xref: /openbmc/linux/drivers/dma/tegra20-apb-dma.c (revision f3a8b664)
1 /*
2  * DMA driver for Nvidia's Tegra20 APB DMA controller.
3  *
4  * Copyright (c) 2012-2013, NVIDIA CORPORATION.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include <linux/bitops.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/err.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/of_dma.h>
33 #include <linux/platform_device.h>
34 #include <linux/pm.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/reset.h>
37 #include <linux/slab.h>
38 
39 #include "dmaengine.h"
40 
41 #define TEGRA_APBDMA_GENERAL			0x0
42 #define TEGRA_APBDMA_GENERAL_ENABLE		BIT(31)
43 
44 #define TEGRA_APBDMA_CONTROL			0x010
45 #define TEGRA_APBDMA_IRQ_MASK			0x01c
46 #define TEGRA_APBDMA_IRQ_MASK_SET		0x020
47 
48 /* CSR register */
49 #define TEGRA_APBDMA_CHAN_CSR			0x00
50 #define TEGRA_APBDMA_CSR_ENB			BIT(31)
51 #define TEGRA_APBDMA_CSR_IE_EOC			BIT(30)
52 #define TEGRA_APBDMA_CSR_HOLD			BIT(29)
53 #define TEGRA_APBDMA_CSR_DIR			BIT(28)
54 #define TEGRA_APBDMA_CSR_ONCE			BIT(27)
55 #define TEGRA_APBDMA_CSR_FLOW			BIT(21)
56 #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT		16
57 #define TEGRA_APBDMA_CSR_REQ_SEL_MASK		0x1F
58 #define TEGRA_APBDMA_CSR_WCOUNT_MASK		0xFFFC
59 
60 /* STATUS register */
61 #define TEGRA_APBDMA_CHAN_STATUS		0x004
62 #define TEGRA_APBDMA_STATUS_BUSY		BIT(31)
63 #define TEGRA_APBDMA_STATUS_ISE_EOC		BIT(30)
64 #define TEGRA_APBDMA_STATUS_HALT		BIT(29)
65 #define TEGRA_APBDMA_STATUS_PING_PONG		BIT(28)
66 #define TEGRA_APBDMA_STATUS_COUNT_SHIFT		2
67 #define TEGRA_APBDMA_STATUS_COUNT_MASK		0xFFFC
68 
69 #define TEGRA_APBDMA_CHAN_CSRE			0x00C
70 #define TEGRA_APBDMA_CHAN_CSRE_PAUSE		(1 << 31)
71 
72 /* AHB memory address */
73 #define TEGRA_APBDMA_CHAN_AHBPTR		0x010
74 
75 /* AHB sequence register */
76 #define TEGRA_APBDMA_CHAN_AHBSEQ		0x14
77 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB		BIT(31)
78 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8		(0 << 28)
79 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16	(1 << 28)
80 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32	(2 << 28)
81 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64	(3 << 28)
82 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128	(4 << 28)
83 #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP		BIT(27)
84 #define TEGRA_APBDMA_AHBSEQ_BURST_1		(4 << 24)
85 #define TEGRA_APBDMA_AHBSEQ_BURST_4		(5 << 24)
86 #define TEGRA_APBDMA_AHBSEQ_BURST_8		(6 << 24)
87 #define TEGRA_APBDMA_AHBSEQ_DBL_BUF		BIT(19)
88 #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT		16
89 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE		0
90 
91 /* APB address */
92 #define TEGRA_APBDMA_CHAN_APBPTR		0x018
93 
94 /* APB sequence register */
95 #define TEGRA_APBDMA_CHAN_APBSEQ		0x01c
96 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8		(0 << 28)
97 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16	(1 << 28)
98 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32	(2 << 28)
99 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64	(3 << 28)
100 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128	(4 << 28)
101 #define TEGRA_APBDMA_APBSEQ_DATA_SWAP		BIT(27)
102 #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1		(1 << 16)
103 
104 /* Tegra148 specific registers */
105 #define TEGRA_APBDMA_CHAN_WCOUNT		0x20
106 
107 #define TEGRA_APBDMA_CHAN_WORD_TRANSFER		0x24
108 
109 /*
110  * If any burst is in flight and DMA paused then this is the time to complete
111  * on-flight burst and update DMA status register.
112  */
113 #define TEGRA_APBDMA_BURST_COMPLETE_TIME	20
114 
115 /* Channel base address offset from APBDMA base address */
116 #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET	0x1000
117 
118 #define TEGRA_APBDMA_SLAVE_ID_INVALID	(TEGRA_APBDMA_CSR_REQ_SEL_MASK + 1)
119 
120 struct tegra_dma;
121 
122 /*
123  * tegra_dma_chip_data Tegra chip specific DMA data
124  * @nr_channels: Number of channels available in the controller.
125  * @channel_reg_size: Channel register size/stride.
126  * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
127  * @support_channel_pause: Support channel wise pause of dma.
128  * @support_separate_wcount_reg: Support separate word count register.
129  */
130 struct tegra_dma_chip_data {
131 	int nr_channels;
132 	int channel_reg_size;
133 	int max_dma_count;
134 	bool support_channel_pause;
135 	bool support_separate_wcount_reg;
136 };
137 
138 /* DMA channel registers */
139 struct tegra_dma_channel_regs {
140 	unsigned long	csr;
141 	unsigned long	ahb_ptr;
142 	unsigned long	apb_ptr;
143 	unsigned long	ahb_seq;
144 	unsigned long	apb_seq;
145 	unsigned long	wcount;
146 };
147 
148 /*
149  * tegra_dma_sg_req: Dma request details to configure hardware. This
150  * contains the details for one transfer to configure DMA hw.
151  * The client's request for data transfer can be broken into multiple
152  * sub-transfer as per requester details and hw support.
153  * This sub transfer get added in the list of transfer and point to Tegra
154  * DMA descriptor which manages the transfer details.
155  */
156 struct tegra_dma_sg_req {
157 	struct tegra_dma_channel_regs	ch_regs;
158 	int				req_len;
159 	bool				configured;
160 	bool				last_sg;
161 	struct list_head		node;
162 	struct tegra_dma_desc		*dma_desc;
163 };
164 
165 /*
166  * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
167  * This descriptor keep track of transfer status, callbacks and request
168  * counts etc.
169  */
170 struct tegra_dma_desc {
171 	struct dma_async_tx_descriptor	txd;
172 	int				bytes_requested;
173 	int				bytes_transferred;
174 	enum dma_status			dma_status;
175 	struct list_head		node;
176 	struct list_head		tx_list;
177 	struct list_head		cb_node;
178 	int				cb_count;
179 };
180 
181 struct tegra_dma_channel;
182 
183 typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
184 				bool to_terminate);
185 
186 /* tegra_dma_channel: Channel specific information */
187 struct tegra_dma_channel {
188 	struct dma_chan		dma_chan;
189 	char			name[30];
190 	bool			config_init;
191 	int			id;
192 	int			irq;
193 	void __iomem		*chan_addr;
194 	spinlock_t		lock;
195 	bool			busy;
196 	struct tegra_dma	*tdma;
197 	bool			cyclic;
198 
199 	/* Different lists for managing the requests */
200 	struct list_head	free_sg_req;
201 	struct list_head	pending_sg_req;
202 	struct list_head	free_dma_desc;
203 	struct list_head	cb_desc;
204 
205 	/* ISR handler and tasklet for bottom half of isr handling */
206 	dma_isr_handler		isr_handler;
207 	struct tasklet_struct	tasklet;
208 
209 	/* Channel-slave specific configuration */
210 	unsigned int slave_id;
211 	struct dma_slave_config dma_sconfig;
212 	struct tegra_dma_channel_regs	channel_reg;
213 };
214 
215 /* tegra_dma: Tegra DMA specific information */
216 struct tegra_dma {
217 	struct dma_device		dma_dev;
218 	struct device			*dev;
219 	struct clk			*dma_clk;
220 	struct reset_control		*rst;
221 	spinlock_t			global_lock;
222 	void __iomem			*base_addr;
223 	const struct tegra_dma_chip_data *chip_data;
224 
225 	/*
226 	 * Counter for managing global pausing of the DMA controller.
227 	 * Only applicable for devices that don't support individual
228 	 * channel pausing.
229 	 */
230 	u32				global_pause_count;
231 
232 	/* Some register need to be cache before suspend */
233 	u32				reg_gen;
234 
235 	/* Last member of the structure */
236 	struct tegra_dma_channel channels[0];
237 };
238 
239 static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
240 {
241 	writel(val, tdma->base_addr + reg);
242 }
243 
244 static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
245 {
246 	return readl(tdma->base_addr + reg);
247 }
248 
249 static inline void tdc_write(struct tegra_dma_channel *tdc,
250 		u32 reg, u32 val)
251 {
252 	writel(val, tdc->chan_addr + reg);
253 }
254 
255 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
256 {
257 	return readl(tdc->chan_addr + reg);
258 }
259 
260 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
261 {
262 	return container_of(dc, struct tegra_dma_channel, dma_chan);
263 }
264 
265 static inline struct tegra_dma_desc *txd_to_tegra_dma_desc(
266 		struct dma_async_tx_descriptor *td)
267 {
268 	return container_of(td, struct tegra_dma_desc, txd);
269 }
270 
271 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
272 {
273 	return &tdc->dma_chan.dev->device;
274 }
275 
276 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
277 static int tegra_dma_runtime_suspend(struct device *dev);
278 static int tegra_dma_runtime_resume(struct device *dev);
279 
280 /* Get DMA desc from free list, if not there then allocate it.  */
281 static struct tegra_dma_desc *tegra_dma_desc_get(
282 		struct tegra_dma_channel *tdc)
283 {
284 	struct tegra_dma_desc *dma_desc;
285 	unsigned long flags;
286 
287 	spin_lock_irqsave(&tdc->lock, flags);
288 
289 	/* Do not allocate if desc are waiting for ack */
290 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
291 		if (async_tx_test_ack(&dma_desc->txd)) {
292 			list_del(&dma_desc->node);
293 			spin_unlock_irqrestore(&tdc->lock, flags);
294 			dma_desc->txd.flags = 0;
295 			return dma_desc;
296 		}
297 	}
298 
299 	spin_unlock_irqrestore(&tdc->lock, flags);
300 
301 	/* Allocate DMA desc */
302 	dma_desc = kzalloc(sizeof(*dma_desc), GFP_NOWAIT);
303 	if (!dma_desc)
304 		return NULL;
305 
306 	dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
307 	dma_desc->txd.tx_submit = tegra_dma_tx_submit;
308 	dma_desc->txd.flags = 0;
309 	return dma_desc;
310 }
311 
312 static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
313 		struct tegra_dma_desc *dma_desc)
314 {
315 	unsigned long flags;
316 
317 	spin_lock_irqsave(&tdc->lock, flags);
318 	if (!list_empty(&dma_desc->tx_list))
319 		list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
320 	list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
321 	spin_unlock_irqrestore(&tdc->lock, flags);
322 }
323 
324 static struct tegra_dma_sg_req *tegra_dma_sg_req_get(
325 		struct tegra_dma_channel *tdc)
326 {
327 	struct tegra_dma_sg_req *sg_req = NULL;
328 	unsigned long flags;
329 
330 	spin_lock_irqsave(&tdc->lock, flags);
331 	if (!list_empty(&tdc->free_sg_req)) {
332 		sg_req = list_first_entry(&tdc->free_sg_req,
333 					typeof(*sg_req), node);
334 		list_del(&sg_req->node);
335 		spin_unlock_irqrestore(&tdc->lock, flags);
336 		return sg_req;
337 	}
338 	spin_unlock_irqrestore(&tdc->lock, flags);
339 
340 	sg_req = kzalloc(sizeof(struct tegra_dma_sg_req), GFP_NOWAIT);
341 
342 	return sg_req;
343 }
344 
345 static int tegra_dma_slave_config(struct dma_chan *dc,
346 		struct dma_slave_config *sconfig)
347 {
348 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
349 
350 	if (!list_empty(&tdc->pending_sg_req)) {
351 		dev_err(tdc2dev(tdc), "Configuration not allowed\n");
352 		return -EBUSY;
353 	}
354 
355 	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
356 	if (tdc->slave_id == TEGRA_APBDMA_SLAVE_ID_INVALID) {
357 		if (sconfig->slave_id > TEGRA_APBDMA_CSR_REQ_SEL_MASK)
358 			return -EINVAL;
359 		tdc->slave_id = sconfig->slave_id;
360 	}
361 	tdc->config_init = true;
362 	return 0;
363 }
364 
365 static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
366 	bool wait_for_burst_complete)
367 {
368 	struct tegra_dma *tdma = tdc->tdma;
369 
370 	spin_lock(&tdma->global_lock);
371 
372 	if (tdc->tdma->global_pause_count == 0) {
373 		tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
374 		if (wait_for_burst_complete)
375 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
376 	}
377 
378 	tdc->tdma->global_pause_count++;
379 
380 	spin_unlock(&tdma->global_lock);
381 }
382 
383 static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
384 {
385 	struct tegra_dma *tdma = tdc->tdma;
386 
387 	spin_lock(&tdma->global_lock);
388 
389 	if (WARN_ON(tdc->tdma->global_pause_count == 0))
390 		goto out;
391 
392 	if (--tdc->tdma->global_pause_count == 0)
393 		tdma_write(tdma, TEGRA_APBDMA_GENERAL,
394 			   TEGRA_APBDMA_GENERAL_ENABLE);
395 
396 out:
397 	spin_unlock(&tdma->global_lock);
398 }
399 
400 static void tegra_dma_pause(struct tegra_dma_channel *tdc,
401 	bool wait_for_burst_complete)
402 {
403 	struct tegra_dma *tdma = tdc->tdma;
404 
405 	if (tdma->chip_data->support_channel_pause) {
406 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
407 				TEGRA_APBDMA_CHAN_CSRE_PAUSE);
408 		if (wait_for_burst_complete)
409 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
410 	} else {
411 		tegra_dma_global_pause(tdc, wait_for_burst_complete);
412 	}
413 }
414 
415 static void tegra_dma_resume(struct tegra_dma_channel *tdc)
416 {
417 	struct tegra_dma *tdma = tdc->tdma;
418 
419 	if (tdma->chip_data->support_channel_pause) {
420 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
421 	} else {
422 		tegra_dma_global_resume(tdc);
423 	}
424 }
425 
426 static void tegra_dma_stop(struct tegra_dma_channel *tdc)
427 {
428 	u32 csr;
429 	u32 status;
430 
431 	/* Disable interrupts */
432 	csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
433 	csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
434 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
435 
436 	/* Disable DMA */
437 	csr &= ~TEGRA_APBDMA_CSR_ENB;
438 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
439 
440 	/* Clear interrupt status if it is there */
441 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
442 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
443 		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
444 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
445 	}
446 	tdc->busy = false;
447 }
448 
449 static void tegra_dma_start(struct tegra_dma_channel *tdc,
450 		struct tegra_dma_sg_req *sg_req)
451 {
452 	struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
453 
454 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
455 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
456 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
457 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
458 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
459 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
460 		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
461 
462 	/* Start DMA */
463 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
464 				ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
465 }
466 
467 static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
468 		struct tegra_dma_sg_req *nsg_req)
469 {
470 	unsigned long status;
471 
472 	/*
473 	 * The DMA controller reloads the new configuration for next transfer
474 	 * after last burst of current transfer completes.
475 	 * If there is no IEC status then this makes sure that last burst
476 	 * has not be completed. There may be case that last burst is on
477 	 * flight and so it can complete but because DMA is paused, it
478 	 * will not generates interrupt as well as not reload the new
479 	 * configuration.
480 	 * If there is already IEC status then interrupt handler need to
481 	 * load new configuration.
482 	 */
483 	tegra_dma_pause(tdc, false);
484 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
485 
486 	/*
487 	 * If interrupt is pending then do nothing as the ISR will handle
488 	 * the programing for new request.
489 	 */
490 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
491 		dev_err(tdc2dev(tdc),
492 			"Skipping new configuration as interrupt is pending\n");
493 		tegra_dma_resume(tdc);
494 		return;
495 	}
496 
497 	/* Safe to program new configuration */
498 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
499 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
500 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
501 		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
502 						nsg_req->ch_regs.wcount);
503 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
504 				nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
505 	nsg_req->configured = true;
506 
507 	tegra_dma_resume(tdc);
508 }
509 
510 static void tdc_start_head_req(struct tegra_dma_channel *tdc)
511 {
512 	struct tegra_dma_sg_req *sg_req;
513 
514 	if (list_empty(&tdc->pending_sg_req))
515 		return;
516 
517 	sg_req = list_first_entry(&tdc->pending_sg_req,
518 					typeof(*sg_req), node);
519 	tegra_dma_start(tdc, sg_req);
520 	sg_req->configured = true;
521 	tdc->busy = true;
522 }
523 
524 static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
525 {
526 	struct tegra_dma_sg_req *hsgreq;
527 	struct tegra_dma_sg_req *hnsgreq;
528 
529 	if (list_empty(&tdc->pending_sg_req))
530 		return;
531 
532 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
533 	if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
534 		hnsgreq = list_first_entry(&hsgreq->node,
535 					typeof(*hnsgreq), node);
536 		tegra_dma_configure_for_next(tdc, hnsgreq);
537 	}
538 }
539 
540 static inline int get_current_xferred_count(struct tegra_dma_channel *tdc,
541 	struct tegra_dma_sg_req *sg_req, unsigned long status)
542 {
543 	return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
544 }
545 
546 static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
547 {
548 	struct tegra_dma_sg_req *sgreq;
549 	struct tegra_dma_desc *dma_desc;
550 
551 	while (!list_empty(&tdc->pending_sg_req)) {
552 		sgreq = list_first_entry(&tdc->pending_sg_req,
553 						typeof(*sgreq), node);
554 		list_move_tail(&sgreq->node, &tdc->free_sg_req);
555 		if (sgreq->last_sg) {
556 			dma_desc = sgreq->dma_desc;
557 			dma_desc->dma_status = DMA_ERROR;
558 			list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
559 
560 			/* Add in cb list if it is not there. */
561 			if (!dma_desc->cb_count)
562 				list_add_tail(&dma_desc->cb_node,
563 							&tdc->cb_desc);
564 			dma_desc->cb_count++;
565 		}
566 	}
567 	tdc->isr_handler = NULL;
568 }
569 
570 static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
571 		struct tegra_dma_sg_req *last_sg_req, bool to_terminate)
572 {
573 	struct tegra_dma_sg_req *hsgreq = NULL;
574 
575 	if (list_empty(&tdc->pending_sg_req)) {
576 		dev_err(tdc2dev(tdc), "Dma is running without req\n");
577 		tegra_dma_stop(tdc);
578 		return false;
579 	}
580 
581 	/*
582 	 * Check that head req on list should be in flight.
583 	 * If it is not in flight then abort transfer as
584 	 * looping of transfer can not continue.
585 	 */
586 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
587 	if (!hsgreq->configured) {
588 		tegra_dma_stop(tdc);
589 		dev_err(tdc2dev(tdc), "Error in dma transfer, aborting dma\n");
590 		tegra_dma_abort_all(tdc);
591 		return false;
592 	}
593 
594 	/* Configure next request */
595 	if (!to_terminate)
596 		tdc_configure_next_head_desc(tdc);
597 	return true;
598 }
599 
600 static void handle_once_dma_done(struct tegra_dma_channel *tdc,
601 	bool to_terminate)
602 {
603 	struct tegra_dma_sg_req *sgreq;
604 	struct tegra_dma_desc *dma_desc;
605 
606 	tdc->busy = false;
607 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
608 	dma_desc = sgreq->dma_desc;
609 	dma_desc->bytes_transferred += sgreq->req_len;
610 
611 	list_del(&sgreq->node);
612 	if (sgreq->last_sg) {
613 		dma_desc->dma_status = DMA_COMPLETE;
614 		dma_cookie_complete(&dma_desc->txd);
615 		if (!dma_desc->cb_count)
616 			list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
617 		dma_desc->cb_count++;
618 		list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
619 	}
620 	list_add_tail(&sgreq->node, &tdc->free_sg_req);
621 
622 	/* Do not start DMA if it is going to be terminate */
623 	if (to_terminate || list_empty(&tdc->pending_sg_req))
624 		return;
625 
626 	tdc_start_head_req(tdc);
627 }
628 
629 static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
630 		bool to_terminate)
631 {
632 	struct tegra_dma_sg_req *sgreq;
633 	struct tegra_dma_desc *dma_desc;
634 	bool st;
635 
636 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
637 	dma_desc = sgreq->dma_desc;
638 	dma_desc->bytes_transferred += sgreq->req_len;
639 
640 	/* Callback need to be call */
641 	if (!dma_desc->cb_count)
642 		list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
643 	dma_desc->cb_count++;
644 
645 	/* If not last req then put at end of pending list */
646 	if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
647 		list_move_tail(&sgreq->node, &tdc->pending_sg_req);
648 		sgreq->configured = false;
649 		st = handle_continuous_head_request(tdc, sgreq, to_terminate);
650 		if (!st)
651 			dma_desc->dma_status = DMA_ERROR;
652 	}
653 }
654 
655 static void tegra_dma_tasklet(unsigned long data)
656 {
657 	struct tegra_dma_channel *tdc = (struct tegra_dma_channel *)data;
658 	struct dmaengine_desc_callback cb;
659 	struct tegra_dma_desc *dma_desc;
660 	unsigned long flags;
661 	int cb_count;
662 
663 	spin_lock_irqsave(&tdc->lock, flags);
664 	while (!list_empty(&tdc->cb_desc)) {
665 		dma_desc  = list_first_entry(&tdc->cb_desc,
666 					typeof(*dma_desc), cb_node);
667 		list_del(&dma_desc->cb_node);
668 		dmaengine_desc_get_callback(&dma_desc->txd, &cb);
669 		cb_count = dma_desc->cb_count;
670 		dma_desc->cb_count = 0;
671 		spin_unlock_irqrestore(&tdc->lock, flags);
672 		while (cb_count--)
673 			dmaengine_desc_callback_invoke(&cb, NULL);
674 		spin_lock_irqsave(&tdc->lock, flags);
675 	}
676 	spin_unlock_irqrestore(&tdc->lock, flags);
677 }
678 
679 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
680 {
681 	struct tegra_dma_channel *tdc = dev_id;
682 	unsigned long status;
683 	unsigned long flags;
684 
685 	spin_lock_irqsave(&tdc->lock, flags);
686 
687 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
688 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
689 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
690 		tdc->isr_handler(tdc, false);
691 		tasklet_schedule(&tdc->tasklet);
692 		spin_unlock_irqrestore(&tdc->lock, flags);
693 		return IRQ_HANDLED;
694 	}
695 
696 	spin_unlock_irqrestore(&tdc->lock, flags);
697 	dev_info(tdc2dev(tdc),
698 		"Interrupt already served status 0x%08lx\n", status);
699 	return IRQ_NONE;
700 }
701 
702 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
703 {
704 	struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
705 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
706 	unsigned long flags;
707 	dma_cookie_t cookie;
708 
709 	spin_lock_irqsave(&tdc->lock, flags);
710 	dma_desc->dma_status = DMA_IN_PROGRESS;
711 	cookie = dma_cookie_assign(&dma_desc->txd);
712 	list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
713 	spin_unlock_irqrestore(&tdc->lock, flags);
714 	return cookie;
715 }
716 
717 static void tegra_dma_issue_pending(struct dma_chan *dc)
718 {
719 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
720 	unsigned long flags;
721 
722 	spin_lock_irqsave(&tdc->lock, flags);
723 	if (list_empty(&tdc->pending_sg_req)) {
724 		dev_err(tdc2dev(tdc), "No DMA request\n");
725 		goto end;
726 	}
727 	if (!tdc->busy) {
728 		tdc_start_head_req(tdc);
729 
730 		/* Continuous single mode: Configure next req */
731 		if (tdc->cyclic) {
732 			/*
733 			 * Wait for 1 burst time for configure DMA for
734 			 * next transfer.
735 			 */
736 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
737 			tdc_configure_next_head_desc(tdc);
738 		}
739 	}
740 end:
741 	spin_unlock_irqrestore(&tdc->lock, flags);
742 }
743 
744 static int tegra_dma_terminate_all(struct dma_chan *dc)
745 {
746 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
747 	struct tegra_dma_sg_req *sgreq;
748 	struct tegra_dma_desc *dma_desc;
749 	unsigned long flags;
750 	unsigned long status;
751 	unsigned long wcount;
752 	bool was_busy;
753 
754 	spin_lock_irqsave(&tdc->lock, flags);
755 	if (list_empty(&tdc->pending_sg_req)) {
756 		spin_unlock_irqrestore(&tdc->lock, flags);
757 		return 0;
758 	}
759 
760 	if (!tdc->busy)
761 		goto skip_dma_stop;
762 
763 	/* Pause DMA before checking the queue status */
764 	tegra_dma_pause(tdc, true);
765 
766 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
767 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
768 		dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
769 		tdc->isr_handler(tdc, true);
770 		status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
771 	}
772 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
773 		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
774 	else
775 		wcount = status;
776 
777 	was_busy = tdc->busy;
778 	tegra_dma_stop(tdc);
779 
780 	if (!list_empty(&tdc->pending_sg_req) && was_busy) {
781 		sgreq = list_first_entry(&tdc->pending_sg_req,
782 					typeof(*sgreq), node);
783 		sgreq->dma_desc->bytes_transferred +=
784 				get_current_xferred_count(tdc, sgreq, wcount);
785 	}
786 	tegra_dma_resume(tdc);
787 
788 skip_dma_stop:
789 	tegra_dma_abort_all(tdc);
790 
791 	while (!list_empty(&tdc->cb_desc)) {
792 		dma_desc  = list_first_entry(&tdc->cb_desc,
793 					typeof(*dma_desc), cb_node);
794 		list_del(&dma_desc->cb_node);
795 		dma_desc->cb_count = 0;
796 	}
797 	spin_unlock_irqrestore(&tdc->lock, flags);
798 	return 0;
799 }
800 
801 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
802 	dma_cookie_t cookie, struct dma_tx_state *txstate)
803 {
804 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
805 	struct tegra_dma_desc *dma_desc;
806 	struct tegra_dma_sg_req *sg_req;
807 	enum dma_status ret;
808 	unsigned long flags;
809 	unsigned int residual;
810 
811 	ret = dma_cookie_status(dc, cookie, txstate);
812 	if (ret == DMA_COMPLETE)
813 		return ret;
814 
815 	spin_lock_irqsave(&tdc->lock, flags);
816 
817 	/* Check on wait_ack desc status */
818 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
819 		if (dma_desc->txd.cookie == cookie) {
820 			ret = dma_desc->dma_status;
821 			goto found;
822 		}
823 	}
824 
825 	/* Check in pending list */
826 	list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
827 		dma_desc = sg_req->dma_desc;
828 		if (dma_desc->txd.cookie == cookie) {
829 			ret = dma_desc->dma_status;
830 			goto found;
831 		}
832 	}
833 
834 	dev_dbg(tdc2dev(tdc), "cookie %d not found\n", cookie);
835 	dma_desc = NULL;
836 
837 found:
838 	if (dma_desc && txstate) {
839 		residual = dma_desc->bytes_requested -
840 			   (dma_desc->bytes_transferred %
841 			    dma_desc->bytes_requested);
842 		dma_set_residue(txstate, residual);
843 	}
844 
845 	spin_unlock_irqrestore(&tdc->lock, flags);
846 	return ret;
847 }
848 
849 static inline int get_bus_width(struct tegra_dma_channel *tdc,
850 		enum dma_slave_buswidth slave_bw)
851 {
852 	switch (slave_bw) {
853 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
854 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
855 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
856 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
857 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
858 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
859 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
860 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
861 	default:
862 		dev_warn(tdc2dev(tdc),
863 			"slave bw is not supported, using 32bits\n");
864 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
865 	}
866 }
867 
868 static inline int get_burst_size(struct tegra_dma_channel *tdc,
869 	u32 burst_size, enum dma_slave_buswidth slave_bw, int len)
870 {
871 	int burst_byte;
872 	int burst_ahb_width;
873 
874 	/*
875 	 * burst_size from client is in terms of the bus_width.
876 	 * convert them into AHB memory width which is 4 byte.
877 	 */
878 	burst_byte = burst_size * slave_bw;
879 	burst_ahb_width = burst_byte / 4;
880 
881 	/* If burst size is 0 then calculate the burst size based on length */
882 	if (!burst_ahb_width) {
883 		if (len & 0xF)
884 			return TEGRA_APBDMA_AHBSEQ_BURST_1;
885 		else if ((len >> 4) & 0x1)
886 			return TEGRA_APBDMA_AHBSEQ_BURST_4;
887 		else
888 			return TEGRA_APBDMA_AHBSEQ_BURST_8;
889 	}
890 	if (burst_ahb_width < 4)
891 		return TEGRA_APBDMA_AHBSEQ_BURST_1;
892 	else if (burst_ahb_width < 8)
893 		return TEGRA_APBDMA_AHBSEQ_BURST_4;
894 	else
895 		return TEGRA_APBDMA_AHBSEQ_BURST_8;
896 }
897 
898 static int get_transfer_param(struct tegra_dma_channel *tdc,
899 	enum dma_transfer_direction direction, unsigned long *apb_addr,
900 	unsigned long *apb_seq,	unsigned long *csr, unsigned int *burst_size,
901 	enum dma_slave_buswidth *slave_bw)
902 {
903 	switch (direction) {
904 	case DMA_MEM_TO_DEV:
905 		*apb_addr = tdc->dma_sconfig.dst_addr;
906 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
907 		*burst_size = tdc->dma_sconfig.dst_maxburst;
908 		*slave_bw = tdc->dma_sconfig.dst_addr_width;
909 		*csr = TEGRA_APBDMA_CSR_DIR;
910 		return 0;
911 
912 	case DMA_DEV_TO_MEM:
913 		*apb_addr = tdc->dma_sconfig.src_addr;
914 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
915 		*burst_size = tdc->dma_sconfig.src_maxburst;
916 		*slave_bw = tdc->dma_sconfig.src_addr_width;
917 		*csr = 0;
918 		return 0;
919 
920 	default:
921 		dev_err(tdc2dev(tdc), "Dma direction is not supported\n");
922 		return -EINVAL;
923 	}
924 	return -EINVAL;
925 }
926 
927 static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
928 	struct tegra_dma_channel_regs *ch_regs, u32 len)
929 {
930 	u32 len_field = (len - 4) & 0xFFFC;
931 
932 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
933 		ch_regs->wcount = len_field;
934 	else
935 		ch_regs->csr |= len_field;
936 }
937 
938 static struct dma_async_tx_descriptor *tegra_dma_prep_slave_sg(
939 	struct dma_chan *dc, struct scatterlist *sgl, unsigned int sg_len,
940 	enum dma_transfer_direction direction, unsigned long flags,
941 	void *context)
942 {
943 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
944 	struct tegra_dma_desc *dma_desc;
945 	unsigned int i;
946 	struct scatterlist *sg;
947 	unsigned long csr, ahb_seq, apb_ptr, apb_seq;
948 	struct list_head req_list;
949 	struct tegra_dma_sg_req  *sg_req = NULL;
950 	u32 burst_size;
951 	enum dma_slave_buswidth slave_bw;
952 
953 	if (!tdc->config_init) {
954 		dev_err(tdc2dev(tdc), "dma channel is not configured\n");
955 		return NULL;
956 	}
957 	if (sg_len < 1) {
958 		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
959 		return NULL;
960 	}
961 
962 	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
963 				&burst_size, &slave_bw) < 0)
964 		return NULL;
965 
966 	INIT_LIST_HEAD(&req_list);
967 
968 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
969 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
970 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
971 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
972 
973 	csr |= TEGRA_APBDMA_CSR_ONCE | TEGRA_APBDMA_CSR_FLOW;
974 	csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
975 	if (flags & DMA_PREP_INTERRUPT)
976 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
977 
978 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
979 
980 	dma_desc = tegra_dma_desc_get(tdc);
981 	if (!dma_desc) {
982 		dev_err(tdc2dev(tdc), "Dma descriptors not available\n");
983 		return NULL;
984 	}
985 	INIT_LIST_HEAD(&dma_desc->tx_list);
986 	INIT_LIST_HEAD(&dma_desc->cb_node);
987 	dma_desc->cb_count = 0;
988 	dma_desc->bytes_requested = 0;
989 	dma_desc->bytes_transferred = 0;
990 	dma_desc->dma_status = DMA_IN_PROGRESS;
991 
992 	/* Make transfer requests */
993 	for_each_sg(sgl, sg, sg_len, i) {
994 		u32 len, mem;
995 
996 		mem = sg_dma_address(sg);
997 		len = sg_dma_len(sg);
998 
999 		if ((len & 3) || (mem & 3) ||
1000 				(len > tdc->tdma->chip_data->max_dma_count)) {
1001 			dev_err(tdc2dev(tdc),
1002 				"Dma length/memory address is not supported\n");
1003 			tegra_dma_desc_put(tdc, dma_desc);
1004 			return NULL;
1005 		}
1006 
1007 		sg_req = tegra_dma_sg_req_get(tdc);
1008 		if (!sg_req) {
1009 			dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
1010 			tegra_dma_desc_put(tdc, dma_desc);
1011 			return NULL;
1012 		}
1013 
1014 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1015 		dma_desc->bytes_requested += len;
1016 
1017 		sg_req->ch_regs.apb_ptr = apb_ptr;
1018 		sg_req->ch_regs.ahb_ptr = mem;
1019 		sg_req->ch_regs.csr = csr;
1020 		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1021 		sg_req->ch_regs.apb_seq = apb_seq;
1022 		sg_req->ch_regs.ahb_seq = ahb_seq;
1023 		sg_req->configured = false;
1024 		sg_req->last_sg = false;
1025 		sg_req->dma_desc = dma_desc;
1026 		sg_req->req_len = len;
1027 
1028 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1029 	}
1030 	sg_req->last_sg = true;
1031 	if (flags & DMA_CTRL_ACK)
1032 		dma_desc->txd.flags = DMA_CTRL_ACK;
1033 
1034 	/*
1035 	 * Make sure that mode should not be conflicting with currently
1036 	 * configured mode.
1037 	 */
1038 	if (!tdc->isr_handler) {
1039 		tdc->isr_handler = handle_once_dma_done;
1040 		tdc->cyclic = false;
1041 	} else {
1042 		if (tdc->cyclic) {
1043 			dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1044 			tegra_dma_desc_put(tdc, dma_desc);
1045 			return NULL;
1046 		}
1047 	}
1048 
1049 	return &dma_desc->txd;
1050 }
1051 
1052 static struct dma_async_tx_descriptor *tegra_dma_prep_dma_cyclic(
1053 	struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
1054 	size_t period_len, enum dma_transfer_direction direction,
1055 	unsigned long flags)
1056 {
1057 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1058 	struct tegra_dma_desc *dma_desc = NULL;
1059 	struct tegra_dma_sg_req *sg_req = NULL;
1060 	unsigned long csr, ahb_seq, apb_ptr, apb_seq;
1061 	int len;
1062 	size_t remain_len;
1063 	dma_addr_t mem = buf_addr;
1064 	u32 burst_size;
1065 	enum dma_slave_buswidth slave_bw;
1066 
1067 	if (!buf_len || !period_len) {
1068 		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1069 		return NULL;
1070 	}
1071 
1072 	if (!tdc->config_init) {
1073 		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1074 		return NULL;
1075 	}
1076 
1077 	/*
1078 	 * We allow to take more number of requests till DMA is
1079 	 * not started. The driver will loop over all requests.
1080 	 * Once DMA is started then new requests can be queued only after
1081 	 * terminating the DMA.
1082 	 */
1083 	if (tdc->busy) {
1084 		dev_err(tdc2dev(tdc), "Request not allowed when dma running\n");
1085 		return NULL;
1086 	}
1087 
1088 	/*
1089 	 * We only support cycle transfer when buf_len is multiple of
1090 	 * period_len.
1091 	 */
1092 	if (buf_len % period_len) {
1093 		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1094 		return NULL;
1095 	}
1096 
1097 	len = period_len;
1098 	if ((len & 3) || (buf_addr & 3) ||
1099 			(len > tdc->tdma->chip_data->max_dma_count)) {
1100 		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1101 		return NULL;
1102 	}
1103 
1104 	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1105 				&burst_size, &slave_bw) < 0)
1106 		return NULL;
1107 
1108 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1109 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1110 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1111 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1112 
1113 	csr |= TEGRA_APBDMA_CSR_FLOW;
1114 	if (flags & DMA_PREP_INTERRUPT)
1115 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1116 	csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1117 
1118 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1119 
1120 	dma_desc = tegra_dma_desc_get(tdc);
1121 	if (!dma_desc) {
1122 		dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1123 		return NULL;
1124 	}
1125 
1126 	INIT_LIST_HEAD(&dma_desc->tx_list);
1127 	INIT_LIST_HEAD(&dma_desc->cb_node);
1128 	dma_desc->cb_count = 0;
1129 
1130 	dma_desc->bytes_transferred = 0;
1131 	dma_desc->bytes_requested = buf_len;
1132 	remain_len = buf_len;
1133 
1134 	/* Split transfer equal to period size */
1135 	while (remain_len) {
1136 		sg_req = tegra_dma_sg_req_get(tdc);
1137 		if (!sg_req) {
1138 			dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
1139 			tegra_dma_desc_put(tdc, dma_desc);
1140 			return NULL;
1141 		}
1142 
1143 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1144 		sg_req->ch_regs.apb_ptr = apb_ptr;
1145 		sg_req->ch_regs.ahb_ptr = mem;
1146 		sg_req->ch_regs.csr = csr;
1147 		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1148 		sg_req->ch_regs.apb_seq = apb_seq;
1149 		sg_req->ch_regs.ahb_seq = ahb_seq;
1150 		sg_req->configured = false;
1151 		sg_req->last_sg = false;
1152 		sg_req->dma_desc = dma_desc;
1153 		sg_req->req_len = len;
1154 
1155 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1156 		remain_len -= len;
1157 		mem += len;
1158 	}
1159 	sg_req->last_sg = true;
1160 	if (flags & DMA_CTRL_ACK)
1161 		dma_desc->txd.flags = DMA_CTRL_ACK;
1162 
1163 	/*
1164 	 * Make sure that mode should not be conflicting with currently
1165 	 * configured mode.
1166 	 */
1167 	if (!tdc->isr_handler) {
1168 		tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1169 		tdc->cyclic = true;
1170 	} else {
1171 		if (!tdc->cyclic) {
1172 			dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1173 			tegra_dma_desc_put(tdc, dma_desc);
1174 			return NULL;
1175 		}
1176 	}
1177 
1178 	return &dma_desc->txd;
1179 }
1180 
1181 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1182 {
1183 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1184 	struct tegra_dma *tdma = tdc->tdma;
1185 	int ret;
1186 
1187 	dma_cookie_init(&tdc->dma_chan);
1188 	tdc->config_init = false;
1189 
1190 	ret = pm_runtime_get_sync(tdma->dev);
1191 	if (ret < 0)
1192 		return ret;
1193 
1194 	return 0;
1195 }
1196 
1197 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1198 {
1199 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1200 	struct tegra_dma *tdma = tdc->tdma;
1201 	struct tegra_dma_desc *dma_desc;
1202 	struct tegra_dma_sg_req *sg_req;
1203 	struct list_head dma_desc_list;
1204 	struct list_head sg_req_list;
1205 	unsigned long flags;
1206 
1207 	INIT_LIST_HEAD(&dma_desc_list);
1208 	INIT_LIST_HEAD(&sg_req_list);
1209 
1210 	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1211 
1212 	if (tdc->busy)
1213 		tegra_dma_terminate_all(dc);
1214 
1215 	spin_lock_irqsave(&tdc->lock, flags);
1216 	list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1217 	list_splice_init(&tdc->free_sg_req, &sg_req_list);
1218 	list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1219 	INIT_LIST_HEAD(&tdc->cb_desc);
1220 	tdc->config_init = false;
1221 	tdc->isr_handler = NULL;
1222 	spin_unlock_irqrestore(&tdc->lock, flags);
1223 
1224 	while (!list_empty(&dma_desc_list)) {
1225 		dma_desc = list_first_entry(&dma_desc_list,
1226 					typeof(*dma_desc), node);
1227 		list_del(&dma_desc->node);
1228 		kfree(dma_desc);
1229 	}
1230 
1231 	while (!list_empty(&sg_req_list)) {
1232 		sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1233 		list_del(&sg_req->node);
1234 		kfree(sg_req);
1235 	}
1236 	pm_runtime_put(tdma->dev);
1237 
1238 	tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1239 }
1240 
1241 static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1242 					   struct of_dma *ofdma)
1243 {
1244 	struct tegra_dma *tdma = ofdma->of_dma_data;
1245 	struct dma_chan *chan;
1246 	struct tegra_dma_channel *tdc;
1247 
1248 	if (dma_spec->args[0] > TEGRA_APBDMA_CSR_REQ_SEL_MASK) {
1249 		dev_err(tdma->dev, "Invalid slave id: %d\n", dma_spec->args[0]);
1250 		return NULL;
1251 	}
1252 
1253 	chan = dma_get_any_slave_channel(&tdma->dma_dev);
1254 	if (!chan)
1255 		return NULL;
1256 
1257 	tdc = to_tegra_dma_chan(chan);
1258 	tdc->slave_id = dma_spec->args[0];
1259 
1260 	return chan;
1261 }
1262 
1263 /* Tegra20 specific DMA controller information */
1264 static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1265 	.nr_channels		= 16,
1266 	.channel_reg_size	= 0x20,
1267 	.max_dma_count		= 1024UL * 64,
1268 	.support_channel_pause	= false,
1269 	.support_separate_wcount_reg = false,
1270 };
1271 
1272 /* Tegra30 specific DMA controller information */
1273 static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1274 	.nr_channels		= 32,
1275 	.channel_reg_size	= 0x20,
1276 	.max_dma_count		= 1024UL * 64,
1277 	.support_channel_pause	= false,
1278 	.support_separate_wcount_reg = false,
1279 };
1280 
1281 /* Tegra114 specific DMA controller information */
1282 static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1283 	.nr_channels		= 32,
1284 	.channel_reg_size	= 0x20,
1285 	.max_dma_count		= 1024UL * 64,
1286 	.support_channel_pause	= true,
1287 	.support_separate_wcount_reg = false,
1288 };
1289 
1290 /* Tegra148 specific DMA controller information */
1291 static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1292 	.nr_channels		= 32,
1293 	.channel_reg_size	= 0x40,
1294 	.max_dma_count		= 1024UL * 64,
1295 	.support_channel_pause	= true,
1296 	.support_separate_wcount_reg = true,
1297 };
1298 
1299 static int tegra_dma_probe(struct platform_device *pdev)
1300 {
1301 	struct resource *res;
1302 	struct tegra_dma *tdma;
1303 	int ret;
1304 	int i;
1305 	const struct tegra_dma_chip_data *cdata;
1306 
1307 	cdata = of_device_get_match_data(&pdev->dev);
1308 	if (!cdata) {
1309 		dev_err(&pdev->dev, "Error: No device match data found\n");
1310 		return -ENODEV;
1311 	}
1312 
1313 	tdma = devm_kzalloc(&pdev->dev, sizeof(*tdma) + cdata->nr_channels *
1314 			sizeof(struct tegra_dma_channel), GFP_KERNEL);
1315 	if (!tdma)
1316 		return -ENOMEM;
1317 
1318 	tdma->dev = &pdev->dev;
1319 	tdma->chip_data = cdata;
1320 	platform_set_drvdata(pdev, tdma);
1321 
1322 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1323 	tdma->base_addr = devm_ioremap_resource(&pdev->dev, res);
1324 	if (IS_ERR(tdma->base_addr))
1325 		return PTR_ERR(tdma->base_addr);
1326 
1327 	tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1328 	if (IS_ERR(tdma->dma_clk)) {
1329 		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1330 		return PTR_ERR(tdma->dma_clk);
1331 	}
1332 
1333 	tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1334 	if (IS_ERR(tdma->rst)) {
1335 		dev_err(&pdev->dev, "Error: Missing reset\n");
1336 		return PTR_ERR(tdma->rst);
1337 	}
1338 
1339 	spin_lock_init(&tdma->global_lock);
1340 
1341 	pm_runtime_enable(&pdev->dev);
1342 	if (!pm_runtime_enabled(&pdev->dev))
1343 		ret = tegra_dma_runtime_resume(&pdev->dev);
1344 	else
1345 		ret = pm_runtime_get_sync(&pdev->dev);
1346 
1347 	if (ret < 0) {
1348 		pm_runtime_disable(&pdev->dev);
1349 		return ret;
1350 	}
1351 
1352 	/* Reset DMA controller */
1353 	reset_control_assert(tdma->rst);
1354 	udelay(2);
1355 	reset_control_deassert(tdma->rst);
1356 
1357 	/* Enable global DMA registers */
1358 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1359 	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1360 	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1361 
1362 	pm_runtime_put(&pdev->dev);
1363 
1364 	INIT_LIST_HEAD(&tdma->dma_dev.channels);
1365 	for (i = 0; i < cdata->nr_channels; i++) {
1366 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1367 
1368 		tdc->chan_addr = tdma->base_addr +
1369 				 TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1370 				 (i * cdata->channel_reg_size);
1371 
1372 		res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1373 		if (!res) {
1374 			ret = -EINVAL;
1375 			dev_err(&pdev->dev, "No irq resource for chan %d\n", i);
1376 			goto err_irq;
1377 		}
1378 		tdc->irq = res->start;
1379 		snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1380 		ret = request_irq(tdc->irq, tegra_dma_isr, 0, tdc->name, tdc);
1381 		if (ret) {
1382 			dev_err(&pdev->dev,
1383 				"request_irq failed with err %d channel %d\n",
1384 				ret, i);
1385 			goto err_irq;
1386 		}
1387 
1388 		tdc->dma_chan.device = &tdma->dma_dev;
1389 		dma_cookie_init(&tdc->dma_chan);
1390 		list_add_tail(&tdc->dma_chan.device_node,
1391 				&tdma->dma_dev.channels);
1392 		tdc->tdma = tdma;
1393 		tdc->id = i;
1394 		tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1395 
1396 		tasklet_init(&tdc->tasklet, tegra_dma_tasklet,
1397 				(unsigned long)tdc);
1398 		spin_lock_init(&tdc->lock);
1399 
1400 		INIT_LIST_HEAD(&tdc->pending_sg_req);
1401 		INIT_LIST_HEAD(&tdc->free_sg_req);
1402 		INIT_LIST_HEAD(&tdc->free_dma_desc);
1403 		INIT_LIST_HEAD(&tdc->cb_desc);
1404 	}
1405 
1406 	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1407 	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1408 	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1409 
1410 	tdma->global_pause_count = 0;
1411 	tdma->dma_dev.dev = &pdev->dev;
1412 	tdma->dma_dev.device_alloc_chan_resources =
1413 					tegra_dma_alloc_chan_resources;
1414 	tdma->dma_dev.device_free_chan_resources =
1415 					tegra_dma_free_chan_resources;
1416 	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1417 	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1418 	tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1419 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1420 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1421 		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1422 	tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1423 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1424 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1425 		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1426 	tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1427 	/*
1428 	 * XXX The hardware appears to support
1429 	 * DMA_RESIDUE_GRANULARITY_BURST-level reporting, but it's
1430 	 * only used by this driver during tegra_dma_terminate_all()
1431 	 */
1432 	tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1433 	tdma->dma_dev.device_config = tegra_dma_slave_config;
1434 	tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1435 	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1436 	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1437 
1438 	ret = dma_async_device_register(&tdma->dma_dev);
1439 	if (ret < 0) {
1440 		dev_err(&pdev->dev,
1441 			"Tegra20 APB DMA driver registration failed %d\n", ret);
1442 		goto err_irq;
1443 	}
1444 
1445 	ret = of_dma_controller_register(pdev->dev.of_node,
1446 					 tegra_dma_of_xlate, tdma);
1447 	if (ret < 0) {
1448 		dev_err(&pdev->dev,
1449 			"Tegra20 APB DMA OF registration failed %d\n", ret);
1450 		goto err_unregister_dma_dev;
1451 	}
1452 
1453 	dev_info(&pdev->dev, "Tegra20 APB DMA driver register %d channels\n",
1454 			cdata->nr_channels);
1455 	return 0;
1456 
1457 err_unregister_dma_dev:
1458 	dma_async_device_unregister(&tdma->dma_dev);
1459 err_irq:
1460 	while (--i >= 0) {
1461 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1462 
1463 		free_irq(tdc->irq, tdc);
1464 		tasklet_kill(&tdc->tasklet);
1465 	}
1466 
1467 	pm_runtime_disable(&pdev->dev);
1468 	if (!pm_runtime_status_suspended(&pdev->dev))
1469 		tegra_dma_runtime_suspend(&pdev->dev);
1470 	return ret;
1471 }
1472 
1473 static int tegra_dma_remove(struct platform_device *pdev)
1474 {
1475 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1476 	int i;
1477 	struct tegra_dma_channel *tdc;
1478 
1479 	dma_async_device_unregister(&tdma->dma_dev);
1480 
1481 	for (i = 0; i < tdma->chip_data->nr_channels; ++i) {
1482 		tdc = &tdma->channels[i];
1483 		free_irq(tdc->irq, tdc);
1484 		tasklet_kill(&tdc->tasklet);
1485 	}
1486 
1487 	pm_runtime_disable(&pdev->dev);
1488 	if (!pm_runtime_status_suspended(&pdev->dev))
1489 		tegra_dma_runtime_suspend(&pdev->dev);
1490 
1491 	return 0;
1492 }
1493 
1494 static int tegra_dma_runtime_suspend(struct device *dev)
1495 {
1496 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1497 
1498 	clk_disable_unprepare(tdma->dma_clk);
1499 	return 0;
1500 }
1501 
1502 static int tegra_dma_runtime_resume(struct device *dev)
1503 {
1504 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1505 	int ret;
1506 
1507 	ret = clk_prepare_enable(tdma->dma_clk);
1508 	if (ret < 0) {
1509 		dev_err(dev, "clk_enable failed: %d\n", ret);
1510 		return ret;
1511 	}
1512 	return 0;
1513 }
1514 
1515 #ifdef CONFIG_PM_SLEEP
1516 static int tegra_dma_pm_suspend(struct device *dev)
1517 {
1518 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1519 	int i;
1520 	int ret;
1521 
1522 	/* Enable clock before accessing register */
1523 	ret = pm_runtime_get_sync(dev);
1524 	if (ret < 0)
1525 		return ret;
1526 
1527 	tdma->reg_gen = tdma_read(tdma, TEGRA_APBDMA_GENERAL);
1528 	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1529 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1530 		struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1531 
1532 		/* Only save the state of DMA channels that are in use */
1533 		if (!tdc->config_init)
1534 			continue;
1535 
1536 		ch_reg->csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
1537 		ch_reg->ahb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBPTR);
1538 		ch_reg->apb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBPTR);
1539 		ch_reg->ahb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBSEQ);
1540 		ch_reg->apb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBSEQ);
1541 		if (tdma->chip_data->support_separate_wcount_reg)
1542 			ch_reg->wcount = tdc_read(tdc,
1543 						  TEGRA_APBDMA_CHAN_WCOUNT);
1544 	}
1545 
1546 	/* Disable clock */
1547 	pm_runtime_put(dev);
1548 	return 0;
1549 }
1550 
1551 static int tegra_dma_pm_resume(struct device *dev)
1552 {
1553 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1554 	int i;
1555 	int ret;
1556 
1557 	/* Enable clock before accessing register */
1558 	ret = pm_runtime_get_sync(dev);
1559 	if (ret < 0)
1560 		return ret;
1561 
1562 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, tdma->reg_gen);
1563 	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1564 	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1565 
1566 	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1567 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1568 		struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1569 
1570 		/* Only restore the state of DMA channels that are in use */
1571 		if (!tdc->config_init)
1572 			continue;
1573 
1574 		if (tdma->chip_data->support_separate_wcount_reg)
1575 			tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
1576 				  ch_reg->wcount);
1577 		tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_reg->apb_seq);
1578 		tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_reg->apb_ptr);
1579 		tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_reg->ahb_seq);
1580 		tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_reg->ahb_ptr);
1581 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
1582 			(ch_reg->csr & ~TEGRA_APBDMA_CSR_ENB));
1583 	}
1584 
1585 	/* Disable clock */
1586 	pm_runtime_put(dev);
1587 	return 0;
1588 }
1589 #endif
1590 
1591 static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1592 	SET_RUNTIME_PM_OPS(tegra_dma_runtime_suspend, tegra_dma_runtime_resume,
1593 			   NULL)
1594 	SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_pm_suspend, tegra_dma_pm_resume)
1595 };
1596 
1597 static const struct of_device_id tegra_dma_of_match[] = {
1598 	{
1599 		.compatible = "nvidia,tegra148-apbdma",
1600 		.data = &tegra148_dma_chip_data,
1601 	}, {
1602 		.compatible = "nvidia,tegra114-apbdma",
1603 		.data = &tegra114_dma_chip_data,
1604 	}, {
1605 		.compatible = "nvidia,tegra30-apbdma",
1606 		.data = &tegra30_dma_chip_data,
1607 	}, {
1608 		.compatible = "nvidia,tegra20-apbdma",
1609 		.data = &tegra20_dma_chip_data,
1610 	}, {
1611 	},
1612 };
1613 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1614 
1615 static struct platform_driver tegra_dmac_driver = {
1616 	.driver = {
1617 		.name	= "tegra-apbdma",
1618 		.pm	= &tegra_dma_dev_pm_ops,
1619 		.of_match_table = tegra_dma_of_match,
1620 	},
1621 	.probe		= tegra_dma_probe,
1622 	.remove		= tegra_dma_remove,
1623 };
1624 
1625 module_platform_driver(tegra_dmac_driver);
1626 
1627 MODULE_ALIAS("platform:tegra20-apbdma");
1628 MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1629 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1630 MODULE_LICENSE("GPL v2");
1631