslots = min_t(unsigned, MAX_NR_SG, sg_len); 1112 1113 for (i = 0; i < nslots; i++) { 1114 if (echan->slot[i] < 0) { 1115 echan->slot[i] = 1116 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); 1117 if (echan->slot[i] < 0) { 1118 kfree(edesc); 1119 dev_err(dev, "%s: Failed to allocate slot\n", 1120 __func__); 1121 return NULL; 1122 } 1123 } 1124 } 1125 1126 /* Configure PaRAM sets for each SG */ 1127 for_each_sg(sgl, sg, sg_len, i) { 1128 /* Get address for each SG */ 1129 if (direction == DMA_DEV_TO_MEM) 1130 dst_addr = sg_dma_address(sg); 1131 else 1132 src_addr = sg_dma_address(sg); 1133 1134 ret = edma_config_pset(chan, &edesc->pset[i], src_addr, 1135 dst_addr, burst, dev_width, 1136 sg_dma_len(sg), direction); 1137 if (ret < 0) { 1138 kfree(edesc); 1139 return NULL; 1140 } 1141 1142 edesc->absync = ret; 1143 edesc->residue += sg_dma_len(sg); 1144 1145 if (i == sg_len - 1) 1146 /* Enable completion interrupt */ 1147 edesc->pset[i].param.opt |= TCINTEN; 1148 else if (!((i+1) % MAX_NR_SG)) 1149 /* 1150 * Enable early completion interrupt for the 1151 * intermediateset. In this case the driver will be 1152 * notified when the paRAM set is submitted to TC. This 1153 * will allow more time to set up the next set of slots. 1154 */ 1155 edesc->pset[i].param.opt |= (TCINTEN | TCCMODE); 1156 } 1157 edesc->residue_stat = edesc->residue; 1158 1159 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1160 } 1161 1162 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy( 1163 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1164 size_t len, unsigned long tx_flags) 1165 { 1166 int ret, nslots; 1167 struct edma_desc *edesc; 1168 struct device *dev = chan->device->dev; 1169 struct edma_chan *echan = to_edma_chan(chan); 1170 unsigned int width, pset_len, array_size; 1171 1172 if (unlikely(!echan || !len)) 1173 return NULL; 1174 1175 /* Align the array size (acnt block) with the transfer properties */ 1176 switch (__ffs((src | dest | len))) { 1177 case 0: 1178 array_size = SZ_32K - 1; 1179 break; 1180 case 1: 1181 array_size = SZ_32K - 2; 1182 break; 1183 default: 1184 array_size = SZ_32K - 4; 1185 break; 1186 } 1187 1188 if (len < SZ_64K) { 1189 /* 1190 * Transfer size less than 64K can be handled with one paRAM 1191 * slot and with one burst. 1192 * ACNT = length 1193 */ 1194 width = len; 1195 pset_len = len; 1196 nslots = 1; 1197 } else { 1198 /* 1199 * Transfer size bigger than 64K will be handled with maximum of 1200 * two paRAM slots. 1201 * slot1: (full_length / 32767) times 32767 bytes bursts. 1202 * ACNT = 32767, length1: (full_length / 32767) * 32767 1203 * slot2: the remaining amount of data after slot1. 1204 * ACNT = full_length - length1, length2 = ACNT 1205 * 1206 * When the full_length is multibple of 32767 one slot can be 1207 * used to complete the transfer. 1208 */ 1209 width = array_size; 1210 pset_len = rounddown(len, width); 1211 /* One slot is enough for lengths multiple of (SZ_32K -1) */ 1212 if (unlikely(pset_len == len)) 1213 nslots = 1; 1214 else 1215 nslots = 2; 1216 } 1217 1218 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC); 1219 if (!edesc) 1220 return NULL; 1221 1222 edesc->pset_nr = nslots; 1223 edesc->residue = edesc->residue_stat = len; 1224 edesc->direction = DMA_MEM_TO_MEM; 1225 edesc->echan = echan; 1226 1227 ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1, 1228 width, pset_len, DMA_MEM_TO_MEM); 1229 if (ret < 0) { 1230 kfree(edesc); 1231 return NULL; 1232 } 1233 1234 edesc->absync = ret; 1235 1236 edesc->pset[0].param.opt |= ITCCHEN; 1237 if (nslots == 1) { 1238 /* Enable transfer complete interrupt if requested */ 1239 if (tx_flags & DMA_PREP_INTERRUPT) 1240 edesc->pset[0].param.opt |= TCINTEN; 1241 } else { 1242 /* Enable transfer complete chaining for the first slot */ 1243 edesc->pset[0].param.opt |= TCCHEN; 1244 1245 if (echan->slot[1] < 0) { 1246 echan->slot[1] = edma_alloc_slot(echan->ecc, 1247 EDMA_SLOT_ANY); 1248 if (echan->slot[1] < 0) { 1249 kfree(edesc); 1250 dev_err(dev, "%s: Failed to allocate slot\n", 1251 __func__); 1252 return NULL; 1253 } 1254 } 1255 dest += pset_len; 1256 src += pset_len; 1257 pset_len = width = len % array_size; 1258 1259 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1, 1260 width, pset_len, DMA_MEM_TO_MEM); 1261 if (ret < 0) { 1262 kfree(edesc); 1263 return NULL; 1264 } 1265 1266 edesc->pset[1].param.opt |= ITCCHEN; 1267 /* Enable transfer complete interrupt if requested */ 1268 if (tx_flags & DMA_PREP_INTERRUPT) 1269 edesc->pset[1].param.opt |= TCINTEN; 1270 } 1271 1272 if (!(tx_flags & DMA_PREP_INTERRUPT)) 1273 edesc->polled = true; 1274 1275 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1276 } 1277 1278 static struct dma_async_tx_descriptor * 1279 edma_prep_dma_interleaved(struct dma_chan *chan, 1280 struct dma_interleaved_template *xt, 1281 unsigned long tx_flags) 1282 { 1283 struct device *dev = chan->device->dev; 1284 struct edma_chan *echan = to_edma_chan(chan); 1285 struct edmacc_param *param; 1286 struct edma_desc *edesc; 1287 size_t src_icg, dst_icg; 1288 int src_bidx, dst_bidx; 1289 1290 /* Slave mode is not supported */ 1291 if (is_slave_direction(xt->dir)) 1292 return NULL; 1293 1294 if (xt->frame_size != 1 || xt->numf == 0) 1295 return NULL; 1296 1297 if (xt->sgl[0].size > SZ_64K || xt->numf > SZ_64K) 1298 return NULL; 1299 1300 src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]); 1301 if (src_icg) { 1302 src_bidx = src_icg + xt->sgl[0].size; 1303 } else if (xt->src_inc) { 1304 src_bidx = xt->sgl[0].size; 1305 } else { 1306 dev_err(dev, "%s: SRC constant addressing is not supported\n", 1307 __func__); 1308 return NULL; 1309 } 1310 1311 dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]); 1312 if (dst_icg) { 1313 dst_bidx = dst_icg + xt->sgl[0].size; 1314 } else if (xt->dst_inc) { 1315 dst_bidx = xt->sgl[0].size; 1316 } else { 1317 dev_err(dev, "%s: DST constant addressing is not supported\n", 1318 __func__); 1319 return NULL; 1320 } 1321 1322 if (src_bidx > SZ_64K || dst_bidx > SZ_64K) 1323 return NULL; 1324 1325 edesc = kzalloc(struct_size(edesc, pset, 1), GFP_ATOMIC); 1326 if (!edesc) 1327 return NULL; 1328 1329 edesc->direction = DMA_MEM_TO_MEM; 1330 edesc->echan = echan; 1331 edesc->pset_nr = 1; 1332 1333 param = &edesc->pset[0].param; 1334 1335 param->src = xt->src_start; 1336 param->dst = xt->dst_start; 1337 param->a_b_cnt = xt->numf << 16 | xt->sgl[0].size; 1338 param->ccnt = 1; 1339 param->src_dst_bidx = (dst_bidx << 16) | src_bidx; 1340 param->src_dst_cidx = 0; 1341 1342 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); 1343 param->opt |= ITCCHEN; 1344 /* Enable transfer complete interrupt if requested */ 1345 if (tx_flags & DMA_PREP_INTERRUPT) 1346 param->opt |= TCINTEN; 1347 else 1348 edesc->polled = true; 1349 1350 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1351 } 1352 1353 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic( 1354 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1355 size_t period_len, enum dma_transfer_direction direction, 1356 unsigned long tx_flags) 1357 { 1358 struct edma_chan *echan = to_edma_chan(chan); 1359 struct device *dev = chan->device->dev; 1360 struct edma_desc *edesc; 1361 dma_addr_t src_addr, dst_addr; 1362 enum dma_slave_buswidth dev_width; 1363 bool use_intermediate = false; 1364 u32 burst; 1365 int i, ret, nslots; 1366 1367 if (unlikely(!echan || !buf_len || !period_len)) 1368 return NULL; 1369 1370 if (direction == DMA_DEV_TO_MEM) { 1371 src_addr = echan->cfg.src_addr; 1372 dst_addr = buf_addr; 1373 dev_width = echan->cfg.src_addr_width; 1374 burst = echan->cfg.src_maxburst; 1375 } else if (direction == DMA_MEM_TO_DEV) { 1376 src_addr = buf_addr; 1377 dst_addr = echan->cfg.dst_addr; 1378 dev_width = echan->cfg.dst_addr_width; 1379 burst = echan->cfg.dst_maxburst; 1380 } else { 1381 dev_err(dev, "%s: bad direction: %d\n", __func__, direction); 1382 return NULL; 1383 } 1384 1385 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { 1386 dev_err(dev, "%s: Undefined slave buswidth\n", __func__); 1387 return NULL; 1388 } 1389 1390 if (unlikely(buf_len % period_len)) { 1391 dev_err(dev, "Period should be multiple of Buffer length\n"); 1392 return NULL; 1393 } 1394 1395 nslots = (buf_len / period_len) + 1; 1396 1397 /* 1398 * Cyclic DMA users such as audio cannot tolerate delays introduced 1399 * by cases where the number of periods is more than the maximum 1400 * number of SGs the EDMA driver can handle at a time. For DMA types 1401 * such as Slave SGs, such delays are tolerable and synchronized, 1402 * but the synchronization is difficult to achieve with Cyclic and 1403 * cannot be guaranteed, so we error out early. 1404 */ 1405 if (nslots > MAX_NR_SG) { 1406 /* 1407 * If the burst and period sizes are the same, we can put 1408 * the full buffer into a single period and activate 1409 * intermediate interrupts. This will produce interrupts 1410 * after each burst, which is also after each desired period. 1411 */ 1412 if (burst == period_len) { 1413 period_len = buf_len; 1414 nslots = 2; 1415 use_intermediate = true; 1416 } else { 1417 return NULL; 1418 } 1419 } 1420 1421 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC); 1422 if (!edesc) 1423 return NULL; 1424 1425 edesc->cyclic = 1; 1426 edesc->pset_nr = nslots; 1427 edesc->residue = edesc->residue_stat = buf_len; 1428 edesc->direction = direction; 1429 edesc->echan = echan; 1430 1431 dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n", 1432 __func__, echan->ch_num, nslots, period_len, buf_len); 1433 1434 for (i = 0; i < nslots; i++) { 1435 /* Allocate a PaRAM slot, if needed */ 1436 if (echan->slot[i] < 0) { 1437 echan->slot[i] = 1438 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); 1439 if (echan->slot[i] < 0) { 1440 kfree(edesc); 1441 dev_err(dev, "%s: Failed to allocate slot\n", 1442 __func__); 1443 return NULL; 1444 } 1445 } 1446 1447 if (i == nslots - 1) { 1448 memcpy(&edesc->pset[i], &edesc->pset[0], 1449 sizeof(edesc->pset[0])); 1450 break; 1451 } 1452 1453 ret = edma_config_pset(chan, &edesc->pset[i], src_addr, 1454 dst_addr, burst, dev_width, period_len, 1455 direction); 1456 if (ret < 0) { 1457 kfree(edesc); 1458 return NULL; 1459 } 1460 1461 if (direction == DMA_DEV_TO_MEM) 1462 dst_addr += period_len; 1463 else 1464 src_addr += period_len; 1465 1466 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i); 1467 dev_vdbg(dev, 1468 "\n pset[%d]:\n" 1469 " chnum\t%d\n" 1470 " slot\t%d\n" 1471 " opt\t%08x\n" 1472 " src\t%08x\n" 1473 " dst\t%08x\n" 1474 " abcnt\t%08x\n" 1475 " ccnt\t%08x\n" 1476 " bidx\t%08x\n" 1477 " cidx\t%08x\n" 1478 " lkrld\t%08x\n", 1479 i, echan->ch_num, echan->slot[i], 1480 edesc->pset[i].param.opt, 1481 edesc->pset[i].param.src, 1482 edesc->pset[i].param.dst, 1483 edesc->pset[i].param.a_b_cnt, 1484 edesc->pset[i].param.ccnt, 1485 edesc->pset[i].param.src_dst_bidx, 1486 edesc->pset[i].param.src_dst_cidx, 1487 edesc->pset[i].param.link_bcntrld); 1488 1489 edesc->absync = ret; 1490 1491 /* 1492 * Enable period interrupt only if it is requested 1493 */ 1494 if (tx_flags & DMA_PREP_INTERRUPT) { 1495 edesc->pset[i].param.opt |= TCINTEN; 1496 1497 /* Also enable intermediate interrupts if necessary */ 1498 if (use_intermediate) 1499 edesc->pset[i].param.opt |= ITCINTEN; 1500 } 1501 } 1502 1503 /* Place the cyclic channel to highest priority queue */ 1504 if (!echan->tc) 1505 edma_assign_channel_eventq(echan, EVENTQ_0); 1506 1507 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1508 } 1509 1510 static void edma_completion_handler(struct edma_chan *echan) 1511 { 1512 struct device *dev = echan->vchan.chan.device->dev; 1513 struct edma_desc *edesc; 1514 1515 spin_lock(&echan->vchan.lock); 1516 edesc = echan->edesc; 1517 if (edesc) { 1518 if (edesc->cyclic) { 1519 vchan_cyclic_callback(&edesc->vdesc); 1520 spin_unlock(&echan->vchan.lock); 1521 return; 1522 } else if (edesc->processed == edesc->pset_nr) { 1523 edesc->residue = 0; 1524 edma_stop(echan); 1525 vchan_cookie_complete(&edesc->vdesc); 1526 echan->edesc = NULL; 1527 1528 dev_dbg(dev, "Transfer completed on channel %d\n", 1529 echan->ch_num); 1530 } else { 1531 dev_dbg(dev, "Sub transfer completed on channel %d\n", 1532 echan->ch_num); 1533 1534 edma_pause(echan); 1535 1536 /* Update statistics for tx_status */ 1537 edesc->residue -= edesc->sg_len; 1538 edesc->residue_stat = edesc->residue; 1539 edesc->processed_stat = edesc->processed; 1540 } 1541 edma_execute(echan); 1542 } 1543 1544 spin_unlock(&echan->vchan.lock); 1545 } 1546 1547 /* eDMA interrupt handler */ 1548 static irqreturn_t dma_irq_handler(int irq, void *data) 1549 { 1550 struct edma_cc *ecc = data; 1551 int ctlr; 1552 u32 sh_ier; 1553 u32 sh_ipr; 1554 u32 bank; 1555 1556 ctlr = ecc->id; 1557 if (ctlr < 0) 1558 return IRQ_NONE; 1559 1560 dev_vdbg(ecc->dev, "dma_irq_handler\n"); 1561 1562 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0); 1563 if (!sh_ipr) { 1564 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1); 1565 if (!sh_ipr) 1566 return IRQ_NONE; 1567 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1); 1568 bank = 1; 1569 } else { 1570 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0); 1571 bank = 0; 1572 } 1573 1574 do { 1575 u32 slot; 1576 u32 channel; 1577 1578 slot = __ffs(sh_ipr); 1579 sh_ipr &= ~(BIT(slot)); 1580 1581 if (sh_ier & BIT(slot)) { 1582 channel = (bank << 5) | slot; 1583 /* Clear the corresponding IPR bits */ 1584 edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot)); 1585 edma_completion_handler(&ecc->slave_chans[channel]); 1586 } 1587 } while (sh_ipr); 1588 1589 edma_shadow0_write(ecc, SH_IEVAL, 1); 1590 return IRQ_HANDLED; 1591 } 1592 1593 static void edma_error_handler(struct edma_chan *echan) 1594 { 1595 struct edma_cc *ecc = echan->ecc; 1596 struct device *dev = echan->vchan.chan.device->dev; 1597 struct edmacc_param p; 1598 int err; 1599 1600 if (!echan->edesc) 1601 return; 1602 1603 spin_lock(&echan->vchan.lock); 1604 1605 err = edma_read_slot(ecc, echan->slot[0], &p); 1606 1607 /* 1608 * Issue later based on missed flag which will be sure 1609 * to happen as: 1610 * (1) we finished transmitting an intermediate slot and 1611 * edma_execute is coming up. 1612 * (2) or we finished current transfer and issue will 1613 * call edma_execute. 1614 * 1615 * Important note: issuing can be dangerous here and 1616 * lead to some nasty recursion when we are in a NULL 1617 * slot. So we avoid doing so and set the missed flag. 1618 */ 1619 if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) { 1620 dev_dbg(dev, "Error on null slot, setting miss\n"); 1621 echan->missed = 1; 1622 } else { 1623 /* 1624 * The slot is already programmed but the event got 1625 * missed, so its safe to issue it here. 1626 */ 1627 dev_dbg(dev, "Missed event, TRIGGERING\n"); 1628 edma_clean_channel(echan); 1629 edma_stop(echan); 1630 edma_start(echan); 1631 edma_trigger_channel(echan); 1632 } 1633 spin_unlock(&echan->vchan.lock); 1634 } 1635 1636 static inline bool edma_error_pending(struct edma_cc *ecc) 1637 { 1638 if (edma_read_array(ecc, EDMA_EMR, 0) || 1639 edma_read_array(ecc, EDMA_EMR, 1) || 1640 edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR)) 1641 return true; 1642 1643 return false; 1644 } 1645 1646 /* eDMA error interrupt handler */ 1647 static irqreturn_t dma_ccerr_handler(int irq, void *data) 1648 { 1649 struct edma_cc *ecc = data; 1650 int i, j; 1651 int ctlr; 1652 unsigned int cnt = 0; 1653 unsigned int val; 1654 1655 ctlr = ecc->id; 1656 if (ctlr < 0) 1657 return IRQ_NONE; 1658 1659 dev_vdbg(ecc->dev, "dma_ccerr_handler\n"); 1660 1661 if (!edma_error_pending(ecc)) { 1662 /* 1663 * The registers indicate no pending error event but the irq 1664 * handler has been called. 1665 * Ask eDMA to re-evaluate the error registers. 1666 */ 1667 dev_err(ecc->dev, "%s: Error interrupt without error event!\n", 1668 __func__); 1669 edma_write(ecc, EDMA_EEVAL, 1); 1670 return IRQ_NONE; 1671 } 1672 1673 while (1) { 1674 /* Event missed register(s) */ 1675 for (j = 0; j < 2; j++) { 1676 unsigned long emr; 1677 1678 val = edma_read_array(ecc, EDMA_EMR, j); 1679 if (!val) 1680 continue; 1681 1682 dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val); 1683 emr = val; 1684 for (i = find_next_bit(&emr, 32, 0); i < 32; 1685 i = find_next_bit(&emr, 32, i + 1)) { 1686 int k = (j << 5) + i; 1687 1688 /* Clear the corresponding EMR bits */ 1689 edma_write_array(ecc, EDMA_EMCR, j, BIT(i)); 1690 /* Clear any SER */ 1691 edma_shadow0_write_array(ecc, SH_SECR, j, 1692 BIT(i)); 1693 edma_error_handler(&ecc->slave_chans[k]); 1694 } 1695 } 1696 1697 val = edma_read(ecc, EDMA_QEMR); 1698 if (val) { 1699 dev_dbg(ecc->dev, "QEMR 0x%02x\n", val); 1700 /* Not reported, just clear the interrupt reason. */ 1701 edma_write(ecc, EDMA_QEMCR, val); 1702 edma_shadow0_write(ecc, SH_QSECR, val); 1703 } 1704 1705 val = edma_read(ecc, EDMA_CCERR); 1706 if (val) { 1707 dev_warn(ecc->dev, "CCERR 0x%08x\n", val); 1708 /* Not reported, just clear the interrupt reason. */ 1709 edma_write(ecc, EDMA_CCERRCLR, val); 1710 } 1711 1712 if (!edma_error_pending(ecc)) 1713 break; 1714 cnt++; 1715 if (cnt > 10) 1716 break; 1717 } 1718 edma_write(ecc, EDMA_EEVAL, 1); 1719 return IRQ_HANDLED; 1720 } 1721 1722 /* Alloc channel resources */ 1723 static int edma_alloc_chan_resources(struct dma_chan *chan) 1724 { 1725 struct edma_chan *echan = to_edma_chan(chan); 1726 struct edma_cc *ecc = echan->ecc; 1727 struct device *dev = ecc->dev; 1728 enum dma_event_q eventq_no = EVENTQ_DEFAULT; 1729 int ret; 1730 1731 if (echan->tc) { 1732 eventq_no = echan->tc->id; 1733 } else if (ecc->tc_list) { 1734 /* memcpy channel */ 1735 echan->tc = &ecc->tc_list[ecc->info->default_queue]; 1736 eventq_no = echan->tc->id; 1737 } 1738 1739 ret = edma_alloc_channel(echan, eventq_no); 1740 if (ret) 1741 return ret; 1742 1743 echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num); 1744 if (echan->slot[0] < 0) { 1745 dev_err(dev, "Entry slot allocation failed for channel %u\n", 1746 EDMA_CHAN_SLOT(echan->ch_num)); 1747 ret = echan->slot[0]; 1748 goto err_slot; 1749 } 1750 1751 /* Set up channel -> slot mapping for the entry slot */ 1752 edma_set_chmap(echan, echan->slot[0]); 1753 echan->alloced = true; 1754 1755 dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n", 1756 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id, 1757 echan->hw_triggered ? "HW" : "SW"); 1758 1759 return 0; 1760 1761 err_slot: 1762 edma_free_channel(echan); 1763 return ret; 1764 } 1765 1766 /* Free channel resources */ 1767 static void edma_free_chan_resources(struct dma_chan *chan) 1768 { 1769 struct edma_chan *echan = to_edma_chan(chan); 1770 struct device *dev = echan->ecc->dev; 1771 int i; 1772 1773 /* Terminate transfers */ 1774 edma_stop(echan); 1775 1776 vchan_free_chan_resources(&echan->vchan); 1777 1778 /* Free EDMA PaRAM slots */ 1779 for (i = 0; i < EDMA_MAX_SLOTS; i++) { 1780 if (echan->slot[i] >= 0) { 1781 edma_free_slot(echan->ecc, echan->slot[i]); 1782 echan->slot[i] = -1; 1783 } 1784 } 1785 1786 /* Set entry slot to the dummy slot */ 1787 edma_set_chmap(echan, echan->ecc->dummy_slot); 1788 1789 /* Free EDMA channel */ 1790 if (echan->alloced) { 1791 edma_free_channel(echan); 1792 echan->alloced = false; 1793 } 1794 1795 echan->tc = NULL; 1796 echan->hw_triggered = false; 1797 1798 dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n", 1799 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id); 1800 } 1801 1802 /* Send pending descriptor to hardware */ 1803 static void edma_issue_pending(struct dma_chan *chan) 1804 { 1805 struct edma_chan *echan = to_edma_chan(chan); 1806 unsigned long flags; 1807 1808 spin_lock_irqsave(&echan->vchan.lock, flags); 1809 if (vchan_issue_pending(&echan->vchan) && !echan->edesc) 1810 edma_execute(echan); 1811 spin_unlock_irqrestore(&echan->vchan.lock, flags); 1812 } 1813 1814 /* 1815 * This limit exists to avoid a possible infinite loop when waiting for proof 1816 * that a particular transfer is completed. This limit can be hit if there 1817 * are large bursts to/from slow devices or the CPU is never able to catch 1818 * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART 1819 * RX-FIFO, as many as 55 loops have been seen. 1820 */ 1821 #define EDMA_MAX_TR_WAIT_LOOPS 1000 1822 1823 static u32 edma_residue(struct edma_desc *edesc) 1824 { 1825 bool dst = edesc->direction == DMA_DEV_TO_MEM; 1826 int loop_count = EDMA_MAX_TR_WAIT_LOOPS; 1827 struct edma_chan *echan = edesc->echan; 1828 struct edma_pset *pset = edesc->pset; 1829 dma_addr_t done, pos, pos_old; 1830 int channel = EDMA_CHAN_SLOT(echan->ch_num); 1831 int idx = EDMA_REG_ARRAY_INDEX(channel); 1832 int ch_bit = EDMA_CHANNEL_BIT(channel); 1833 int event_reg; 1834 int i; 1835 1836 /* 1837 * We always read the dst/src position from the first RamPar 1838 * pset. That's the one which is active now. 1839 */ 1840 pos = edma_get_position(echan->ecc, echan->slot[0], dst); 1841 1842 /* 1843 * "pos" may represent a transfer request that is still being 1844 * processed by the EDMACC or EDMATC. We will busy wait until 1845 * any one of the situations occurs: 1846 * 1. while and event is pending for the channel 1847 * 2. a position updated 1848 * 3. we hit the loop limit 1849 */ 1850 if (is_slave_direction(edesc->direction)) 1851 event_reg = SH_ER; 1852 else 1853 event_reg = SH_ESR; 1854 1855 pos_old = pos; 1856 while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) { 1857 pos = edma_get_position(echan->ecc, echan->slot[0], dst); 1858 if (pos != pos_old) 1859 break; 1860 1861 if (!--loop_count) { 1862 dev_dbg_ratelimited(echan->vchan.chan.device->dev, 1863 "%s: timeout waiting for PaRAM update\n", 1864 __func__); 1865 break; 1866 } 1867 1868 cpu_relax(); 1869 } 1870 1871 /* 1872 * Cyclic is simple. Just subtract pset[0].addr from pos. 1873 * 1874 * We never update edesc->residue in the cyclic case, so we 1875 * can tell the remaining room to the end of the circular 1876 * buffer. 1877 */ 1878 if (edesc->cyclic) { 1879 done = pos - pset->addr; 1880 edesc->residue_stat = edesc->residue - done; 1881 return edesc->residue_stat; 1882 } 1883 1884 /* 1885 * If the position is 0, then EDMA loaded the closing dummy slot, the 1886 * transfer is completed 1887 */ 1888 if (!pos) 1889 return 0; 1890 /* 1891 * For SG operation we catch up with the last processed 1892 * status. 1893 */ 1894 pset += edesc->processed_stat; 1895 1896 for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) { 1897 /* 1898 * If we are inside this pset address range, we know 1899 * this is the active one. Get the current delta and 1900 * stop walking the psets. 1901 */ 1902 if (pos >= pset->addr && pos < pset->addr + pset->len) 1903 return edesc->residue_stat - (pos - pset->addr); 1904 1905 /* Otherwise mark it done and update residue_stat. */ 1906 edesc->processed_stat++; 1907 edesc->residue_stat -= pset->len; 1908 } 1909 return edesc->residue_stat; 1910 } 1911 1912 /* Check request completion status */ 1913 static enum dma_status edma_tx_status(struct dma_chan *chan, 1914 dma_cookie_t cookie, 1915 struct dma_tx_state *txstate) 1916 { 1917 struct edma_chan *echan = to_edma_chan(chan); 1918 struct dma_tx_state txstate_tmp; 1919 enum dma_status ret; 1920 unsigned long flags; 1921 1922 ret = dma_cookie_status(chan, cookie, txstate); 1923 1924 if (ret == DMA_COMPLETE) 1925 return ret; 1926 1927 /* Provide a dummy dma_tx_state for completion checking */ 1928 if (!txstate) 1929 txstate = &txstate_tmp; 1930 1931 spin_lock_irqsave(&echan->vchan.lock, flags); 1932 if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) { 1933 txstate->residue = edma_residue(echan->edesc); 1934 } else { 1935 struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan, 1936 cookie); 1937 1938 if (vdesc) 1939 txstate->residue = to_edma_desc(&vdesc->tx)->residue; 1940 else 1941 txstate->residue = 0; 1942 } 1943 1944 /* 1945 * Mark the cookie completed if the residue is 0 for non cyclic 1946 * transfers 1947 */ 1948 if (ret != DMA_COMPLETE && !txstate->residue && 1949 echan->edesc && echan->edesc->polled && 1950 echan->edesc->vdesc.tx.cookie == cookie) { 1951 edma_stop(echan); 1952 vchan_cookie_complete(&echan->edesc->vdesc); 1953 echan->edesc = NULL; 1954 edma_execute(echan); 1955 ret = DMA_COMPLETE; 1956 } 1957 1958 spin_unlock_irqrestore(&echan->vchan.lock, flags); 1959 1960 return ret; 1961 } 1962 1963 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels) 1964 { 1965 if (!memcpy_channels) 1966 return false; 1967 while (*memcpy_channels != -1) { 1968 if (*memcpy_channels == ch_num) 1969 return true; 1970 memcpy_channels++; 1971 } 1972 return false; 1973 } 1974 1975 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 1976 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 1977 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ 1978 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 1979 1980 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode) 1981 { 1982 struct dma_device *s_ddev = &ecc->dma_slave; 1983 struct dma_device *m_ddev = NULL; 1984 s32 *memcpy_channels = ecc->info->memcpy_channels; 1985 int i, j; 1986 1987 dma_cap_zero(s_ddev->cap_mask); 1988 dma_cap_set(DMA_SLAVE, s_ddev->cap_mask); 1989 dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask); 1990 if (ecc->legacy_mode && !memcpy_channels) { 1991 dev_warn(ecc->dev, 1992 "Legacy memcpy is enabled, things might not work\n"); 1993 1994 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask); 1995 dma_cap_set(DMA_INTERLEAVE, s_ddev->cap_mask); 1996 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; 1997 s_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved; 1998 s_ddev->directions = BIT(DMA_MEM_TO_MEM); 1999 } 2000 2001 s_ddev->device_prep_slave_sg = edma_prep_slave_sg; 2002 s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic; 2003 s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; 2004 s_ddev->device_free_chan_resources = edma_free_chan_resources; 2005 s_ddev->device_issue_pending = edma_issue_pending; 2006 s_ddev->device_tx_status = edma_tx_status; 2007 s_ddev->device_config = edma_slave_config; 2008 s_ddev->device_pause = edma_dma_pause; 2009 s_ddev->device_resume = edma_dma_resume; 2010 s_ddev->device_terminate_all = edma_terminate_all; 2011 s_ddev->device_synchronize = edma_synchronize; 2012 2013 s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; 2014 s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; 2015 s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV)); 2016 s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 2017 s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */ 2018 2019 s_ddev->dev = ecc->dev; 2020 INIT_LIST_HEAD(&s_ddev->channels); 2021 2022 if (memcpy_channels) { 2023 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL); 2024 if (!m_ddev) { 2025 dev_warn(ecc->dev, "memcpy is disabled due to OoM\n"); 2026 memcpy_channels = NULL; 2027 goto ch_setup; 2028 } 2029 ecc->dma_memcpy = m_ddev; 2030 2031 dma_cap_zero(m_ddev->cap_mask); 2032 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask); 2033 dma_cap_set(DMA_INTERLEAVE, m_ddev->cap_mask); 2034 2035 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; 2036 m_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved; 2037 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; 2038 m_ddev->device_free_chan_resources = edma_free_chan_resources; 2039 m_ddev->device_issue_pending = edma_issue_pending; 2040 m_ddev->device_tx_status = edma_tx_status; 2041 m_ddev->device_config = edma_slave_config; 2042 m_ddev->device_pause = edma_dma_pause; 2043 m_ddev->device_resume = edma_dma_resume; 2044 m_ddev->device_terminate_all = edma_terminate_all; 2045 m_ddev->device_synchronize = edma_synchronize; 2046 2047 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; 2048 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; 2049 m_ddev->directions = BIT(DMA_MEM_TO_MEM); 2050 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 2051 2052 m_ddev->dev = ecc->dev; 2053 INIT_LIST_HEAD(&m_ddev->channels); 2054 } else if (!ecc->legacy_mode) { 2055 dev_info(ecc->dev, "memcpy is disabled\n"); 2056 } 2057 2058 ch_setup: 2059 for (i = 0; i < ecc->num_channels; i++) { 2060 struct edma_chan *echan = &ecc->slave_chans[i]; 2061 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i); 2062 echan->ecc = ecc; 2063 echan->vchan.desc_free = edma_desc_free; 2064 2065 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels)) 2066 vchan_init(&echan->vchan, m_ddev); 2067 else 2068 vchan_init(&echan->vchan, s_ddev); 2069 2070 INIT_LIST_HEAD(&echan->node); 2071 for (j = 0; j < EDMA_MAX_SLOTS; j++) 2072 echan->slot[j] = -1; 2073 } 2074 } 2075 2076 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata, 2077 struct edma_cc *ecc) 2078 { 2079 int i; 2080 u32 value, cccfg; 2081 s8 (*queue_priority_map)[2]; 2082 2083 /* Decode the eDMA3 configuration from CCCFG register */ 2084 cccfg = edma_read(ecc, EDMA_CCCFG); 2085 2086 value = GET_NUM_REGN(cccfg); 2087 ecc->num_region = BIT(value); 2088 2089 value = GET_NUM_DMACH(cccfg); 2090 ecc->num_channels = BIT(value + 1); 2091 2092 value = GET_NUM_QDMACH(cccfg); 2093 ecc->num_qchannels = value * 2; 2094 2095 value = GET_NUM_PAENTRY(cccfg); 2096 ecc->num_slots = BIT(value + 4); 2097 2098 value = GET_NUM_EVQUE(cccfg); 2099 ecc->num_tc = value + 1; 2100 2101 ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false; 2102 2103 dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg); 2104 dev_dbg(dev, "num_region: %u\n", ecc->num_region); 2105 dev_dbg(dev, "num_channels: %u\n", ecc->num_channels); 2106 dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels); 2107 dev_dbg(dev, "num_slots: %u\n", ecc->num_slots); 2108 dev_dbg(dev, "num_tc: %u\n", ecc->num_tc); 2109 dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no"); 2110 2111 /* Nothing need to be done if queue priority is provided */ 2112 if (pdata->queue_priority_mapping) 2113 return 0; 2114 2115 /* 2116 * Configure TC/queue priority as follows: 2117 * Q0 - priority 0 2118 * Q1 - priority 1 2119 * Q2 - priority 2 2120 * ... 2121 * The meaning of priority numbers: 0 highest priority, 7 lowest 2122 * priority. So Q0 is the highest priority queue and the last queue has 2123 * the lowest priority. 2124 */ 2125 queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8), 2126 GFP_KERNEL); 2127 if (!queue_priority_map) 2128 return -ENOMEM; 2129 2130 for (i = 0; i < ecc->num_tc; i++) { 2131 queue_priority_map[i][0] = i; 2132 queue_priority_map[i][1] = i; 2133 } 2134 queue_priority_map[i][0] = -1; 2135 queue_priority_map[i][1] = -1; 2136 2137 pdata->queue_priority_mapping = queue_priority_map; 2138 /* Default queue has the lowest priority */ 2139 pdata->default_queue = i - 1; 2140 2141 return 0; 2142 } 2143 2144 #if IS_ENABLED(CONFIG_OF) 2145 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata, 2146 size_t sz) 2147 { 2148 const char pname[] = "ti,edma-xbar-event-map"; 2149 struct resource res; 2150 void __iomem *xbar; 2151 s16 (*xbar_chans)[2]; 2152 size_t nelm = sz / sizeof(s16); 2153 u32 shift, offset, mux; 2154 int ret, i; 2155 2156 xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL); 2157 if (!xbar_chans) 2158 return -ENOMEM; 2159 2160 ret = of_address_to_resource(dev->of_node, 1, &res); 2161 if (ret) 2162 return -ENOMEM; 2163 2164 xbar = devm_ioremap(dev, res.start, resource_size(&res)); 2165 if (!xbar) 2166 return -ENOMEM; 2167 2168 ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans, 2169 nelm); 2170 if (ret) 2171 return -EIO; 2172 2173 /* Invalidate last entry for the other user of this mess */ 2174 nelm >>= 1; 2175 xbar_chans[nelm][0] = -1; 2176 xbar_chans[nelm][1] = -1; 2177 2178 for (i = 0; i < nelm; i++) { 2179 shift = (xbar_chans[i][1] & 0x03) << 3; 2180 offset = xbar_chans[i][1] & 0xfffffffc; 2181 mux = readl(xbar + offset); 2182 mux &= ~(0xff << shift); 2183 mux |= xbar_chans[i][0] << shift; 2184 writel(mux, (xbar + offset)); 2185 } 2186 2187 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans; 2188 return 0; 2189 } 2190 2191 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, 2192 bool legacy_mode) 2193 { 2194 struct edma_soc_info *info; 2195 struct property *prop; 2196 int sz, ret; 2197 2198 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL); 2199 if (!info) 2200 return ERR_PTR(-ENOMEM); 2201 2202 if (legacy_mode) { 2203 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map", 2204 &sz); 2205 if (prop) { 2206 ret = edma_xbar_event_map(dev, info, sz); 2207 if (ret) 2208 return ERR_PTR(ret); 2209 } 2210 return info; 2211 } 2212 2213 /* Get the list of channels allocated to be used for memcpy */ 2214 prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz); 2215 if (prop) { 2216 const char pname[] = "ti,edma-memcpy-channels"; 2217 size_t nelm = sz / sizeof(s32); 2218 s32 *memcpy_ch; 2219 2220 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32), 2221 GFP_KERNEL); 2222 if (!memcpy_ch) 2223 return ERR_PTR(-ENOMEM); 2224 2225 ret = of_property_read_u32_array(dev->of_node, pname, 2226 (u32 *)memcpy_ch, nelm); 2227 if (ret) 2228 return ERR_PTR(ret); 2229 2230 memcpy_ch[nelm] = -1; 2231 info->memcpy_channels = memcpy_ch; 2232 } 2233 2234 prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges", 2235 &sz); 2236 if (prop) { 2237 const char pname[] = "ti,edma-reserved-slot-ranges"; 2238 u32 (*tmp)[2]; 2239 s16 (*rsv_slots)[2]; 2240 size_t nelm = sz / sizeof(*tmp); 2241 struct edma_rsv_info *rsv_info; 2242 int i; 2243 2244 if (!nelm) 2245 return info; 2246 2247 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL); 2248 if (!tmp) 2249 return ERR_PTR(-ENOMEM); 2250 2251 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL); 2252 if (!rsv_info) { 2253 kfree(tmp); 2254 return ERR_PTR(-ENOMEM); 2255 } 2256 2257 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots), 2258 GFP_KERNEL); 2259 if (!rsv_slots) { 2260 kfree(tmp); 2261 return ERR_PTR(-ENOMEM); 2262 } 2263 2264 ret = of_property_read_u32_array(dev->of_node, pname, 2265 (u32 *)tmp, nelm * 2); 2266 if (ret) { 2267 kfree(tmp); 2268 return ERR_PTR(ret); 2269 } 2270 2271 for (i = 0; i < nelm; i++) { 2272 rsv_slots[i][0] = tmp[i][0]; 2273 rsv_slots[i][1] = tmp[i][1]; 2274 } 2275 rsv_slots[nelm][0] = -1; 2276 rsv_slots[nelm][1] = -1; 2277 2278 info->rsv = rsv_info; 2279 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots; 2280 2281 kfree(tmp); 2282 } 2283 2284 return info; 2285 } 2286 2287 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, 2288 struct of_dma *ofdma) 2289 { 2290 struct edma_cc *ecc = ofdma->of_dma_data; 2291 struct dma_chan *chan = NULL; 2292 struct edma_chan *echan; 2293 int i; 2294 2295 if (!ecc || dma_spec->args_count < 1) 2296 return NULL; 2297 2298 for (i = 0; i < ecc->num_channels; i++) { 2299 echan = &ecc->slave_chans[i]; 2300 if (echan->ch_num == dma_spec->args[0]) { 2301 chan = &echan->vchan.chan; 2302 break; 2303 } 2304 } 2305 2306 if (!chan) 2307 return NULL; 2308 2309 if (echan->ecc->legacy_mode && dma_spec->args_count == 1) 2310 goto out; 2311 2312 if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 && 2313 dma_spec->args[1] < echan->ecc->num_tc) { 2314 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]]; 2315 goto out; 2316 } 2317 2318 return NULL; 2319 out: 2320 /* The channel is going to be used as HW synchronized */ 2321 echan->hw_triggered = true; 2322 return dma_get_slave_channel(chan); 2323 } 2324 #else 2325 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, 2326 bool legacy_mode) 2327 { 2328 return ERR_PTR(-EINVAL); 2329 } 2330 2331 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, 2332 struct of_dma *ofdma) 2333 { 2334 return NULL; 2335 } 2336 #endif 2337 2338 static bool edma_filter_fn(struct dma_chan *chan, void *param); 2339 2340 static int edma_probe(struct platform_device *pdev) 2341 { 2342 struct edma_soc_info *info = pdev->dev.platform_data; 2343 s8 (*queue_priority_mapping)[2]; 2344 const s16 (*reserved)[2]; 2345 int i, irq; 2346 char *irq_name; 2347 struct resource *mem; 2348 struct device_node *node = pdev->dev.of_node; 2349 struct device *dev = &pdev->dev; 2350 struct edma_cc *ecc; 2351 bool legacy_mode = true; 2352 int ret; 2353 2354 if (node) { 2355 const struct of_device_id *match; 2356 2357 match = of_match_node(edma_of_ids, node); 2358 if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC) 2359 legacy_mode = false; 2360 2361 info = edma_setup_info_from_dt(dev, legacy_mode); 2362 if (IS_ERR(info)) { 2363 dev_err(dev, "failed to get DT data\n"); 2364 return PTR_ERR(info); 2365 } 2366 } 2367 2368 if (!info) 2369 return -ENODEV; 2370 2371 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 2372 if (ret) 2373 return ret; 2374 2375 ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); 2376 if (!ecc) 2377 return -ENOMEM; 2378 2379 ecc->dev = dev; 2380 ecc->id = pdev->id; 2381 ecc->legacy_mode = legacy_mode; 2382 /* When booting with DT the pdev->id is -1 */ 2383 if (ecc->id < 0) 2384 ecc->id = 0; 2385 2386 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc"); 2387 if (!mem) { 2388 dev_dbg(dev, "mem resource not found, using index 0\n"); 2389 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2390 if (!mem) { 2391 dev_err(dev, "no mem resource?\n"); 2392 return -ENODEV; 2393 } 2394 } 2395 ecc->base = devm_ioremap_resource(dev, mem); 2396 if (IS_ERR(ecc->base)) 2397 return PTR_ERR(ecc->base); 2398 2399 platform_set_drvdata(pdev, ecc); 2400 2401 pm_runtime_enable(dev); 2402 ret = pm_runtime_get_sync(dev); 2403 if (ret < 0) { 2404 dev_err(dev, "pm_runtime_get_sync() failed\n"); 2405 pm_runtime_disable(dev); 2406 return ret; 2407 } 2408 2409 /* Get eDMA3 configuration from IP */ 2410 ret = edma_setup_from_hw(dev, info, ecc); 2411 if (ret) 2412 goto err_disable_pm; 2413 2414 /* Allocate memory based on the information we got from the IP */ 2415 ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels, 2416 sizeof(*ecc->slave_chans), GFP_KERNEL); 2417 2418 ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots), 2419 sizeof(unsigned long), GFP_KERNEL); 2420 2421 ecc->channels_mask = devm_kcalloc(dev, 2422 BITS_TO_LONGS(ecc->num_channels), 2423 sizeof(unsigned long), GFP_KERNEL); 2424 if (!ecc->slave_chans || !ecc->slot_inuse || !ecc->channels_mask) { 2425 ret = -ENOMEM; 2426 goto err_disable_pm; 2427 } 2428 2429 /* Mark all channels available initially */ 2430 bitmap_fill(ecc->channels_mask, ecc->num_channels); 2431 2432 ecc->default_queue = info->default_queue; 2433 2434 if (info->rsv) { 2435 /* Set the reserved slots in inuse list */ 2436 reserved = info->rsv->rsv_slots; 2437 if (reserved) { 2438 for (i = 0; reserved[i][0] != -1; i++) 2439 bitmap_set(ecc->slot_inuse, reserved[i][0], 2440 reserved[i][1]); 2441 } 2442 2443 /* Clear channels not usable for Linux */ 2444 reserved = info->rsv->rsv_chans; 2445 if (reserved) { 2446 for (i = 0; reserved[i][0] != -1; i++) 2447 bitmap_clear(ecc->channels_mask, reserved[i][0], 2448 reserved[i][1]); 2449 } 2450 } 2451 2452 for (i = 0; i < ecc->num_slots; i++) { 2453 /* Reset only unused - not reserved - paRAM slots */ 2454 if (!test_bit(i, ecc->slot_inuse)) 2455 edma_write_slot(ecc, i, &dummy_paramset); 2456 } 2457 2458 irq = platform_get_irq_byname(pdev, "edma3_ccint"); 2459 if (irq < 0 && node) 2460 irq = irq_of_parse_and_map(node, 0); 2461 2462 if (irq >= 0) { 2463 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint", 2464 dev_name(dev)); 2465 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name, 2466 ecc); 2467 if (ret) { 2468 dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret); 2469 goto err_disable_pm; 2470 } 2471 ecc->ccint = irq; 2472 } 2473 2474 irq = platform_get_irq_byname(pdev, "edma3_ccerrint"); 2475 if (irq < 0 && node) 2476 irq = irq_of_parse_and_map(node, 2); 2477 2478 if (irq >= 0) { 2479 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint", 2480 dev_name(dev)); 2481 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name, 2482 ecc); 2483 if (ret) { 2484 dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret); 2485 goto err_disable_pm; 2486 } 2487 ecc->ccerrint = irq; 2488 } 2489 2490 ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY); 2491 if (ecc->dummy_slot < 0) { 2492 dev_err(dev, "Can't allocate PaRAM dummy slot\n"); 2493 ret = ecc->dummy_slot; 2494 goto err_disable_pm; 2495 } 2496 2497 queue_priority_mapping = info->queue_priority_mapping; 2498 2499 if (!ecc->legacy_mode) { 2500 int lowest_priority = 0; 2501 unsigned int array_max; 2502 struct of_phandle_args tc_args; 2503 2504 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc, 2505 sizeof(*ecc->tc_list), GFP_KERNEL); 2506 if (!ecc->tc_list) { 2507 ret = -ENOMEM; 2508 goto err_reg1; 2509 } 2510 2511 for (i = 0;; i++) { 2512 ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs", 2513 1, i, &tc_args); 2514 if (ret || i == ecc->num_tc) 2515 break; 2516 2517 ecc->tc_list[i].node = tc_args.np; 2518 ecc->tc_list[i].id = i; 2519 queue_priority_mapping[i][1] = tc_args.args[0]; 2520 if (queue_priority_mapping[i][1] > lowest_priority) { 2521 lowest_priority = queue_priority_mapping[i][1]; 2522 info->default_queue = i; 2523 } 2524 } 2525 2526 /* See if we have optional dma-channel-mask array */ 2527 array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32)); 2528 ret = of_property_read_variable_u32_array(node, 2529 "dma-channel-mask", 2530 (u32 *)ecc->channels_mask, 2531 1, array_max); 2532 if (ret > 0 && ret != array_max) 2533 dev_warn(dev, "dma-channel-mask is not complete.\n"); 2534 else if (ret == -EOVERFLOW || ret == -ENODATA) 2535 dev_warn(dev, 2536 "dma-channel-mask is out of range or empty\n"); 2537 } 2538 2539 /* Event queue priority mapping */ 2540 for (i = 0; queue_priority_mapping[i][0] != -1; i++) 2541 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], 2542 queue_priority_mapping[i][1]); 2543 2544 edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0); 2545 edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0); 2546 edma_write_array(ecc, EDMA_QRAE, 0, 0x0); 2547 2548 ecc->info = info; 2549 2550 /* Init the dma device and channels */ 2551 edma_dma_init(ecc, legacy_mode); 2552 2553 for (i = 0; i < ecc->num_channels; i++) { 2554 /* Do not touch reserved channels */ 2555 if (!test_bit(i, ecc->channels_mask)) 2556 continue; 2557 2558 /* Assign all channels to the default queue */ 2559 edma_assign_channel_eventq(&ecc->slave_chans[i], 2560 info->default_queue); 2561 /* Set entry slot to the dummy slot */ 2562 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot); 2563 } 2564 2565 ecc->dma_slave.filter.map = info->slave_map; 2566 ecc->dma_slave.filter.mapcnt = info->slavecnt; 2567 ecc->dma_slave.filter.fn = edma_filter_fn; 2568 2569 ret = dma_async_device_register(&ecc->dma_slave); 2570 if (ret) { 2571 dev_err(dev, "slave ddev registration failed (%d)\n", ret); 2572 goto err_reg1; 2573 } 2574 2575 if (ecc->dma_memcpy) { 2576 ret = dma_async_device_register(ecc->dma_memcpy); 2577 if (ret) { 2578 dev_err(dev, "memcpy ddev registration failed (%d)\n", 2579 ret); 2580 dma_async_device_unregister(&ecc->dma_slave); 2581 goto err_reg1; 2582 } 2583 } 2584 2585 if (node) 2586 of_dma_controller_register(node, of_edma_xlate, ecc); 2587 2588 dev_info(dev, "TI EDMA DMA engine driver\n"); 2589 2590 return 0; 2591 2592 err_reg1: 2593 edma_free_slot(ecc, ecc->dummy_slot); 2594 err_disable_pm: 2595 pm_runtime_put_sync(dev); 2596 pm_runtime_disable(dev); 2597 return ret; 2598 } 2599 2600 static void edma_cleanupp_vchan(struct dma_device *dmadev) 2601 { 2602 struct edma_chan *echan, *_echan; 2603 2604 list_for_each_entry_safe(echan, _echan, 2605 &dmadev->channels, vchan.chan.device_node) { 2606 list_del(&echan->vchan.chan.device_node); 2607 tasklet_kill(&echan->vchan.task); 2608 } 2609 } 2610 2611 static int edma_remove(struct platform_device *pdev) 2612 { 2613 struct device *dev = &pdev->dev; 2614 struct edma_cc *ecc = dev_get_drvdata(dev); 2615 2616 devm_free_irq(dev, ecc->ccint, ecc); 2617 devm_free_irq(dev, ecc->ccerrint, ecc); 2618 2619 edma_cleanupp_vchan(&ecc->dma_slave); 2620 2621 if (dev->of_node) 2622 of_dma_controller_free(dev->of_node); 2623 dma_async_device_unregister(&ecc->dma_slave); 2624 if (ecc->dma_memcpy) 2625 dma_async_device_unregister(ecc->dma_memcpy); 2626 edma_free_slot(ecc, ecc->dummy_slot); 2627 pm_runtime_put_sync(dev); 2628 pm_runtime_disable(dev); 2629 2630 return 0; 2631 } 2632 2633 #ifdef CONFIG_PM_SLEEP 2634 static int edma_pm_suspend(struct device *dev) 2635 { 2636 struct edma_cc *ecc = dev_get_drvdata(dev); 2637 struct edma_chan *echan = ecc->slave_chans; 2638 int i; 2639 2640 for (i = 0; i < ecc->num_channels; i++) { 2641 if (echan[i].alloced) 2642 edma_setup_interrupt(&echan[i], false); 2643 } 2644 2645 return 0; 2646 } 2647 2648 static int edma_pm_resume(struct device *dev) 2649 { 2650 struct edma_cc *ecc = dev_get_drvdata(dev); 2651 struct edma_chan *echan = ecc->slave_chans; 2652 int i; 2653 s8 (*queue_priority_mapping)[2]; 2654 2655 /* re initialize dummy slot to dummy param set */ 2656 edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset); 2657 2658 queue_priority_mapping = ecc->info->queue_priority_mapping; 2659 2660 /* Event queue priority mapping */ 2661 for (i = 0; queue_priority_mapping[i][0] != -1; i++) 2662 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], 2663 queue_priority_mapping[i][1]); 2664 2665 for (i = 0; i < ecc->num_channels; i++) { 2666 if (echan[i].alloced) { 2667 /* ensure access through shadow region 0 */ 2668 edma_or_array2(ecc, EDMA_DRAE, 0, 2669 EDMA_REG_ARRAY_INDEX(i), 2670 EDMA_CHANNEL_BIT(i)); 2671 2672 edma_setup_interrupt(&echan[i], true); 2673 2674 /* Set up channel -> slot mapping for the entry slot */ 2675 edma_set_chmap(&echan[i], echan[i].slot[0]); 2676 } 2677 } 2678 2679 return 0; 2680 } 2681 #endif 2682 2683 static const struct dev_pm_ops edma_pm_ops = { 2684 SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume) 2685 }; 2686 2687 static struct platform_driver edma_driver = { 2688 .probe = edma_probe, 2689 .remove = edma_remove, 2690 .driver = { 2691 .name = "edma", 2692 .pm = &edma_pm_ops, 2693 .of_match_table = edma_of_ids, 2694 }, 2695 }; 2696 2697 static int edma_tptc_probe(struct platform_device *pdev) 2698 { 2699 pm_runtime_enable(&pdev->dev); 2700 return pm_runtime_get_sync(&pdev->dev); 2701 } 2702 2703 static struct platform_driver edma_tptc_driver = { 2704 .probe = edma_tptc_probe, 2705 .driver = { 2706 .name = "edma3-tptc", 2707 .of_match_table = edma_tptc_of_ids, 2708 }, 2709 }; 2710 2711 static bool edma_filter_fn(struct dma_chan *chan, void *param) 2712 { 2713 bool match = false; 2714 2715 if (chan->device->dev->driver == &edma_driver.driver) { 2716 struct edma_chan *echan = to_edma_chan(chan); 2717 unsigned ch_req = *(unsigned *)param; 2718 if (ch_req == echan->ch_num) { 2719 /* The channel is going to be used as HW synchronized */ 2720 echan->hw_triggered = true; 2721 match = true; 2722 } 2723 } 2724 return match; 2725 } 2726 2727 static int edma_init(void) 2728 { 2729 int ret; 2730 2731 ret = platform_driver_register(&edma_tptc_driver); 2732 if (ret) 2733 return ret; 2734 2735 return platform_driver_register(&edma_driver); 2736 } 2737 subsys_initcall(edma_init); 2738 2739 static void __exit edma_exit(void) 2740 { 2741 platform_driver_unregister(&edma_driver); 2742 platform_driver_unregister(&edma_tptc_driver); 2743 } 2744 module_exit(edma_exit); 2745 2746 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>"); 2747 MODULE_DESCRIPTION("TI EDMA DMA engine driver"); 2748 MODULE_LICENSE("GPL v2"); 2749