xref: /openbmc/linux/drivers/dma/ti/cppi41.c (revision 2d091155)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/delay.h>
3 #include <linux/dmaengine.h>
4 #include <linux/dma-mapping.h>
5 #include <linux/platform_device.h>
6 #include <linux/module.h>
7 #include <linux/of.h>
8 #include <linux/slab.h>
9 #include <linux/of_dma.h>
10 #include <linux/of_irq.h>
11 #include <linux/dmapool.h>
12 #include <linux/interrupt.h>
13 #include <linux/of_address.h>
14 #include <linux/pm_runtime.h>
15 #include "../dmaengine.h"
16 
17 #define DESC_TYPE	27
18 #define DESC_TYPE_HOST	0x10
19 #define DESC_TYPE_TEARD	0x13
20 
21 #define TD_DESC_IS_RX	(1 << 16)
22 #define TD_DESC_DMA_NUM	10
23 
24 #define DESC_LENGTH_BITS_NUM	21
25 
26 #define DESC_TYPE_USB	(5 << 26)
27 #define DESC_PD_COMPLETE	(1 << 31)
28 
29 /* DMA engine */
30 #define DMA_TDFDQ	4
31 #define DMA_TXGCR(x)	(0x800 + (x) * 0x20)
32 #define DMA_RXGCR(x)	(0x808 + (x) * 0x20)
33 #define RXHPCRA0		4
34 
35 #define GCR_CHAN_ENABLE		(1 << 31)
36 #define GCR_TEARDOWN		(1 << 30)
37 #define GCR_STARV_RETRY		(1 << 24)
38 #define GCR_DESC_TYPE_HOST	(1 << 14)
39 
40 /* DMA scheduler */
41 #define DMA_SCHED_CTRL		0
42 #define DMA_SCHED_CTRL_EN	(1 << 31)
43 #define DMA_SCHED_WORD(x)	((x) * 4 + 0x800)
44 
45 #define SCHED_ENTRY0_CHAN(x)	((x) << 0)
46 #define SCHED_ENTRY0_IS_RX	(1 << 7)
47 
48 #define SCHED_ENTRY1_CHAN(x)	((x) << 8)
49 #define SCHED_ENTRY1_IS_RX	(1 << 15)
50 
51 #define SCHED_ENTRY2_CHAN(x)	((x) << 16)
52 #define SCHED_ENTRY2_IS_RX	(1 << 23)
53 
54 #define SCHED_ENTRY3_CHAN(x)	((x) << 24)
55 #define SCHED_ENTRY3_IS_RX	(1 << 31)
56 
57 /* Queue manager */
58 /* 4 KiB of memory for descriptors, 2 for each endpoint */
59 #define ALLOC_DECS_NUM		128
60 #define DESCS_AREAS		1
61 #define TOTAL_DESCS_NUM		(ALLOC_DECS_NUM * DESCS_AREAS)
62 #define QMGR_SCRATCH_SIZE	(TOTAL_DESCS_NUM * 4)
63 
64 #define QMGR_LRAM0_BASE		0x80
65 #define QMGR_LRAM_SIZE		0x84
66 #define QMGR_LRAM1_BASE		0x88
67 #define QMGR_MEMBASE(x)		(0x1000 + (x) * 0x10)
68 #define QMGR_MEMCTRL(x)		(0x1004 + (x) * 0x10)
69 #define QMGR_MEMCTRL_IDX_SH	16
70 #define QMGR_MEMCTRL_DESC_SH	8
71 
72 #define QMGR_PEND(x)	(0x90 + (x) * 4)
73 
74 #define QMGR_PENDING_SLOT_Q(x)	(x / 32)
75 #define QMGR_PENDING_BIT_Q(x)	(x % 32)
76 
77 #define QMGR_QUEUE_A(n)	(0x2000 + (n) * 0x10)
78 #define QMGR_QUEUE_B(n)	(0x2004 + (n) * 0x10)
79 #define QMGR_QUEUE_C(n)	(0x2008 + (n) * 0x10)
80 #define QMGR_QUEUE_D(n)	(0x200c + (n) * 0x10)
81 
82 /* Packet Descriptor */
83 #define PD2_ZERO_LENGTH		(1 << 19)
84 
85 struct cppi41_channel {
86 	struct dma_chan chan;
87 	struct dma_async_tx_descriptor txd;
88 	struct cppi41_dd *cdd;
89 	struct cppi41_desc *desc;
90 	dma_addr_t desc_phys;
91 	void __iomem *gcr_reg;
92 	int is_tx;
93 	u32 residue;
94 
95 	unsigned int q_num;
96 	unsigned int q_comp_num;
97 	unsigned int port_num;
98 
99 	unsigned td_retry;
100 	unsigned td_queued:1;
101 	unsigned td_seen:1;
102 	unsigned td_desc_seen:1;
103 
104 	struct list_head node;		/* Node for pending list */
105 };
106 
107 struct cppi41_desc {
108 	u32 pd0;
109 	u32 pd1;
110 	u32 pd2;
111 	u32 pd3;
112 	u32 pd4;
113 	u32 pd5;
114 	u32 pd6;
115 	u32 pd7;
116 } __aligned(32);
117 
118 struct chan_queues {
119 	u16 submit;
120 	u16 complete;
121 };
122 
123 struct cppi41_dd {
124 	struct dma_device ddev;
125 
126 	void *qmgr_scratch;
127 	dma_addr_t scratch_phys;
128 
129 	struct cppi41_desc *cd;
130 	dma_addr_t descs_phys;
131 	u32 first_td_desc;
132 	struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
133 
134 	void __iomem *ctrl_mem;
135 	void __iomem *sched_mem;
136 	void __iomem *qmgr_mem;
137 	unsigned int irq;
138 	const struct chan_queues *queues_rx;
139 	const struct chan_queues *queues_tx;
140 	struct chan_queues td_queue;
141 	u16 first_completion_queue;
142 	u16 qmgr_num_pend;
143 	u32 n_chans;
144 	u8 platform;
145 
146 	struct list_head pending;	/* Pending queued transfers */
147 	spinlock_t lock;		/* Lock for pending list */
148 
149 	/* context for suspend/resume */
150 	unsigned int dma_tdfdq;
151 
152 	bool is_suspended;
153 };
154 
155 static struct chan_queues am335x_usb_queues_tx[] = {
156 	/* USB0 ENDP 1 */
157 	[ 0] = { .submit = 32, .complete =  93},
158 	[ 1] = { .submit = 34, .complete =  94},
159 	[ 2] = { .submit = 36, .complete =  95},
160 	[ 3] = { .submit = 38, .complete =  96},
161 	[ 4] = { .submit = 40, .complete =  97},
162 	[ 5] = { .submit = 42, .complete =  98},
163 	[ 6] = { .submit = 44, .complete =  99},
164 	[ 7] = { .submit = 46, .complete = 100},
165 	[ 8] = { .submit = 48, .complete = 101},
166 	[ 9] = { .submit = 50, .complete = 102},
167 	[10] = { .submit = 52, .complete = 103},
168 	[11] = { .submit = 54, .complete = 104},
169 	[12] = { .submit = 56, .complete = 105},
170 	[13] = { .submit = 58, .complete = 106},
171 	[14] = { .submit = 60, .complete = 107},
172 
173 	/* USB1 ENDP1 */
174 	[15] = { .submit = 62, .complete = 125},
175 	[16] = { .submit = 64, .complete = 126},
176 	[17] = { .submit = 66, .complete = 127},
177 	[18] = { .submit = 68, .complete = 128},
178 	[19] = { .submit = 70, .complete = 129},
179 	[20] = { .submit = 72, .complete = 130},
180 	[21] = { .submit = 74, .complete = 131},
181 	[22] = { .submit = 76, .complete = 132},
182 	[23] = { .submit = 78, .complete = 133},
183 	[24] = { .submit = 80, .complete = 134},
184 	[25] = { .submit = 82, .complete = 135},
185 	[26] = { .submit = 84, .complete = 136},
186 	[27] = { .submit = 86, .complete = 137},
187 	[28] = { .submit = 88, .complete = 138},
188 	[29] = { .submit = 90, .complete = 139},
189 };
190 
191 static const struct chan_queues am335x_usb_queues_rx[] = {
192 	/* USB0 ENDP 1 */
193 	[ 0] = { .submit =  1, .complete = 109},
194 	[ 1] = { .submit =  2, .complete = 110},
195 	[ 2] = { .submit =  3, .complete = 111},
196 	[ 3] = { .submit =  4, .complete = 112},
197 	[ 4] = { .submit =  5, .complete = 113},
198 	[ 5] = { .submit =  6, .complete = 114},
199 	[ 6] = { .submit =  7, .complete = 115},
200 	[ 7] = { .submit =  8, .complete = 116},
201 	[ 8] = { .submit =  9, .complete = 117},
202 	[ 9] = { .submit = 10, .complete = 118},
203 	[10] = { .submit = 11, .complete = 119},
204 	[11] = { .submit = 12, .complete = 120},
205 	[12] = { .submit = 13, .complete = 121},
206 	[13] = { .submit = 14, .complete = 122},
207 	[14] = { .submit = 15, .complete = 123},
208 
209 	/* USB1 ENDP 1 */
210 	[15] = { .submit = 16, .complete = 141},
211 	[16] = { .submit = 17, .complete = 142},
212 	[17] = { .submit = 18, .complete = 143},
213 	[18] = { .submit = 19, .complete = 144},
214 	[19] = { .submit = 20, .complete = 145},
215 	[20] = { .submit = 21, .complete = 146},
216 	[21] = { .submit = 22, .complete = 147},
217 	[22] = { .submit = 23, .complete = 148},
218 	[23] = { .submit = 24, .complete = 149},
219 	[24] = { .submit = 25, .complete = 150},
220 	[25] = { .submit = 26, .complete = 151},
221 	[26] = { .submit = 27, .complete = 152},
222 	[27] = { .submit = 28, .complete = 153},
223 	[28] = { .submit = 29, .complete = 154},
224 	[29] = { .submit = 30, .complete = 155},
225 };
226 
227 static const struct chan_queues da8xx_usb_queues_tx[] = {
228 	[0] = { .submit =  16, .complete = 24},
229 	[1] = { .submit =  18, .complete = 24},
230 	[2] = { .submit =  20, .complete = 24},
231 	[3] = { .submit =  22, .complete = 24},
232 };
233 
234 static const struct chan_queues da8xx_usb_queues_rx[] = {
235 	[0] = { .submit =  1, .complete = 26},
236 	[1] = { .submit =  3, .complete = 26},
237 	[2] = { .submit =  5, .complete = 26},
238 	[3] = { .submit =  7, .complete = 26},
239 };
240 
241 struct cppi_glue_infos {
242 	const struct chan_queues *queues_rx;
243 	const struct chan_queues *queues_tx;
244 	struct chan_queues td_queue;
245 	u16 first_completion_queue;
246 	u16 qmgr_num_pend;
247 };
248 
249 static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
250 {
251 	return container_of(c, struct cppi41_channel, chan);
252 }
253 
254 static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
255 {
256 	struct cppi41_channel *c;
257 	u32 descs_size;
258 	u32 desc_num;
259 
260 	descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
261 
262 	if (!((desc >= cdd->descs_phys) &&
263 			(desc < (cdd->descs_phys + descs_size)))) {
264 		return NULL;
265 	}
266 
267 	desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
268 	BUG_ON(desc_num >= ALLOC_DECS_NUM);
269 	c = cdd->chan_busy[desc_num];
270 	cdd->chan_busy[desc_num] = NULL;
271 
272 	/* Usecount for chan_busy[], paired with push_desc_queue() */
273 	pm_runtime_put(cdd->ddev.dev);
274 
275 	return c;
276 }
277 
278 static void cppi_writel(u32 val, void *__iomem *mem)
279 {
280 	__raw_writel(val, mem);
281 }
282 
283 static u32 cppi_readl(void *__iomem *mem)
284 {
285 	return __raw_readl(mem);
286 }
287 
288 static u32 pd_trans_len(u32 val)
289 {
290 	return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
291 }
292 
293 static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
294 {
295 	u32 desc;
296 
297 	desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
298 	desc &= ~0x1f;
299 	return desc;
300 }
301 
302 static irqreturn_t cppi41_irq(int irq, void *data)
303 {
304 	struct cppi41_dd *cdd = data;
305 	u16 first_completion_queue = cdd->first_completion_queue;
306 	u16 qmgr_num_pend = cdd->qmgr_num_pend;
307 	struct cppi41_channel *c;
308 	int i;
309 
310 	for (i = QMGR_PENDING_SLOT_Q(first_completion_queue); i < qmgr_num_pend;
311 			i++) {
312 		u32 val;
313 		u32 q_num;
314 
315 		val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
316 		if (i == QMGR_PENDING_SLOT_Q(first_completion_queue) && val) {
317 			u32 mask;
318 			/* set corresponding bit for completion Q 93 */
319 			mask = 1 << QMGR_PENDING_BIT_Q(first_completion_queue);
320 			/* not set all bits for queues less than Q 93 */
321 			mask--;
322 			/* now invert and keep only Q 93+ set */
323 			val &= ~mask;
324 		}
325 
326 		if (val)
327 			__iormb();
328 
329 		while (val) {
330 			u32 desc, len;
331 
332 			/*
333 			 * This should never trigger, see the comments in
334 			 * push_desc_queue()
335 			 */
336 			WARN_ON(cdd->is_suspended);
337 
338 			q_num = __fls(val);
339 			val &= ~(1 << q_num);
340 			q_num += 32 * i;
341 			desc = cppi41_pop_desc(cdd, q_num);
342 			c = desc_to_chan(cdd, desc);
343 			if (WARN_ON(!c)) {
344 				pr_err("%s() q %d desc %08x\n", __func__,
345 						q_num, desc);
346 				continue;
347 			}
348 
349 			if (c->desc->pd2 & PD2_ZERO_LENGTH)
350 				len = 0;
351 			else
352 				len = pd_trans_len(c->desc->pd0);
353 
354 			c->residue = pd_trans_len(c->desc->pd6) - len;
355 			dma_cookie_complete(&c->txd);
356 			dmaengine_desc_get_callback_invoke(&c->txd, NULL);
357 		}
358 	}
359 	return IRQ_HANDLED;
360 }
361 
362 static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
363 {
364 	dma_cookie_t cookie;
365 
366 	cookie = dma_cookie_assign(tx);
367 
368 	return cookie;
369 }
370 
371 static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
372 {
373 	struct cppi41_channel *c = to_cpp41_chan(chan);
374 	struct cppi41_dd *cdd = c->cdd;
375 	int error;
376 
377 	error = pm_runtime_get_sync(cdd->ddev.dev);
378 	if (error < 0) {
379 		dev_err(cdd->ddev.dev, "%s pm runtime get: %i\n",
380 			__func__, error);
381 		pm_runtime_put_noidle(cdd->ddev.dev);
382 
383 		return error;
384 	}
385 
386 	dma_cookie_init(chan);
387 	dma_async_tx_descriptor_init(&c->txd, chan);
388 	c->txd.tx_submit = cppi41_tx_submit;
389 
390 	if (!c->is_tx)
391 		cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
392 
393 	pm_runtime_mark_last_busy(cdd->ddev.dev);
394 	pm_runtime_put_autosuspend(cdd->ddev.dev);
395 
396 	return 0;
397 }
398 
399 static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
400 {
401 	struct cppi41_channel *c = to_cpp41_chan(chan);
402 	struct cppi41_dd *cdd = c->cdd;
403 	int error;
404 
405 	error = pm_runtime_get_sync(cdd->ddev.dev);
406 	if (error < 0) {
407 		pm_runtime_put_noidle(cdd->ddev.dev);
408 
409 		return;
410 	}
411 
412 	WARN_ON(!list_empty(&cdd->pending));
413 
414 	pm_runtime_mark_last_busy(cdd->ddev.dev);
415 	pm_runtime_put_autosuspend(cdd->ddev.dev);
416 }
417 
418 static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
419 	dma_cookie_t cookie, struct dma_tx_state *txstate)
420 {
421 	struct cppi41_channel *c = to_cpp41_chan(chan);
422 	enum dma_status ret;
423 
424 	ret = dma_cookie_status(chan, cookie, txstate);
425 
426 	dma_set_residue(txstate, c->residue);
427 
428 	return ret;
429 }
430 
431 static void push_desc_queue(struct cppi41_channel *c)
432 {
433 	struct cppi41_dd *cdd = c->cdd;
434 	u32 desc_num;
435 	u32 desc_phys;
436 	u32 reg;
437 
438 	c->residue = 0;
439 
440 	reg = GCR_CHAN_ENABLE;
441 	if (!c->is_tx) {
442 		reg |= GCR_STARV_RETRY;
443 		reg |= GCR_DESC_TYPE_HOST;
444 		reg |= c->q_comp_num;
445 	}
446 
447 	cppi_writel(reg, c->gcr_reg);
448 
449 	/*
450 	 * We don't use writel() but __raw_writel() so we have to make sure
451 	 * that the DMA descriptor in coherent memory made to the main memory
452 	 * before starting the dma engine.
453 	 */
454 	__iowmb();
455 
456 	/*
457 	 * DMA transfers can take at least 200ms to complete with USB mass
458 	 * storage connected. To prevent autosuspend timeouts, we must use
459 	 * pm_runtime_get/put() when chan_busy[] is modified. This will get
460 	 * cleared in desc_to_chan() or cppi41_stop_chan() depending on the
461 	 * outcome of the transfer.
462 	 */
463 	pm_runtime_get(cdd->ddev.dev);
464 
465 	desc_phys = lower_32_bits(c->desc_phys);
466 	desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
467 	WARN_ON(cdd->chan_busy[desc_num]);
468 	cdd->chan_busy[desc_num] = c;
469 
470 	reg = (sizeof(struct cppi41_desc) - 24) / 4;
471 	reg |= desc_phys;
472 	cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
473 }
474 
475 /*
476  * Caller must hold cdd->lock to prevent push_desc_queue()
477  * getting called out of order. We have both cppi41_dma_issue_pending()
478  * and cppi41_runtime_resume() call this function.
479  */
480 static void cppi41_run_queue(struct cppi41_dd *cdd)
481 {
482 	struct cppi41_channel *c, *_c;
483 
484 	list_for_each_entry_safe(c, _c, &cdd->pending, node) {
485 		push_desc_queue(c);
486 		list_del(&c->node);
487 	}
488 }
489 
490 static void cppi41_dma_issue_pending(struct dma_chan *chan)
491 {
492 	struct cppi41_channel *c = to_cpp41_chan(chan);
493 	struct cppi41_dd *cdd = c->cdd;
494 	unsigned long flags;
495 	int error;
496 
497 	error = pm_runtime_get(cdd->ddev.dev);
498 	if ((error != -EINPROGRESS) && error < 0) {
499 		pm_runtime_put_noidle(cdd->ddev.dev);
500 		dev_err(cdd->ddev.dev, "Failed to pm_runtime_get: %i\n",
501 			error);
502 
503 		return;
504 	}
505 
506 	spin_lock_irqsave(&cdd->lock, flags);
507 	list_add_tail(&c->node, &cdd->pending);
508 	if (!cdd->is_suspended)
509 		cppi41_run_queue(cdd);
510 	spin_unlock_irqrestore(&cdd->lock, flags);
511 
512 	pm_runtime_mark_last_busy(cdd->ddev.dev);
513 	pm_runtime_put_autosuspend(cdd->ddev.dev);
514 }
515 
516 static u32 get_host_pd0(u32 length)
517 {
518 	u32 reg;
519 
520 	reg = DESC_TYPE_HOST << DESC_TYPE;
521 	reg |= length;
522 
523 	return reg;
524 }
525 
526 static u32 get_host_pd1(struct cppi41_channel *c)
527 {
528 	u32 reg;
529 
530 	reg = 0;
531 
532 	return reg;
533 }
534 
535 static u32 get_host_pd2(struct cppi41_channel *c)
536 {
537 	u32 reg;
538 
539 	reg = DESC_TYPE_USB;
540 	reg |= c->q_comp_num;
541 
542 	return reg;
543 }
544 
545 static u32 get_host_pd3(u32 length)
546 {
547 	u32 reg;
548 
549 	/* PD3 = packet size */
550 	reg = length;
551 
552 	return reg;
553 }
554 
555 static u32 get_host_pd6(u32 length)
556 {
557 	u32 reg;
558 
559 	/* PD6 buffer size */
560 	reg = DESC_PD_COMPLETE;
561 	reg |= length;
562 
563 	return reg;
564 }
565 
566 static u32 get_host_pd4_or_7(u32 addr)
567 {
568 	u32 reg;
569 
570 	reg = addr;
571 
572 	return reg;
573 }
574 
575 static u32 get_host_pd5(void)
576 {
577 	u32 reg;
578 
579 	reg = 0;
580 
581 	return reg;
582 }
583 
584 static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
585 	struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
586 	enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
587 {
588 	struct cppi41_channel *c = to_cpp41_chan(chan);
589 	struct dma_async_tx_descriptor *txd = NULL;
590 	struct cppi41_dd *cdd = c->cdd;
591 	struct cppi41_desc *d;
592 	struct scatterlist *sg;
593 	unsigned int i;
594 	int error;
595 
596 	error = pm_runtime_get(cdd->ddev.dev);
597 	if (error < 0) {
598 		pm_runtime_put_noidle(cdd->ddev.dev);
599 
600 		return NULL;
601 	}
602 
603 	if (cdd->is_suspended)
604 		goto err_out_not_ready;
605 
606 	d = c->desc;
607 	for_each_sg(sgl, sg, sg_len, i) {
608 		u32 addr;
609 		u32 len;
610 
611 		/* We need to use more than one desc once musb supports sg */
612 		addr = lower_32_bits(sg_dma_address(sg));
613 		len = sg_dma_len(sg);
614 
615 		d->pd0 = get_host_pd0(len);
616 		d->pd1 = get_host_pd1(c);
617 		d->pd2 = get_host_pd2(c);
618 		d->pd3 = get_host_pd3(len);
619 		d->pd4 = get_host_pd4_or_7(addr);
620 		d->pd5 = get_host_pd5();
621 		d->pd6 = get_host_pd6(len);
622 		d->pd7 = get_host_pd4_or_7(addr);
623 
624 		d++;
625 	}
626 
627 	txd = &c->txd;
628 
629 err_out_not_ready:
630 	pm_runtime_mark_last_busy(cdd->ddev.dev);
631 	pm_runtime_put_autosuspend(cdd->ddev.dev);
632 
633 	return txd;
634 }
635 
636 static void cppi41_compute_td_desc(struct cppi41_desc *d)
637 {
638 	d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
639 }
640 
641 static int cppi41_tear_down_chan(struct cppi41_channel *c)
642 {
643 	struct dmaengine_result abort_result;
644 	struct cppi41_dd *cdd = c->cdd;
645 	struct cppi41_desc *td;
646 	u32 reg;
647 	u32 desc_phys;
648 	u32 td_desc_phys;
649 
650 	td = cdd->cd;
651 	td += cdd->first_td_desc;
652 
653 	td_desc_phys = cdd->descs_phys;
654 	td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
655 
656 	if (!c->td_queued) {
657 		cppi41_compute_td_desc(td);
658 		__iowmb();
659 
660 		reg = (sizeof(struct cppi41_desc) - 24) / 4;
661 		reg |= td_desc_phys;
662 		cppi_writel(reg, cdd->qmgr_mem +
663 				QMGR_QUEUE_D(cdd->td_queue.submit));
664 
665 		reg = GCR_CHAN_ENABLE;
666 		if (!c->is_tx) {
667 			reg |= GCR_STARV_RETRY;
668 			reg |= GCR_DESC_TYPE_HOST;
669 			reg |= cdd->td_queue.complete;
670 		}
671 		reg |= GCR_TEARDOWN;
672 		cppi_writel(reg, c->gcr_reg);
673 		c->td_queued = 1;
674 		c->td_retry = 500;
675 	}
676 
677 	if (!c->td_seen || !c->td_desc_seen) {
678 
679 		desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
680 		if (!desc_phys && c->is_tx)
681 			desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
682 
683 		if (desc_phys == c->desc_phys) {
684 			c->td_desc_seen = 1;
685 
686 		} else if (desc_phys == td_desc_phys) {
687 			u32 pd0;
688 
689 			__iormb();
690 			pd0 = td->pd0;
691 			WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
692 			WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
693 			WARN_ON((pd0 & 0x1f) != c->port_num);
694 			c->td_seen = 1;
695 		} else if (desc_phys) {
696 			WARN_ON_ONCE(1);
697 		}
698 	}
699 	c->td_retry--;
700 	/*
701 	 * If the TX descriptor / channel is in use, the caller needs to poke
702 	 * his TD bit multiple times. After that he hardware releases the
703 	 * transfer descriptor followed by TD descriptor. Waiting seems not to
704 	 * cause any difference.
705 	 * RX seems to be thrown out right away. However once the TearDown
706 	 * descriptor gets through we are done. If we have seen the transfer
707 	 * descriptor before the TD we fetch it from enqueue, it has to be
708 	 * there waiting for us.
709 	 */
710 	if (!c->td_seen && c->td_retry) {
711 		udelay(1);
712 		return -EAGAIN;
713 	}
714 	WARN_ON(!c->td_retry);
715 
716 	if (!c->td_desc_seen) {
717 		desc_phys = cppi41_pop_desc(cdd, c->q_num);
718 		if (!desc_phys)
719 			desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
720 		WARN_ON(!desc_phys);
721 	}
722 
723 	c->td_queued = 0;
724 	c->td_seen = 0;
725 	c->td_desc_seen = 0;
726 	cppi_writel(0, c->gcr_reg);
727 
728 	/* Invoke the callback to do the necessary clean-up */
729 	abort_result.result = DMA_TRANS_ABORTED;
730 	dma_cookie_complete(&c->txd);
731 	dmaengine_desc_get_callback_invoke(&c->txd, &abort_result);
732 
733 	return 0;
734 }
735 
736 static int cppi41_stop_chan(struct dma_chan *chan)
737 {
738 	struct cppi41_channel *c = to_cpp41_chan(chan);
739 	struct cppi41_dd *cdd = c->cdd;
740 	u32 desc_num;
741 	u32 desc_phys;
742 	int ret;
743 
744 	desc_phys = lower_32_bits(c->desc_phys);
745 	desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
746 	if (!cdd->chan_busy[desc_num]) {
747 		struct cppi41_channel *cc, *_ct;
748 
749 		/*
750 		 * channels might still be in the pending list if
751 		 * cppi41_dma_issue_pending() is called after
752 		 * cppi41_runtime_suspend() is called
753 		 */
754 		list_for_each_entry_safe(cc, _ct, &cdd->pending, node) {
755 			if (cc != c)
756 				continue;
757 			list_del(&cc->node);
758 			break;
759 		}
760 		return 0;
761 	}
762 
763 	ret = cppi41_tear_down_chan(c);
764 	if (ret)
765 		return ret;
766 
767 	WARN_ON(!cdd->chan_busy[desc_num]);
768 	cdd->chan_busy[desc_num] = NULL;
769 
770 	/* Usecount for chan_busy[], paired with push_desc_queue() */
771 	pm_runtime_put(cdd->ddev.dev);
772 
773 	return 0;
774 }
775 
776 static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
777 {
778 	struct cppi41_channel *cchan, *chans;
779 	int i;
780 	u32 n_chans = cdd->n_chans;
781 
782 	/*
783 	 * The channels can only be used as TX or as RX. So we add twice
784 	 * that much dma channels because USB can only do RX or TX.
785 	 */
786 	n_chans *= 2;
787 
788 	chans = devm_kcalloc(dev, n_chans, sizeof(*chans), GFP_KERNEL);
789 	if (!chans)
790 		return -ENOMEM;
791 
792 	for (i = 0; i < n_chans; i++) {
793 		cchan = &chans[i];
794 
795 		cchan->cdd = cdd;
796 		if (i & 1) {
797 			cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
798 			cchan->is_tx = 1;
799 		} else {
800 			cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
801 			cchan->is_tx = 0;
802 		}
803 		cchan->port_num = i >> 1;
804 		cchan->desc = &cdd->cd[i];
805 		cchan->desc_phys = cdd->descs_phys;
806 		cchan->desc_phys += i * sizeof(struct cppi41_desc);
807 		cchan->chan.device = &cdd->ddev;
808 		list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
809 	}
810 	cdd->first_td_desc = n_chans;
811 
812 	return 0;
813 }
814 
815 static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
816 {
817 	unsigned int mem_decs;
818 	int i;
819 
820 	mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
821 
822 	for (i = 0; i < DESCS_AREAS; i++) {
823 
824 		cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
825 		cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
826 
827 		dma_free_coherent(dev, mem_decs, cdd->cd,
828 				cdd->descs_phys);
829 	}
830 }
831 
832 static void disable_sched(struct cppi41_dd *cdd)
833 {
834 	cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
835 }
836 
837 static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
838 {
839 	disable_sched(cdd);
840 
841 	purge_descs(dev, cdd);
842 
843 	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
844 	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
845 	dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
846 			cdd->scratch_phys);
847 }
848 
849 static int init_descs(struct device *dev, struct cppi41_dd *cdd)
850 {
851 	unsigned int desc_size;
852 	unsigned int mem_decs;
853 	int i;
854 	u32 reg;
855 	u32 idx;
856 
857 	BUILD_BUG_ON(sizeof(struct cppi41_desc) &
858 			(sizeof(struct cppi41_desc) - 1));
859 	BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
860 	BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
861 
862 	desc_size = sizeof(struct cppi41_desc);
863 	mem_decs = ALLOC_DECS_NUM * desc_size;
864 
865 	idx = 0;
866 	for (i = 0; i < DESCS_AREAS; i++) {
867 
868 		reg = idx << QMGR_MEMCTRL_IDX_SH;
869 		reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
870 		reg |= ilog2(ALLOC_DECS_NUM) - 5;
871 
872 		BUILD_BUG_ON(DESCS_AREAS != 1);
873 		cdd->cd = dma_alloc_coherent(dev, mem_decs,
874 				&cdd->descs_phys, GFP_KERNEL);
875 		if (!cdd->cd)
876 			return -ENOMEM;
877 
878 		cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
879 		cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
880 
881 		idx += ALLOC_DECS_NUM;
882 	}
883 	return 0;
884 }
885 
886 static void init_sched(struct cppi41_dd *cdd)
887 {
888 	unsigned ch;
889 	unsigned word;
890 	u32 reg;
891 
892 	word = 0;
893 	cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
894 	for (ch = 0; ch < cdd->n_chans; ch += 2) {
895 
896 		reg = SCHED_ENTRY0_CHAN(ch);
897 		reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
898 
899 		reg |= SCHED_ENTRY2_CHAN(ch + 1);
900 		reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
901 		cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
902 		word++;
903 	}
904 	reg = cdd->n_chans * 2 - 1;
905 	reg |= DMA_SCHED_CTRL_EN;
906 	cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
907 }
908 
909 static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
910 {
911 	int ret;
912 
913 	BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
914 	cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
915 			&cdd->scratch_phys, GFP_KERNEL);
916 	if (!cdd->qmgr_scratch)
917 		return -ENOMEM;
918 
919 	cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
920 	cppi_writel(TOTAL_DESCS_NUM, cdd->qmgr_mem + QMGR_LRAM_SIZE);
921 	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
922 
923 	ret = init_descs(dev, cdd);
924 	if (ret)
925 		goto err_td;
926 
927 	cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
928 	init_sched(cdd);
929 
930 	return 0;
931 err_td:
932 	deinit_cppi41(dev, cdd);
933 	return ret;
934 }
935 
936 static struct platform_driver cpp41_dma_driver;
937 /*
938  * The param format is:
939  * X Y
940  * X: Port
941  * Y: 0 = RX else TX
942  */
943 #define INFO_PORT	0
944 #define INFO_IS_TX	1
945 
946 static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
947 {
948 	struct cppi41_channel *cchan;
949 	struct cppi41_dd *cdd;
950 	const struct chan_queues *queues;
951 	u32 *num = param;
952 
953 	if (chan->device->dev->driver != &cpp41_dma_driver.driver)
954 		return false;
955 
956 	cchan = to_cpp41_chan(chan);
957 
958 	if (cchan->port_num != num[INFO_PORT])
959 		return false;
960 
961 	if (cchan->is_tx && !num[INFO_IS_TX])
962 		return false;
963 	cdd = cchan->cdd;
964 	if (cchan->is_tx)
965 		queues = cdd->queues_tx;
966 	else
967 		queues = cdd->queues_rx;
968 
969 	BUILD_BUG_ON(ARRAY_SIZE(am335x_usb_queues_rx) !=
970 		     ARRAY_SIZE(am335x_usb_queues_tx));
971 	if (WARN_ON(cchan->port_num >= ARRAY_SIZE(am335x_usb_queues_rx)))
972 		return false;
973 
974 	cchan->q_num = queues[cchan->port_num].submit;
975 	cchan->q_comp_num = queues[cchan->port_num].complete;
976 	return true;
977 }
978 
979 static struct of_dma_filter_info cpp41_dma_info = {
980 	.filter_fn = cpp41_dma_filter_fn,
981 };
982 
983 static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
984 		struct of_dma *ofdma)
985 {
986 	int count = dma_spec->args_count;
987 	struct of_dma_filter_info *info = ofdma->of_dma_data;
988 
989 	if (!info || !info->filter_fn)
990 		return NULL;
991 
992 	if (count != 2)
993 		return NULL;
994 
995 	return dma_request_channel(info->dma_cap, info->filter_fn,
996 			&dma_spec->args[0]);
997 }
998 
999 static const struct cppi_glue_infos am335x_usb_infos = {
1000 	.queues_rx = am335x_usb_queues_rx,
1001 	.queues_tx = am335x_usb_queues_tx,
1002 	.td_queue = { .submit = 31, .complete = 0 },
1003 	.first_completion_queue = 93,
1004 	.qmgr_num_pend = 5,
1005 };
1006 
1007 static const struct cppi_glue_infos da8xx_usb_infos = {
1008 	.queues_rx = da8xx_usb_queues_rx,
1009 	.queues_tx = da8xx_usb_queues_tx,
1010 	.td_queue = { .submit = 31, .complete = 0 },
1011 	.first_completion_queue = 24,
1012 	.qmgr_num_pend = 2,
1013 };
1014 
1015 static const struct of_device_id cppi41_dma_ids[] = {
1016 	{ .compatible = "ti,am3359-cppi41", .data = &am335x_usb_infos},
1017 	{ .compatible = "ti,da830-cppi41", .data = &da8xx_usb_infos},
1018 	{},
1019 };
1020 MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
1021 
1022 static const struct cppi_glue_infos *get_glue_info(struct device *dev)
1023 {
1024 	const struct of_device_id *of_id;
1025 
1026 	of_id = of_match_node(cppi41_dma_ids, dev->of_node);
1027 	if (!of_id)
1028 		return NULL;
1029 	return of_id->data;
1030 }
1031 
1032 #define CPPI41_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1033 				BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1034 				BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1035 				BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1036 
1037 static int cppi41_dma_probe(struct platform_device *pdev)
1038 {
1039 	struct cppi41_dd *cdd;
1040 	struct device *dev = &pdev->dev;
1041 	const struct cppi_glue_infos *glue_info;
1042 	struct resource *mem;
1043 	int index;
1044 	int irq;
1045 	int ret;
1046 
1047 	glue_info = get_glue_info(dev);
1048 	if (!glue_info)
1049 		return -EINVAL;
1050 
1051 	cdd = devm_kzalloc(&pdev->dev, sizeof(*cdd), GFP_KERNEL);
1052 	if (!cdd)
1053 		return -ENOMEM;
1054 
1055 	dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
1056 	cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
1057 	cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
1058 	cdd->ddev.device_tx_status = cppi41_dma_tx_status;
1059 	cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
1060 	cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
1061 	cdd->ddev.device_terminate_all = cppi41_stop_chan;
1062 	cdd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1063 	cdd->ddev.src_addr_widths = CPPI41_DMA_BUSWIDTHS;
1064 	cdd->ddev.dst_addr_widths = CPPI41_DMA_BUSWIDTHS;
1065 	cdd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1066 	cdd->ddev.dev = dev;
1067 	INIT_LIST_HEAD(&cdd->ddev.channels);
1068 	cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
1069 
1070 	index = of_property_match_string(dev->of_node,
1071 					 "reg-names", "controller");
1072 	if (index < 0)
1073 		return index;
1074 
1075 	mem = platform_get_resource(pdev, IORESOURCE_MEM, index);
1076 	cdd->ctrl_mem = devm_ioremap_resource(dev, mem);
1077 	if (IS_ERR(cdd->ctrl_mem))
1078 		return PTR_ERR(cdd->ctrl_mem);
1079 
1080 	mem = platform_get_resource(pdev, IORESOURCE_MEM, index + 1);
1081 	cdd->sched_mem = devm_ioremap_resource(dev, mem);
1082 	if (IS_ERR(cdd->sched_mem))
1083 		return PTR_ERR(cdd->sched_mem);
1084 
1085 	mem = platform_get_resource(pdev, IORESOURCE_MEM, index + 2);
1086 	cdd->qmgr_mem = devm_ioremap_resource(dev, mem);
1087 	if (IS_ERR(cdd->qmgr_mem))
1088 		return PTR_ERR(cdd->qmgr_mem);
1089 
1090 	spin_lock_init(&cdd->lock);
1091 	INIT_LIST_HEAD(&cdd->pending);
1092 
1093 	platform_set_drvdata(pdev, cdd);
1094 
1095 	pm_runtime_enable(dev);
1096 	pm_runtime_set_autosuspend_delay(dev, 100);
1097 	pm_runtime_use_autosuspend(dev);
1098 	ret = pm_runtime_get_sync(dev);
1099 	if (ret < 0)
1100 		goto err_get_sync;
1101 
1102 	cdd->queues_rx = glue_info->queues_rx;
1103 	cdd->queues_tx = glue_info->queues_tx;
1104 	cdd->td_queue = glue_info->td_queue;
1105 	cdd->qmgr_num_pend = glue_info->qmgr_num_pend;
1106 	cdd->first_completion_queue = glue_info->first_completion_queue;
1107 
1108 	ret = of_property_read_u32(dev->of_node,
1109 				   "#dma-channels", &cdd->n_chans);
1110 	if (ret)
1111 		goto err_get_n_chans;
1112 
1113 	ret = init_cppi41(dev, cdd);
1114 	if (ret)
1115 		goto err_init_cppi;
1116 
1117 	ret = cppi41_add_chans(dev, cdd);
1118 	if (ret)
1119 		goto err_chans;
1120 
1121 	irq = irq_of_parse_and_map(dev->of_node, 0);
1122 	if (!irq) {
1123 		ret = -EINVAL;
1124 		goto err_chans;
1125 	}
1126 
1127 	ret = devm_request_irq(&pdev->dev, irq, cppi41_irq, IRQF_SHARED,
1128 			dev_name(dev), cdd);
1129 	if (ret)
1130 		goto err_chans;
1131 	cdd->irq = irq;
1132 
1133 	ret = dma_async_device_register(&cdd->ddev);
1134 	if (ret)
1135 		goto err_chans;
1136 
1137 	ret = of_dma_controller_register(dev->of_node,
1138 			cppi41_dma_xlate, &cpp41_dma_info);
1139 	if (ret)
1140 		goto err_of;
1141 
1142 	pm_runtime_mark_last_busy(dev);
1143 	pm_runtime_put_autosuspend(dev);
1144 
1145 	return 0;
1146 err_of:
1147 	dma_async_device_unregister(&cdd->ddev);
1148 err_chans:
1149 	deinit_cppi41(dev, cdd);
1150 err_init_cppi:
1151 	pm_runtime_dont_use_autosuspend(dev);
1152 err_get_n_chans:
1153 err_get_sync:
1154 	pm_runtime_put_sync(dev);
1155 	pm_runtime_disable(dev);
1156 	return ret;
1157 }
1158 
1159 static int cppi41_dma_remove(struct platform_device *pdev)
1160 {
1161 	struct cppi41_dd *cdd = platform_get_drvdata(pdev);
1162 	int error;
1163 
1164 	error = pm_runtime_get_sync(&pdev->dev);
1165 	if (error < 0)
1166 		dev_err(&pdev->dev, "%s could not pm_runtime_get: %i\n",
1167 			__func__, error);
1168 	of_dma_controller_free(pdev->dev.of_node);
1169 	dma_async_device_unregister(&cdd->ddev);
1170 
1171 	devm_free_irq(&pdev->dev, cdd->irq, cdd);
1172 	deinit_cppi41(&pdev->dev, cdd);
1173 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1174 	pm_runtime_put_sync(&pdev->dev);
1175 	pm_runtime_disable(&pdev->dev);
1176 	return 0;
1177 }
1178 
1179 static int __maybe_unused cppi41_suspend(struct device *dev)
1180 {
1181 	struct cppi41_dd *cdd = dev_get_drvdata(dev);
1182 
1183 	cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
1184 	disable_sched(cdd);
1185 
1186 	return 0;
1187 }
1188 
1189 static int __maybe_unused cppi41_resume(struct device *dev)
1190 {
1191 	struct cppi41_dd *cdd = dev_get_drvdata(dev);
1192 	struct cppi41_channel *c;
1193 	int i;
1194 
1195 	for (i = 0; i < DESCS_AREAS; i++)
1196 		cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
1197 
1198 	list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
1199 		if (!c->is_tx)
1200 			cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
1201 
1202 	init_sched(cdd);
1203 
1204 	cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
1205 	cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
1206 	cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
1207 	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
1208 
1209 	return 0;
1210 }
1211 
1212 static int __maybe_unused cppi41_runtime_suspend(struct device *dev)
1213 {
1214 	struct cppi41_dd *cdd = dev_get_drvdata(dev);
1215 	unsigned long flags;
1216 
1217 	spin_lock_irqsave(&cdd->lock, flags);
1218 	cdd->is_suspended = true;
1219 	WARN_ON(!list_empty(&cdd->pending));
1220 	spin_unlock_irqrestore(&cdd->lock, flags);
1221 
1222 	return 0;
1223 }
1224 
1225 static int __maybe_unused cppi41_runtime_resume(struct device *dev)
1226 {
1227 	struct cppi41_dd *cdd = dev_get_drvdata(dev);
1228 	unsigned long flags;
1229 
1230 	spin_lock_irqsave(&cdd->lock, flags);
1231 	cdd->is_suspended = false;
1232 	cppi41_run_queue(cdd);
1233 	spin_unlock_irqrestore(&cdd->lock, flags);
1234 
1235 	return 0;
1236 }
1237 
1238 static const struct dev_pm_ops cppi41_pm_ops = {
1239 	SET_LATE_SYSTEM_SLEEP_PM_OPS(cppi41_suspend, cppi41_resume)
1240 	SET_RUNTIME_PM_OPS(cppi41_runtime_suspend,
1241 			   cppi41_runtime_resume,
1242 			   NULL)
1243 };
1244 
1245 static struct platform_driver cpp41_dma_driver = {
1246 	.probe  = cppi41_dma_probe,
1247 	.remove = cppi41_dma_remove,
1248 	.driver = {
1249 		.name = "cppi41-dma-engine",
1250 		.pm = &cppi41_pm_ops,
1251 		.of_match_table = of_match_ptr(cppi41_dma_ids),
1252 	},
1253 };
1254 
1255 module_platform_driver(cpp41_dma_driver);
1256 MODULE_LICENSE("GPL");
1257 MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");
1258