xref: /openbmc/linux/drivers/dma/ti/edma.c (revision 1a59d1b8)
1 /*
2  * TI EDMA DMA engine driver
3  *
4  * Copyright 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/edma.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/pm_runtime.h>
33 
34 #include <linux/platform_data/edma.h>
35 
36 #include "../dmaengine.h"
37 #include "../virt-dma.h"
38 
39 /* Offsets matching "struct edmacc_param" */
40 #define PARM_OPT		0x00
41 #define PARM_SRC		0x04
42 #define PARM_A_B_CNT		0x08
43 #define PARM_DST		0x0c
44 #define PARM_SRC_DST_BIDX	0x10
45 #define PARM_LINK_BCNTRLD	0x14
46 #define PARM_SRC_DST_CIDX	0x18
47 #define PARM_CCNT		0x1c
48 
49 #define PARM_SIZE		0x20
50 
51 /* Offsets for EDMA CC global channel registers and their shadows */
52 #define SH_ER			0x00	/* 64 bits */
53 #define SH_ECR			0x08	/* 64 bits */
54 #define SH_ESR			0x10	/* 64 bits */
55 #define SH_CER			0x18	/* 64 bits */
56 #define SH_EER			0x20	/* 64 bits */
57 #define SH_EECR			0x28	/* 64 bits */
58 #define SH_EESR			0x30	/* 64 bits */
59 #define SH_SER			0x38	/* 64 bits */
60 #define SH_SECR			0x40	/* 64 bits */
61 #define SH_IER			0x50	/* 64 bits */
62 #define SH_IECR			0x58	/* 64 bits */
63 #define SH_IESR			0x60	/* 64 bits */
64 #define SH_IPR			0x68	/* 64 bits */
65 #define SH_ICR			0x70	/* 64 bits */
66 #define SH_IEVAL		0x78
67 #define SH_QER			0x80
68 #define SH_QEER			0x84
69 #define SH_QEECR		0x88
70 #define SH_QEESR		0x8c
71 #define SH_QSER			0x90
72 #define SH_QSECR		0x94
73 #define SH_SIZE			0x200
74 
75 /* Offsets for EDMA CC global registers */
76 #define EDMA_REV		0x0000
77 #define EDMA_CCCFG		0x0004
78 #define EDMA_QCHMAP		0x0200	/* 8 registers */
79 #define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
80 #define EDMA_QDMAQNUM		0x0260
81 #define EDMA_QUETCMAP		0x0280
82 #define EDMA_QUEPRI		0x0284
83 #define EDMA_EMR		0x0300	/* 64 bits */
84 #define EDMA_EMCR		0x0308	/* 64 bits */
85 #define EDMA_QEMR		0x0310
86 #define EDMA_QEMCR		0x0314
87 #define EDMA_CCERR		0x0318
88 #define EDMA_CCERRCLR		0x031c
89 #define EDMA_EEVAL		0x0320
90 #define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
91 #define EDMA_QRAE		0x0380	/* 4 registers */
92 #define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
93 #define EDMA_QSTAT		0x0600	/* 2 registers */
94 #define EDMA_QWMTHRA		0x0620
95 #define EDMA_QWMTHRB		0x0624
96 #define EDMA_CCSTAT		0x0640
97 
98 #define EDMA_M			0x1000	/* global channel registers */
99 #define EDMA_ECR		0x1008
100 #define EDMA_ECRH		0x100C
101 #define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
102 #define EDMA_PARM		0x4000	/* PaRAM entries */
103 
104 #define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
105 
106 #define EDMA_DCHMAP		0x0100  /* 64 registers */
107 
108 /* CCCFG register */
109 #define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
110 #define GET_NUM_QDMACH(x)	((x & 0x70) >> 4) /* bits 4-6 */
111 #define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
112 #define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
113 #define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
114 #define CHMAP_EXIST		BIT(24)
115 
116 /* CCSTAT register */
117 #define EDMA_CCSTAT_ACTV	BIT(4)
118 
119 /*
120  * Max of 20 segments per channel to conserve PaRAM slots
121  * Also note that MAX_NR_SG should be atleast the no.of periods
122  * that are required for ASoC, otherwise DMA prep calls will
123  * fail. Today davinci-pcm is the only user of this driver and
124  * requires atleast 17 slots, so we setup the default to 20.
125  */
126 #define MAX_NR_SG		20
127 #define EDMA_MAX_SLOTS		MAX_NR_SG
128 #define EDMA_DESCRIPTORS	16
129 
130 #define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
131 #define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
132 #define EDMA_CONT_PARAMS_ANY		 1001
133 #define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
134 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
135 
136 /* PaRAM slots are laid out like this */
137 struct edmacc_param {
138 	u32 opt;
139 	u32 src;
140 	u32 a_b_cnt;
141 	u32 dst;
142 	u32 src_dst_bidx;
143 	u32 link_bcntrld;
144 	u32 src_dst_cidx;
145 	u32 ccnt;
146 } __packed;
147 
148 /* fields in edmacc_param.opt */
149 #define SAM		BIT(0)
150 #define DAM		BIT(1)
151 #define SYNCDIM		BIT(2)
152 #define STATIC		BIT(3)
153 #define EDMA_FWID	(0x07 << 8)
154 #define TCCMODE		BIT(11)
155 #define EDMA_TCC(t)	((t) << 12)
156 #define TCINTEN		BIT(20)
157 #define ITCINTEN	BIT(21)
158 #define TCCHEN		BIT(22)
159 #define ITCCHEN		BIT(23)
160 
161 struct edma_pset {
162 	u32				len;
163 	dma_addr_t			addr;
164 	struct edmacc_param		param;
165 };
166 
167 struct edma_desc {
168 	struct virt_dma_desc		vdesc;
169 	struct list_head		node;
170 	enum dma_transfer_direction	direction;
171 	int				cyclic;
172 	int				absync;
173 	int				pset_nr;
174 	struct edma_chan		*echan;
175 	int				processed;
176 
177 	/*
178 	 * The following 4 elements are used for residue accounting.
179 	 *
180 	 * - processed_stat: the number of SG elements we have traversed
181 	 * so far to cover accounting. This is updated directly to processed
182 	 * during edma_callback and is always <= processed, because processed
183 	 * refers to the number of pending transfer (programmed to EDMA
184 	 * controller), where as processed_stat tracks number of transfers
185 	 * accounted for so far.
186 	 *
187 	 * - residue: The amount of bytes we have left to transfer for this desc
188 	 *
189 	 * - residue_stat: The residue in bytes of data we have covered
190 	 * so far for accounting. This is updated directly to residue
191 	 * during callbacks to keep it current.
192 	 *
193 	 * - sg_len: Tracks the length of the current intermediate transfer,
194 	 * this is required to update the residue during intermediate transfer
195 	 * completion callback.
196 	 */
197 	int				processed_stat;
198 	u32				sg_len;
199 	u32				residue;
200 	u32				residue_stat;
201 
202 	struct edma_pset		pset[0];
203 };
204 
205 struct edma_cc;
206 
207 struct edma_tc {
208 	struct device_node		*node;
209 	u16				id;
210 };
211 
212 struct edma_chan {
213 	struct virt_dma_chan		vchan;
214 	struct list_head		node;
215 	struct edma_desc		*edesc;
216 	struct edma_cc			*ecc;
217 	struct edma_tc			*tc;
218 	int				ch_num;
219 	bool				alloced;
220 	bool				hw_triggered;
221 	int				slot[EDMA_MAX_SLOTS];
222 	int				missed;
223 	struct dma_slave_config		cfg;
224 };
225 
226 struct edma_cc {
227 	struct device			*dev;
228 	struct edma_soc_info		*info;
229 	void __iomem			*base;
230 	int				id;
231 	bool				legacy_mode;
232 
233 	/* eDMA3 resource information */
234 	unsigned			num_channels;
235 	unsigned			num_qchannels;
236 	unsigned			num_region;
237 	unsigned			num_slots;
238 	unsigned			num_tc;
239 	bool				chmap_exist;
240 	enum dma_event_q		default_queue;
241 
242 	unsigned int			ccint;
243 	unsigned int			ccerrint;
244 
245 	/*
246 	 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
247 	 * in use by Linux or if it is allocated to be used by DSP.
248 	 */
249 	unsigned long *slot_inuse;
250 
251 	struct dma_device		dma_slave;
252 	struct dma_device		*dma_memcpy;
253 	struct edma_chan		*slave_chans;
254 	struct edma_tc			*tc_list;
255 	int				dummy_slot;
256 };
257 
258 /* dummy param set used to (re)initialize parameter RAM slots */
259 static const struct edmacc_param dummy_paramset = {
260 	.link_bcntrld = 0xffff,
261 	.ccnt = 1,
262 };
263 
264 #define EDMA_BINDING_LEGACY	0
265 #define EDMA_BINDING_TPCC	1
266 static const u32 edma_binding_type[] = {
267 	[EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
268 	[EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
269 };
270 
271 static const struct of_device_id edma_of_ids[] = {
272 	{
273 		.compatible = "ti,edma3",
274 		.data = &edma_binding_type[EDMA_BINDING_LEGACY],
275 	},
276 	{
277 		.compatible = "ti,edma3-tpcc",
278 		.data = &edma_binding_type[EDMA_BINDING_TPCC],
279 	},
280 	{}
281 };
282 MODULE_DEVICE_TABLE(of, edma_of_ids);
283 
284 static const struct of_device_id edma_tptc_of_ids[] = {
285 	{ .compatible = "ti,edma3-tptc", },
286 	{}
287 };
288 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
289 
290 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
291 {
292 	return (unsigned int)__raw_readl(ecc->base + offset);
293 }
294 
295 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
296 {
297 	__raw_writel(val, ecc->base + offset);
298 }
299 
300 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
301 			       unsigned or)
302 {
303 	unsigned val = edma_read(ecc, offset);
304 
305 	val &= and;
306 	val |= or;
307 	edma_write(ecc, offset, val);
308 }
309 
310 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
311 {
312 	unsigned val = edma_read(ecc, offset);
313 
314 	val &= and;
315 	edma_write(ecc, offset, val);
316 }
317 
318 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
319 {
320 	unsigned val = edma_read(ecc, offset);
321 
322 	val |= or;
323 	edma_write(ecc, offset, val);
324 }
325 
326 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
327 					   int i)
328 {
329 	return edma_read(ecc, offset + (i << 2));
330 }
331 
332 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
333 				    unsigned val)
334 {
335 	edma_write(ecc, offset + (i << 2), val);
336 }
337 
338 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
339 				     unsigned and, unsigned or)
340 {
341 	edma_modify(ecc, offset + (i << 2), and, or);
342 }
343 
344 static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
345 				 unsigned or)
346 {
347 	edma_or(ecc, offset + (i << 2), or);
348 }
349 
350 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
351 				  unsigned or)
352 {
353 	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
354 }
355 
356 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
357 				     int j, unsigned val)
358 {
359 	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
360 }
361 
362 static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
363 {
364 	return edma_read(ecc, EDMA_SHADOW0 + offset);
365 }
366 
367 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
368 						   int offset, int i)
369 {
370 	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
371 }
372 
373 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
374 				      unsigned val)
375 {
376 	edma_write(ecc, EDMA_SHADOW0 + offset, val);
377 }
378 
379 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
380 					    int i, unsigned val)
381 {
382 	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
383 }
384 
385 static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
386 					   int param_no)
387 {
388 	return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
389 }
390 
391 static inline void edma_param_write(struct edma_cc *ecc, int offset,
392 				    int param_no, unsigned val)
393 {
394 	edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
395 }
396 
397 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
398 				     int param_no, unsigned and, unsigned or)
399 {
400 	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
401 }
402 
403 static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
404 				  unsigned and)
405 {
406 	edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
407 }
408 
409 static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
410 				 unsigned or)
411 {
412 	edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
413 }
414 
415 static inline void edma_set_bits(int offset, int len, unsigned long *p)
416 {
417 	for (; len > 0; len--)
418 		set_bit(offset + (len - 1), p);
419 }
420 
421 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
422 					  int priority)
423 {
424 	int bit = queue_no * 4;
425 
426 	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
427 }
428 
429 static void edma_set_chmap(struct edma_chan *echan, int slot)
430 {
431 	struct edma_cc *ecc = echan->ecc;
432 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
433 
434 	if (ecc->chmap_exist) {
435 		slot = EDMA_CHAN_SLOT(slot);
436 		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
437 	}
438 }
439 
440 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
441 {
442 	struct edma_cc *ecc = echan->ecc;
443 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
444 
445 	if (enable) {
446 		edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
447 					 BIT(channel & 0x1f));
448 		edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
449 					 BIT(channel & 0x1f));
450 	} else {
451 		edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
452 					 BIT(channel & 0x1f));
453 	}
454 }
455 
456 /*
457  * paRAM slot management functions
458  */
459 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
460 			    const struct edmacc_param *param)
461 {
462 	slot = EDMA_CHAN_SLOT(slot);
463 	if (slot >= ecc->num_slots)
464 		return;
465 	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
466 }
467 
468 static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
469 			   struct edmacc_param *param)
470 {
471 	slot = EDMA_CHAN_SLOT(slot);
472 	if (slot >= ecc->num_slots)
473 		return -EINVAL;
474 	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
475 
476 	return 0;
477 }
478 
479 /**
480  * edma_alloc_slot - allocate DMA parameter RAM
481  * @ecc: pointer to edma_cc struct
482  * @slot: specific slot to allocate; negative for "any unused slot"
483  *
484  * This allocates a parameter RAM slot, initializing it to hold a
485  * dummy transfer.  Slots allocated using this routine have not been
486  * mapped to a hardware DMA channel, and will normally be used by
487  * linking to them from a slot associated with a DMA channel.
488  *
489  * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
490  * slots may be allocated on behalf of DSP firmware.
491  *
492  * Returns the number of the slot, else negative errno.
493  */
494 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
495 {
496 	if (slot >= 0) {
497 		slot = EDMA_CHAN_SLOT(slot);
498 		/* Requesting entry paRAM slot for a HW triggered channel. */
499 		if (ecc->chmap_exist && slot < ecc->num_channels)
500 			slot = EDMA_SLOT_ANY;
501 	}
502 
503 	if (slot < 0) {
504 		if (ecc->chmap_exist)
505 			slot = 0;
506 		else
507 			slot = ecc->num_channels;
508 		for (;;) {
509 			slot = find_next_zero_bit(ecc->slot_inuse,
510 						  ecc->num_slots,
511 						  slot);
512 			if (slot == ecc->num_slots)
513 				return -ENOMEM;
514 			if (!test_and_set_bit(slot, ecc->slot_inuse))
515 				break;
516 		}
517 	} else if (slot >= ecc->num_slots) {
518 		return -EINVAL;
519 	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
520 		return -EBUSY;
521 	}
522 
523 	edma_write_slot(ecc, slot, &dummy_paramset);
524 
525 	return EDMA_CTLR_CHAN(ecc->id, slot);
526 }
527 
528 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
529 {
530 	slot = EDMA_CHAN_SLOT(slot);
531 	if (slot >= ecc->num_slots)
532 		return;
533 
534 	edma_write_slot(ecc, slot, &dummy_paramset);
535 	clear_bit(slot, ecc->slot_inuse);
536 }
537 
538 /**
539  * edma_link - link one parameter RAM slot to another
540  * @ecc: pointer to edma_cc struct
541  * @from: parameter RAM slot originating the link
542  * @to: parameter RAM slot which is the link target
543  *
544  * The originating slot should not be part of any active DMA transfer.
545  */
546 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
547 {
548 	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
549 		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
550 
551 	from = EDMA_CHAN_SLOT(from);
552 	to = EDMA_CHAN_SLOT(to);
553 	if (from >= ecc->num_slots || to >= ecc->num_slots)
554 		return;
555 
556 	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
557 			  PARM_OFFSET(to));
558 }
559 
560 /**
561  * edma_get_position - returns the current transfer point
562  * @ecc: pointer to edma_cc struct
563  * @slot: parameter RAM slot being examined
564  * @dst:  true selects the dest position, false the source
565  *
566  * Returns the position of the current active slot
567  */
568 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
569 				    bool dst)
570 {
571 	u32 offs;
572 
573 	slot = EDMA_CHAN_SLOT(slot);
574 	offs = PARM_OFFSET(slot);
575 	offs += dst ? PARM_DST : PARM_SRC;
576 
577 	return edma_read(ecc, offs);
578 }
579 
580 /*
581  * Channels with event associations will be triggered by their hardware
582  * events, and channels without such associations will be triggered by
583  * software.  (At this writing there is no interface for using software
584  * triggers except with channels that don't support hardware triggers.)
585  */
586 static void edma_start(struct edma_chan *echan)
587 {
588 	struct edma_cc *ecc = echan->ecc;
589 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
590 	int j = (channel >> 5);
591 	unsigned int mask = BIT(channel & 0x1f);
592 
593 	if (!echan->hw_triggered) {
594 		/* EDMA channels without event association */
595 		dev_dbg(ecc->dev, "ESR%d %08x\n", j,
596 			edma_shadow0_read_array(ecc, SH_ESR, j));
597 		edma_shadow0_write_array(ecc, SH_ESR, j, mask);
598 	} else {
599 		/* EDMA channel with event association */
600 		dev_dbg(ecc->dev, "ER%d %08x\n", j,
601 			edma_shadow0_read_array(ecc, SH_ER, j));
602 		/* Clear any pending event or error */
603 		edma_write_array(ecc, EDMA_ECR, j, mask);
604 		edma_write_array(ecc, EDMA_EMCR, j, mask);
605 		/* Clear any SER */
606 		edma_shadow0_write_array(ecc, SH_SECR, j, mask);
607 		edma_shadow0_write_array(ecc, SH_EESR, j, mask);
608 		dev_dbg(ecc->dev, "EER%d %08x\n", j,
609 			edma_shadow0_read_array(ecc, SH_EER, j));
610 	}
611 }
612 
613 static void edma_stop(struct edma_chan *echan)
614 {
615 	struct edma_cc *ecc = echan->ecc;
616 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
617 	int j = (channel >> 5);
618 	unsigned int mask = BIT(channel & 0x1f);
619 
620 	edma_shadow0_write_array(ecc, SH_EECR, j, mask);
621 	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
622 	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
623 	edma_write_array(ecc, EDMA_EMCR, j, mask);
624 
625 	/* clear possibly pending completion interrupt */
626 	edma_shadow0_write_array(ecc, SH_ICR, j, mask);
627 
628 	dev_dbg(ecc->dev, "EER%d %08x\n", j,
629 		edma_shadow0_read_array(ecc, SH_EER, j));
630 
631 	/* REVISIT:  consider guarding against inappropriate event
632 	 * chaining by overwriting with dummy_paramset.
633 	 */
634 }
635 
636 /*
637  * Temporarily disable EDMA hardware events on the specified channel,
638  * preventing them from triggering new transfers
639  */
640 static void edma_pause(struct edma_chan *echan)
641 {
642 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
643 	unsigned int mask = BIT(channel & 0x1f);
644 
645 	edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
646 }
647 
648 /* Re-enable EDMA hardware events on the specified channel.  */
649 static void edma_resume(struct edma_chan *echan)
650 {
651 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
652 	unsigned int mask = BIT(channel & 0x1f);
653 
654 	edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
655 }
656 
657 static void edma_trigger_channel(struct edma_chan *echan)
658 {
659 	struct edma_cc *ecc = echan->ecc;
660 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
661 	unsigned int mask = BIT(channel & 0x1f);
662 
663 	edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
664 
665 	dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
666 		edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
667 }
668 
669 static void edma_clean_channel(struct edma_chan *echan)
670 {
671 	struct edma_cc *ecc = echan->ecc;
672 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
673 	int j = (channel >> 5);
674 	unsigned int mask = BIT(channel & 0x1f);
675 
676 	dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
677 	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
678 	/* Clear the corresponding EMR bits */
679 	edma_write_array(ecc, EDMA_EMCR, j, mask);
680 	/* Clear any SER */
681 	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
682 	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
683 }
684 
685 /* Move channel to a specific event queue */
686 static void edma_assign_channel_eventq(struct edma_chan *echan,
687 				       enum dma_event_q eventq_no)
688 {
689 	struct edma_cc *ecc = echan->ecc;
690 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
691 	int bit = (channel & 0x7) * 4;
692 
693 	/* default to low priority queue */
694 	if (eventq_no == EVENTQ_DEFAULT)
695 		eventq_no = ecc->default_queue;
696 	if (eventq_no >= ecc->num_tc)
697 		return;
698 
699 	eventq_no &= 7;
700 	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
701 			  eventq_no << bit);
702 }
703 
704 static int edma_alloc_channel(struct edma_chan *echan,
705 			      enum dma_event_q eventq_no)
706 {
707 	struct edma_cc *ecc = echan->ecc;
708 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
709 
710 	/* ensure access through shadow region 0 */
711 	edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
712 
713 	/* ensure no events are pending */
714 	edma_stop(echan);
715 
716 	edma_setup_interrupt(echan, true);
717 
718 	edma_assign_channel_eventq(echan, eventq_no);
719 
720 	return 0;
721 }
722 
723 static void edma_free_channel(struct edma_chan *echan)
724 {
725 	/* ensure no events are pending */
726 	edma_stop(echan);
727 	/* REVISIT should probably take out of shadow region 0 */
728 	edma_setup_interrupt(echan, false);
729 }
730 
731 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
732 {
733 	return container_of(d, struct edma_cc, dma_slave);
734 }
735 
736 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
737 {
738 	return container_of(c, struct edma_chan, vchan.chan);
739 }
740 
741 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
742 {
743 	return container_of(tx, struct edma_desc, vdesc.tx);
744 }
745 
746 static void edma_desc_free(struct virt_dma_desc *vdesc)
747 {
748 	kfree(container_of(vdesc, struct edma_desc, vdesc));
749 }
750 
751 /* Dispatch a queued descriptor to the controller (caller holds lock) */
752 static void edma_execute(struct edma_chan *echan)
753 {
754 	struct edma_cc *ecc = echan->ecc;
755 	struct virt_dma_desc *vdesc;
756 	struct edma_desc *edesc;
757 	struct device *dev = echan->vchan.chan.device->dev;
758 	int i, j, left, nslots;
759 
760 	if (!echan->edesc) {
761 		/* Setup is needed for the first transfer */
762 		vdesc = vchan_next_desc(&echan->vchan);
763 		if (!vdesc)
764 			return;
765 		list_del(&vdesc->node);
766 		echan->edesc = to_edma_desc(&vdesc->tx);
767 	}
768 
769 	edesc = echan->edesc;
770 
771 	/* Find out how many left */
772 	left = edesc->pset_nr - edesc->processed;
773 	nslots = min(MAX_NR_SG, left);
774 	edesc->sg_len = 0;
775 
776 	/* Write descriptor PaRAM set(s) */
777 	for (i = 0; i < nslots; i++) {
778 		j = i + edesc->processed;
779 		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
780 		edesc->sg_len += edesc->pset[j].len;
781 		dev_vdbg(dev,
782 			 "\n pset[%d]:\n"
783 			 "  chnum\t%d\n"
784 			 "  slot\t%d\n"
785 			 "  opt\t%08x\n"
786 			 "  src\t%08x\n"
787 			 "  dst\t%08x\n"
788 			 "  abcnt\t%08x\n"
789 			 "  ccnt\t%08x\n"
790 			 "  bidx\t%08x\n"
791 			 "  cidx\t%08x\n"
792 			 "  lkrld\t%08x\n",
793 			 j, echan->ch_num, echan->slot[i],
794 			 edesc->pset[j].param.opt,
795 			 edesc->pset[j].param.src,
796 			 edesc->pset[j].param.dst,
797 			 edesc->pset[j].param.a_b_cnt,
798 			 edesc->pset[j].param.ccnt,
799 			 edesc->pset[j].param.src_dst_bidx,
800 			 edesc->pset[j].param.src_dst_cidx,
801 			 edesc->pset[j].param.link_bcntrld);
802 		/* Link to the previous slot if not the last set */
803 		if (i != (nslots - 1))
804 			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
805 	}
806 
807 	edesc->processed += nslots;
808 
809 	/*
810 	 * If this is either the last set in a set of SG-list transactions
811 	 * then setup a link to the dummy slot, this results in all future
812 	 * events being absorbed and that's OK because we're done
813 	 */
814 	if (edesc->processed == edesc->pset_nr) {
815 		if (edesc->cyclic)
816 			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
817 		else
818 			edma_link(ecc, echan->slot[nslots - 1],
819 				  echan->ecc->dummy_slot);
820 	}
821 
822 	if (echan->missed) {
823 		/*
824 		 * This happens due to setup times between intermediate
825 		 * transfers in long SG lists which have to be broken up into
826 		 * transfers of MAX_NR_SG
827 		 */
828 		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
829 		edma_clean_channel(echan);
830 		edma_stop(echan);
831 		edma_start(echan);
832 		edma_trigger_channel(echan);
833 		echan->missed = 0;
834 	} else if (edesc->processed <= MAX_NR_SG) {
835 		dev_dbg(dev, "first transfer starting on channel %d\n",
836 			echan->ch_num);
837 		edma_start(echan);
838 	} else {
839 		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
840 			echan->ch_num, edesc->processed);
841 		edma_resume(echan);
842 	}
843 }
844 
845 static int edma_terminate_all(struct dma_chan *chan)
846 {
847 	struct edma_chan *echan = to_edma_chan(chan);
848 	unsigned long flags;
849 	LIST_HEAD(head);
850 
851 	spin_lock_irqsave(&echan->vchan.lock, flags);
852 
853 	/*
854 	 * Stop DMA activity: we assume the callback will not be called
855 	 * after edma_dma() returns (even if it does, it will see
856 	 * echan->edesc is NULL and exit.)
857 	 */
858 	if (echan->edesc) {
859 		edma_stop(echan);
860 		/* Move the cyclic channel back to default queue */
861 		if (!echan->tc && echan->edesc->cyclic)
862 			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
863 
864 		vchan_terminate_vdesc(&echan->edesc->vdesc);
865 		echan->edesc = NULL;
866 	}
867 
868 	vchan_get_all_descriptors(&echan->vchan, &head);
869 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
870 	vchan_dma_desc_free_list(&echan->vchan, &head);
871 
872 	return 0;
873 }
874 
875 static void edma_synchronize(struct dma_chan *chan)
876 {
877 	struct edma_chan *echan = to_edma_chan(chan);
878 
879 	vchan_synchronize(&echan->vchan);
880 }
881 
882 static int edma_slave_config(struct dma_chan *chan,
883 	struct dma_slave_config *cfg)
884 {
885 	struct edma_chan *echan = to_edma_chan(chan);
886 
887 	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
888 	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
889 		return -EINVAL;
890 
891 	if (cfg->src_maxburst > chan->device->max_burst ||
892 	    cfg->dst_maxburst > chan->device->max_burst)
893 		return -EINVAL;
894 
895 	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
896 
897 	return 0;
898 }
899 
900 static int edma_dma_pause(struct dma_chan *chan)
901 {
902 	struct edma_chan *echan = to_edma_chan(chan);
903 
904 	if (!echan->edesc)
905 		return -EINVAL;
906 
907 	edma_pause(echan);
908 	return 0;
909 }
910 
911 static int edma_dma_resume(struct dma_chan *chan)
912 {
913 	struct edma_chan *echan = to_edma_chan(chan);
914 
915 	edma_resume(echan);
916 	return 0;
917 }
918 
919 /*
920  * A PaRAM set configuration abstraction used by other modes
921  * @chan: Channel who's PaRAM set we're configuring
922  * @pset: PaRAM set to initialize and setup.
923  * @src_addr: Source address of the DMA
924  * @dst_addr: Destination address of the DMA
925  * @burst: In units of dev_width, how much to send
926  * @dev_width: How much is the dev_width
927  * @dma_length: Total length of the DMA transfer
928  * @direction: Direction of the transfer
929  */
930 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
931 			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
932 			    unsigned int acnt, unsigned int dma_length,
933 			    enum dma_transfer_direction direction)
934 {
935 	struct edma_chan *echan = to_edma_chan(chan);
936 	struct device *dev = chan->device->dev;
937 	struct edmacc_param *param = &epset->param;
938 	int bcnt, ccnt, cidx;
939 	int src_bidx, dst_bidx, src_cidx, dst_cidx;
940 	int absync;
941 
942 	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
943 	if (!burst)
944 		burst = 1;
945 	/*
946 	 * If the maxburst is equal to the fifo width, use
947 	 * A-synced transfers. This allows for large contiguous
948 	 * buffer transfers using only one PaRAM set.
949 	 */
950 	if (burst == 1) {
951 		/*
952 		 * For the A-sync case, bcnt and ccnt are the remainder
953 		 * and quotient respectively of the division of:
954 		 * (dma_length / acnt) by (SZ_64K -1). This is so
955 		 * that in case bcnt over flows, we have ccnt to use.
956 		 * Note: In A-sync tranfer only, bcntrld is used, but it
957 		 * only applies for sg_dma_len(sg) >= SZ_64K.
958 		 * In this case, the best way adopted is- bccnt for the
959 		 * first frame will be the remainder below. Then for
960 		 * every successive frame, bcnt will be SZ_64K-1. This
961 		 * is assured as bcntrld = 0xffff in end of function.
962 		 */
963 		absync = false;
964 		ccnt = dma_length / acnt / (SZ_64K - 1);
965 		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
966 		/*
967 		 * If bcnt is non-zero, we have a remainder and hence an
968 		 * extra frame to transfer, so increment ccnt.
969 		 */
970 		if (bcnt)
971 			ccnt++;
972 		else
973 			bcnt = SZ_64K - 1;
974 		cidx = acnt;
975 	} else {
976 		/*
977 		 * If maxburst is greater than the fifo address_width,
978 		 * use AB-synced transfers where A count is the fifo
979 		 * address_width and B count is the maxburst. In this
980 		 * case, we are limited to transfers of C count frames
981 		 * of (address_width * maxburst) where C count is limited
982 		 * to SZ_64K-1. This places an upper bound on the length
983 		 * of an SG segment that can be handled.
984 		 */
985 		absync = true;
986 		bcnt = burst;
987 		ccnt = dma_length / (acnt * bcnt);
988 		if (ccnt > (SZ_64K - 1)) {
989 			dev_err(dev, "Exceeded max SG segment size\n");
990 			return -EINVAL;
991 		}
992 		cidx = acnt * bcnt;
993 	}
994 
995 	epset->len = dma_length;
996 
997 	if (direction == DMA_MEM_TO_DEV) {
998 		src_bidx = acnt;
999 		src_cidx = cidx;
1000 		dst_bidx = 0;
1001 		dst_cidx = 0;
1002 		epset->addr = src_addr;
1003 	} else if (direction == DMA_DEV_TO_MEM)  {
1004 		src_bidx = 0;
1005 		src_cidx = 0;
1006 		dst_bidx = acnt;
1007 		dst_cidx = cidx;
1008 		epset->addr = dst_addr;
1009 	} else if (direction == DMA_MEM_TO_MEM)  {
1010 		src_bidx = acnt;
1011 		src_cidx = cidx;
1012 		dst_bidx = acnt;
1013 		dst_cidx = cidx;
1014 	} else {
1015 		dev_err(dev, "%s: direction not implemented yet\n", __func__);
1016 		return -EINVAL;
1017 	}
1018 
1019 	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1020 	/* Configure A or AB synchronized transfers */
1021 	if (absync)
1022 		param->opt |= SYNCDIM;
1023 
1024 	param->src = src_addr;
1025 	param->dst = dst_addr;
1026 
1027 	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1028 	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1029 
1030 	param->a_b_cnt = bcnt << 16 | acnt;
1031 	param->ccnt = ccnt;
1032 	/*
1033 	 * Only time when (bcntrld) auto reload is required is for
1034 	 * A-sync case, and in this case, a requirement of reload value
1035 	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1036 	 * and then later will be populated by edma_execute.
1037 	 */
1038 	param->link_bcntrld = 0xffffffff;
1039 	return absync;
1040 }
1041 
1042 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1043 	struct dma_chan *chan, struct scatterlist *sgl,
1044 	unsigned int sg_len, enum dma_transfer_direction direction,
1045 	unsigned long tx_flags, void *context)
1046 {
1047 	struct edma_chan *echan = to_edma_chan(chan);
1048 	struct device *dev = chan->device->dev;
1049 	struct edma_desc *edesc;
1050 	dma_addr_t src_addr = 0, dst_addr = 0;
1051 	enum dma_slave_buswidth dev_width;
1052 	u32 burst;
1053 	struct scatterlist *sg;
1054 	int i, nslots, ret;
1055 
1056 	if (unlikely(!echan || !sgl || !sg_len))
1057 		return NULL;
1058 
1059 	if (direction == DMA_DEV_TO_MEM) {
1060 		src_addr = echan->cfg.src_addr;
1061 		dev_width = echan->cfg.src_addr_width;
1062 		burst = echan->cfg.src_maxburst;
1063 	} else if (direction == DMA_MEM_TO_DEV) {
1064 		dst_addr = echan->cfg.dst_addr;
1065 		dev_width = echan->cfg.dst_addr_width;
1066 		burst = echan->cfg.dst_maxburst;
1067 	} else {
1068 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1069 		return NULL;
1070 	}
1071 
1072 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1073 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1074 		return NULL;
1075 	}
1076 
1077 	edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
1078 	if (!edesc)
1079 		return NULL;
1080 
1081 	edesc->pset_nr = sg_len;
1082 	edesc->residue = 0;
1083 	edesc->direction = direction;
1084 	edesc->echan = echan;
1085 
1086 	/* Allocate a PaRAM slot, if needed */
1087 	nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1088 
1089 	for (i = 0; i < nslots; i++) {
1090 		if (echan->slot[i] < 0) {
1091 			echan->slot[i] =
1092 				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1093 			if (echan->slot[i] < 0) {
1094 				kfree(edesc);
1095 				dev_err(dev, "%s: Failed to allocate slot\n",
1096 					__func__);
1097 				return NULL;
1098 			}
1099 		}
1100 	}
1101 
1102 	/* Configure PaRAM sets for each SG */
1103 	for_each_sg(sgl, sg, sg_len, i) {
1104 		/* Get address for each SG */
1105 		if (direction == DMA_DEV_TO_MEM)
1106 			dst_addr = sg_dma_address(sg);
1107 		else
1108 			src_addr = sg_dma_address(sg);
1109 
1110 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1111 				       dst_addr, burst, dev_width,
1112 				       sg_dma_len(sg), direction);
1113 		if (ret < 0) {
1114 			kfree(edesc);
1115 			return NULL;
1116 		}
1117 
1118 		edesc->absync = ret;
1119 		edesc->residue += sg_dma_len(sg);
1120 
1121 		if (i == sg_len - 1)
1122 			/* Enable completion interrupt */
1123 			edesc->pset[i].param.opt |= TCINTEN;
1124 		else if (!((i+1) % MAX_NR_SG))
1125 			/*
1126 			 * Enable early completion interrupt for the
1127 			 * intermediateset. In this case the driver will be
1128 			 * notified when the paRAM set is submitted to TC. This
1129 			 * will allow more time to set up the next set of slots.
1130 			 */
1131 			edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1132 	}
1133 	edesc->residue_stat = edesc->residue;
1134 
1135 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1136 }
1137 
1138 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1139 	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1140 	size_t len, unsigned long tx_flags)
1141 {
1142 	int ret, nslots;
1143 	struct edma_desc *edesc;
1144 	struct device *dev = chan->device->dev;
1145 	struct edma_chan *echan = to_edma_chan(chan);
1146 	unsigned int width, pset_len, array_size;
1147 
1148 	if (unlikely(!echan || !len))
1149 		return NULL;
1150 
1151 	/* Align the array size (acnt block) with the transfer properties */
1152 	switch (__ffs((src | dest | len))) {
1153 	case 0:
1154 		array_size = SZ_32K - 1;
1155 		break;
1156 	case 1:
1157 		array_size = SZ_32K - 2;
1158 		break;
1159 	default:
1160 		array_size = SZ_32K - 4;
1161 		break;
1162 	}
1163 
1164 	if (len < SZ_64K) {
1165 		/*
1166 		 * Transfer size less than 64K can be handled with one paRAM
1167 		 * slot and with one burst.
1168 		 * ACNT = length
1169 		 */
1170 		width = len;
1171 		pset_len = len;
1172 		nslots = 1;
1173 	} else {
1174 		/*
1175 		 * Transfer size bigger than 64K will be handled with maximum of
1176 		 * two paRAM slots.
1177 		 * slot1: (full_length / 32767) times 32767 bytes bursts.
1178 		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
1179 		 * slot2: the remaining amount of data after slot1.
1180 		 *	  ACNT = full_length - length1, length2 = ACNT
1181 		 *
1182 		 * When the full_length is multibple of 32767 one slot can be
1183 		 * used to complete the transfer.
1184 		 */
1185 		width = array_size;
1186 		pset_len = rounddown(len, width);
1187 		/* One slot is enough for lengths multiple of (SZ_32K -1) */
1188 		if (unlikely(pset_len == len))
1189 			nslots = 1;
1190 		else
1191 			nslots = 2;
1192 	}
1193 
1194 	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1195 	if (!edesc)
1196 		return NULL;
1197 
1198 	edesc->pset_nr = nslots;
1199 	edesc->residue = edesc->residue_stat = len;
1200 	edesc->direction = DMA_MEM_TO_MEM;
1201 	edesc->echan = echan;
1202 
1203 	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1204 			       width, pset_len, DMA_MEM_TO_MEM);
1205 	if (ret < 0) {
1206 		kfree(edesc);
1207 		return NULL;
1208 	}
1209 
1210 	edesc->absync = ret;
1211 
1212 	edesc->pset[0].param.opt |= ITCCHEN;
1213 	if (nslots == 1) {
1214 		/* Enable transfer complete interrupt */
1215 		edesc->pset[0].param.opt |= TCINTEN;
1216 	} else {
1217 		/* Enable transfer complete chaining for the first slot */
1218 		edesc->pset[0].param.opt |= TCCHEN;
1219 
1220 		if (echan->slot[1] < 0) {
1221 			echan->slot[1] = edma_alloc_slot(echan->ecc,
1222 							 EDMA_SLOT_ANY);
1223 			if (echan->slot[1] < 0) {
1224 				kfree(edesc);
1225 				dev_err(dev, "%s: Failed to allocate slot\n",
1226 					__func__);
1227 				return NULL;
1228 			}
1229 		}
1230 		dest += pset_len;
1231 		src += pset_len;
1232 		pset_len = width = len % array_size;
1233 
1234 		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1235 				       width, pset_len, DMA_MEM_TO_MEM);
1236 		if (ret < 0) {
1237 			kfree(edesc);
1238 			return NULL;
1239 		}
1240 
1241 		edesc->pset[1].param.opt |= ITCCHEN;
1242 		edesc->pset[1].param.opt |= TCINTEN;
1243 	}
1244 
1245 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1246 }
1247 
1248 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1249 	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1250 	size_t period_len, enum dma_transfer_direction direction,
1251 	unsigned long tx_flags)
1252 {
1253 	struct edma_chan *echan = to_edma_chan(chan);
1254 	struct device *dev = chan->device->dev;
1255 	struct edma_desc *edesc;
1256 	dma_addr_t src_addr, dst_addr;
1257 	enum dma_slave_buswidth dev_width;
1258 	bool use_intermediate = false;
1259 	u32 burst;
1260 	int i, ret, nslots;
1261 
1262 	if (unlikely(!echan || !buf_len || !period_len))
1263 		return NULL;
1264 
1265 	if (direction == DMA_DEV_TO_MEM) {
1266 		src_addr = echan->cfg.src_addr;
1267 		dst_addr = buf_addr;
1268 		dev_width = echan->cfg.src_addr_width;
1269 		burst = echan->cfg.src_maxburst;
1270 	} else if (direction == DMA_MEM_TO_DEV) {
1271 		src_addr = buf_addr;
1272 		dst_addr = echan->cfg.dst_addr;
1273 		dev_width = echan->cfg.dst_addr_width;
1274 		burst = echan->cfg.dst_maxburst;
1275 	} else {
1276 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1277 		return NULL;
1278 	}
1279 
1280 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1281 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1282 		return NULL;
1283 	}
1284 
1285 	if (unlikely(buf_len % period_len)) {
1286 		dev_err(dev, "Period should be multiple of Buffer length\n");
1287 		return NULL;
1288 	}
1289 
1290 	nslots = (buf_len / period_len) + 1;
1291 
1292 	/*
1293 	 * Cyclic DMA users such as audio cannot tolerate delays introduced
1294 	 * by cases where the number of periods is more than the maximum
1295 	 * number of SGs the EDMA driver can handle at a time. For DMA types
1296 	 * such as Slave SGs, such delays are tolerable and synchronized,
1297 	 * but the synchronization is difficult to achieve with Cyclic and
1298 	 * cannot be guaranteed, so we error out early.
1299 	 */
1300 	if (nslots > MAX_NR_SG) {
1301 		/*
1302 		 * If the burst and period sizes are the same, we can put
1303 		 * the full buffer into a single period and activate
1304 		 * intermediate interrupts. This will produce interrupts
1305 		 * after each burst, which is also after each desired period.
1306 		 */
1307 		if (burst == period_len) {
1308 			period_len = buf_len;
1309 			nslots = 2;
1310 			use_intermediate = true;
1311 		} else {
1312 			return NULL;
1313 		}
1314 	}
1315 
1316 	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1317 	if (!edesc)
1318 		return NULL;
1319 
1320 	edesc->cyclic = 1;
1321 	edesc->pset_nr = nslots;
1322 	edesc->residue = edesc->residue_stat = buf_len;
1323 	edesc->direction = direction;
1324 	edesc->echan = echan;
1325 
1326 	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1327 		__func__, echan->ch_num, nslots, period_len, buf_len);
1328 
1329 	for (i = 0; i < nslots; i++) {
1330 		/* Allocate a PaRAM slot, if needed */
1331 		if (echan->slot[i] < 0) {
1332 			echan->slot[i] =
1333 				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1334 			if (echan->slot[i] < 0) {
1335 				kfree(edesc);
1336 				dev_err(dev, "%s: Failed to allocate slot\n",
1337 					__func__);
1338 				return NULL;
1339 			}
1340 		}
1341 
1342 		if (i == nslots - 1) {
1343 			memcpy(&edesc->pset[i], &edesc->pset[0],
1344 			       sizeof(edesc->pset[0]));
1345 			break;
1346 		}
1347 
1348 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1349 				       dst_addr, burst, dev_width, period_len,
1350 				       direction);
1351 		if (ret < 0) {
1352 			kfree(edesc);
1353 			return NULL;
1354 		}
1355 
1356 		if (direction == DMA_DEV_TO_MEM)
1357 			dst_addr += period_len;
1358 		else
1359 			src_addr += period_len;
1360 
1361 		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1362 		dev_vdbg(dev,
1363 			"\n pset[%d]:\n"
1364 			"  chnum\t%d\n"
1365 			"  slot\t%d\n"
1366 			"  opt\t%08x\n"
1367 			"  src\t%08x\n"
1368 			"  dst\t%08x\n"
1369 			"  abcnt\t%08x\n"
1370 			"  ccnt\t%08x\n"
1371 			"  bidx\t%08x\n"
1372 			"  cidx\t%08x\n"
1373 			"  lkrld\t%08x\n",
1374 			i, echan->ch_num, echan->slot[i],
1375 			edesc->pset[i].param.opt,
1376 			edesc->pset[i].param.src,
1377 			edesc->pset[i].param.dst,
1378 			edesc->pset[i].param.a_b_cnt,
1379 			edesc->pset[i].param.ccnt,
1380 			edesc->pset[i].param.src_dst_bidx,
1381 			edesc->pset[i].param.src_dst_cidx,
1382 			edesc->pset[i].param.link_bcntrld);
1383 
1384 		edesc->absync = ret;
1385 
1386 		/*
1387 		 * Enable period interrupt only if it is requested
1388 		 */
1389 		if (tx_flags & DMA_PREP_INTERRUPT) {
1390 			edesc->pset[i].param.opt |= TCINTEN;
1391 
1392 			/* Also enable intermediate interrupts if necessary */
1393 			if (use_intermediate)
1394 				edesc->pset[i].param.opt |= ITCINTEN;
1395 		}
1396 	}
1397 
1398 	/* Place the cyclic channel to highest priority queue */
1399 	if (!echan->tc)
1400 		edma_assign_channel_eventq(echan, EVENTQ_0);
1401 
1402 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1403 }
1404 
1405 static void edma_completion_handler(struct edma_chan *echan)
1406 {
1407 	struct device *dev = echan->vchan.chan.device->dev;
1408 	struct edma_desc *edesc;
1409 
1410 	spin_lock(&echan->vchan.lock);
1411 	edesc = echan->edesc;
1412 	if (edesc) {
1413 		if (edesc->cyclic) {
1414 			vchan_cyclic_callback(&edesc->vdesc);
1415 			spin_unlock(&echan->vchan.lock);
1416 			return;
1417 		} else if (edesc->processed == edesc->pset_nr) {
1418 			edesc->residue = 0;
1419 			edma_stop(echan);
1420 			vchan_cookie_complete(&edesc->vdesc);
1421 			echan->edesc = NULL;
1422 
1423 			dev_dbg(dev, "Transfer completed on channel %d\n",
1424 				echan->ch_num);
1425 		} else {
1426 			dev_dbg(dev, "Sub transfer completed on channel %d\n",
1427 				echan->ch_num);
1428 
1429 			edma_pause(echan);
1430 
1431 			/* Update statistics for tx_status */
1432 			edesc->residue -= edesc->sg_len;
1433 			edesc->residue_stat = edesc->residue;
1434 			edesc->processed_stat = edesc->processed;
1435 		}
1436 		edma_execute(echan);
1437 	}
1438 
1439 	spin_unlock(&echan->vchan.lock);
1440 }
1441 
1442 /* eDMA interrupt handler */
1443 static irqreturn_t dma_irq_handler(int irq, void *data)
1444 {
1445 	struct edma_cc *ecc = data;
1446 	int ctlr;
1447 	u32 sh_ier;
1448 	u32 sh_ipr;
1449 	u32 bank;
1450 
1451 	ctlr = ecc->id;
1452 	if (ctlr < 0)
1453 		return IRQ_NONE;
1454 
1455 	dev_vdbg(ecc->dev, "dma_irq_handler\n");
1456 
1457 	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1458 	if (!sh_ipr) {
1459 		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1460 		if (!sh_ipr)
1461 			return IRQ_NONE;
1462 		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1463 		bank = 1;
1464 	} else {
1465 		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1466 		bank = 0;
1467 	}
1468 
1469 	do {
1470 		u32 slot;
1471 		u32 channel;
1472 
1473 		slot = __ffs(sh_ipr);
1474 		sh_ipr &= ~(BIT(slot));
1475 
1476 		if (sh_ier & BIT(slot)) {
1477 			channel = (bank << 5) | slot;
1478 			/* Clear the corresponding IPR bits */
1479 			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1480 			edma_completion_handler(&ecc->slave_chans[channel]);
1481 		}
1482 	} while (sh_ipr);
1483 
1484 	edma_shadow0_write(ecc, SH_IEVAL, 1);
1485 	return IRQ_HANDLED;
1486 }
1487 
1488 static void edma_error_handler(struct edma_chan *echan)
1489 {
1490 	struct edma_cc *ecc = echan->ecc;
1491 	struct device *dev = echan->vchan.chan.device->dev;
1492 	struct edmacc_param p;
1493 	int err;
1494 
1495 	if (!echan->edesc)
1496 		return;
1497 
1498 	spin_lock(&echan->vchan.lock);
1499 
1500 	err = edma_read_slot(ecc, echan->slot[0], &p);
1501 
1502 	/*
1503 	 * Issue later based on missed flag which will be sure
1504 	 * to happen as:
1505 	 * (1) we finished transmitting an intermediate slot and
1506 	 *     edma_execute is coming up.
1507 	 * (2) or we finished current transfer and issue will
1508 	 *     call edma_execute.
1509 	 *
1510 	 * Important note: issuing can be dangerous here and
1511 	 * lead to some nasty recursion when we are in a NULL
1512 	 * slot. So we avoid doing so and set the missed flag.
1513 	 */
1514 	if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1515 		dev_dbg(dev, "Error on null slot, setting miss\n");
1516 		echan->missed = 1;
1517 	} else {
1518 		/*
1519 		 * The slot is already programmed but the event got
1520 		 * missed, so its safe to issue it here.
1521 		 */
1522 		dev_dbg(dev, "Missed event, TRIGGERING\n");
1523 		edma_clean_channel(echan);
1524 		edma_stop(echan);
1525 		edma_start(echan);
1526 		edma_trigger_channel(echan);
1527 	}
1528 	spin_unlock(&echan->vchan.lock);
1529 }
1530 
1531 static inline bool edma_error_pending(struct edma_cc *ecc)
1532 {
1533 	if (edma_read_array(ecc, EDMA_EMR, 0) ||
1534 	    edma_read_array(ecc, EDMA_EMR, 1) ||
1535 	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1536 		return true;
1537 
1538 	return false;
1539 }
1540 
1541 /* eDMA error interrupt handler */
1542 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1543 {
1544 	struct edma_cc *ecc = data;
1545 	int i, j;
1546 	int ctlr;
1547 	unsigned int cnt = 0;
1548 	unsigned int val;
1549 
1550 	ctlr = ecc->id;
1551 	if (ctlr < 0)
1552 		return IRQ_NONE;
1553 
1554 	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1555 
1556 	if (!edma_error_pending(ecc)) {
1557 		/*
1558 		 * The registers indicate no pending error event but the irq
1559 		 * handler has been called.
1560 		 * Ask eDMA to re-evaluate the error registers.
1561 		 */
1562 		dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1563 			__func__);
1564 		edma_write(ecc, EDMA_EEVAL, 1);
1565 		return IRQ_NONE;
1566 	}
1567 
1568 	while (1) {
1569 		/* Event missed register(s) */
1570 		for (j = 0; j < 2; j++) {
1571 			unsigned long emr;
1572 
1573 			val = edma_read_array(ecc, EDMA_EMR, j);
1574 			if (!val)
1575 				continue;
1576 
1577 			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1578 			emr = val;
1579 			for (i = find_next_bit(&emr, 32, 0); i < 32;
1580 			     i = find_next_bit(&emr, 32, i + 1)) {
1581 				int k = (j << 5) + i;
1582 
1583 				/* Clear the corresponding EMR bits */
1584 				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1585 				/* Clear any SER */
1586 				edma_shadow0_write_array(ecc, SH_SECR, j,
1587 							 BIT(i));
1588 				edma_error_handler(&ecc->slave_chans[k]);
1589 			}
1590 		}
1591 
1592 		val = edma_read(ecc, EDMA_QEMR);
1593 		if (val) {
1594 			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1595 			/* Not reported, just clear the interrupt reason. */
1596 			edma_write(ecc, EDMA_QEMCR, val);
1597 			edma_shadow0_write(ecc, SH_QSECR, val);
1598 		}
1599 
1600 		val = edma_read(ecc, EDMA_CCERR);
1601 		if (val) {
1602 			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1603 			/* Not reported, just clear the interrupt reason. */
1604 			edma_write(ecc, EDMA_CCERRCLR, val);
1605 		}
1606 
1607 		if (!edma_error_pending(ecc))
1608 			break;
1609 		cnt++;
1610 		if (cnt > 10)
1611 			break;
1612 	}
1613 	edma_write(ecc, EDMA_EEVAL, 1);
1614 	return IRQ_HANDLED;
1615 }
1616 
1617 /* Alloc channel resources */
1618 static int edma_alloc_chan_resources(struct dma_chan *chan)
1619 {
1620 	struct edma_chan *echan = to_edma_chan(chan);
1621 	struct edma_cc *ecc = echan->ecc;
1622 	struct device *dev = ecc->dev;
1623 	enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1624 	int ret;
1625 
1626 	if (echan->tc) {
1627 		eventq_no = echan->tc->id;
1628 	} else if (ecc->tc_list) {
1629 		/* memcpy channel */
1630 		echan->tc = &ecc->tc_list[ecc->info->default_queue];
1631 		eventq_no = echan->tc->id;
1632 	}
1633 
1634 	ret = edma_alloc_channel(echan, eventq_no);
1635 	if (ret)
1636 		return ret;
1637 
1638 	echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1639 	if (echan->slot[0] < 0) {
1640 		dev_err(dev, "Entry slot allocation failed for channel %u\n",
1641 			EDMA_CHAN_SLOT(echan->ch_num));
1642 		ret = echan->slot[0];
1643 		goto err_slot;
1644 	}
1645 
1646 	/* Set up channel -> slot mapping for the entry slot */
1647 	edma_set_chmap(echan, echan->slot[0]);
1648 	echan->alloced = true;
1649 
1650 	dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1651 		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1652 		echan->hw_triggered ? "HW" : "SW");
1653 
1654 	return 0;
1655 
1656 err_slot:
1657 	edma_free_channel(echan);
1658 	return ret;
1659 }
1660 
1661 /* Free channel resources */
1662 static void edma_free_chan_resources(struct dma_chan *chan)
1663 {
1664 	struct edma_chan *echan = to_edma_chan(chan);
1665 	struct device *dev = echan->ecc->dev;
1666 	int i;
1667 
1668 	/* Terminate transfers */
1669 	edma_stop(echan);
1670 
1671 	vchan_free_chan_resources(&echan->vchan);
1672 
1673 	/* Free EDMA PaRAM slots */
1674 	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1675 		if (echan->slot[i] >= 0) {
1676 			edma_free_slot(echan->ecc, echan->slot[i]);
1677 			echan->slot[i] = -1;
1678 		}
1679 	}
1680 
1681 	/* Set entry slot to the dummy slot */
1682 	edma_set_chmap(echan, echan->ecc->dummy_slot);
1683 
1684 	/* Free EDMA channel */
1685 	if (echan->alloced) {
1686 		edma_free_channel(echan);
1687 		echan->alloced = false;
1688 	}
1689 
1690 	echan->tc = NULL;
1691 	echan->hw_triggered = false;
1692 
1693 	dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1694 		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1695 }
1696 
1697 /* Send pending descriptor to hardware */
1698 static void edma_issue_pending(struct dma_chan *chan)
1699 {
1700 	struct edma_chan *echan = to_edma_chan(chan);
1701 	unsigned long flags;
1702 
1703 	spin_lock_irqsave(&echan->vchan.lock, flags);
1704 	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1705 		edma_execute(echan);
1706 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1707 }
1708 
1709 /*
1710  * This limit exists to avoid a possible infinite loop when waiting for proof
1711  * that a particular transfer is completed. This limit can be hit if there
1712  * are large bursts to/from slow devices or the CPU is never able to catch
1713  * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
1714  * RX-FIFO, as many as 55 loops have been seen.
1715  */
1716 #define EDMA_MAX_TR_WAIT_LOOPS 1000
1717 
1718 static u32 edma_residue(struct edma_desc *edesc)
1719 {
1720 	bool dst = edesc->direction == DMA_DEV_TO_MEM;
1721 	int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1722 	struct edma_chan *echan = edesc->echan;
1723 	struct edma_pset *pset = edesc->pset;
1724 	dma_addr_t done, pos;
1725 	int i;
1726 
1727 	/*
1728 	 * We always read the dst/src position from the first RamPar
1729 	 * pset. That's the one which is active now.
1730 	 */
1731 	pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1732 
1733 	/*
1734 	 * "pos" may represent a transfer request that is still being
1735 	 * processed by the EDMACC or EDMATC. We will busy wait until
1736 	 * any one of the situations occurs:
1737 	 *   1. the DMA hardware is idle
1738 	 *   2. a new transfer request is setup
1739 	 *   3. we hit the loop limit
1740 	 */
1741 	while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) {
1742 		/* check if a new transfer request is setup */
1743 		if (edma_get_position(echan->ecc,
1744 				      echan->slot[0], dst) != pos) {
1745 			break;
1746 		}
1747 
1748 		if (!--loop_count) {
1749 			dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1750 				"%s: timeout waiting for PaRAM update\n",
1751 				__func__);
1752 			break;
1753 		}
1754 
1755 		cpu_relax();
1756 	}
1757 
1758 	/*
1759 	 * Cyclic is simple. Just subtract pset[0].addr from pos.
1760 	 *
1761 	 * We never update edesc->residue in the cyclic case, so we
1762 	 * can tell the remaining room to the end of the circular
1763 	 * buffer.
1764 	 */
1765 	if (edesc->cyclic) {
1766 		done = pos - pset->addr;
1767 		edesc->residue_stat = edesc->residue - done;
1768 		return edesc->residue_stat;
1769 	}
1770 
1771 	/*
1772 	 * For SG operation we catch up with the last processed
1773 	 * status.
1774 	 */
1775 	pset += edesc->processed_stat;
1776 
1777 	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1778 		/*
1779 		 * If we are inside this pset address range, we know
1780 		 * this is the active one. Get the current delta and
1781 		 * stop walking the psets.
1782 		 */
1783 		if (pos >= pset->addr && pos < pset->addr + pset->len)
1784 			return edesc->residue_stat - (pos - pset->addr);
1785 
1786 		/* Otherwise mark it done and update residue_stat. */
1787 		edesc->processed_stat++;
1788 		edesc->residue_stat -= pset->len;
1789 	}
1790 	return edesc->residue_stat;
1791 }
1792 
1793 /* Check request completion status */
1794 static enum dma_status edma_tx_status(struct dma_chan *chan,
1795 				      dma_cookie_t cookie,
1796 				      struct dma_tx_state *txstate)
1797 {
1798 	struct edma_chan *echan = to_edma_chan(chan);
1799 	struct virt_dma_desc *vdesc;
1800 	enum dma_status ret;
1801 	unsigned long flags;
1802 
1803 	ret = dma_cookie_status(chan, cookie, txstate);
1804 	if (ret == DMA_COMPLETE || !txstate)
1805 		return ret;
1806 
1807 	spin_lock_irqsave(&echan->vchan.lock, flags);
1808 	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1809 		txstate->residue = edma_residue(echan->edesc);
1810 	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
1811 		txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1812 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1813 
1814 	return ret;
1815 }
1816 
1817 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1818 {
1819 	if (!memcpy_channels)
1820 		return false;
1821 	while (*memcpy_channels != -1) {
1822 		if (*memcpy_channels == ch_num)
1823 			return true;
1824 		memcpy_channels++;
1825 	}
1826 	return false;
1827 }
1828 
1829 #define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1830 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1831 				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1832 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1833 
1834 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1835 {
1836 	struct dma_device *s_ddev = &ecc->dma_slave;
1837 	struct dma_device *m_ddev = NULL;
1838 	s32 *memcpy_channels = ecc->info->memcpy_channels;
1839 	int i, j;
1840 
1841 	dma_cap_zero(s_ddev->cap_mask);
1842 	dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1843 	dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1844 	if (ecc->legacy_mode && !memcpy_channels) {
1845 		dev_warn(ecc->dev,
1846 			 "Legacy memcpy is enabled, things might not work\n");
1847 
1848 		dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1849 		s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1850 		s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1851 	}
1852 
1853 	s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1854 	s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1855 	s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1856 	s_ddev->device_free_chan_resources = edma_free_chan_resources;
1857 	s_ddev->device_issue_pending = edma_issue_pending;
1858 	s_ddev->device_tx_status = edma_tx_status;
1859 	s_ddev->device_config = edma_slave_config;
1860 	s_ddev->device_pause = edma_dma_pause;
1861 	s_ddev->device_resume = edma_dma_resume;
1862 	s_ddev->device_terminate_all = edma_terminate_all;
1863 	s_ddev->device_synchronize = edma_synchronize;
1864 
1865 	s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1866 	s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1867 	s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1868 	s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1869 	s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
1870 
1871 	s_ddev->dev = ecc->dev;
1872 	INIT_LIST_HEAD(&s_ddev->channels);
1873 
1874 	if (memcpy_channels) {
1875 		m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1876 		if (!m_ddev) {
1877 			dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
1878 			memcpy_channels = NULL;
1879 			goto ch_setup;
1880 		}
1881 		ecc->dma_memcpy = m_ddev;
1882 
1883 		dma_cap_zero(m_ddev->cap_mask);
1884 		dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1885 
1886 		m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1887 		m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1888 		m_ddev->device_free_chan_resources = edma_free_chan_resources;
1889 		m_ddev->device_issue_pending = edma_issue_pending;
1890 		m_ddev->device_tx_status = edma_tx_status;
1891 		m_ddev->device_config = edma_slave_config;
1892 		m_ddev->device_pause = edma_dma_pause;
1893 		m_ddev->device_resume = edma_dma_resume;
1894 		m_ddev->device_terminate_all = edma_terminate_all;
1895 		m_ddev->device_synchronize = edma_synchronize;
1896 
1897 		m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1898 		m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1899 		m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1900 		m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1901 
1902 		m_ddev->dev = ecc->dev;
1903 		INIT_LIST_HEAD(&m_ddev->channels);
1904 	} else if (!ecc->legacy_mode) {
1905 		dev_info(ecc->dev, "memcpy is disabled\n");
1906 	}
1907 
1908 ch_setup:
1909 	for (i = 0; i < ecc->num_channels; i++) {
1910 		struct edma_chan *echan = &ecc->slave_chans[i];
1911 		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1912 		echan->ecc = ecc;
1913 		echan->vchan.desc_free = edma_desc_free;
1914 
1915 		if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
1916 			vchan_init(&echan->vchan, m_ddev);
1917 		else
1918 			vchan_init(&echan->vchan, s_ddev);
1919 
1920 		INIT_LIST_HEAD(&echan->node);
1921 		for (j = 0; j < EDMA_MAX_SLOTS; j++)
1922 			echan->slot[j] = -1;
1923 	}
1924 }
1925 
1926 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1927 			      struct edma_cc *ecc)
1928 {
1929 	int i;
1930 	u32 value, cccfg;
1931 	s8 (*queue_priority_map)[2];
1932 
1933 	/* Decode the eDMA3 configuration from CCCFG register */
1934 	cccfg = edma_read(ecc, EDMA_CCCFG);
1935 
1936 	value = GET_NUM_REGN(cccfg);
1937 	ecc->num_region = BIT(value);
1938 
1939 	value = GET_NUM_DMACH(cccfg);
1940 	ecc->num_channels = BIT(value + 1);
1941 
1942 	value = GET_NUM_QDMACH(cccfg);
1943 	ecc->num_qchannels = value * 2;
1944 
1945 	value = GET_NUM_PAENTRY(cccfg);
1946 	ecc->num_slots = BIT(value + 4);
1947 
1948 	value = GET_NUM_EVQUE(cccfg);
1949 	ecc->num_tc = value + 1;
1950 
1951 	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
1952 
1953 	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
1954 	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
1955 	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
1956 	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
1957 	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
1958 	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
1959 	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
1960 
1961 	/* Nothing need to be done if queue priority is provided */
1962 	if (pdata->queue_priority_mapping)
1963 		return 0;
1964 
1965 	/*
1966 	 * Configure TC/queue priority as follows:
1967 	 * Q0 - priority 0
1968 	 * Q1 - priority 1
1969 	 * Q2 - priority 2
1970 	 * ...
1971 	 * The meaning of priority numbers: 0 highest priority, 7 lowest
1972 	 * priority. So Q0 is the highest priority queue and the last queue has
1973 	 * the lowest priority.
1974 	 */
1975 	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
1976 					  GFP_KERNEL);
1977 	if (!queue_priority_map)
1978 		return -ENOMEM;
1979 
1980 	for (i = 0; i < ecc->num_tc; i++) {
1981 		queue_priority_map[i][0] = i;
1982 		queue_priority_map[i][1] = i;
1983 	}
1984 	queue_priority_map[i][0] = -1;
1985 	queue_priority_map[i][1] = -1;
1986 
1987 	pdata->queue_priority_mapping = queue_priority_map;
1988 	/* Default queue has the lowest priority */
1989 	pdata->default_queue = i - 1;
1990 
1991 	return 0;
1992 }
1993 
1994 #if IS_ENABLED(CONFIG_OF)
1995 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
1996 			       size_t sz)
1997 {
1998 	const char pname[] = "ti,edma-xbar-event-map";
1999 	struct resource res;
2000 	void __iomem *xbar;
2001 	s16 (*xbar_chans)[2];
2002 	size_t nelm = sz / sizeof(s16);
2003 	u32 shift, offset, mux;
2004 	int ret, i;
2005 
2006 	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2007 	if (!xbar_chans)
2008 		return -ENOMEM;
2009 
2010 	ret = of_address_to_resource(dev->of_node, 1, &res);
2011 	if (ret)
2012 		return -ENOMEM;
2013 
2014 	xbar = devm_ioremap(dev, res.start, resource_size(&res));
2015 	if (!xbar)
2016 		return -ENOMEM;
2017 
2018 	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2019 					 nelm);
2020 	if (ret)
2021 		return -EIO;
2022 
2023 	/* Invalidate last entry for the other user of this mess */
2024 	nelm >>= 1;
2025 	xbar_chans[nelm][0] = -1;
2026 	xbar_chans[nelm][1] = -1;
2027 
2028 	for (i = 0; i < nelm; i++) {
2029 		shift = (xbar_chans[i][1] & 0x03) << 3;
2030 		offset = xbar_chans[i][1] & 0xfffffffc;
2031 		mux = readl(xbar + offset);
2032 		mux &= ~(0xff << shift);
2033 		mux |= xbar_chans[i][0] << shift;
2034 		writel(mux, (xbar + offset));
2035 	}
2036 
2037 	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2038 	return 0;
2039 }
2040 
2041 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2042 						     bool legacy_mode)
2043 {
2044 	struct edma_soc_info *info;
2045 	struct property *prop;
2046 	int sz, ret;
2047 
2048 	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2049 	if (!info)
2050 		return ERR_PTR(-ENOMEM);
2051 
2052 	if (legacy_mode) {
2053 		prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2054 					&sz);
2055 		if (prop) {
2056 			ret = edma_xbar_event_map(dev, info, sz);
2057 			if (ret)
2058 				return ERR_PTR(ret);
2059 		}
2060 		return info;
2061 	}
2062 
2063 	/* Get the list of channels allocated to be used for memcpy */
2064 	prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2065 	if (prop) {
2066 		const char pname[] = "ti,edma-memcpy-channels";
2067 		size_t nelm = sz / sizeof(s32);
2068 		s32 *memcpy_ch;
2069 
2070 		memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2071 					 GFP_KERNEL);
2072 		if (!memcpy_ch)
2073 			return ERR_PTR(-ENOMEM);
2074 
2075 		ret = of_property_read_u32_array(dev->of_node, pname,
2076 						 (u32 *)memcpy_ch, nelm);
2077 		if (ret)
2078 			return ERR_PTR(ret);
2079 
2080 		memcpy_ch[nelm] = -1;
2081 		info->memcpy_channels = memcpy_ch;
2082 	}
2083 
2084 	prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2085 				&sz);
2086 	if (prop) {
2087 		const char pname[] = "ti,edma-reserved-slot-ranges";
2088 		u32 (*tmp)[2];
2089 		s16 (*rsv_slots)[2];
2090 		size_t nelm = sz / sizeof(*tmp);
2091 		struct edma_rsv_info *rsv_info;
2092 		int i;
2093 
2094 		if (!nelm)
2095 			return info;
2096 
2097 		tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2098 		if (!tmp)
2099 			return ERR_PTR(-ENOMEM);
2100 
2101 		rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2102 		if (!rsv_info) {
2103 			kfree(tmp);
2104 			return ERR_PTR(-ENOMEM);
2105 		}
2106 
2107 		rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2108 					 GFP_KERNEL);
2109 		if (!rsv_slots) {
2110 			kfree(tmp);
2111 			return ERR_PTR(-ENOMEM);
2112 		}
2113 
2114 		ret = of_property_read_u32_array(dev->of_node, pname,
2115 						 (u32 *)tmp, nelm * 2);
2116 		if (ret) {
2117 			kfree(tmp);
2118 			return ERR_PTR(ret);
2119 		}
2120 
2121 		for (i = 0; i < nelm; i++) {
2122 			rsv_slots[i][0] = tmp[i][0];
2123 			rsv_slots[i][1] = tmp[i][1];
2124 		}
2125 		rsv_slots[nelm][0] = -1;
2126 		rsv_slots[nelm][1] = -1;
2127 
2128 		info->rsv = rsv_info;
2129 		info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2130 
2131 		kfree(tmp);
2132 	}
2133 
2134 	return info;
2135 }
2136 
2137 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2138 				      struct of_dma *ofdma)
2139 {
2140 	struct edma_cc *ecc = ofdma->of_dma_data;
2141 	struct dma_chan *chan = NULL;
2142 	struct edma_chan *echan;
2143 	int i;
2144 
2145 	if (!ecc || dma_spec->args_count < 1)
2146 		return NULL;
2147 
2148 	for (i = 0; i < ecc->num_channels; i++) {
2149 		echan = &ecc->slave_chans[i];
2150 		if (echan->ch_num == dma_spec->args[0]) {
2151 			chan = &echan->vchan.chan;
2152 			break;
2153 		}
2154 	}
2155 
2156 	if (!chan)
2157 		return NULL;
2158 
2159 	if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2160 		goto out;
2161 
2162 	if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2163 	    dma_spec->args[1] < echan->ecc->num_tc) {
2164 		echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2165 		goto out;
2166 	}
2167 
2168 	return NULL;
2169 out:
2170 	/* The channel is going to be used as HW synchronized */
2171 	echan->hw_triggered = true;
2172 	return dma_get_slave_channel(chan);
2173 }
2174 #else
2175 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2176 						     bool legacy_mode)
2177 {
2178 	return ERR_PTR(-EINVAL);
2179 }
2180 
2181 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2182 				      struct of_dma *ofdma)
2183 {
2184 	return NULL;
2185 }
2186 #endif
2187 
2188 static int edma_probe(struct platform_device *pdev)
2189 {
2190 	struct edma_soc_info	*info = pdev->dev.platform_data;
2191 	s8			(*queue_priority_mapping)[2];
2192 	int			i, off, ln;
2193 	const s16		(*rsv_slots)[2];
2194 	const s16		(*xbar_chans)[2];
2195 	int			irq;
2196 	char			*irq_name;
2197 	struct resource		*mem;
2198 	struct device_node	*node = pdev->dev.of_node;
2199 	struct device		*dev = &pdev->dev;
2200 	struct edma_cc		*ecc;
2201 	bool			legacy_mode = true;
2202 	int ret;
2203 
2204 	if (node) {
2205 		const struct of_device_id *match;
2206 
2207 		match = of_match_node(edma_of_ids, node);
2208 		if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2209 			legacy_mode = false;
2210 
2211 		info = edma_setup_info_from_dt(dev, legacy_mode);
2212 		if (IS_ERR(info)) {
2213 			dev_err(dev, "failed to get DT data\n");
2214 			return PTR_ERR(info);
2215 		}
2216 	}
2217 
2218 	if (!info)
2219 		return -ENODEV;
2220 
2221 	pm_runtime_enable(dev);
2222 	ret = pm_runtime_get_sync(dev);
2223 	if (ret < 0) {
2224 		dev_err(dev, "pm_runtime_get_sync() failed\n");
2225 		return ret;
2226 	}
2227 
2228 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2229 	if (ret)
2230 		return ret;
2231 
2232 	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2233 	if (!ecc)
2234 		return -ENOMEM;
2235 
2236 	ecc->dev = dev;
2237 	ecc->id = pdev->id;
2238 	ecc->legacy_mode = legacy_mode;
2239 	/* When booting with DT the pdev->id is -1 */
2240 	if (ecc->id < 0)
2241 		ecc->id = 0;
2242 
2243 	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2244 	if (!mem) {
2245 		dev_dbg(dev, "mem resource not found, using index 0\n");
2246 		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2247 		if (!mem) {
2248 			dev_err(dev, "no mem resource?\n");
2249 			return -ENODEV;
2250 		}
2251 	}
2252 	ecc->base = devm_ioremap_resource(dev, mem);
2253 	if (IS_ERR(ecc->base))
2254 		return PTR_ERR(ecc->base);
2255 
2256 	platform_set_drvdata(pdev, ecc);
2257 
2258 	/* Get eDMA3 configuration from IP */
2259 	ret = edma_setup_from_hw(dev, info, ecc);
2260 	if (ret)
2261 		return ret;
2262 
2263 	/* Allocate memory based on the information we got from the IP */
2264 	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2265 					sizeof(*ecc->slave_chans), GFP_KERNEL);
2266 	if (!ecc->slave_chans)
2267 		return -ENOMEM;
2268 
2269 	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2270 				       sizeof(unsigned long), GFP_KERNEL);
2271 	if (!ecc->slot_inuse)
2272 		return -ENOMEM;
2273 
2274 	ecc->default_queue = info->default_queue;
2275 
2276 	for (i = 0; i < ecc->num_slots; i++)
2277 		edma_write_slot(ecc, i, &dummy_paramset);
2278 
2279 	if (info->rsv) {
2280 		/* Set the reserved slots in inuse list */
2281 		rsv_slots = info->rsv->rsv_slots;
2282 		if (rsv_slots) {
2283 			for (i = 0; rsv_slots[i][0] != -1; i++) {
2284 				off = rsv_slots[i][0];
2285 				ln = rsv_slots[i][1];
2286 				edma_set_bits(off, ln, ecc->slot_inuse);
2287 			}
2288 		}
2289 	}
2290 
2291 	/* Clear the xbar mapped channels in unused list */
2292 	xbar_chans = info->xbar_chans;
2293 	if (xbar_chans) {
2294 		for (i = 0; xbar_chans[i][1] != -1; i++) {
2295 			off = xbar_chans[i][1];
2296 		}
2297 	}
2298 
2299 	irq = platform_get_irq_byname(pdev, "edma3_ccint");
2300 	if (irq < 0 && node)
2301 		irq = irq_of_parse_and_map(node, 0);
2302 
2303 	if (irq >= 0) {
2304 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2305 					  dev_name(dev));
2306 		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2307 				       ecc);
2308 		if (ret) {
2309 			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2310 			return ret;
2311 		}
2312 		ecc->ccint = irq;
2313 	}
2314 
2315 	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2316 	if (irq < 0 && node)
2317 		irq = irq_of_parse_and_map(node, 2);
2318 
2319 	if (irq >= 0) {
2320 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2321 					  dev_name(dev));
2322 		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2323 				       ecc);
2324 		if (ret) {
2325 			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2326 			return ret;
2327 		}
2328 		ecc->ccerrint = irq;
2329 	}
2330 
2331 	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2332 	if (ecc->dummy_slot < 0) {
2333 		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2334 		return ecc->dummy_slot;
2335 	}
2336 
2337 	queue_priority_mapping = info->queue_priority_mapping;
2338 
2339 	if (!ecc->legacy_mode) {
2340 		int lowest_priority = 0;
2341 		struct of_phandle_args tc_args;
2342 
2343 		ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2344 					    sizeof(*ecc->tc_list), GFP_KERNEL);
2345 		if (!ecc->tc_list)
2346 			return -ENOMEM;
2347 
2348 		for (i = 0;; i++) {
2349 			ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2350 							       1, i, &tc_args);
2351 			if (ret || i == ecc->num_tc)
2352 				break;
2353 
2354 			ecc->tc_list[i].node = tc_args.np;
2355 			ecc->tc_list[i].id = i;
2356 			queue_priority_mapping[i][1] = tc_args.args[0];
2357 			if (queue_priority_mapping[i][1] > lowest_priority) {
2358 				lowest_priority = queue_priority_mapping[i][1];
2359 				info->default_queue = i;
2360 			}
2361 		}
2362 	}
2363 
2364 	/* Event queue priority mapping */
2365 	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2366 		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2367 					      queue_priority_mapping[i][1]);
2368 
2369 	for (i = 0; i < ecc->num_region; i++) {
2370 		edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
2371 		edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
2372 		edma_write_array(ecc, EDMA_QRAE, i, 0x0);
2373 	}
2374 	ecc->info = info;
2375 
2376 	/* Init the dma device and channels */
2377 	edma_dma_init(ecc, legacy_mode);
2378 
2379 	for (i = 0; i < ecc->num_channels; i++) {
2380 		/* Assign all channels to the default queue */
2381 		edma_assign_channel_eventq(&ecc->slave_chans[i],
2382 					   info->default_queue);
2383 		/* Set entry slot to the dummy slot */
2384 		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2385 	}
2386 
2387 	ecc->dma_slave.filter.map = info->slave_map;
2388 	ecc->dma_slave.filter.mapcnt = info->slavecnt;
2389 	ecc->dma_slave.filter.fn = edma_filter_fn;
2390 
2391 	ret = dma_async_device_register(&ecc->dma_slave);
2392 	if (ret) {
2393 		dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2394 		goto err_reg1;
2395 	}
2396 
2397 	if (ecc->dma_memcpy) {
2398 		ret = dma_async_device_register(ecc->dma_memcpy);
2399 		if (ret) {
2400 			dev_err(dev, "memcpy ddev registration failed (%d)\n",
2401 				ret);
2402 			dma_async_device_unregister(&ecc->dma_slave);
2403 			goto err_reg1;
2404 		}
2405 	}
2406 
2407 	if (node)
2408 		of_dma_controller_register(node, of_edma_xlate, ecc);
2409 
2410 	dev_info(dev, "TI EDMA DMA engine driver\n");
2411 
2412 	return 0;
2413 
2414 err_reg1:
2415 	edma_free_slot(ecc, ecc->dummy_slot);
2416 	return ret;
2417 }
2418 
2419 static void edma_cleanupp_vchan(struct dma_device *dmadev)
2420 {
2421 	struct edma_chan *echan, *_echan;
2422 
2423 	list_for_each_entry_safe(echan, _echan,
2424 			&dmadev->channels, vchan.chan.device_node) {
2425 		list_del(&echan->vchan.chan.device_node);
2426 		tasklet_kill(&echan->vchan.task);
2427 	}
2428 }
2429 
2430 static int edma_remove(struct platform_device *pdev)
2431 {
2432 	struct device *dev = &pdev->dev;
2433 	struct edma_cc *ecc = dev_get_drvdata(dev);
2434 
2435 	devm_free_irq(dev, ecc->ccint, ecc);
2436 	devm_free_irq(dev, ecc->ccerrint, ecc);
2437 
2438 	edma_cleanupp_vchan(&ecc->dma_slave);
2439 
2440 	if (dev->of_node)
2441 		of_dma_controller_free(dev->of_node);
2442 	dma_async_device_unregister(&ecc->dma_slave);
2443 	if (ecc->dma_memcpy)
2444 		dma_async_device_unregister(ecc->dma_memcpy);
2445 	edma_free_slot(ecc, ecc->dummy_slot);
2446 
2447 	return 0;
2448 }
2449 
2450 #ifdef CONFIG_PM_SLEEP
2451 static int edma_pm_suspend(struct device *dev)
2452 {
2453 	struct edma_cc *ecc = dev_get_drvdata(dev);
2454 	struct edma_chan *echan = ecc->slave_chans;
2455 	int i;
2456 
2457 	for (i = 0; i < ecc->num_channels; i++) {
2458 		if (echan[i].alloced)
2459 			edma_setup_interrupt(&echan[i], false);
2460 	}
2461 
2462 	return 0;
2463 }
2464 
2465 static int edma_pm_resume(struct device *dev)
2466 {
2467 	struct edma_cc *ecc = dev_get_drvdata(dev);
2468 	struct edma_chan *echan = ecc->slave_chans;
2469 	int i;
2470 	s8 (*queue_priority_mapping)[2];
2471 
2472 	/* re initialize dummy slot to dummy param set */
2473 	edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2474 
2475 	queue_priority_mapping = ecc->info->queue_priority_mapping;
2476 
2477 	/* Event queue priority mapping */
2478 	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2479 		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2480 					      queue_priority_mapping[i][1]);
2481 
2482 	for (i = 0; i < ecc->num_channels; i++) {
2483 		if (echan[i].alloced) {
2484 			/* ensure access through shadow region 0 */
2485 			edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
2486 				       BIT(i & 0x1f));
2487 
2488 			edma_setup_interrupt(&echan[i], true);
2489 
2490 			/* Set up channel -> slot mapping for the entry slot */
2491 			edma_set_chmap(&echan[i], echan[i].slot[0]);
2492 		}
2493 	}
2494 
2495 	return 0;
2496 }
2497 #endif
2498 
2499 static const struct dev_pm_ops edma_pm_ops = {
2500 	SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2501 };
2502 
2503 static struct platform_driver edma_driver = {
2504 	.probe		= edma_probe,
2505 	.remove		= edma_remove,
2506 	.driver = {
2507 		.name	= "edma",
2508 		.pm	= &edma_pm_ops,
2509 		.of_match_table = edma_of_ids,
2510 	},
2511 };
2512 
2513 static int edma_tptc_probe(struct platform_device *pdev)
2514 {
2515 	pm_runtime_enable(&pdev->dev);
2516 	return pm_runtime_get_sync(&pdev->dev);
2517 }
2518 
2519 static struct platform_driver edma_tptc_driver = {
2520 	.probe		= edma_tptc_probe,
2521 	.driver = {
2522 		.name	= "edma3-tptc",
2523 		.of_match_table = edma_tptc_of_ids,
2524 	},
2525 };
2526 
2527 bool edma_filter_fn(struct dma_chan *chan, void *param)
2528 {
2529 	bool match = false;
2530 
2531 	if (chan->device->dev->driver == &edma_driver.driver) {
2532 		struct edma_chan *echan = to_edma_chan(chan);
2533 		unsigned ch_req = *(unsigned *)param;
2534 		if (ch_req == echan->ch_num) {
2535 			/* The channel is going to be used as HW synchronized */
2536 			echan->hw_triggered = true;
2537 			match = true;
2538 		}
2539 	}
2540 	return match;
2541 }
2542 EXPORT_SYMBOL(edma_filter_fn);
2543 
2544 static int edma_init(void)
2545 {
2546 	int ret;
2547 
2548 	ret = platform_driver_register(&edma_tptc_driver);
2549 	if (ret)
2550 		return ret;
2551 
2552 	return platform_driver_register(&edma_driver);
2553 }
2554 subsys_initcall(edma_init);
2555 
2556 static void __exit edma_exit(void)
2557 {
2558 	platform_driver_unregister(&edma_driver);
2559 	platform_driver_unregister(&edma_tptc_driver);
2560 }
2561 module_exit(edma_exit);
2562 
2563 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2564 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2565 MODULE_LICENSE("GPL v2");
2566