xref: /openbmc/linux/drivers/dma/ti/edma.c (revision 2dfb62d6ce80b3536d1a915177ae82496bd7ac4a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TI EDMA DMA engine driver
4  *
5  * Copyright 2012 Texas Instruments
6  */
7 
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/bitmap.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/module.h>
16 #include <linux/platform_device.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
23 #include <linux/of_device.h>
24 #include <linux/pm_runtime.h>
25 
26 #include <linux/platform_data/edma.h>
27 
28 #include "../dmaengine.h"
29 #include "../virt-dma.h"
30 
31 /* Offsets matching "struct edmacc_param" */
32 #define PARM_OPT		0x00
33 #define PARM_SRC		0x04
34 #define PARM_A_B_CNT		0x08
35 #define PARM_DST		0x0c
36 #define PARM_SRC_DST_BIDX	0x10
37 #define PARM_LINK_BCNTRLD	0x14
38 #define PARM_SRC_DST_CIDX	0x18
39 #define PARM_CCNT		0x1c
40 
41 #define PARM_SIZE		0x20
42 
43 /* Offsets for EDMA CC global channel registers and their shadows */
44 #define SH_ER			0x00	/* 64 bits */
45 #define SH_ECR			0x08	/* 64 bits */
46 #define SH_ESR			0x10	/* 64 bits */
47 #define SH_CER			0x18	/* 64 bits */
48 #define SH_EER			0x20	/* 64 bits */
49 #define SH_EECR			0x28	/* 64 bits */
50 #define SH_EESR			0x30	/* 64 bits */
51 #define SH_SER			0x38	/* 64 bits */
52 #define SH_SECR			0x40	/* 64 bits */
53 #define SH_IER			0x50	/* 64 bits */
54 #define SH_IECR			0x58	/* 64 bits */
55 #define SH_IESR			0x60	/* 64 bits */
56 #define SH_IPR			0x68	/* 64 bits */
57 #define SH_ICR			0x70	/* 64 bits */
58 #define SH_IEVAL		0x78
59 #define SH_QER			0x80
60 #define SH_QEER			0x84
61 #define SH_QEECR		0x88
62 #define SH_QEESR		0x8c
63 #define SH_QSER			0x90
64 #define SH_QSECR		0x94
65 #define SH_SIZE			0x200
66 
67 /* Offsets for EDMA CC global registers */
68 #define EDMA_REV		0x0000
69 #define EDMA_CCCFG		0x0004
70 #define EDMA_QCHMAP		0x0200	/* 8 registers */
71 #define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
72 #define EDMA_QDMAQNUM		0x0260
73 #define EDMA_QUETCMAP		0x0280
74 #define EDMA_QUEPRI		0x0284
75 #define EDMA_EMR		0x0300	/* 64 bits */
76 #define EDMA_EMCR		0x0308	/* 64 bits */
77 #define EDMA_QEMR		0x0310
78 #define EDMA_QEMCR		0x0314
79 #define EDMA_CCERR		0x0318
80 #define EDMA_CCERRCLR		0x031c
81 #define EDMA_EEVAL		0x0320
82 #define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
83 #define EDMA_QRAE		0x0380	/* 4 registers */
84 #define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
85 #define EDMA_QSTAT		0x0600	/* 2 registers */
86 #define EDMA_QWMTHRA		0x0620
87 #define EDMA_QWMTHRB		0x0624
88 #define EDMA_CCSTAT		0x0640
89 
90 #define EDMA_M			0x1000	/* global channel registers */
91 #define EDMA_ECR		0x1008
92 #define EDMA_ECRH		0x100C
93 #define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
94 #define EDMA_PARM		0x4000	/* PaRAM entries */
95 
96 #define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
97 
98 #define EDMA_DCHMAP		0x0100  /* 64 registers */
99 
100 /* CCCFG register */
101 #define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
102 #define GET_NUM_QDMACH(x)	((x & 0x70) >> 4) /* bits 4-6 */
103 #define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
104 #define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
105 #define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
106 #define CHMAP_EXIST		BIT(24)
107 
108 /* CCSTAT register */
109 #define EDMA_CCSTAT_ACTV	BIT(4)
110 
111 /*
112  * Max of 20 segments per channel to conserve PaRAM slots
113  * Also note that MAX_NR_SG should be at least the no.of periods
114  * that are required for ASoC, otherwise DMA prep calls will
115  * fail. Today davinci-pcm is the only user of this driver and
116  * requires at least 17 slots, so we setup the default to 20.
117  */
118 #define MAX_NR_SG		20
119 #define EDMA_MAX_SLOTS		MAX_NR_SG
120 #define EDMA_DESCRIPTORS	16
121 
122 #define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
123 #define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
124 #define EDMA_CONT_PARAMS_ANY		 1001
125 #define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
126 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
127 
128 /*
129  * 64bit array registers are split into two 32bit registers:
130  * reg0: channel/event 0-31
131  * reg1: channel/event 32-63
132  *
133  * bit 5 in the channel number tells the array index (0/1)
134  * bit 0-4 (0x1f) is the bit offset within the register
135  */
136 #define EDMA_REG_ARRAY_INDEX(channel)	((channel) >> 5)
137 #define EDMA_CHANNEL_BIT(channel)	(BIT((channel) & 0x1f))
138 
139 /* PaRAM slots are laid out like this */
140 struct edmacc_param {
141 	u32 opt;
142 	u32 src;
143 	u32 a_b_cnt;
144 	u32 dst;
145 	u32 src_dst_bidx;
146 	u32 link_bcntrld;
147 	u32 src_dst_cidx;
148 	u32 ccnt;
149 } __packed;
150 
151 /* fields in edmacc_param.opt */
152 #define SAM		BIT(0)
153 #define DAM		BIT(1)
154 #define SYNCDIM		BIT(2)
155 #define STATIC		BIT(3)
156 #define EDMA_FWID	(0x07 << 8)
157 #define TCCMODE		BIT(11)
158 #define EDMA_TCC(t)	((t) << 12)
159 #define TCINTEN		BIT(20)
160 #define ITCINTEN	BIT(21)
161 #define TCCHEN		BIT(22)
162 #define ITCCHEN		BIT(23)
163 
164 struct edma_pset {
165 	u32				len;
166 	dma_addr_t			addr;
167 	struct edmacc_param		param;
168 };
169 
170 struct edma_desc {
171 	struct virt_dma_desc		vdesc;
172 	struct list_head		node;
173 	enum dma_transfer_direction	direction;
174 	int				cyclic;
175 	bool				polled;
176 	int				absync;
177 	int				pset_nr;
178 	struct edma_chan		*echan;
179 	int				processed;
180 
181 	/*
182 	 * The following 4 elements are used for residue accounting.
183 	 *
184 	 * - processed_stat: the number of SG elements we have traversed
185 	 * so far to cover accounting. This is updated directly to processed
186 	 * during edma_callback and is always <= processed, because processed
187 	 * refers to the number of pending transfer (programmed to EDMA
188 	 * controller), where as processed_stat tracks number of transfers
189 	 * accounted for so far.
190 	 *
191 	 * - residue: The amount of bytes we have left to transfer for this desc
192 	 *
193 	 * - residue_stat: The residue in bytes of data we have covered
194 	 * so far for accounting. This is updated directly to residue
195 	 * during callbacks to keep it current.
196 	 *
197 	 * - sg_len: Tracks the length of the current intermediate transfer,
198 	 * this is required to update the residue during intermediate transfer
199 	 * completion callback.
200 	 */
201 	int				processed_stat;
202 	u32				sg_len;
203 	u32				residue;
204 	u32				residue_stat;
205 
206 	struct edma_pset		pset[];
207 };
208 
209 struct edma_cc;
210 
211 struct edma_tc {
212 	struct device_node		*node;
213 	u16				id;
214 };
215 
216 struct edma_chan {
217 	struct virt_dma_chan		vchan;
218 	struct list_head		node;
219 	struct edma_desc		*edesc;
220 	struct edma_cc			*ecc;
221 	struct edma_tc			*tc;
222 	int				ch_num;
223 	bool				alloced;
224 	bool				hw_triggered;
225 	int				slot[EDMA_MAX_SLOTS];
226 	int				missed;
227 	struct dma_slave_config		cfg;
228 };
229 
230 struct edma_cc {
231 	struct device			*dev;
232 	struct edma_soc_info		*info;
233 	void __iomem			*base;
234 	int				id;
235 	bool				legacy_mode;
236 
237 	/* eDMA3 resource information */
238 	unsigned			num_channels;
239 	unsigned			num_qchannels;
240 	unsigned			num_region;
241 	unsigned			num_slots;
242 	unsigned			num_tc;
243 	bool				chmap_exist;
244 	enum dma_event_q		default_queue;
245 
246 	unsigned int			ccint;
247 	unsigned int			ccerrint;
248 
249 	/*
250 	 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
251 	 * in use by Linux or if it is allocated to be used by DSP.
252 	 */
253 	unsigned long *slot_inuse;
254 
255 	/*
256 	 * For tracking reserved channels used by DSP.
257 	 * If the bit is cleared, the channel is allocated to be used by DSP
258 	 * and Linux must not touch it.
259 	 */
260 	unsigned long *channels_mask;
261 
262 	struct dma_device		dma_slave;
263 	struct dma_device		*dma_memcpy;
264 	struct edma_chan		*slave_chans;
265 	struct edma_tc			*tc_list;
266 	int				dummy_slot;
267 };
268 
269 /* dummy param set used to (re)initialize parameter RAM slots */
270 static const struct edmacc_param dummy_paramset = {
271 	.link_bcntrld = 0xffff,
272 	.ccnt = 1,
273 };
274 
275 #define EDMA_BINDING_LEGACY	0
276 #define EDMA_BINDING_TPCC	1
277 static const u32 edma_binding_type[] = {
278 	[EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
279 	[EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
280 };
281 
282 static const struct of_device_id edma_of_ids[] = {
283 	{
284 		.compatible = "ti,edma3",
285 		.data = &edma_binding_type[EDMA_BINDING_LEGACY],
286 	},
287 	{
288 		.compatible = "ti,edma3-tpcc",
289 		.data = &edma_binding_type[EDMA_BINDING_TPCC],
290 	},
291 	{}
292 };
293 MODULE_DEVICE_TABLE(of, edma_of_ids);
294 
295 static const struct of_device_id edma_tptc_of_ids[] = {
296 	{ .compatible = "ti,edma3-tptc", },
297 	{}
298 };
299 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
300 
301 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
302 {
303 	return (unsigned int)__raw_readl(ecc->base + offset);
304 }
305 
306 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
307 {
308 	__raw_writel(val, ecc->base + offset);
309 }
310 
311 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
312 			       unsigned or)
313 {
314 	unsigned val = edma_read(ecc, offset);
315 
316 	val &= and;
317 	val |= or;
318 	edma_write(ecc, offset, val);
319 }
320 
321 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
322 {
323 	unsigned val = edma_read(ecc, offset);
324 
325 	val &= and;
326 	edma_write(ecc, offset, val);
327 }
328 
329 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
330 {
331 	unsigned val = edma_read(ecc, offset);
332 
333 	val |= or;
334 	edma_write(ecc, offset, val);
335 }
336 
337 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
338 					   int i)
339 {
340 	return edma_read(ecc, offset + (i << 2));
341 }
342 
343 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
344 				    unsigned val)
345 {
346 	edma_write(ecc, offset + (i << 2), val);
347 }
348 
349 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
350 				     unsigned and, unsigned or)
351 {
352 	edma_modify(ecc, offset + (i << 2), and, or);
353 }
354 
355 static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
356 				 unsigned or)
357 {
358 	edma_or(ecc, offset + (i << 2), or);
359 }
360 
361 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
362 				  unsigned or)
363 {
364 	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
365 }
366 
367 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
368 				     int j, unsigned val)
369 {
370 	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
371 }
372 
373 static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
374 {
375 	return edma_read(ecc, EDMA_SHADOW0 + offset);
376 }
377 
378 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
379 						   int offset, int i)
380 {
381 	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
382 }
383 
384 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
385 				      unsigned val)
386 {
387 	edma_write(ecc, EDMA_SHADOW0 + offset, val);
388 }
389 
390 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
391 					    int i, unsigned val)
392 {
393 	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
394 }
395 
396 static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
397 					   int param_no)
398 {
399 	return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
400 }
401 
402 static inline void edma_param_write(struct edma_cc *ecc, int offset,
403 				    int param_no, unsigned val)
404 {
405 	edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
406 }
407 
408 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
409 				     int param_no, unsigned and, unsigned or)
410 {
411 	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
412 }
413 
414 static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
415 				  unsigned and)
416 {
417 	edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
418 }
419 
420 static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
421 				 unsigned or)
422 {
423 	edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
424 }
425 
426 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
427 					  int priority)
428 {
429 	int bit = queue_no * 4;
430 
431 	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
432 }
433 
434 static void edma_set_chmap(struct edma_chan *echan, int slot)
435 {
436 	struct edma_cc *ecc = echan->ecc;
437 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
438 
439 	if (ecc->chmap_exist) {
440 		slot = EDMA_CHAN_SLOT(slot);
441 		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
442 	}
443 }
444 
445 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
446 {
447 	struct edma_cc *ecc = echan->ecc;
448 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
449 	int idx = EDMA_REG_ARRAY_INDEX(channel);
450 	int ch_bit = EDMA_CHANNEL_BIT(channel);
451 
452 	if (enable) {
453 		edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
454 		edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit);
455 	} else {
456 		edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit);
457 	}
458 }
459 
460 /*
461  * paRAM slot management functions
462  */
463 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
464 			    const struct edmacc_param *param)
465 {
466 	slot = EDMA_CHAN_SLOT(slot);
467 	if (slot >= ecc->num_slots)
468 		return;
469 	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
470 }
471 
472 static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
473 			   struct edmacc_param *param)
474 {
475 	slot = EDMA_CHAN_SLOT(slot);
476 	if (slot >= ecc->num_slots)
477 		return -EINVAL;
478 	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
479 
480 	return 0;
481 }
482 
483 /**
484  * edma_alloc_slot - allocate DMA parameter RAM
485  * @ecc: pointer to edma_cc struct
486  * @slot: specific slot to allocate; negative for "any unused slot"
487  *
488  * This allocates a parameter RAM slot, initializing it to hold a
489  * dummy transfer.  Slots allocated using this routine have not been
490  * mapped to a hardware DMA channel, and will normally be used by
491  * linking to them from a slot associated with a DMA channel.
492  *
493  * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
494  * slots may be allocated on behalf of DSP firmware.
495  *
496  * Returns the number of the slot, else negative errno.
497  */
498 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
499 {
500 	if (slot >= 0) {
501 		slot = EDMA_CHAN_SLOT(slot);
502 		/* Requesting entry paRAM slot for a HW triggered channel. */
503 		if (ecc->chmap_exist && slot < ecc->num_channels)
504 			slot = EDMA_SLOT_ANY;
505 	}
506 
507 	if (slot < 0) {
508 		if (ecc->chmap_exist)
509 			slot = 0;
510 		else
511 			slot = ecc->num_channels;
512 		for (;;) {
513 			slot = find_next_zero_bit(ecc->slot_inuse,
514 						  ecc->num_slots,
515 						  slot);
516 			if (slot == ecc->num_slots)
517 				return -ENOMEM;
518 			if (!test_and_set_bit(slot, ecc->slot_inuse))
519 				break;
520 		}
521 	} else if (slot >= ecc->num_slots) {
522 		return -EINVAL;
523 	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
524 		return -EBUSY;
525 	}
526 
527 	edma_write_slot(ecc, slot, &dummy_paramset);
528 
529 	return EDMA_CTLR_CHAN(ecc->id, slot);
530 }
531 
532 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
533 {
534 	slot = EDMA_CHAN_SLOT(slot);
535 	if (slot >= ecc->num_slots)
536 		return;
537 
538 	edma_write_slot(ecc, slot, &dummy_paramset);
539 	clear_bit(slot, ecc->slot_inuse);
540 }
541 
542 /**
543  * edma_link - link one parameter RAM slot to another
544  * @ecc: pointer to edma_cc struct
545  * @from: parameter RAM slot originating the link
546  * @to: parameter RAM slot which is the link target
547  *
548  * The originating slot should not be part of any active DMA transfer.
549  */
550 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
551 {
552 	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
553 		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
554 
555 	from = EDMA_CHAN_SLOT(from);
556 	to = EDMA_CHAN_SLOT(to);
557 	if (from >= ecc->num_slots || to >= ecc->num_slots)
558 		return;
559 
560 	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
561 			  PARM_OFFSET(to));
562 }
563 
564 /**
565  * edma_get_position - returns the current transfer point
566  * @ecc: pointer to edma_cc struct
567  * @slot: parameter RAM slot being examined
568  * @dst:  true selects the dest position, false the source
569  *
570  * Returns the position of the current active slot
571  */
572 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
573 				    bool dst)
574 {
575 	u32 offs;
576 
577 	slot = EDMA_CHAN_SLOT(slot);
578 	offs = PARM_OFFSET(slot);
579 	offs += dst ? PARM_DST : PARM_SRC;
580 
581 	return edma_read(ecc, offs);
582 }
583 
584 /*
585  * Channels with event associations will be triggered by their hardware
586  * events, and channels without such associations will be triggered by
587  * software.  (At this writing there is no interface for using software
588  * triggers except with channels that don't support hardware triggers.)
589  */
590 static void edma_start(struct edma_chan *echan)
591 {
592 	struct edma_cc *ecc = echan->ecc;
593 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
594 	int idx = EDMA_REG_ARRAY_INDEX(channel);
595 	int ch_bit = EDMA_CHANNEL_BIT(channel);
596 
597 	if (!echan->hw_triggered) {
598 		/* EDMA channels without event association */
599 		dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
600 			edma_shadow0_read_array(ecc, SH_ESR, idx));
601 		edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
602 	} else {
603 		/* EDMA channel with event association */
604 		dev_dbg(ecc->dev, "ER%d %08x\n", idx,
605 			edma_shadow0_read_array(ecc, SH_ER, idx));
606 		/* Clear any pending event or error */
607 		edma_write_array(ecc, EDMA_ECR, idx, ch_bit);
608 		edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
609 		/* Clear any SER */
610 		edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
611 		edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit);
612 		dev_dbg(ecc->dev, "EER%d %08x\n", idx,
613 			edma_shadow0_read_array(ecc, SH_EER, idx));
614 	}
615 }
616 
617 static void edma_stop(struct edma_chan *echan)
618 {
619 	struct edma_cc *ecc = echan->ecc;
620 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
621 	int idx = EDMA_REG_ARRAY_INDEX(channel);
622 	int ch_bit = EDMA_CHANNEL_BIT(channel);
623 
624 	edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit);
625 	edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
626 	edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
627 	edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
628 
629 	/* clear possibly pending completion interrupt */
630 	edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
631 
632 	dev_dbg(ecc->dev, "EER%d %08x\n", idx,
633 		edma_shadow0_read_array(ecc, SH_EER, idx));
634 
635 	/* REVISIT:  consider guarding against inappropriate event
636 	 * chaining by overwriting with dummy_paramset.
637 	 */
638 }
639 
640 /*
641  * Temporarily disable EDMA hardware events on the specified channel,
642  * preventing them from triggering new transfers
643  */
644 static void edma_pause(struct edma_chan *echan)
645 {
646 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
647 
648 	edma_shadow0_write_array(echan->ecc, SH_EECR,
649 				 EDMA_REG_ARRAY_INDEX(channel),
650 				 EDMA_CHANNEL_BIT(channel));
651 }
652 
653 /* Re-enable EDMA hardware events on the specified channel.  */
654 static void edma_resume(struct edma_chan *echan)
655 {
656 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
657 
658 	edma_shadow0_write_array(echan->ecc, SH_EESR,
659 				 EDMA_REG_ARRAY_INDEX(channel),
660 				 EDMA_CHANNEL_BIT(channel));
661 }
662 
663 static void edma_trigger_channel(struct edma_chan *echan)
664 {
665 	struct edma_cc *ecc = echan->ecc;
666 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
667 	int idx = EDMA_REG_ARRAY_INDEX(channel);
668 	int ch_bit = EDMA_CHANNEL_BIT(channel);
669 
670 	edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
671 
672 	dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
673 		edma_shadow0_read_array(ecc, SH_ESR, idx));
674 }
675 
676 static void edma_clean_channel(struct edma_chan *echan)
677 {
678 	struct edma_cc *ecc = echan->ecc;
679 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
680 	int idx = EDMA_REG_ARRAY_INDEX(channel);
681 	int ch_bit = EDMA_CHANNEL_BIT(channel);
682 
683 	dev_dbg(ecc->dev, "EMR%d %08x\n", idx,
684 		edma_read_array(ecc, EDMA_EMR, idx));
685 	edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
686 	/* Clear the corresponding EMR bits */
687 	edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
688 	/* Clear any SER */
689 	edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
690 	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
691 }
692 
693 /* Move channel to a specific event queue */
694 static void edma_assign_channel_eventq(struct edma_chan *echan,
695 				       enum dma_event_q eventq_no)
696 {
697 	struct edma_cc *ecc = echan->ecc;
698 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
699 	int bit = (channel & 0x7) * 4;
700 
701 	/* default to low priority queue */
702 	if (eventq_no == EVENTQ_DEFAULT)
703 		eventq_no = ecc->default_queue;
704 	if (eventq_no >= ecc->num_tc)
705 		return;
706 
707 	eventq_no &= 7;
708 	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
709 			  eventq_no << bit);
710 }
711 
712 static int edma_alloc_channel(struct edma_chan *echan,
713 			      enum dma_event_q eventq_no)
714 {
715 	struct edma_cc *ecc = echan->ecc;
716 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
717 
718 	if (!test_bit(echan->ch_num, ecc->channels_mask)) {
719 		dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n",
720 			echan->ch_num);
721 		return -EINVAL;
722 	}
723 
724 	/* ensure access through shadow region 0 */
725 	edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel),
726 		       EDMA_CHANNEL_BIT(channel));
727 
728 	/* ensure no events are pending */
729 	edma_stop(echan);
730 
731 	edma_setup_interrupt(echan, true);
732 
733 	edma_assign_channel_eventq(echan, eventq_no);
734 
735 	return 0;
736 }
737 
738 static void edma_free_channel(struct edma_chan *echan)
739 {
740 	/* ensure no events are pending */
741 	edma_stop(echan);
742 	/* REVISIT should probably take out of shadow region 0 */
743 	edma_setup_interrupt(echan, false);
744 }
745 
746 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
747 {
748 	return container_of(d, struct edma_cc, dma_slave);
749 }
750 
751 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
752 {
753 	return container_of(c, struct edma_chan, vchan.chan);
754 }
755 
756 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
757 {
758 	return container_of(tx, struct edma_desc, vdesc.tx);
759 }
760 
761 static void edma_desc_free(struct virt_dma_desc *vdesc)
762 {
763 	kfree(container_of(vdesc, struct edma_desc, vdesc));
764 }
765 
766 /* Dispatch a queued descriptor to the controller (caller holds lock) */
767 static void edma_execute(struct edma_chan *echan)
768 {
769 	struct edma_cc *ecc = echan->ecc;
770 	struct virt_dma_desc *vdesc;
771 	struct edma_desc *edesc;
772 	struct device *dev = echan->vchan.chan.device->dev;
773 	int i, j, left, nslots;
774 
775 	if (!echan->edesc) {
776 		/* Setup is needed for the first transfer */
777 		vdesc = vchan_next_desc(&echan->vchan);
778 		if (!vdesc)
779 			return;
780 		list_del(&vdesc->node);
781 		echan->edesc = to_edma_desc(&vdesc->tx);
782 	}
783 
784 	edesc = echan->edesc;
785 
786 	/* Find out how many left */
787 	left = edesc->pset_nr - edesc->processed;
788 	nslots = min(MAX_NR_SG, left);
789 	edesc->sg_len = 0;
790 
791 	/* Write descriptor PaRAM set(s) */
792 	for (i = 0; i < nslots; i++) {
793 		j = i + edesc->processed;
794 		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
795 		edesc->sg_len += edesc->pset[j].len;
796 		dev_vdbg(dev,
797 			 "\n pset[%d]:\n"
798 			 "  chnum\t%d\n"
799 			 "  slot\t%d\n"
800 			 "  opt\t%08x\n"
801 			 "  src\t%08x\n"
802 			 "  dst\t%08x\n"
803 			 "  abcnt\t%08x\n"
804 			 "  ccnt\t%08x\n"
805 			 "  bidx\t%08x\n"
806 			 "  cidx\t%08x\n"
807 			 "  lkrld\t%08x\n",
808 			 j, echan->ch_num, echan->slot[i],
809 			 edesc->pset[j].param.opt,
810 			 edesc->pset[j].param.src,
811 			 edesc->pset[j].param.dst,
812 			 edesc->pset[j].param.a_b_cnt,
813 			 edesc->pset[j].param.ccnt,
814 			 edesc->pset[j].param.src_dst_bidx,
815 			 edesc->pset[j].param.src_dst_cidx,
816 			 edesc->pset[j].param.link_bcntrld);
817 		/* Link to the previous slot if not the last set */
818 		if (i != (nslots - 1))
819 			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
820 	}
821 
822 	edesc->processed += nslots;
823 
824 	/*
825 	 * If this is either the last set in a set of SG-list transactions
826 	 * then setup a link to the dummy slot, this results in all future
827 	 * events being absorbed and that's OK because we're done
828 	 */
829 	if (edesc->processed == edesc->pset_nr) {
830 		if (edesc->cyclic)
831 			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
832 		else
833 			edma_link(ecc, echan->slot[nslots - 1],
834 				  echan->ecc->dummy_slot);
835 	}
836 
837 	if (echan->missed) {
838 		/*
839 		 * This happens due to setup times between intermediate
840 		 * transfers in long SG lists which have to be broken up into
841 		 * transfers of MAX_NR_SG
842 		 */
843 		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
844 		edma_clean_channel(echan);
845 		edma_stop(echan);
846 		edma_start(echan);
847 		edma_trigger_channel(echan);
848 		echan->missed = 0;
849 	} else if (edesc->processed <= MAX_NR_SG) {
850 		dev_dbg(dev, "first transfer starting on channel %d\n",
851 			echan->ch_num);
852 		edma_start(echan);
853 	} else {
854 		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
855 			echan->ch_num, edesc->processed);
856 		edma_resume(echan);
857 	}
858 }
859 
860 static int edma_terminate_all(struct dma_chan *chan)
861 {
862 	struct edma_chan *echan = to_edma_chan(chan);
863 	unsigned long flags;
864 	LIST_HEAD(head);
865 
866 	spin_lock_irqsave(&echan->vchan.lock, flags);
867 
868 	/*
869 	 * Stop DMA activity: we assume the callback will not be called
870 	 * after edma_dma() returns (even if it does, it will see
871 	 * echan->edesc is NULL and exit.)
872 	 */
873 	if (echan->edesc) {
874 		edma_stop(echan);
875 		/* Move the cyclic channel back to default queue */
876 		if (!echan->tc && echan->edesc->cyclic)
877 			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
878 
879 		vchan_terminate_vdesc(&echan->edesc->vdesc);
880 		echan->edesc = NULL;
881 	}
882 
883 	vchan_get_all_descriptors(&echan->vchan, &head);
884 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
885 	vchan_dma_desc_free_list(&echan->vchan, &head);
886 
887 	return 0;
888 }
889 
890 static void edma_synchronize(struct dma_chan *chan)
891 {
892 	struct edma_chan *echan = to_edma_chan(chan);
893 
894 	vchan_synchronize(&echan->vchan);
895 }
896 
897 static int edma_slave_config(struct dma_chan *chan,
898 	struct dma_slave_config *cfg)
899 {
900 	struct edma_chan *echan = to_edma_chan(chan);
901 
902 	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
903 	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
904 		return -EINVAL;
905 
906 	if (cfg->src_maxburst > chan->device->max_burst ||
907 	    cfg->dst_maxburst > chan->device->max_burst)
908 		return -EINVAL;
909 
910 	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
911 
912 	return 0;
913 }
914 
915 static int edma_dma_pause(struct dma_chan *chan)
916 {
917 	struct edma_chan *echan = to_edma_chan(chan);
918 
919 	if (!echan->edesc)
920 		return -EINVAL;
921 
922 	edma_pause(echan);
923 	return 0;
924 }
925 
926 static int edma_dma_resume(struct dma_chan *chan)
927 {
928 	struct edma_chan *echan = to_edma_chan(chan);
929 
930 	edma_resume(echan);
931 	return 0;
932 }
933 
934 /*
935  * A PaRAM set configuration abstraction used by other modes
936  * @chan: Channel who's PaRAM set we're configuring
937  * @pset: PaRAM set to initialize and setup.
938  * @src_addr: Source address of the DMA
939  * @dst_addr: Destination address of the DMA
940  * @burst: In units of dev_width, how much to send
941  * @dev_width: How much is the dev_width
942  * @dma_length: Total length of the DMA transfer
943  * @direction: Direction of the transfer
944  */
945 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
946 			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
947 			    unsigned int acnt, unsigned int dma_length,
948 			    enum dma_transfer_direction direction)
949 {
950 	struct edma_chan *echan = to_edma_chan(chan);
951 	struct device *dev = chan->device->dev;
952 	struct edmacc_param *param = &epset->param;
953 	int bcnt, ccnt, cidx;
954 	int src_bidx, dst_bidx, src_cidx, dst_cidx;
955 	int absync;
956 
957 	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
958 	if (!burst)
959 		burst = 1;
960 	/*
961 	 * If the maxburst is equal to the fifo width, use
962 	 * A-synced transfers. This allows for large contiguous
963 	 * buffer transfers using only one PaRAM set.
964 	 */
965 	if (burst == 1) {
966 		/*
967 		 * For the A-sync case, bcnt and ccnt are the remainder
968 		 * and quotient respectively of the division of:
969 		 * (dma_length / acnt) by (SZ_64K -1). This is so
970 		 * that in case bcnt over flows, we have ccnt to use.
971 		 * Note: In A-sync transfer only, bcntrld is used, but it
972 		 * only applies for sg_dma_len(sg) >= SZ_64K.
973 		 * In this case, the best way adopted is- bccnt for the
974 		 * first frame will be the remainder below. Then for
975 		 * every successive frame, bcnt will be SZ_64K-1. This
976 		 * is assured as bcntrld = 0xffff in end of function.
977 		 */
978 		absync = false;
979 		ccnt = dma_length / acnt / (SZ_64K - 1);
980 		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
981 		/*
982 		 * If bcnt is non-zero, we have a remainder and hence an
983 		 * extra frame to transfer, so increment ccnt.
984 		 */
985 		if (bcnt)
986 			ccnt++;
987 		else
988 			bcnt = SZ_64K - 1;
989 		cidx = acnt;
990 	} else {
991 		/*
992 		 * If maxburst is greater than the fifo address_width,
993 		 * use AB-synced transfers where A count is the fifo
994 		 * address_width and B count is the maxburst. In this
995 		 * case, we are limited to transfers of C count frames
996 		 * of (address_width * maxburst) where C count is limited
997 		 * to SZ_64K-1. This places an upper bound on the length
998 		 * of an SG segment that can be handled.
999 		 */
1000 		absync = true;
1001 		bcnt = burst;
1002 		ccnt = dma_length / (acnt * bcnt);
1003 		if (ccnt > (SZ_64K - 1)) {
1004 			dev_err(dev, "Exceeded max SG segment size\n");
1005 			return -EINVAL;
1006 		}
1007 		cidx = acnt * bcnt;
1008 	}
1009 
1010 	epset->len = dma_length;
1011 
1012 	if (direction == DMA_MEM_TO_DEV) {
1013 		src_bidx = acnt;
1014 		src_cidx = cidx;
1015 		dst_bidx = 0;
1016 		dst_cidx = 0;
1017 		epset->addr = src_addr;
1018 	} else if (direction == DMA_DEV_TO_MEM)  {
1019 		src_bidx = 0;
1020 		src_cidx = 0;
1021 		dst_bidx = acnt;
1022 		dst_cidx = cidx;
1023 		epset->addr = dst_addr;
1024 	} else if (direction == DMA_MEM_TO_MEM)  {
1025 		src_bidx = acnt;
1026 		src_cidx = cidx;
1027 		dst_bidx = acnt;
1028 		dst_cidx = cidx;
1029 		epset->addr = src_addr;
1030 	} else {
1031 		dev_err(dev, "%s: direction not implemented yet\n", __func__);
1032 		return -EINVAL;
1033 	}
1034 
1035 	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1036 	/* Configure A or AB synchronized transfers */
1037 	if (absync)
1038 		param->opt |= SYNCDIM;
1039 
1040 	param->src = src_addr;
1041 	param->dst = dst_addr;
1042 
1043 	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1044 	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1045 
1046 	param->a_b_cnt = bcnt << 16 | acnt;
1047 	param->ccnt = ccnt;
1048 	/*
1049 	 * Only time when (bcntrld) auto reload is required is for
1050 	 * A-sync case, and in this case, a requirement of reload value
1051 	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1052 	 * and then later will be populated by edma_execute.
1053 	 */
1054 	param->link_bcntrld = 0xffffffff;
1055 	return absync;
1056 }
1057 
1058 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1059 	struct dma_chan *chan, struct scatterlist *sgl,
1060 	unsigned int sg_len, enum dma_transfer_direction direction,
1061 	unsigned long tx_flags, void *context)
1062 {
1063 	struct edma_chan *echan = to_edma_chan(chan);
1064 	struct device *dev = chan->device->dev;
1065 	struct edma_desc *edesc;
1066 	dma_addr_t src_addr = 0, dst_addr = 0;
1067 	enum dma_slave_buswidth dev_width;
1068 	u32 burst;
1069 	struct scatterlist *sg;
1070 	int i, nslots, ret;
1071 
1072 	if (unlikely(!echan || !sgl || !sg_len))
1073 		return NULL;
1074 
1075 	if (direction == DMA_DEV_TO_MEM) {
1076 		src_addr = echan->cfg.src_addr;
1077 		dev_width = echan->cfg.src_addr_width;
1078 		burst = echan->cfg.src_maxburst;
1079 	} else if (direction == DMA_MEM_TO_DEV) {
1080 		dst_addr = echan->cfg.dst_addr;
1081 		dev_width = echan->cfg.dst_addr_width;
1082 		burst = echan->cfg.dst_maxburst;
1083 	} else {
1084 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1085 		return NULL;
1086 	}
1087 
1088 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1089 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1090 		return NULL;
1091 	}
1092 
1093 	edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
1094 	if (!edesc)
1095 		return NULL;
1096 
1097 	edesc->pset_nr = sg_len;
1098 	edesc->residue = 0;
1099 	edesc->direction = direction;
1100 	edesc->echan = echan;
1101 
1102 	/* Allocate a PaRAM slot, if needed */
1103 	nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1104 
1105 	for (i = 0; i < nslots; i++) {
1106 		if (echan->slot[i] < 0) {
1107 			echan->slot[i] =
1108 				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1109 			if (echan->slot[i] < 0) {
1110 				kfree(edesc);
1111 				dev_err(dev, "%s: Failed to allocate slot\n",
1112 					__func__);
1113 				return NULL;
1114 			}
1115 		}
1116 	}
1117 
1118 	/* Configure PaRAM sets for each SG */
1119 	for_each_sg(sgl, sg, sg_len, i) {
1120 		/* Get address for each SG */
1121 		if (direction == DMA_DEV_TO_MEM)
1122 			dst_addr = sg_dma_address(sg);
1123 		else
1124 			src_addr = sg_dma_address(sg);
1125 
1126 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1127 				       dst_addr, burst, dev_width,
1128 				       sg_dma_len(sg), direction);
1129 		if (ret < 0) {
1130 			kfree(edesc);
1131 			return NULL;
1132 		}
1133 
1134 		edesc->absync = ret;
1135 		edesc->residue += sg_dma_len(sg);
1136 
1137 		if (i == sg_len - 1)
1138 			/* Enable completion interrupt */
1139 			edesc->pset[i].param.opt |= TCINTEN;
1140 		else if (!((i+1) % MAX_NR_SG))
1141 			/*
1142 			 * Enable early completion interrupt for the
1143 			 * intermediateset. In this case the driver will be
1144 			 * notified when the paRAM set is submitted to TC. This
1145 			 * will allow more time to set up the next set of slots.
1146 			 */
1147 			edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1148 	}
1149 	edesc->residue_stat = edesc->residue;
1150 
1151 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1152 }
1153 
1154 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1155 	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1156 	size_t len, unsigned long tx_flags)
1157 {
1158 	int ret, nslots;
1159 	struct edma_desc *edesc;
1160 	struct device *dev = chan->device->dev;
1161 	struct edma_chan *echan = to_edma_chan(chan);
1162 	unsigned int width, pset_len, array_size;
1163 
1164 	if (unlikely(!echan || !len))
1165 		return NULL;
1166 
1167 	/* Align the array size (acnt block) with the transfer properties */
1168 	switch (__ffs((src | dest | len))) {
1169 	case 0:
1170 		array_size = SZ_32K - 1;
1171 		break;
1172 	case 1:
1173 		array_size = SZ_32K - 2;
1174 		break;
1175 	default:
1176 		array_size = SZ_32K - 4;
1177 		break;
1178 	}
1179 
1180 	if (len < SZ_64K) {
1181 		/*
1182 		 * Transfer size less than 64K can be handled with one paRAM
1183 		 * slot and with one burst.
1184 		 * ACNT = length
1185 		 */
1186 		width = len;
1187 		pset_len = len;
1188 		nslots = 1;
1189 	} else {
1190 		/*
1191 		 * Transfer size bigger than 64K will be handled with maximum of
1192 		 * two paRAM slots.
1193 		 * slot1: (full_length / 32767) times 32767 bytes bursts.
1194 		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
1195 		 * slot2: the remaining amount of data after slot1.
1196 		 *	  ACNT = full_length - length1, length2 = ACNT
1197 		 *
1198 		 * When the full_length is a multiple of 32767 one slot can be
1199 		 * used to complete the transfer.
1200 		 */
1201 		width = array_size;
1202 		pset_len = rounddown(len, width);
1203 		/* One slot is enough for lengths multiple of (SZ_32K -1) */
1204 		if (unlikely(pset_len == len))
1205 			nslots = 1;
1206 		else
1207 			nslots = 2;
1208 	}
1209 
1210 	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1211 	if (!edesc)
1212 		return NULL;
1213 
1214 	edesc->pset_nr = nslots;
1215 	edesc->residue = edesc->residue_stat = len;
1216 	edesc->direction = DMA_MEM_TO_MEM;
1217 	edesc->echan = echan;
1218 
1219 	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1220 			       width, pset_len, DMA_MEM_TO_MEM);
1221 	if (ret < 0) {
1222 		kfree(edesc);
1223 		return NULL;
1224 	}
1225 
1226 	edesc->absync = ret;
1227 
1228 	edesc->pset[0].param.opt |= ITCCHEN;
1229 	if (nslots == 1) {
1230 		/* Enable transfer complete interrupt if requested */
1231 		if (tx_flags & DMA_PREP_INTERRUPT)
1232 			edesc->pset[0].param.opt |= TCINTEN;
1233 	} else {
1234 		/* Enable transfer complete chaining for the first slot */
1235 		edesc->pset[0].param.opt |= TCCHEN;
1236 
1237 		if (echan->slot[1] < 0) {
1238 			echan->slot[1] = edma_alloc_slot(echan->ecc,
1239 							 EDMA_SLOT_ANY);
1240 			if (echan->slot[1] < 0) {
1241 				kfree(edesc);
1242 				dev_err(dev, "%s: Failed to allocate slot\n",
1243 					__func__);
1244 				return NULL;
1245 			}
1246 		}
1247 		dest += pset_len;
1248 		src += pset_len;
1249 		pset_len = width = len % array_size;
1250 
1251 		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1252 				       width, pset_len, DMA_MEM_TO_MEM);
1253 		if (ret < 0) {
1254 			kfree(edesc);
1255 			return NULL;
1256 		}
1257 
1258 		edesc->pset[1].param.opt |= ITCCHEN;
1259 		/* Enable transfer complete interrupt if requested */
1260 		if (tx_flags & DMA_PREP_INTERRUPT)
1261 			edesc->pset[1].param.opt |= TCINTEN;
1262 	}
1263 
1264 	if (!(tx_flags & DMA_PREP_INTERRUPT))
1265 		edesc->polled = true;
1266 
1267 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1268 }
1269 
1270 static struct dma_async_tx_descriptor *
1271 edma_prep_dma_interleaved(struct dma_chan *chan,
1272 			  struct dma_interleaved_template *xt,
1273 			  unsigned long tx_flags)
1274 {
1275 	struct device *dev = chan->device->dev;
1276 	struct edma_chan *echan = to_edma_chan(chan);
1277 	struct edmacc_param *param;
1278 	struct edma_desc *edesc;
1279 	size_t src_icg, dst_icg;
1280 	int src_bidx, dst_bidx;
1281 
1282 	/* Slave mode is not supported */
1283 	if (is_slave_direction(xt->dir))
1284 		return NULL;
1285 
1286 	if (xt->frame_size != 1 || xt->numf == 0)
1287 		return NULL;
1288 
1289 	if (xt->sgl[0].size > SZ_64K || xt->numf > SZ_64K)
1290 		return NULL;
1291 
1292 	src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
1293 	if (src_icg) {
1294 		src_bidx = src_icg + xt->sgl[0].size;
1295 	} else if (xt->src_inc) {
1296 		src_bidx = xt->sgl[0].size;
1297 	} else {
1298 		dev_err(dev, "%s: SRC constant addressing is not supported\n",
1299 			__func__);
1300 		return NULL;
1301 	}
1302 
1303 	dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
1304 	if (dst_icg) {
1305 		dst_bidx = dst_icg + xt->sgl[0].size;
1306 	} else if (xt->dst_inc) {
1307 		dst_bidx = xt->sgl[0].size;
1308 	} else {
1309 		dev_err(dev, "%s: DST constant addressing is not supported\n",
1310 			__func__);
1311 		return NULL;
1312 	}
1313 
1314 	if (src_bidx > SZ_64K || dst_bidx > SZ_64K)
1315 		return NULL;
1316 
1317 	edesc = kzalloc(struct_size(edesc, pset, 1), GFP_ATOMIC);
1318 	if (!edesc)
1319 		return NULL;
1320 
1321 	edesc->direction = DMA_MEM_TO_MEM;
1322 	edesc->echan = echan;
1323 	edesc->pset_nr = 1;
1324 
1325 	param = &edesc->pset[0].param;
1326 
1327 	param->src = xt->src_start;
1328 	param->dst = xt->dst_start;
1329 	param->a_b_cnt = xt->numf << 16 | xt->sgl[0].size;
1330 	param->ccnt = 1;
1331 	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1332 	param->src_dst_cidx = 0;
1333 
1334 	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1335 	param->opt |= ITCCHEN;
1336 	/* Enable transfer complete interrupt if requested */
1337 	if (tx_flags & DMA_PREP_INTERRUPT)
1338 		param->opt |= TCINTEN;
1339 	else
1340 		edesc->polled = true;
1341 
1342 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1343 }
1344 
1345 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1346 	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1347 	size_t period_len, enum dma_transfer_direction direction,
1348 	unsigned long tx_flags)
1349 {
1350 	struct edma_chan *echan = to_edma_chan(chan);
1351 	struct device *dev = chan->device->dev;
1352 	struct edma_desc *edesc;
1353 	dma_addr_t src_addr, dst_addr;
1354 	enum dma_slave_buswidth dev_width;
1355 	bool use_intermediate = false;
1356 	u32 burst;
1357 	int i, ret, nslots;
1358 
1359 	if (unlikely(!echan || !buf_len || !period_len))
1360 		return NULL;
1361 
1362 	if (direction == DMA_DEV_TO_MEM) {
1363 		src_addr = echan->cfg.src_addr;
1364 		dst_addr = buf_addr;
1365 		dev_width = echan->cfg.src_addr_width;
1366 		burst = echan->cfg.src_maxburst;
1367 	} else if (direction == DMA_MEM_TO_DEV) {
1368 		src_addr = buf_addr;
1369 		dst_addr = echan->cfg.dst_addr;
1370 		dev_width = echan->cfg.dst_addr_width;
1371 		burst = echan->cfg.dst_maxburst;
1372 	} else {
1373 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1374 		return NULL;
1375 	}
1376 
1377 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1378 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1379 		return NULL;
1380 	}
1381 
1382 	if (unlikely(buf_len % period_len)) {
1383 		dev_err(dev, "Period should be multiple of Buffer length\n");
1384 		return NULL;
1385 	}
1386 
1387 	nslots = (buf_len / period_len) + 1;
1388 
1389 	/*
1390 	 * Cyclic DMA users such as audio cannot tolerate delays introduced
1391 	 * by cases where the number of periods is more than the maximum
1392 	 * number of SGs the EDMA driver can handle at a time. For DMA types
1393 	 * such as Slave SGs, such delays are tolerable and synchronized,
1394 	 * but the synchronization is difficult to achieve with Cyclic and
1395 	 * cannot be guaranteed, so we error out early.
1396 	 */
1397 	if (nslots > MAX_NR_SG) {
1398 		/*
1399 		 * If the burst and period sizes are the same, we can put
1400 		 * the full buffer into a single period and activate
1401 		 * intermediate interrupts. This will produce interrupts
1402 		 * after each burst, which is also after each desired period.
1403 		 */
1404 		if (burst == period_len) {
1405 			period_len = buf_len;
1406 			nslots = 2;
1407 			use_intermediate = true;
1408 		} else {
1409 			return NULL;
1410 		}
1411 	}
1412 
1413 	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1414 	if (!edesc)
1415 		return NULL;
1416 
1417 	edesc->cyclic = 1;
1418 	edesc->pset_nr = nslots;
1419 	edesc->residue = edesc->residue_stat = buf_len;
1420 	edesc->direction = direction;
1421 	edesc->echan = echan;
1422 
1423 	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1424 		__func__, echan->ch_num, nslots, period_len, buf_len);
1425 
1426 	for (i = 0; i < nslots; i++) {
1427 		/* Allocate a PaRAM slot, if needed */
1428 		if (echan->slot[i] < 0) {
1429 			echan->slot[i] =
1430 				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1431 			if (echan->slot[i] < 0) {
1432 				kfree(edesc);
1433 				dev_err(dev, "%s: Failed to allocate slot\n",
1434 					__func__);
1435 				return NULL;
1436 			}
1437 		}
1438 
1439 		if (i == nslots - 1) {
1440 			memcpy(&edesc->pset[i], &edesc->pset[0],
1441 			       sizeof(edesc->pset[0]));
1442 			break;
1443 		}
1444 
1445 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1446 				       dst_addr, burst, dev_width, period_len,
1447 				       direction);
1448 		if (ret < 0) {
1449 			kfree(edesc);
1450 			return NULL;
1451 		}
1452 
1453 		if (direction == DMA_DEV_TO_MEM)
1454 			dst_addr += period_len;
1455 		else
1456 			src_addr += period_len;
1457 
1458 		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1459 		dev_vdbg(dev,
1460 			"\n pset[%d]:\n"
1461 			"  chnum\t%d\n"
1462 			"  slot\t%d\n"
1463 			"  opt\t%08x\n"
1464 			"  src\t%08x\n"
1465 			"  dst\t%08x\n"
1466 			"  abcnt\t%08x\n"
1467 			"  ccnt\t%08x\n"
1468 			"  bidx\t%08x\n"
1469 			"  cidx\t%08x\n"
1470 			"  lkrld\t%08x\n",
1471 			i, echan->ch_num, echan->slot[i],
1472 			edesc->pset[i].param.opt,
1473 			edesc->pset[i].param.src,
1474 			edesc->pset[i].param.dst,
1475 			edesc->pset[i].param.a_b_cnt,
1476 			edesc->pset[i].param.ccnt,
1477 			edesc->pset[i].param.src_dst_bidx,
1478 			edesc->pset[i].param.src_dst_cidx,
1479 			edesc->pset[i].param.link_bcntrld);
1480 
1481 		edesc->absync = ret;
1482 
1483 		/*
1484 		 * Enable period interrupt only if it is requested
1485 		 */
1486 		if (tx_flags & DMA_PREP_INTERRUPT) {
1487 			edesc->pset[i].param.opt |= TCINTEN;
1488 
1489 			/* Also enable intermediate interrupts if necessary */
1490 			if (use_intermediate)
1491 				edesc->pset[i].param.opt |= ITCINTEN;
1492 		}
1493 	}
1494 
1495 	/* Place the cyclic channel to highest priority queue */
1496 	if (!echan->tc)
1497 		edma_assign_channel_eventq(echan, EVENTQ_0);
1498 
1499 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1500 }
1501 
1502 static void edma_completion_handler(struct edma_chan *echan)
1503 {
1504 	struct device *dev = echan->vchan.chan.device->dev;
1505 	struct edma_desc *edesc;
1506 
1507 	spin_lock(&echan->vchan.lock);
1508 	edesc = echan->edesc;
1509 	if (edesc) {
1510 		if (edesc->cyclic) {
1511 			vchan_cyclic_callback(&edesc->vdesc);
1512 			spin_unlock(&echan->vchan.lock);
1513 			return;
1514 		} else if (edesc->processed == edesc->pset_nr) {
1515 			edesc->residue = 0;
1516 			edma_stop(echan);
1517 			vchan_cookie_complete(&edesc->vdesc);
1518 			echan->edesc = NULL;
1519 
1520 			dev_dbg(dev, "Transfer completed on channel %d\n",
1521 				echan->ch_num);
1522 		} else {
1523 			dev_dbg(dev, "Sub transfer completed on channel %d\n",
1524 				echan->ch_num);
1525 
1526 			edma_pause(echan);
1527 
1528 			/* Update statistics for tx_status */
1529 			edesc->residue -= edesc->sg_len;
1530 			edesc->residue_stat = edesc->residue;
1531 			edesc->processed_stat = edesc->processed;
1532 		}
1533 		edma_execute(echan);
1534 	}
1535 
1536 	spin_unlock(&echan->vchan.lock);
1537 }
1538 
1539 /* eDMA interrupt handler */
1540 static irqreturn_t dma_irq_handler(int irq, void *data)
1541 {
1542 	struct edma_cc *ecc = data;
1543 	int ctlr;
1544 	u32 sh_ier;
1545 	u32 sh_ipr;
1546 	u32 bank;
1547 
1548 	ctlr = ecc->id;
1549 	if (ctlr < 0)
1550 		return IRQ_NONE;
1551 
1552 	dev_vdbg(ecc->dev, "dma_irq_handler\n");
1553 
1554 	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1555 	if (!sh_ipr) {
1556 		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1557 		if (!sh_ipr)
1558 			return IRQ_NONE;
1559 		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1560 		bank = 1;
1561 	} else {
1562 		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1563 		bank = 0;
1564 	}
1565 
1566 	do {
1567 		u32 slot;
1568 		u32 channel;
1569 
1570 		slot = __ffs(sh_ipr);
1571 		sh_ipr &= ~(BIT(slot));
1572 
1573 		if (sh_ier & BIT(slot)) {
1574 			channel = (bank << 5) | slot;
1575 			/* Clear the corresponding IPR bits */
1576 			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1577 			edma_completion_handler(&ecc->slave_chans[channel]);
1578 		}
1579 	} while (sh_ipr);
1580 
1581 	edma_shadow0_write(ecc, SH_IEVAL, 1);
1582 	return IRQ_HANDLED;
1583 }
1584 
1585 static void edma_error_handler(struct edma_chan *echan)
1586 {
1587 	struct edma_cc *ecc = echan->ecc;
1588 	struct device *dev = echan->vchan.chan.device->dev;
1589 	struct edmacc_param p;
1590 	int err;
1591 
1592 	if (!echan->edesc)
1593 		return;
1594 
1595 	spin_lock(&echan->vchan.lock);
1596 
1597 	err = edma_read_slot(ecc, echan->slot[0], &p);
1598 
1599 	/*
1600 	 * Issue later based on missed flag which will be sure
1601 	 * to happen as:
1602 	 * (1) we finished transmitting an intermediate slot and
1603 	 *     edma_execute is coming up.
1604 	 * (2) or we finished current transfer and issue will
1605 	 *     call edma_execute.
1606 	 *
1607 	 * Important note: issuing can be dangerous here and
1608 	 * lead to some nasty recursion when we are in a NULL
1609 	 * slot. So we avoid doing so and set the missed flag.
1610 	 */
1611 	if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1612 		dev_dbg(dev, "Error on null slot, setting miss\n");
1613 		echan->missed = 1;
1614 	} else {
1615 		/*
1616 		 * The slot is already programmed but the event got
1617 		 * missed, so its safe to issue it here.
1618 		 */
1619 		dev_dbg(dev, "Missed event, TRIGGERING\n");
1620 		edma_clean_channel(echan);
1621 		edma_stop(echan);
1622 		edma_start(echan);
1623 		edma_trigger_channel(echan);
1624 	}
1625 	spin_unlock(&echan->vchan.lock);
1626 }
1627 
1628 static inline bool edma_error_pending(struct edma_cc *ecc)
1629 {
1630 	if (edma_read_array(ecc, EDMA_EMR, 0) ||
1631 	    edma_read_array(ecc, EDMA_EMR, 1) ||
1632 	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1633 		return true;
1634 
1635 	return false;
1636 }
1637 
1638 /* eDMA error interrupt handler */
1639 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1640 {
1641 	struct edma_cc *ecc = data;
1642 	int i, j;
1643 	int ctlr;
1644 	unsigned int cnt = 0;
1645 	unsigned int val;
1646 
1647 	ctlr = ecc->id;
1648 	if (ctlr < 0)
1649 		return IRQ_NONE;
1650 
1651 	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1652 
1653 	if (!edma_error_pending(ecc)) {
1654 		/*
1655 		 * The registers indicate no pending error event but the irq
1656 		 * handler has been called.
1657 		 * Ask eDMA to re-evaluate the error registers.
1658 		 */
1659 		dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1660 			__func__);
1661 		edma_write(ecc, EDMA_EEVAL, 1);
1662 		return IRQ_NONE;
1663 	}
1664 
1665 	while (1) {
1666 		/* Event missed register(s) */
1667 		for (j = 0; j < 2; j++) {
1668 			unsigned long emr;
1669 
1670 			val = edma_read_array(ecc, EDMA_EMR, j);
1671 			if (!val)
1672 				continue;
1673 
1674 			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1675 			emr = val;
1676 			for_each_set_bit(i, &emr, 32) {
1677 				int k = (j << 5) + i;
1678 
1679 				/* Clear the corresponding EMR bits */
1680 				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1681 				/* Clear any SER */
1682 				edma_shadow0_write_array(ecc, SH_SECR, j,
1683 							 BIT(i));
1684 				edma_error_handler(&ecc->slave_chans[k]);
1685 			}
1686 		}
1687 
1688 		val = edma_read(ecc, EDMA_QEMR);
1689 		if (val) {
1690 			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1691 			/* Not reported, just clear the interrupt reason. */
1692 			edma_write(ecc, EDMA_QEMCR, val);
1693 			edma_shadow0_write(ecc, SH_QSECR, val);
1694 		}
1695 
1696 		val = edma_read(ecc, EDMA_CCERR);
1697 		if (val) {
1698 			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1699 			/* Not reported, just clear the interrupt reason. */
1700 			edma_write(ecc, EDMA_CCERRCLR, val);
1701 		}
1702 
1703 		if (!edma_error_pending(ecc))
1704 			break;
1705 		cnt++;
1706 		if (cnt > 10)
1707 			break;
1708 	}
1709 	edma_write(ecc, EDMA_EEVAL, 1);
1710 	return IRQ_HANDLED;
1711 }
1712 
1713 /* Alloc channel resources */
1714 static int edma_alloc_chan_resources(struct dma_chan *chan)
1715 {
1716 	struct edma_chan *echan = to_edma_chan(chan);
1717 	struct edma_cc *ecc = echan->ecc;
1718 	struct device *dev = ecc->dev;
1719 	enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1720 	int ret;
1721 
1722 	if (echan->tc) {
1723 		eventq_no = echan->tc->id;
1724 	} else if (ecc->tc_list) {
1725 		/* memcpy channel */
1726 		echan->tc = &ecc->tc_list[ecc->info->default_queue];
1727 		eventq_no = echan->tc->id;
1728 	}
1729 
1730 	ret = edma_alloc_channel(echan, eventq_no);
1731 	if (ret)
1732 		return ret;
1733 
1734 	echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1735 	if (echan->slot[0] < 0) {
1736 		dev_err(dev, "Entry slot allocation failed for channel %u\n",
1737 			EDMA_CHAN_SLOT(echan->ch_num));
1738 		ret = echan->slot[0];
1739 		goto err_slot;
1740 	}
1741 
1742 	/* Set up channel -> slot mapping for the entry slot */
1743 	edma_set_chmap(echan, echan->slot[0]);
1744 	echan->alloced = true;
1745 
1746 	dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1747 		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1748 		echan->hw_triggered ? "HW" : "SW");
1749 
1750 	return 0;
1751 
1752 err_slot:
1753 	edma_free_channel(echan);
1754 	return ret;
1755 }
1756 
1757 /* Free channel resources */
1758 static void edma_free_chan_resources(struct dma_chan *chan)
1759 {
1760 	struct edma_chan *echan = to_edma_chan(chan);
1761 	struct device *dev = echan->ecc->dev;
1762 	int i;
1763 
1764 	/* Terminate transfers */
1765 	edma_stop(echan);
1766 
1767 	vchan_free_chan_resources(&echan->vchan);
1768 
1769 	/* Free EDMA PaRAM slots */
1770 	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1771 		if (echan->slot[i] >= 0) {
1772 			edma_free_slot(echan->ecc, echan->slot[i]);
1773 			echan->slot[i] = -1;
1774 		}
1775 	}
1776 
1777 	/* Set entry slot to the dummy slot */
1778 	edma_set_chmap(echan, echan->ecc->dummy_slot);
1779 
1780 	/* Free EDMA channel */
1781 	if (echan->alloced) {
1782 		edma_free_channel(echan);
1783 		echan->alloced = false;
1784 	}
1785 
1786 	echan->tc = NULL;
1787 	echan->hw_triggered = false;
1788 
1789 	dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1790 		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1791 }
1792 
1793 /* Send pending descriptor to hardware */
1794 static void edma_issue_pending(struct dma_chan *chan)
1795 {
1796 	struct edma_chan *echan = to_edma_chan(chan);
1797 	unsigned long flags;
1798 
1799 	spin_lock_irqsave(&echan->vchan.lock, flags);
1800 	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1801 		edma_execute(echan);
1802 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1803 }
1804 
1805 /*
1806  * This limit exists to avoid a possible infinite loop when waiting for proof
1807  * that a particular transfer is completed. This limit can be hit if there
1808  * are large bursts to/from slow devices or the CPU is never able to catch
1809  * the DMA hardware idle. On an AM335x transferring 48 bytes from the UART
1810  * RX-FIFO, as many as 55 loops have been seen.
1811  */
1812 #define EDMA_MAX_TR_WAIT_LOOPS 1000
1813 
1814 static u32 edma_residue(struct edma_desc *edesc)
1815 {
1816 	bool dst = edesc->direction == DMA_DEV_TO_MEM;
1817 	int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1818 	struct edma_chan *echan = edesc->echan;
1819 	struct edma_pset *pset = edesc->pset;
1820 	dma_addr_t done, pos, pos_old;
1821 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
1822 	int idx = EDMA_REG_ARRAY_INDEX(channel);
1823 	int ch_bit = EDMA_CHANNEL_BIT(channel);
1824 	int event_reg;
1825 	int i;
1826 
1827 	/*
1828 	 * We always read the dst/src position from the first RamPar
1829 	 * pset. That's the one which is active now.
1830 	 */
1831 	pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1832 
1833 	/*
1834 	 * "pos" may represent a transfer request that is still being
1835 	 * processed by the EDMACC or EDMATC. We will busy wait until
1836 	 * any one of the situations occurs:
1837 	 *   1. while and event is pending for the channel
1838 	 *   2. a position updated
1839 	 *   3. we hit the loop limit
1840 	 */
1841 	if (is_slave_direction(edesc->direction))
1842 		event_reg = SH_ER;
1843 	else
1844 		event_reg = SH_ESR;
1845 
1846 	pos_old = pos;
1847 	while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) {
1848 		pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1849 		if (pos != pos_old)
1850 			break;
1851 
1852 		if (!--loop_count) {
1853 			dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1854 				"%s: timeout waiting for PaRAM update\n",
1855 				__func__);
1856 			break;
1857 		}
1858 
1859 		cpu_relax();
1860 	}
1861 
1862 	/*
1863 	 * Cyclic is simple. Just subtract pset[0].addr from pos.
1864 	 *
1865 	 * We never update edesc->residue in the cyclic case, so we
1866 	 * can tell the remaining room to the end of the circular
1867 	 * buffer.
1868 	 */
1869 	if (edesc->cyclic) {
1870 		done = pos - pset->addr;
1871 		edesc->residue_stat = edesc->residue - done;
1872 		return edesc->residue_stat;
1873 	}
1874 
1875 	/*
1876 	 * If the position is 0, then EDMA loaded the closing dummy slot, the
1877 	 * transfer is completed
1878 	 */
1879 	if (!pos)
1880 		return 0;
1881 	/*
1882 	 * For SG operation we catch up with the last processed
1883 	 * status.
1884 	 */
1885 	pset += edesc->processed_stat;
1886 
1887 	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1888 		/*
1889 		 * If we are inside this pset address range, we know
1890 		 * this is the active one. Get the current delta and
1891 		 * stop walking the psets.
1892 		 */
1893 		if (pos >= pset->addr && pos < pset->addr + pset->len)
1894 			return edesc->residue_stat - (pos - pset->addr);
1895 
1896 		/* Otherwise mark it done and update residue_stat. */
1897 		edesc->processed_stat++;
1898 		edesc->residue_stat -= pset->len;
1899 	}
1900 	return edesc->residue_stat;
1901 }
1902 
1903 /* Check request completion status */
1904 static enum dma_status edma_tx_status(struct dma_chan *chan,
1905 				      dma_cookie_t cookie,
1906 				      struct dma_tx_state *txstate)
1907 {
1908 	struct edma_chan *echan = to_edma_chan(chan);
1909 	struct dma_tx_state txstate_tmp;
1910 	enum dma_status ret;
1911 	unsigned long flags;
1912 
1913 	ret = dma_cookie_status(chan, cookie, txstate);
1914 
1915 	if (ret == DMA_COMPLETE)
1916 		return ret;
1917 
1918 	/* Provide a dummy dma_tx_state for completion checking */
1919 	if (!txstate)
1920 		txstate = &txstate_tmp;
1921 
1922 	spin_lock_irqsave(&echan->vchan.lock, flags);
1923 	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
1924 		txstate->residue = edma_residue(echan->edesc);
1925 	} else {
1926 		struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan,
1927 							      cookie);
1928 
1929 		if (vdesc)
1930 			txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1931 		else
1932 			txstate->residue = 0;
1933 	}
1934 
1935 	/*
1936 	 * Mark the cookie completed if the residue is 0 for non cyclic
1937 	 * transfers
1938 	 */
1939 	if (ret != DMA_COMPLETE && !txstate->residue &&
1940 	    echan->edesc && echan->edesc->polled &&
1941 	    echan->edesc->vdesc.tx.cookie == cookie) {
1942 		edma_stop(echan);
1943 		vchan_cookie_complete(&echan->edesc->vdesc);
1944 		echan->edesc = NULL;
1945 		edma_execute(echan);
1946 		ret = DMA_COMPLETE;
1947 	}
1948 
1949 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1950 
1951 	return ret;
1952 }
1953 
1954 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1955 {
1956 	if (!memcpy_channels)
1957 		return false;
1958 	while (*memcpy_channels != -1) {
1959 		if (*memcpy_channels == ch_num)
1960 			return true;
1961 		memcpy_channels++;
1962 	}
1963 	return false;
1964 }
1965 
1966 #define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1967 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1968 				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1969 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1970 
1971 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1972 {
1973 	struct dma_device *s_ddev = &ecc->dma_slave;
1974 	struct dma_device *m_ddev = NULL;
1975 	s32 *memcpy_channels = ecc->info->memcpy_channels;
1976 	int i, j;
1977 
1978 	dma_cap_zero(s_ddev->cap_mask);
1979 	dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1980 	dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1981 	if (ecc->legacy_mode && !memcpy_channels) {
1982 		dev_warn(ecc->dev,
1983 			 "Legacy memcpy is enabled, things might not work\n");
1984 
1985 		dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1986 		dma_cap_set(DMA_INTERLEAVE, s_ddev->cap_mask);
1987 		s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1988 		s_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1989 		s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1990 	}
1991 
1992 	s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1993 	s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1994 	s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1995 	s_ddev->device_free_chan_resources = edma_free_chan_resources;
1996 	s_ddev->device_issue_pending = edma_issue_pending;
1997 	s_ddev->device_tx_status = edma_tx_status;
1998 	s_ddev->device_config = edma_slave_config;
1999 	s_ddev->device_pause = edma_dma_pause;
2000 	s_ddev->device_resume = edma_dma_resume;
2001 	s_ddev->device_terminate_all = edma_terminate_all;
2002 	s_ddev->device_synchronize = edma_synchronize;
2003 
2004 	s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
2005 	s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
2006 	s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
2007 	s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2008 	s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
2009 
2010 	s_ddev->dev = ecc->dev;
2011 	INIT_LIST_HEAD(&s_ddev->channels);
2012 
2013 	if (memcpy_channels) {
2014 		m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
2015 		if (!m_ddev) {
2016 			dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
2017 			memcpy_channels = NULL;
2018 			goto ch_setup;
2019 		}
2020 		ecc->dma_memcpy = m_ddev;
2021 
2022 		dma_cap_zero(m_ddev->cap_mask);
2023 		dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
2024 		dma_cap_set(DMA_INTERLEAVE, m_ddev->cap_mask);
2025 
2026 		m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
2027 		m_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
2028 		m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
2029 		m_ddev->device_free_chan_resources = edma_free_chan_resources;
2030 		m_ddev->device_issue_pending = edma_issue_pending;
2031 		m_ddev->device_tx_status = edma_tx_status;
2032 		m_ddev->device_config = edma_slave_config;
2033 		m_ddev->device_pause = edma_dma_pause;
2034 		m_ddev->device_resume = edma_dma_resume;
2035 		m_ddev->device_terminate_all = edma_terminate_all;
2036 		m_ddev->device_synchronize = edma_synchronize;
2037 
2038 		m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
2039 		m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
2040 		m_ddev->directions = BIT(DMA_MEM_TO_MEM);
2041 		m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2042 
2043 		m_ddev->dev = ecc->dev;
2044 		INIT_LIST_HEAD(&m_ddev->channels);
2045 	} else if (!ecc->legacy_mode) {
2046 		dev_info(ecc->dev, "memcpy is disabled\n");
2047 	}
2048 
2049 ch_setup:
2050 	for (i = 0; i < ecc->num_channels; i++) {
2051 		struct edma_chan *echan = &ecc->slave_chans[i];
2052 		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
2053 		echan->ecc = ecc;
2054 		echan->vchan.desc_free = edma_desc_free;
2055 
2056 		if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
2057 			vchan_init(&echan->vchan, m_ddev);
2058 		else
2059 			vchan_init(&echan->vchan, s_ddev);
2060 
2061 		INIT_LIST_HEAD(&echan->node);
2062 		for (j = 0; j < EDMA_MAX_SLOTS; j++)
2063 			echan->slot[j] = -1;
2064 	}
2065 }
2066 
2067 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
2068 			      struct edma_cc *ecc)
2069 {
2070 	int i;
2071 	u32 value, cccfg;
2072 	s8 (*queue_priority_map)[2];
2073 
2074 	/* Decode the eDMA3 configuration from CCCFG register */
2075 	cccfg = edma_read(ecc, EDMA_CCCFG);
2076 
2077 	value = GET_NUM_REGN(cccfg);
2078 	ecc->num_region = BIT(value);
2079 
2080 	value = GET_NUM_DMACH(cccfg);
2081 	ecc->num_channels = BIT(value + 1);
2082 
2083 	value = GET_NUM_QDMACH(cccfg);
2084 	ecc->num_qchannels = value * 2;
2085 
2086 	value = GET_NUM_PAENTRY(cccfg);
2087 	ecc->num_slots = BIT(value + 4);
2088 
2089 	value = GET_NUM_EVQUE(cccfg);
2090 	ecc->num_tc = value + 1;
2091 
2092 	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
2093 
2094 	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
2095 	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
2096 	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
2097 	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
2098 	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
2099 	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
2100 	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
2101 
2102 	/* Nothing need to be done if queue priority is provided */
2103 	if (pdata->queue_priority_mapping)
2104 		return 0;
2105 
2106 	/*
2107 	 * Configure TC/queue priority as follows:
2108 	 * Q0 - priority 0
2109 	 * Q1 - priority 1
2110 	 * Q2 - priority 2
2111 	 * ...
2112 	 * The meaning of priority numbers: 0 highest priority, 7 lowest
2113 	 * priority. So Q0 is the highest priority queue and the last queue has
2114 	 * the lowest priority.
2115 	 */
2116 	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
2117 					  GFP_KERNEL);
2118 	if (!queue_priority_map)
2119 		return -ENOMEM;
2120 
2121 	for (i = 0; i < ecc->num_tc; i++) {
2122 		queue_priority_map[i][0] = i;
2123 		queue_priority_map[i][1] = i;
2124 	}
2125 	queue_priority_map[i][0] = -1;
2126 	queue_priority_map[i][1] = -1;
2127 
2128 	pdata->queue_priority_mapping = queue_priority_map;
2129 	/* Default queue has the lowest priority */
2130 	pdata->default_queue = i - 1;
2131 
2132 	return 0;
2133 }
2134 
2135 #if IS_ENABLED(CONFIG_OF)
2136 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
2137 			       size_t sz)
2138 {
2139 	const char pname[] = "ti,edma-xbar-event-map";
2140 	struct resource res;
2141 	void __iomem *xbar;
2142 	s16 (*xbar_chans)[2];
2143 	size_t nelm = sz / sizeof(s16);
2144 	u32 shift, offset, mux;
2145 	int ret, i;
2146 
2147 	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2148 	if (!xbar_chans)
2149 		return -ENOMEM;
2150 
2151 	ret = of_address_to_resource(dev->of_node, 1, &res);
2152 	if (ret)
2153 		return -ENOMEM;
2154 
2155 	xbar = devm_ioremap(dev, res.start, resource_size(&res));
2156 	if (!xbar)
2157 		return -ENOMEM;
2158 
2159 	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2160 					 nelm);
2161 	if (ret)
2162 		return -EIO;
2163 
2164 	/* Invalidate last entry for the other user of this mess */
2165 	nelm >>= 1;
2166 	xbar_chans[nelm][0] = -1;
2167 	xbar_chans[nelm][1] = -1;
2168 
2169 	for (i = 0; i < nelm; i++) {
2170 		shift = (xbar_chans[i][1] & 0x03) << 3;
2171 		offset = xbar_chans[i][1] & 0xfffffffc;
2172 		mux = readl(xbar + offset);
2173 		mux &= ~(0xff << shift);
2174 		mux |= xbar_chans[i][0] << shift;
2175 		writel(mux, (xbar + offset));
2176 	}
2177 
2178 	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2179 	return 0;
2180 }
2181 
2182 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2183 						     bool legacy_mode)
2184 {
2185 	struct edma_soc_info *info;
2186 	struct property *prop;
2187 	int sz, ret;
2188 
2189 	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2190 	if (!info)
2191 		return ERR_PTR(-ENOMEM);
2192 
2193 	if (legacy_mode) {
2194 		prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2195 					&sz);
2196 		if (prop) {
2197 			ret = edma_xbar_event_map(dev, info, sz);
2198 			if (ret)
2199 				return ERR_PTR(ret);
2200 		}
2201 		return info;
2202 	}
2203 
2204 	/* Get the list of channels allocated to be used for memcpy */
2205 	prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2206 	if (prop) {
2207 		const char pname[] = "ti,edma-memcpy-channels";
2208 		size_t nelm = sz / sizeof(s32);
2209 		s32 *memcpy_ch;
2210 
2211 		memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2212 					 GFP_KERNEL);
2213 		if (!memcpy_ch)
2214 			return ERR_PTR(-ENOMEM);
2215 
2216 		ret = of_property_read_u32_array(dev->of_node, pname,
2217 						 (u32 *)memcpy_ch, nelm);
2218 		if (ret)
2219 			return ERR_PTR(ret);
2220 
2221 		memcpy_ch[nelm] = -1;
2222 		info->memcpy_channels = memcpy_ch;
2223 	}
2224 
2225 	prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2226 				&sz);
2227 	if (prop) {
2228 		const char pname[] = "ti,edma-reserved-slot-ranges";
2229 		u32 (*tmp)[2];
2230 		s16 (*rsv_slots)[2];
2231 		size_t nelm = sz / sizeof(*tmp);
2232 		struct edma_rsv_info *rsv_info;
2233 		int i;
2234 
2235 		if (!nelm)
2236 			return info;
2237 
2238 		tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2239 		if (!tmp)
2240 			return ERR_PTR(-ENOMEM);
2241 
2242 		rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2243 		if (!rsv_info) {
2244 			kfree(tmp);
2245 			return ERR_PTR(-ENOMEM);
2246 		}
2247 
2248 		rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2249 					 GFP_KERNEL);
2250 		if (!rsv_slots) {
2251 			kfree(tmp);
2252 			return ERR_PTR(-ENOMEM);
2253 		}
2254 
2255 		ret = of_property_read_u32_array(dev->of_node, pname,
2256 						 (u32 *)tmp, nelm * 2);
2257 		if (ret) {
2258 			kfree(tmp);
2259 			return ERR_PTR(ret);
2260 		}
2261 
2262 		for (i = 0; i < nelm; i++) {
2263 			rsv_slots[i][0] = tmp[i][0];
2264 			rsv_slots[i][1] = tmp[i][1];
2265 		}
2266 		rsv_slots[nelm][0] = -1;
2267 		rsv_slots[nelm][1] = -1;
2268 
2269 		info->rsv = rsv_info;
2270 		info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2271 
2272 		kfree(tmp);
2273 	}
2274 
2275 	return info;
2276 }
2277 
2278 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2279 				      struct of_dma *ofdma)
2280 {
2281 	struct edma_cc *ecc = ofdma->of_dma_data;
2282 	struct dma_chan *chan = NULL;
2283 	struct edma_chan *echan;
2284 	int i;
2285 
2286 	if (!ecc || dma_spec->args_count < 1)
2287 		return NULL;
2288 
2289 	for (i = 0; i < ecc->num_channels; i++) {
2290 		echan = &ecc->slave_chans[i];
2291 		if (echan->ch_num == dma_spec->args[0]) {
2292 			chan = &echan->vchan.chan;
2293 			break;
2294 		}
2295 	}
2296 
2297 	if (!chan)
2298 		return NULL;
2299 
2300 	if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2301 		goto out;
2302 
2303 	if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2304 	    dma_spec->args[1] < echan->ecc->num_tc) {
2305 		echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2306 		goto out;
2307 	}
2308 
2309 	return NULL;
2310 out:
2311 	/* The channel is going to be used as HW synchronized */
2312 	echan->hw_triggered = true;
2313 	return dma_get_slave_channel(chan);
2314 }
2315 #else
2316 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2317 						     bool legacy_mode)
2318 {
2319 	return ERR_PTR(-EINVAL);
2320 }
2321 
2322 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2323 				      struct of_dma *ofdma)
2324 {
2325 	return NULL;
2326 }
2327 #endif
2328 
2329 static bool edma_filter_fn(struct dma_chan *chan, void *param);
2330 
2331 static int edma_probe(struct platform_device *pdev)
2332 {
2333 	struct edma_soc_info	*info = pdev->dev.platform_data;
2334 	s8			(*queue_priority_mapping)[2];
2335 	const s16		(*reserved)[2];
2336 	int			i, irq;
2337 	char			*irq_name;
2338 	struct resource		*mem;
2339 	struct device_node	*node = pdev->dev.of_node;
2340 	struct device		*dev = &pdev->dev;
2341 	struct edma_cc		*ecc;
2342 	bool			legacy_mode = true;
2343 	int ret;
2344 
2345 	if (node) {
2346 		const struct of_device_id *match;
2347 
2348 		match = of_match_node(edma_of_ids, node);
2349 		if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2350 			legacy_mode = false;
2351 
2352 		info = edma_setup_info_from_dt(dev, legacy_mode);
2353 		if (IS_ERR(info)) {
2354 			dev_err(dev, "failed to get DT data\n");
2355 			return PTR_ERR(info);
2356 		}
2357 	}
2358 
2359 	if (!info)
2360 		return -ENODEV;
2361 
2362 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2363 	if (ret)
2364 		return ret;
2365 
2366 	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2367 	if (!ecc)
2368 		return -ENOMEM;
2369 
2370 	ecc->dev = dev;
2371 	ecc->id = pdev->id;
2372 	ecc->legacy_mode = legacy_mode;
2373 	/* When booting with DT the pdev->id is -1 */
2374 	if (ecc->id < 0)
2375 		ecc->id = 0;
2376 
2377 	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2378 	if (!mem) {
2379 		dev_dbg(dev, "mem resource not found, using index 0\n");
2380 		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2381 		if (!mem) {
2382 			dev_err(dev, "no mem resource?\n");
2383 			return -ENODEV;
2384 		}
2385 	}
2386 	ecc->base = devm_ioremap_resource(dev, mem);
2387 	if (IS_ERR(ecc->base))
2388 		return PTR_ERR(ecc->base);
2389 
2390 	platform_set_drvdata(pdev, ecc);
2391 
2392 	pm_runtime_enable(dev);
2393 	ret = pm_runtime_get_sync(dev);
2394 	if (ret < 0) {
2395 		dev_err(dev, "pm_runtime_get_sync() failed\n");
2396 		pm_runtime_disable(dev);
2397 		return ret;
2398 	}
2399 
2400 	/* Get eDMA3 configuration from IP */
2401 	ret = edma_setup_from_hw(dev, info, ecc);
2402 	if (ret)
2403 		goto err_disable_pm;
2404 
2405 	/* Allocate memory based on the information we got from the IP */
2406 	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2407 					sizeof(*ecc->slave_chans), GFP_KERNEL);
2408 
2409 	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2410 				       sizeof(unsigned long), GFP_KERNEL);
2411 
2412 	ecc->channels_mask = devm_kcalloc(dev,
2413 					   BITS_TO_LONGS(ecc->num_channels),
2414 					   sizeof(unsigned long), GFP_KERNEL);
2415 	if (!ecc->slave_chans || !ecc->slot_inuse || !ecc->channels_mask) {
2416 		ret = -ENOMEM;
2417 		goto err_disable_pm;
2418 	}
2419 
2420 	/* Mark all channels available initially */
2421 	bitmap_fill(ecc->channels_mask, ecc->num_channels);
2422 
2423 	ecc->default_queue = info->default_queue;
2424 
2425 	if (info->rsv) {
2426 		/* Set the reserved slots in inuse list */
2427 		reserved = info->rsv->rsv_slots;
2428 		if (reserved) {
2429 			for (i = 0; reserved[i][0] != -1; i++)
2430 				bitmap_set(ecc->slot_inuse, reserved[i][0],
2431 					   reserved[i][1]);
2432 		}
2433 
2434 		/* Clear channels not usable for Linux */
2435 		reserved = info->rsv->rsv_chans;
2436 		if (reserved) {
2437 			for (i = 0; reserved[i][0] != -1; i++)
2438 				bitmap_clear(ecc->channels_mask, reserved[i][0],
2439 					     reserved[i][1]);
2440 		}
2441 	}
2442 
2443 	for (i = 0; i < ecc->num_slots; i++) {
2444 		/* Reset only unused - not reserved - paRAM slots */
2445 		if (!test_bit(i, ecc->slot_inuse))
2446 			edma_write_slot(ecc, i, &dummy_paramset);
2447 	}
2448 
2449 	irq = platform_get_irq_byname(pdev, "edma3_ccint");
2450 	if (irq < 0 && node)
2451 		irq = irq_of_parse_and_map(node, 0);
2452 
2453 	if (irq >= 0) {
2454 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2455 					  dev_name(dev));
2456 		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2457 				       ecc);
2458 		if (ret) {
2459 			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2460 			goto err_disable_pm;
2461 		}
2462 		ecc->ccint = irq;
2463 	}
2464 
2465 	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2466 	if (irq < 0 && node)
2467 		irq = irq_of_parse_and_map(node, 2);
2468 
2469 	if (irq >= 0) {
2470 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2471 					  dev_name(dev));
2472 		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2473 				       ecc);
2474 		if (ret) {
2475 			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2476 			goto err_disable_pm;
2477 		}
2478 		ecc->ccerrint = irq;
2479 	}
2480 
2481 	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2482 	if (ecc->dummy_slot < 0) {
2483 		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2484 		ret = ecc->dummy_slot;
2485 		goto err_disable_pm;
2486 	}
2487 
2488 	queue_priority_mapping = info->queue_priority_mapping;
2489 
2490 	if (!ecc->legacy_mode) {
2491 		int lowest_priority = 0;
2492 		unsigned int array_max;
2493 		struct of_phandle_args tc_args;
2494 
2495 		ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2496 					    sizeof(*ecc->tc_list), GFP_KERNEL);
2497 		if (!ecc->tc_list) {
2498 			ret = -ENOMEM;
2499 			goto err_reg1;
2500 		}
2501 
2502 		for (i = 0;; i++) {
2503 			ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2504 							       1, i, &tc_args);
2505 			if (ret || i == ecc->num_tc)
2506 				break;
2507 
2508 			ecc->tc_list[i].node = tc_args.np;
2509 			ecc->tc_list[i].id = i;
2510 			queue_priority_mapping[i][1] = tc_args.args[0];
2511 			if (queue_priority_mapping[i][1] > lowest_priority) {
2512 				lowest_priority = queue_priority_mapping[i][1];
2513 				info->default_queue = i;
2514 			}
2515 		}
2516 
2517 		/* See if we have optional dma-channel-mask array */
2518 		array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32));
2519 		ret = of_property_read_variable_u32_array(node,
2520 						"dma-channel-mask",
2521 						(u32 *)ecc->channels_mask,
2522 						1, array_max);
2523 		if (ret > 0 && ret != array_max)
2524 			dev_warn(dev, "dma-channel-mask is not complete.\n");
2525 		else if (ret == -EOVERFLOW || ret == -ENODATA)
2526 			dev_warn(dev,
2527 				 "dma-channel-mask is out of range or empty\n");
2528 	}
2529 
2530 	/* Event queue priority mapping */
2531 	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2532 		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2533 					      queue_priority_mapping[i][1]);
2534 
2535 	edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0);
2536 	edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0);
2537 	edma_write_array(ecc, EDMA_QRAE, 0, 0x0);
2538 
2539 	ecc->info = info;
2540 
2541 	/* Init the dma device and channels */
2542 	edma_dma_init(ecc, legacy_mode);
2543 
2544 	for (i = 0; i < ecc->num_channels; i++) {
2545 		/* Do not touch reserved channels */
2546 		if (!test_bit(i, ecc->channels_mask))
2547 			continue;
2548 
2549 		/* Assign all channels to the default queue */
2550 		edma_assign_channel_eventq(&ecc->slave_chans[i],
2551 					   info->default_queue);
2552 		/* Set entry slot to the dummy slot */
2553 		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2554 	}
2555 
2556 	ecc->dma_slave.filter.map = info->slave_map;
2557 	ecc->dma_slave.filter.mapcnt = info->slavecnt;
2558 	ecc->dma_slave.filter.fn = edma_filter_fn;
2559 
2560 	ret = dma_async_device_register(&ecc->dma_slave);
2561 	if (ret) {
2562 		dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2563 		goto err_reg1;
2564 	}
2565 
2566 	if (ecc->dma_memcpy) {
2567 		ret = dma_async_device_register(ecc->dma_memcpy);
2568 		if (ret) {
2569 			dev_err(dev, "memcpy ddev registration failed (%d)\n",
2570 				ret);
2571 			dma_async_device_unregister(&ecc->dma_slave);
2572 			goto err_reg1;
2573 		}
2574 	}
2575 
2576 	if (node)
2577 		of_dma_controller_register(node, of_edma_xlate, ecc);
2578 
2579 	dev_info(dev, "TI EDMA DMA engine driver\n");
2580 
2581 	return 0;
2582 
2583 err_reg1:
2584 	edma_free_slot(ecc, ecc->dummy_slot);
2585 err_disable_pm:
2586 	pm_runtime_put_sync(dev);
2587 	pm_runtime_disable(dev);
2588 	return ret;
2589 }
2590 
2591 static void edma_cleanupp_vchan(struct dma_device *dmadev)
2592 {
2593 	struct edma_chan *echan, *_echan;
2594 
2595 	list_for_each_entry_safe(echan, _echan,
2596 			&dmadev->channels, vchan.chan.device_node) {
2597 		list_del(&echan->vchan.chan.device_node);
2598 		tasklet_kill(&echan->vchan.task);
2599 	}
2600 }
2601 
2602 static int edma_remove(struct platform_device *pdev)
2603 {
2604 	struct device *dev = &pdev->dev;
2605 	struct edma_cc *ecc = dev_get_drvdata(dev);
2606 
2607 	devm_free_irq(dev, ecc->ccint, ecc);
2608 	devm_free_irq(dev, ecc->ccerrint, ecc);
2609 
2610 	edma_cleanupp_vchan(&ecc->dma_slave);
2611 
2612 	if (dev->of_node)
2613 		of_dma_controller_free(dev->of_node);
2614 	dma_async_device_unregister(&ecc->dma_slave);
2615 	if (ecc->dma_memcpy)
2616 		dma_async_device_unregister(ecc->dma_memcpy);
2617 	edma_free_slot(ecc, ecc->dummy_slot);
2618 	pm_runtime_put_sync(dev);
2619 	pm_runtime_disable(dev);
2620 
2621 	return 0;
2622 }
2623 
2624 #ifdef CONFIG_PM_SLEEP
2625 static int edma_pm_suspend(struct device *dev)
2626 {
2627 	struct edma_cc *ecc = dev_get_drvdata(dev);
2628 	struct edma_chan *echan = ecc->slave_chans;
2629 	int i;
2630 
2631 	for (i = 0; i < ecc->num_channels; i++) {
2632 		if (echan[i].alloced)
2633 			edma_setup_interrupt(&echan[i], false);
2634 	}
2635 
2636 	return 0;
2637 }
2638 
2639 static int edma_pm_resume(struct device *dev)
2640 {
2641 	struct edma_cc *ecc = dev_get_drvdata(dev);
2642 	struct edma_chan *echan = ecc->slave_chans;
2643 	int i;
2644 	s8 (*queue_priority_mapping)[2];
2645 
2646 	/* re initialize dummy slot to dummy param set */
2647 	edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2648 
2649 	queue_priority_mapping = ecc->info->queue_priority_mapping;
2650 
2651 	/* Event queue priority mapping */
2652 	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2653 		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2654 					      queue_priority_mapping[i][1]);
2655 
2656 	for (i = 0; i < ecc->num_channels; i++) {
2657 		if (echan[i].alloced) {
2658 			/* ensure access through shadow region 0 */
2659 			edma_or_array2(ecc, EDMA_DRAE, 0,
2660 				       EDMA_REG_ARRAY_INDEX(i),
2661 				       EDMA_CHANNEL_BIT(i));
2662 
2663 			edma_setup_interrupt(&echan[i], true);
2664 
2665 			/* Set up channel -> slot mapping for the entry slot */
2666 			edma_set_chmap(&echan[i], echan[i].slot[0]);
2667 		}
2668 	}
2669 
2670 	return 0;
2671 }
2672 #endif
2673 
2674 static const struct dev_pm_ops edma_pm_ops = {
2675 	SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2676 };
2677 
2678 static struct platform_driver edma_driver = {
2679 	.probe		= edma_probe,
2680 	.remove		= edma_remove,
2681 	.driver = {
2682 		.name	= "edma",
2683 		.pm	= &edma_pm_ops,
2684 		.of_match_table = edma_of_ids,
2685 	},
2686 };
2687 
2688 static int edma_tptc_probe(struct platform_device *pdev)
2689 {
2690 	pm_runtime_enable(&pdev->dev);
2691 	return pm_runtime_get_sync(&pdev->dev);
2692 }
2693 
2694 static struct platform_driver edma_tptc_driver = {
2695 	.probe		= edma_tptc_probe,
2696 	.driver = {
2697 		.name	= "edma3-tptc",
2698 		.of_match_table = edma_tptc_of_ids,
2699 	},
2700 };
2701 
2702 static bool edma_filter_fn(struct dma_chan *chan, void *param)
2703 {
2704 	bool match = false;
2705 
2706 	if (chan->device->dev->driver == &edma_driver.driver) {
2707 		struct edma_chan *echan = to_edma_chan(chan);
2708 		unsigned ch_req = *(unsigned *)param;
2709 		if (ch_req == echan->ch_num) {
2710 			/* The channel is going to be used as HW synchronized */
2711 			echan->hw_triggered = true;
2712 			match = true;
2713 		}
2714 	}
2715 	return match;
2716 }
2717 
2718 static int edma_init(void)
2719 {
2720 	int ret;
2721 
2722 	ret = platform_driver_register(&edma_tptc_driver);
2723 	if (ret)
2724 		return ret;
2725 
2726 	return platform_driver_register(&edma_driver);
2727 }
2728 subsys_initcall(edma_init);
2729 
2730 static void __exit edma_exit(void)
2731 {
2732 	platform_driver_unregister(&edma_driver);
2733 	platform_driver_unregister(&edma_tptc_driver);
2734 }
2735 module_exit(edma_exit);
2736 
2737 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2738 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2739 MODULE_LICENSE("GPL v2");
2740