xref: /openbmc/linux/drivers/dma/tegra20-apb-dma.c (revision efdbd7345f8836f7495f3ac6ee237d86cb3bb6b0)
1 /*
2  * DMA driver for Nvidia's Tegra20 APB DMA controller.
3  *
4  * Copyright (c) 2012-2013, NVIDIA CORPORATION.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include <linux/bitops.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/err.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/of_dma.h>
33 #include <linux/platform_device.h>
34 #include <linux/pm.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/reset.h>
37 #include <linux/slab.h>
38 
39 #include "dmaengine.h"
40 
41 #define TEGRA_APBDMA_GENERAL			0x0
42 #define TEGRA_APBDMA_GENERAL_ENABLE		BIT(31)
43 
44 #define TEGRA_APBDMA_CONTROL			0x010
45 #define TEGRA_APBDMA_IRQ_MASK			0x01c
46 #define TEGRA_APBDMA_IRQ_MASK_SET		0x020
47 
48 /* CSR register */
49 #define TEGRA_APBDMA_CHAN_CSR			0x00
50 #define TEGRA_APBDMA_CSR_ENB			BIT(31)
51 #define TEGRA_APBDMA_CSR_IE_EOC			BIT(30)
52 #define TEGRA_APBDMA_CSR_HOLD			BIT(29)
53 #define TEGRA_APBDMA_CSR_DIR			BIT(28)
54 #define TEGRA_APBDMA_CSR_ONCE			BIT(27)
55 #define TEGRA_APBDMA_CSR_FLOW			BIT(21)
56 #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT		16
57 #define TEGRA_APBDMA_CSR_WCOUNT_MASK		0xFFFC
58 
59 /* STATUS register */
60 #define TEGRA_APBDMA_CHAN_STATUS		0x004
61 #define TEGRA_APBDMA_STATUS_BUSY		BIT(31)
62 #define TEGRA_APBDMA_STATUS_ISE_EOC		BIT(30)
63 #define TEGRA_APBDMA_STATUS_HALT		BIT(29)
64 #define TEGRA_APBDMA_STATUS_PING_PONG		BIT(28)
65 #define TEGRA_APBDMA_STATUS_COUNT_SHIFT		2
66 #define TEGRA_APBDMA_STATUS_COUNT_MASK		0xFFFC
67 
68 #define TEGRA_APBDMA_CHAN_CSRE			0x00C
69 #define TEGRA_APBDMA_CHAN_CSRE_PAUSE		(1 << 31)
70 
71 /* AHB memory address */
72 #define TEGRA_APBDMA_CHAN_AHBPTR		0x010
73 
74 /* AHB sequence register */
75 #define TEGRA_APBDMA_CHAN_AHBSEQ		0x14
76 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB		BIT(31)
77 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8		(0 << 28)
78 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16	(1 << 28)
79 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32	(2 << 28)
80 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64	(3 << 28)
81 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128	(4 << 28)
82 #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP		BIT(27)
83 #define TEGRA_APBDMA_AHBSEQ_BURST_1		(4 << 24)
84 #define TEGRA_APBDMA_AHBSEQ_BURST_4		(5 << 24)
85 #define TEGRA_APBDMA_AHBSEQ_BURST_8		(6 << 24)
86 #define TEGRA_APBDMA_AHBSEQ_DBL_BUF		BIT(19)
87 #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT		16
88 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE		0
89 
90 /* APB address */
91 #define TEGRA_APBDMA_CHAN_APBPTR		0x018
92 
93 /* APB sequence register */
94 #define TEGRA_APBDMA_CHAN_APBSEQ		0x01c
95 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8		(0 << 28)
96 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16	(1 << 28)
97 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32	(2 << 28)
98 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64	(3 << 28)
99 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128	(4 << 28)
100 #define TEGRA_APBDMA_APBSEQ_DATA_SWAP		BIT(27)
101 #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1		(1 << 16)
102 
103 /* Tegra148 specific registers */
104 #define TEGRA_APBDMA_CHAN_WCOUNT		0x20
105 
106 #define TEGRA_APBDMA_CHAN_WORD_TRANSFER		0x24
107 
108 /*
109  * If any burst is in flight and DMA paused then this is the time to complete
110  * on-flight burst and update DMA status register.
111  */
112 #define TEGRA_APBDMA_BURST_COMPLETE_TIME	20
113 
114 /* Channel base address offset from APBDMA base address */
115 #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET	0x1000
116 
117 struct tegra_dma;
118 
119 /*
120  * tegra_dma_chip_data Tegra chip specific DMA data
121  * @nr_channels: Number of channels available in the controller.
122  * @channel_reg_size: Channel register size/stride.
123  * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
124  * @support_channel_pause: Support channel wise pause of dma.
125  * @support_separate_wcount_reg: Support separate word count register.
126  */
127 struct tegra_dma_chip_data {
128 	int nr_channels;
129 	int channel_reg_size;
130 	int max_dma_count;
131 	bool support_channel_pause;
132 	bool support_separate_wcount_reg;
133 };
134 
135 /* DMA channel registers */
136 struct tegra_dma_channel_regs {
137 	unsigned long	csr;
138 	unsigned long	ahb_ptr;
139 	unsigned long	apb_ptr;
140 	unsigned long	ahb_seq;
141 	unsigned long	apb_seq;
142 	unsigned long	wcount;
143 };
144 
145 /*
146  * tegra_dma_sg_req: Dma request details to configure hardware. This
147  * contains the details for one transfer to configure DMA hw.
148  * The client's request for data transfer can be broken into multiple
149  * sub-transfer as per requester details and hw support.
150  * This sub transfer get added in the list of transfer and point to Tegra
151  * DMA descriptor which manages the transfer details.
152  */
153 struct tegra_dma_sg_req {
154 	struct tegra_dma_channel_regs	ch_regs;
155 	int				req_len;
156 	bool				configured;
157 	bool				last_sg;
158 	struct list_head		node;
159 	struct tegra_dma_desc		*dma_desc;
160 };
161 
162 /*
163  * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
164  * This descriptor keep track of transfer status, callbacks and request
165  * counts etc.
166  */
167 struct tegra_dma_desc {
168 	struct dma_async_tx_descriptor	txd;
169 	int				bytes_requested;
170 	int				bytes_transferred;
171 	enum dma_status			dma_status;
172 	struct list_head		node;
173 	struct list_head		tx_list;
174 	struct list_head		cb_node;
175 	int				cb_count;
176 };
177 
178 struct tegra_dma_channel;
179 
180 typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
181 				bool to_terminate);
182 
183 /* tegra_dma_channel: Channel specific information */
184 struct tegra_dma_channel {
185 	struct dma_chan		dma_chan;
186 	char			name[30];
187 	bool			config_init;
188 	int			id;
189 	int			irq;
190 	void __iomem		*chan_addr;
191 	spinlock_t		lock;
192 	bool			busy;
193 	struct tegra_dma	*tdma;
194 	bool			cyclic;
195 
196 	/* Different lists for managing the requests */
197 	struct list_head	free_sg_req;
198 	struct list_head	pending_sg_req;
199 	struct list_head	free_dma_desc;
200 	struct list_head	cb_desc;
201 
202 	/* ISR handler and tasklet for bottom half of isr handling */
203 	dma_isr_handler		isr_handler;
204 	struct tasklet_struct	tasklet;
205 
206 	/* Channel-slave specific configuration */
207 	unsigned int slave_id;
208 	struct dma_slave_config dma_sconfig;
209 	struct tegra_dma_channel_regs	channel_reg;
210 };
211 
212 /* tegra_dma: Tegra DMA specific information */
213 struct tegra_dma {
214 	struct dma_device		dma_dev;
215 	struct device			*dev;
216 	struct clk			*dma_clk;
217 	struct reset_control		*rst;
218 	spinlock_t			global_lock;
219 	void __iomem			*base_addr;
220 	const struct tegra_dma_chip_data *chip_data;
221 
222 	/*
223 	 * Counter for managing global pausing of the DMA controller.
224 	 * Only applicable for devices that don't support individual
225 	 * channel pausing.
226 	 */
227 	u32				global_pause_count;
228 
229 	/* Some register need to be cache before suspend */
230 	u32				reg_gen;
231 
232 	/* Last member of the structure */
233 	struct tegra_dma_channel channels[0];
234 };
235 
236 static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
237 {
238 	writel(val, tdma->base_addr + reg);
239 }
240 
241 static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
242 {
243 	return readl(tdma->base_addr + reg);
244 }
245 
246 static inline void tdc_write(struct tegra_dma_channel *tdc,
247 		u32 reg, u32 val)
248 {
249 	writel(val, tdc->chan_addr + reg);
250 }
251 
252 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
253 {
254 	return readl(tdc->chan_addr + reg);
255 }
256 
257 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
258 {
259 	return container_of(dc, struct tegra_dma_channel, dma_chan);
260 }
261 
262 static inline struct tegra_dma_desc *txd_to_tegra_dma_desc(
263 		struct dma_async_tx_descriptor *td)
264 {
265 	return container_of(td, struct tegra_dma_desc, txd);
266 }
267 
268 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
269 {
270 	return &tdc->dma_chan.dev->device;
271 }
272 
273 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
274 static int tegra_dma_runtime_suspend(struct device *dev);
275 static int tegra_dma_runtime_resume(struct device *dev);
276 
277 /* Get DMA desc from free list, if not there then allocate it.  */
278 static struct tegra_dma_desc *tegra_dma_desc_get(
279 		struct tegra_dma_channel *tdc)
280 {
281 	struct tegra_dma_desc *dma_desc;
282 	unsigned long flags;
283 
284 	spin_lock_irqsave(&tdc->lock, flags);
285 
286 	/* Do not allocate if desc are waiting for ack */
287 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
288 		if (async_tx_test_ack(&dma_desc->txd)) {
289 			list_del(&dma_desc->node);
290 			spin_unlock_irqrestore(&tdc->lock, flags);
291 			dma_desc->txd.flags = 0;
292 			return dma_desc;
293 		}
294 	}
295 
296 	spin_unlock_irqrestore(&tdc->lock, flags);
297 
298 	/* Allocate DMA desc */
299 	dma_desc = kzalloc(sizeof(*dma_desc), GFP_ATOMIC);
300 	if (!dma_desc) {
301 		dev_err(tdc2dev(tdc), "dma_desc alloc failed\n");
302 		return NULL;
303 	}
304 
305 	dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
306 	dma_desc->txd.tx_submit = tegra_dma_tx_submit;
307 	dma_desc->txd.flags = 0;
308 	return dma_desc;
309 }
310 
311 static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
312 		struct tegra_dma_desc *dma_desc)
313 {
314 	unsigned long flags;
315 
316 	spin_lock_irqsave(&tdc->lock, flags);
317 	if (!list_empty(&dma_desc->tx_list))
318 		list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
319 	list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
320 	spin_unlock_irqrestore(&tdc->lock, flags);
321 }
322 
323 static struct tegra_dma_sg_req *tegra_dma_sg_req_get(
324 		struct tegra_dma_channel *tdc)
325 {
326 	struct tegra_dma_sg_req *sg_req = NULL;
327 	unsigned long flags;
328 
329 	spin_lock_irqsave(&tdc->lock, flags);
330 	if (!list_empty(&tdc->free_sg_req)) {
331 		sg_req = list_first_entry(&tdc->free_sg_req,
332 					typeof(*sg_req), node);
333 		list_del(&sg_req->node);
334 		spin_unlock_irqrestore(&tdc->lock, flags);
335 		return sg_req;
336 	}
337 	spin_unlock_irqrestore(&tdc->lock, flags);
338 
339 	sg_req = kzalloc(sizeof(struct tegra_dma_sg_req), GFP_ATOMIC);
340 	if (!sg_req)
341 		dev_err(tdc2dev(tdc), "sg_req alloc failed\n");
342 	return sg_req;
343 }
344 
345 static int tegra_dma_slave_config(struct dma_chan *dc,
346 		struct dma_slave_config *sconfig)
347 {
348 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
349 
350 	if (!list_empty(&tdc->pending_sg_req)) {
351 		dev_err(tdc2dev(tdc), "Configuration not allowed\n");
352 		return -EBUSY;
353 	}
354 
355 	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
356 	if (!tdc->slave_id)
357 		tdc->slave_id = sconfig->slave_id;
358 	tdc->config_init = true;
359 	return 0;
360 }
361 
362 static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
363 	bool wait_for_burst_complete)
364 {
365 	struct tegra_dma *tdma = tdc->tdma;
366 
367 	spin_lock(&tdma->global_lock);
368 
369 	if (tdc->tdma->global_pause_count == 0) {
370 		tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
371 		if (wait_for_burst_complete)
372 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
373 	}
374 
375 	tdc->tdma->global_pause_count++;
376 
377 	spin_unlock(&tdma->global_lock);
378 }
379 
380 static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
381 {
382 	struct tegra_dma *tdma = tdc->tdma;
383 
384 	spin_lock(&tdma->global_lock);
385 
386 	if (WARN_ON(tdc->tdma->global_pause_count == 0))
387 		goto out;
388 
389 	if (--tdc->tdma->global_pause_count == 0)
390 		tdma_write(tdma, TEGRA_APBDMA_GENERAL,
391 			   TEGRA_APBDMA_GENERAL_ENABLE);
392 
393 out:
394 	spin_unlock(&tdma->global_lock);
395 }
396 
397 static void tegra_dma_pause(struct tegra_dma_channel *tdc,
398 	bool wait_for_burst_complete)
399 {
400 	struct tegra_dma *tdma = tdc->tdma;
401 
402 	if (tdma->chip_data->support_channel_pause) {
403 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
404 				TEGRA_APBDMA_CHAN_CSRE_PAUSE);
405 		if (wait_for_burst_complete)
406 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
407 	} else {
408 		tegra_dma_global_pause(tdc, wait_for_burst_complete);
409 	}
410 }
411 
412 static void tegra_dma_resume(struct tegra_dma_channel *tdc)
413 {
414 	struct tegra_dma *tdma = tdc->tdma;
415 
416 	if (tdma->chip_data->support_channel_pause) {
417 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
418 	} else {
419 		tegra_dma_global_resume(tdc);
420 	}
421 }
422 
423 static void tegra_dma_stop(struct tegra_dma_channel *tdc)
424 {
425 	u32 csr;
426 	u32 status;
427 
428 	/* Disable interrupts */
429 	csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
430 	csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
431 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
432 
433 	/* Disable DMA */
434 	csr &= ~TEGRA_APBDMA_CSR_ENB;
435 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
436 
437 	/* Clear interrupt status if it is there */
438 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
439 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
440 		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
441 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
442 	}
443 	tdc->busy = false;
444 }
445 
446 static void tegra_dma_start(struct tegra_dma_channel *tdc,
447 		struct tegra_dma_sg_req *sg_req)
448 {
449 	struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
450 
451 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
452 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
453 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
454 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
455 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
456 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
457 		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
458 
459 	/* Start DMA */
460 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
461 				ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
462 }
463 
464 static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
465 		struct tegra_dma_sg_req *nsg_req)
466 {
467 	unsigned long status;
468 
469 	/*
470 	 * The DMA controller reloads the new configuration for next transfer
471 	 * after last burst of current transfer completes.
472 	 * If there is no IEC status then this makes sure that last burst
473 	 * has not be completed. There may be case that last burst is on
474 	 * flight and so it can complete but because DMA is paused, it
475 	 * will not generates interrupt as well as not reload the new
476 	 * configuration.
477 	 * If there is already IEC status then interrupt handler need to
478 	 * load new configuration.
479 	 */
480 	tegra_dma_pause(tdc, false);
481 	status  = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
482 
483 	/*
484 	 * If interrupt is pending then do nothing as the ISR will handle
485 	 * the programing for new request.
486 	 */
487 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
488 		dev_err(tdc2dev(tdc),
489 			"Skipping new configuration as interrupt is pending\n");
490 		tegra_dma_resume(tdc);
491 		return;
492 	}
493 
494 	/* Safe to program new configuration */
495 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
496 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
497 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
498 		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
499 						nsg_req->ch_regs.wcount);
500 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
501 				nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
502 	nsg_req->configured = true;
503 
504 	tegra_dma_resume(tdc);
505 }
506 
507 static void tdc_start_head_req(struct tegra_dma_channel *tdc)
508 {
509 	struct tegra_dma_sg_req *sg_req;
510 
511 	if (list_empty(&tdc->pending_sg_req))
512 		return;
513 
514 	sg_req = list_first_entry(&tdc->pending_sg_req,
515 					typeof(*sg_req), node);
516 	tegra_dma_start(tdc, sg_req);
517 	sg_req->configured = true;
518 	tdc->busy = true;
519 }
520 
521 static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
522 {
523 	struct tegra_dma_sg_req *hsgreq;
524 	struct tegra_dma_sg_req *hnsgreq;
525 
526 	if (list_empty(&tdc->pending_sg_req))
527 		return;
528 
529 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
530 	if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
531 		hnsgreq = list_first_entry(&hsgreq->node,
532 					typeof(*hnsgreq), node);
533 		tegra_dma_configure_for_next(tdc, hnsgreq);
534 	}
535 }
536 
537 static inline int get_current_xferred_count(struct tegra_dma_channel *tdc,
538 	struct tegra_dma_sg_req *sg_req, unsigned long status)
539 {
540 	return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
541 }
542 
543 static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
544 {
545 	struct tegra_dma_sg_req *sgreq;
546 	struct tegra_dma_desc *dma_desc;
547 
548 	while (!list_empty(&tdc->pending_sg_req)) {
549 		sgreq = list_first_entry(&tdc->pending_sg_req,
550 						typeof(*sgreq), node);
551 		list_move_tail(&sgreq->node, &tdc->free_sg_req);
552 		if (sgreq->last_sg) {
553 			dma_desc = sgreq->dma_desc;
554 			dma_desc->dma_status = DMA_ERROR;
555 			list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
556 
557 			/* Add in cb list if it is not there. */
558 			if (!dma_desc->cb_count)
559 				list_add_tail(&dma_desc->cb_node,
560 							&tdc->cb_desc);
561 			dma_desc->cb_count++;
562 		}
563 	}
564 	tdc->isr_handler = NULL;
565 }
566 
567 static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
568 		struct tegra_dma_sg_req *last_sg_req, bool to_terminate)
569 {
570 	struct tegra_dma_sg_req *hsgreq = NULL;
571 
572 	if (list_empty(&tdc->pending_sg_req)) {
573 		dev_err(tdc2dev(tdc), "Dma is running without req\n");
574 		tegra_dma_stop(tdc);
575 		return false;
576 	}
577 
578 	/*
579 	 * Check that head req on list should be in flight.
580 	 * If it is not in flight then abort transfer as
581 	 * looping of transfer can not continue.
582 	 */
583 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
584 	if (!hsgreq->configured) {
585 		tegra_dma_stop(tdc);
586 		dev_err(tdc2dev(tdc), "Error in dma transfer, aborting dma\n");
587 		tegra_dma_abort_all(tdc);
588 		return false;
589 	}
590 
591 	/* Configure next request */
592 	if (!to_terminate)
593 		tdc_configure_next_head_desc(tdc);
594 	return true;
595 }
596 
597 static void handle_once_dma_done(struct tegra_dma_channel *tdc,
598 	bool to_terminate)
599 {
600 	struct tegra_dma_sg_req *sgreq;
601 	struct tegra_dma_desc *dma_desc;
602 
603 	tdc->busy = false;
604 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
605 	dma_desc = sgreq->dma_desc;
606 	dma_desc->bytes_transferred += sgreq->req_len;
607 
608 	list_del(&sgreq->node);
609 	if (sgreq->last_sg) {
610 		dma_desc->dma_status = DMA_COMPLETE;
611 		dma_cookie_complete(&dma_desc->txd);
612 		if (!dma_desc->cb_count)
613 			list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
614 		dma_desc->cb_count++;
615 		list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
616 	}
617 	list_add_tail(&sgreq->node, &tdc->free_sg_req);
618 
619 	/* Do not start DMA if it is going to be terminate */
620 	if (to_terminate || list_empty(&tdc->pending_sg_req))
621 		return;
622 
623 	tdc_start_head_req(tdc);
624 }
625 
626 static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
627 		bool to_terminate)
628 {
629 	struct tegra_dma_sg_req *sgreq;
630 	struct tegra_dma_desc *dma_desc;
631 	bool st;
632 
633 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
634 	dma_desc = sgreq->dma_desc;
635 	dma_desc->bytes_transferred += sgreq->req_len;
636 
637 	/* Callback need to be call */
638 	if (!dma_desc->cb_count)
639 		list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
640 	dma_desc->cb_count++;
641 
642 	/* If not last req then put at end of pending list */
643 	if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
644 		list_move_tail(&sgreq->node, &tdc->pending_sg_req);
645 		sgreq->configured = false;
646 		st = handle_continuous_head_request(tdc, sgreq, to_terminate);
647 		if (!st)
648 			dma_desc->dma_status = DMA_ERROR;
649 	}
650 }
651 
652 static void tegra_dma_tasklet(unsigned long data)
653 {
654 	struct tegra_dma_channel *tdc = (struct tegra_dma_channel *)data;
655 	dma_async_tx_callback callback = NULL;
656 	void *callback_param = NULL;
657 	struct tegra_dma_desc *dma_desc;
658 	unsigned long flags;
659 	int cb_count;
660 
661 	spin_lock_irqsave(&tdc->lock, flags);
662 	while (!list_empty(&tdc->cb_desc)) {
663 		dma_desc  = list_first_entry(&tdc->cb_desc,
664 					typeof(*dma_desc), cb_node);
665 		list_del(&dma_desc->cb_node);
666 		callback = dma_desc->txd.callback;
667 		callback_param = dma_desc->txd.callback_param;
668 		cb_count = dma_desc->cb_count;
669 		dma_desc->cb_count = 0;
670 		spin_unlock_irqrestore(&tdc->lock, flags);
671 		while (cb_count-- && callback)
672 			callback(callback_param);
673 		spin_lock_irqsave(&tdc->lock, flags);
674 	}
675 	spin_unlock_irqrestore(&tdc->lock, flags);
676 }
677 
678 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
679 {
680 	struct tegra_dma_channel *tdc = dev_id;
681 	unsigned long status;
682 	unsigned long flags;
683 
684 	spin_lock_irqsave(&tdc->lock, flags);
685 
686 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
687 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
688 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
689 		tdc->isr_handler(tdc, false);
690 		tasklet_schedule(&tdc->tasklet);
691 		spin_unlock_irqrestore(&tdc->lock, flags);
692 		return IRQ_HANDLED;
693 	}
694 
695 	spin_unlock_irqrestore(&tdc->lock, flags);
696 	dev_info(tdc2dev(tdc),
697 		"Interrupt already served status 0x%08lx\n", status);
698 	return IRQ_NONE;
699 }
700 
701 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
702 {
703 	struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
704 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
705 	unsigned long flags;
706 	dma_cookie_t cookie;
707 
708 	spin_lock_irqsave(&tdc->lock, flags);
709 	dma_desc->dma_status = DMA_IN_PROGRESS;
710 	cookie = dma_cookie_assign(&dma_desc->txd);
711 	list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
712 	spin_unlock_irqrestore(&tdc->lock, flags);
713 	return cookie;
714 }
715 
716 static void tegra_dma_issue_pending(struct dma_chan *dc)
717 {
718 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
719 	unsigned long flags;
720 
721 	spin_lock_irqsave(&tdc->lock, flags);
722 	if (list_empty(&tdc->pending_sg_req)) {
723 		dev_err(tdc2dev(tdc), "No DMA request\n");
724 		goto end;
725 	}
726 	if (!tdc->busy) {
727 		tdc_start_head_req(tdc);
728 
729 		/* Continuous single mode: Configure next req */
730 		if (tdc->cyclic) {
731 			/*
732 			 * Wait for 1 burst time for configure DMA for
733 			 * next transfer.
734 			 */
735 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
736 			tdc_configure_next_head_desc(tdc);
737 		}
738 	}
739 end:
740 	spin_unlock_irqrestore(&tdc->lock, flags);
741 }
742 
743 static int tegra_dma_terminate_all(struct dma_chan *dc)
744 {
745 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
746 	struct tegra_dma_sg_req *sgreq;
747 	struct tegra_dma_desc *dma_desc;
748 	unsigned long flags;
749 	unsigned long status;
750 	unsigned long wcount;
751 	bool was_busy;
752 
753 	spin_lock_irqsave(&tdc->lock, flags);
754 	if (list_empty(&tdc->pending_sg_req)) {
755 		spin_unlock_irqrestore(&tdc->lock, flags);
756 		return 0;
757 	}
758 
759 	if (!tdc->busy)
760 		goto skip_dma_stop;
761 
762 	/* Pause DMA before checking the queue status */
763 	tegra_dma_pause(tdc, true);
764 
765 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
766 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
767 		dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
768 		tdc->isr_handler(tdc, true);
769 		status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
770 	}
771 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
772 		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
773 	else
774 		wcount = status;
775 
776 	was_busy = tdc->busy;
777 	tegra_dma_stop(tdc);
778 
779 	if (!list_empty(&tdc->pending_sg_req) && was_busy) {
780 		sgreq = list_first_entry(&tdc->pending_sg_req,
781 					typeof(*sgreq), node);
782 		sgreq->dma_desc->bytes_transferred +=
783 				get_current_xferred_count(tdc, sgreq, wcount);
784 	}
785 	tegra_dma_resume(tdc);
786 
787 skip_dma_stop:
788 	tegra_dma_abort_all(tdc);
789 
790 	while (!list_empty(&tdc->cb_desc)) {
791 		dma_desc  = list_first_entry(&tdc->cb_desc,
792 					typeof(*dma_desc), cb_node);
793 		list_del(&dma_desc->cb_node);
794 		dma_desc->cb_count = 0;
795 	}
796 	spin_unlock_irqrestore(&tdc->lock, flags);
797 	return 0;
798 }
799 
800 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
801 	dma_cookie_t cookie, struct dma_tx_state *txstate)
802 {
803 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
804 	struct tegra_dma_desc *dma_desc;
805 	struct tegra_dma_sg_req *sg_req;
806 	enum dma_status ret;
807 	unsigned long flags;
808 	unsigned int residual;
809 
810 	ret = dma_cookie_status(dc, cookie, txstate);
811 	if (ret == DMA_COMPLETE)
812 		return ret;
813 
814 	spin_lock_irqsave(&tdc->lock, flags);
815 
816 	/* Check on wait_ack desc status */
817 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
818 		if (dma_desc->txd.cookie == cookie) {
819 			residual =  dma_desc->bytes_requested -
820 					(dma_desc->bytes_transferred %
821 						dma_desc->bytes_requested);
822 			dma_set_residue(txstate, residual);
823 			ret = dma_desc->dma_status;
824 			spin_unlock_irqrestore(&tdc->lock, flags);
825 			return ret;
826 		}
827 	}
828 
829 	/* Check in pending list */
830 	list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
831 		dma_desc = sg_req->dma_desc;
832 		if (dma_desc->txd.cookie == cookie) {
833 			residual =  dma_desc->bytes_requested -
834 					(dma_desc->bytes_transferred %
835 						dma_desc->bytes_requested);
836 			dma_set_residue(txstate, residual);
837 			ret = dma_desc->dma_status;
838 			spin_unlock_irqrestore(&tdc->lock, flags);
839 			return ret;
840 		}
841 	}
842 
843 	dev_dbg(tdc2dev(tdc), "cookie %d does not found\n", cookie);
844 	spin_unlock_irqrestore(&tdc->lock, flags);
845 	return ret;
846 }
847 
848 static inline int get_bus_width(struct tegra_dma_channel *tdc,
849 		enum dma_slave_buswidth slave_bw)
850 {
851 	switch (slave_bw) {
852 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
853 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
854 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
855 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
856 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
857 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
858 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
859 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
860 	default:
861 		dev_warn(tdc2dev(tdc),
862 			"slave bw is not supported, using 32bits\n");
863 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
864 	}
865 }
866 
867 static inline int get_burst_size(struct tegra_dma_channel *tdc,
868 	u32 burst_size, enum dma_slave_buswidth slave_bw, int len)
869 {
870 	int burst_byte;
871 	int burst_ahb_width;
872 
873 	/*
874 	 * burst_size from client is in terms of the bus_width.
875 	 * convert them into AHB memory width which is 4 byte.
876 	 */
877 	burst_byte = burst_size * slave_bw;
878 	burst_ahb_width = burst_byte / 4;
879 
880 	/* If burst size is 0 then calculate the burst size based on length */
881 	if (!burst_ahb_width) {
882 		if (len & 0xF)
883 			return TEGRA_APBDMA_AHBSEQ_BURST_1;
884 		else if ((len >> 4) & 0x1)
885 			return TEGRA_APBDMA_AHBSEQ_BURST_4;
886 		else
887 			return TEGRA_APBDMA_AHBSEQ_BURST_8;
888 	}
889 	if (burst_ahb_width < 4)
890 		return TEGRA_APBDMA_AHBSEQ_BURST_1;
891 	else if (burst_ahb_width < 8)
892 		return TEGRA_APBDMA_AHBSEQ_BURST_4;
893 	else
894 		return TEGRA_APBDMA_AHBSEQ_BURST_8;
895 }
896 
897 static int get_transfer_param(struct tegra_dma_channel *tdc,
898 	enum dma_transfer_direction direction, unsigned long *apb_addr,
899 	unsigned long *apb_seq,	unsigned long *csr, unsigned int *burst_size,
900 	enum dma_slave_buswidth *slave_bw)
901 {
902 
903 	switch (direction) {
904 	case DMA_MEM_TO_DEV:
905 		*apb_addr = tdc->dma_sconfig.dst_addr;
906 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
907 		*burst_size = tdc->dma_sconfig.dst_maxburst;
908 		*slave_bw = tdc->dma_sconfig.dst_addr_width;
909 		*csr = TEGRA_APBDMA_CSR_DIR;
910 		return 0;
911 
912 	case DMA_DEV_TO_MEM:
913 		*apb_addr = tdc->dma_sconfig.src_addr;
914 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
915 		*burst_size = tdc->dma_sconfig.src_maxburst;
916 		*slave_bw = tdc->dma_sconfig.src_addr_width;
917 		*csr = 0;
918 		return 0;
919 
920 	default:
921 		dev_err(tdc2dev(tdc), "Dma direction is not supported\n");
922 		return -EINVAL;
923 	}
924 	return -EINVAL;
925 }
926 
927 static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
928 	struct tegra_dma_channel_regs *ch_regs, u32 len)
929 {
930 	u32 len_field = (len - 4) & 0xFFFC;
931 
932 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
933 		ch_regs->wcount = len_field;
934 	else
935 		ch_regs->csr |= len_field;
936 }
937 
938 static struct dma_async_tx_descriptor *tegra_dma_prep_slave_sg(
939 	struct dma_chan *dc, struct scatterlist *sgl, unsigned int sg_len,
940 	enum dma_transfer_direction direction, unsigned long flags,
941 	void *context)
942 {
943 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
944 	struct tegra_dma_desc *dma_desc;
945 	unsigned int	    i;
946 	struct scatterlist      *sg;
947 	unsigned long csr, ahb_seq, apb_ptr, apb_seq;
948 	struct list_head req_list;
949 	struct tegra_dma_sg_req  *sg_req = NULL;
950 	u32 burst_size;
951 	enum dma_slave_buswidth slave_bw;
952 
953 	if (!tdc->config_init) {
954 		dev_err(tdc2dev(tdc), "dma channel is not configured\n");
955 		return NULL;
956 	}
957 	if (sg_len < 1) {
958 		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
959 		return NULL;
960 	}
961 
962 	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
963 				&burst_size, &slave_bw) < 0)
964 		return NULL;
965 
966 	INIT_LIST_HEAD(&req_list);
967 
968 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
969 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
970 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
971 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
972 
973 	csr |= TEGRA_APBDMA_CSR_ONCE | TEGRA_APBDMA_CSR_FLOW;
974 	csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
975 	if (flags & DMA_PREP_INTERRUPT)
976 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
977 
978 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
979 
980 	dma_desc = tegra_dma_desc_get(tdc);
981 	if (!dma_desc) {
982 		dev_err(tdc2dev(tdc), "Dma descriptors not available\n");
983 		return NULL;
984 	}
985 	INIT_LIST_HEAD(&dma_desc->tx_list);
986 	INIT_LIST_HEAD(&dma_desc->cb_node);
987 	dma_desc->cb_count = 0;
988 	dma_desc->bytes_requested = 0;
989 	dma_desc->bytes_transferred = 0;
990 	dma_desc->dma_status = DMA_IN_PROGRESS;
991 
992 	/* Make transfer requests */
993 	for_each_sg(sgl, sg, sg_len, i) {
994 		u32 len, mem;
995 
996 		mem = sg_dma_address(sg);
997 		len = sg_dma_len(sg);
998 
999 		if ((len & 3) || (mem & 3) ||
1000 				(len > tdc->tdma->chip_data->max_dma_count)) {
1001 			dev_err(tdc2dev(tdc),
1002 				"Dma length/memory address is not supported\n");
1003 			tegra_dma_desc_put(tdc, dma_desc);
1004 			return NULL;
1005 		}
1006 
1007 		sg_req = tegra_dma_sg_req_get(tdc);
1008 		if (!sg_req) {
1009 			dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
1010 			tegra_dma_desc_put(tdc, dma_desc);
1011 			return NULL;
1012 		}
1013 
1014 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1015 		dma_desc->bytes_requested += len;
1016 
1017 		sg_req->ch_regs.apb_ptr = apb_ptr;
1018 		sg_req->ch_regs.ahb_ptr = mem;
1019 		sg_req->ch_regs.csr = csr;
1020 		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1021 		sg_req->ch_regs.apb_seq = apb_seq;
1022 		sg_req->ch_regs.ahb_seq = ahb_seq;
1023 		sg_req->configured = false;
1024 		sg_req->last_sg = false;
1025 		sg_req->dma_desc = dma_desc;
1026 		sg_req->req_len = len;
1027 
1028 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1029 	}
1030 	sg_req->last_sg = true;
1031 	if (flags & DMA_CTRL_ACK)
1032 		dma_desc->txd.flags = DMA_CTRL_ACK;
1033 
1034 	/*
1035 	 * Make sure that mode should not be conflicting with currently
1036 	 * configured mode.
1037 	 */
1038 	if (!tdc->isr_handler) {
1039 		tdc->isr_handler = handle_once_dma_done;
1040 		tdc->cyclic = false;
1041 	} else {
1042 		if (tdc->cyclic) {
1043 			dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1044 			tegra_dma_desc_put(tdc, dma_desc);
1045 			return NULL;
1046 		}
1047 	}
1048 
1049 	return &dma_desc->txd;
1050 }
1051 
1052 static struct dma_async_tx_descriptor *tegra_dma_prep_dma_cyclic(
1053 	struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
1054 	size_t period_len, enum dma_transfer_direction direction,
1055 	unsigned long flags)
1056 {
1057 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1058 	struct tegra_dma_desc *dma_desc = NULL;
1059 	struct tegra_dma_sg_req  *sg_req = NULL;
1060 	unsigned long csr, ahb_seq, apb_ptr, apb_seq;
1061 	int len;
1062 	size_t remain_len;
1063 	dma_addr_t mem = buf_addr;
1064 	u32 burst_size;
1065 	enum dma_slave_buswidth slave_bw;
1066 
1067 	if (!buf_len || !period_len) {
1068 		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1069 		return NULL;
1070 	}
1071 
1072 	if (!tdc->config_init) {
1073 		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1074 		return NULL;
1075 	}
1076 
1077 	/*
1078 	 * We allow to take more number of requests till DMA is
1079 	 * not started. The driver will loop over all requests.
1080 	 * Once DMA is started then new requests can be queued only after
1081 	 * terminating the DMA.
1082 	 */
1083 	if (tdc->busy) {
1084 		dev_err(tdc2dev(tdc), "Request not allowed when dma running\n");
1085 		return NULL;
1086 	}
1087 
1088 	/*
1089 	 * We only support cycle transfer when buf_len is multiple of
1090 	 * period_len.
1091 	 */
1092 	if (buf_len % period_len) {
1093 		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1094 		return NULL;
1095 	}
1096 
1097 	len = period_len;
1098 	if ((len & 3) || (buf_addr & 3) ||
1099 			(len > tdc->tdma->chip_data->max_dma_count)) {
1100 		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1101 		return NULL;
1102 	}
1103 
1104 	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1105 				&burst_size, &slave_bw) < 0)
1106 		return NULL;
1107 
1108 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1109 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1110 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1111 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1112 
1113 	csr |= TEGRA_APBDMA_CSR_FLOW;
1114 	if (flags & DMA_PREP_INTERRUPT)
1115 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1116 	csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1117 
1118 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1119 
1120 	dma_desc = tegra_dma_desc_get(tdc);
1121 	if (!dma_desc) {
1122 		dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1123 		return NULL;
1124 	}
1125 
1126 	INIT_LIST_HEAD(&dma_desc->tx_list);
1127 	INIT_LIST_HEAD(&dma_desc->cb_node);
1128 	dma_desc->cb_count = 0;
1129 
1130 	dma_desc->bytes_transferred = 0;
1131 	dma_desc->bytes_requested = buf_len;
1132 	remain_len = buf_len;
1133 
1134 	/* Split transfer equal to period size */
1135 	while (remain_len) {
1136 		sg_req = tegra_dma_sg_req_get(tdc);
1137 		if (!sg_req) {
1138 			dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
1139 			tegra_dma_desc_put(tdc, dma_desc);
1140 			return NULL;
1141 		}
1142 
1143 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1144 		sg_req->ch_regs.apb_ptr = apb_ptr;
1145 		sg_req->ch_regs.ahb_ptr = mem;
1146 		sg_req->ch_regs.csr = csr;
1147 		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1148 		sg_req->ch_regs.apb_seq = apb_seq;
1149 		sg_req->ch_regs.ahb_seq = ahb_seq;
1150 		sg_req->configured = false;
1151 		sg_req->last_sg = false;
1152 		sg_req->dma_desc = dma_desc;
1153 		sg_req->req_len = len;
1154 
1155 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1156 		remain_len -= len;
1157 		mem += len;
1158 	}
1159 	sg_req->last_sg = true;
1160 	if (flags & DMA_CTRL_ACK)
1161 		dma_desc->txd.flags = DMA_CTRL_ACK;
1162 
1163 	/*
1164 	 * Make sure that mode should not be conflicting with currently
1165 	 * configured mode.
1166 	 */
1167 	if (!tdc->isr_handler) {
1168 		tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1169 		tdc->cyclic = true;
1170 	} else {
1171 		if (!tdc->cyclic) {
1172 			dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1173 			tegra_dma_desc_put(tdc, dma_desc);
1174 			return NULL;
1175 		}
1176 	}
1177 
1178 	return &dma_desc->txd;
1179 }
1180 
1181 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1182 {
1183 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1184 	struct tegra_dma *tdma = tdc->tdma;
1185 	int ret;
1186 
1187 	dma_cookie_init(&tdc->dma_chan);
1188 	tdc->config_init = false;
1189 	ret = clk_prepare_enable(tdma->dma_clk);
1190 	if (ret < 0)
1191 		dev_err(tdc2dev(tdc), "clk_prepare_enable failed: %d\n", ret);
1192 	return ret;
1193 }
1194 
1195 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1196 {
1197 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1198 	struct tegra_dma *tdma = tdc->tdma;
1199 
1200 	struct tegra_dma_desc *dma_desc;
1201 	struct tegra_dma_sg_req *sg_req;
1202 	struct list_head dma_desc_list;
1203 	struct list_head sg_req_list;
1204 	unsigned long flags;
1205 
1206 	INIT_LIST_HEAD(&dma_desc_list);
1207 	INIT_LIST_HEAD(&sg_req_list);
1208 
1209 	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1210 
1211 	if (tdc->busy)
1212 		tegra_dma_terminate_all(dc);
1213 
1214 	spin_lock_irqsave(&tdc->lock, flags);
1215 	list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1216 	list_splice_init(&tdc->free_sg_req, &sg_req_list);
1217 	list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1218 	INIT_LIST_HEAD(&tdc->cb_desc);
1219 	tdc->config_init = false;
1220 	tdc->isr_handler = NULL;
1221 	spin_unlock_irqrestore(&tdc->lock, flags);
1222 
1223 	while (!list_empty(&dma_desc_list)) {
1224 		dma_desc = list_first_entry(&dma_desc_list,
1225 					typeof(*dma_desc), node);
1226 		list_del(&dma_desc->node);
1227 		kfree(dma_desc);
1228 	}
1229 
1230 	while (!list_empty(&sg_req_list)) {
1231 		sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1232 		list_del(&sg_req->node);
1233 		kfree(sg_req);
1234 	}
1235 	clk_disable_unprepare(tdma->dma_clk);
1236 
1237 	tdc->slave_id = 0;
1238 }
1239 
1240 static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1241 					   struct of_dma *ofdma)
1242 {
1243 	struct tegra_dma *tdma = ofdma->of_dma_data;
1244 	struct dma_chan *chan;
1245 	struct tegra_dma_channel *tdc;
1246 
1247 	chan = dma_get_any_slave_channel(&tdma->dma_dev);
1248 	if (!chan)
1249 		return NULL;
1250 
1251 	tdc = to_tegra_dma_chan(chan);
1252 	tdc->slave_id = dma_spec->args[0];
1253 
1254 	return chan;
1255 }
1256 
1257 /* Tegra20 specific DMA controller information */
1258 static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1259 	.nr_channels		= 16,
1260 	.channel_reg_size	= 0x20,
1261 	.max_dma_count		= 1024UL * 64,
1262 	.support_channel_pause	= false,
1263 	.support_separate_wcount_reg = false,
1264 };
1265 
1266 /* Tegra30 specific DMA controller information */
1267 static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1268 	.nr_channels		= 32,
1269 	.channel_reg_size	= 0x20,
1270 	.max_dma_count		= 1024UL * 64,
1271 	.support_channel_pause	= false,
1272 	.support_separate_wcount_reg = false,
1273 };
1274 
1275 /* Tegra114 specific DMA controller information */
1276 static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1277 	.nr_channels		= 32,
1278 	.channel_reg_size	= 0x20,
1279 	.max_dma_count		= 1024UL * 64,
1280 	.support_channel_pause	= true,
1281 	.support_separate_wcount_reg = false,
1282 };
1283 
1284 /* Tegra148 specific DMA controller information */
1285 static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1286 	.nr_channels		= 32,
1287 	.channel_reg_size	= 0x40,
1288 	.max_dma_count		= 1024UL * 64,
1289 	.support_channel_pause	= true,
1290 	.support_separate_wcount_reg = true,
1291 };
1292 
1293 
1294 static const struct of_device_id tegra_dma_of_match[] = {
1295 	{
1296 		.compatible = "nvidia,tegra148-apbdma",
1297 		.data = &tegra148_dma_chip_data,
1298 	}, {
1299 		.compatible = "nvidia,tegra114-apbdma",
1300 		.data = &tegra114_dma_chip_data,
1301 	}, {
1302 		.compatible = "nvidia,tegra30-apbdma",
1303 		.data = &tegra30_dma_chip_data,
1304 	}, {
1305 		.compatible = "nvidia,tegra20-apbdma",
1306 		.data = &tegra20_dma_chip_data,
1307 	}, {
1308 	},
1309 };
1310 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1311 
1312 static int tegra_dma_probe(struct platform_device *pdev)
1313 {
1314 	struct resource	*res;
1315 	struct tegra_dma *tdma;
1316 	int ret;
1317 	int i;
1318 	const struct tegra_dma_chip_data *cdata = NULL;
1319 	const struct of_device_id *match;
1320 
1321 	match = of_match_device(tegra_dma_of_match, &pdev->dev);
1322 	if (!match) {
1323 		dev_err(&pdev->dev, "Error: No device match found\n");
1324 		return -ENODEV;
1325 	}
1326 	cdata = match->data;
1327 
1328 	tdma = devm_kzalloc(&pdev->dev, sizeof(*tdma) + cdata->nr_channels *
1329 			sizeof(struct tegra_dma_channel), GFP_KERNEL);
1330 	if (!tdma) {
1331 		dev_err(&pdev->dev, "Error: memory allocation failed\n");
1332 		return -ENOMEM;
1333 	}
1334 
1335 	tdma->dev = &pdev->dev;
1336 	tdma->chip_data = cdata;
1337 	platform_set_drvdata(pdev, tdma);
1338 
1339 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1340 	tdma->base_addr = devm_ioremap_resource(&pdev->dev, res);
1341 	if (IS_ERR(tdma->base_addr))
1342 		return PTR_ERR(tdma->base_addr);
1343 
1344 	tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1345 	if (IS_ERR(tdma->dma_clk)) {
1346 		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1347 		return PTR_ERR(tdma->dma_clk);
1348 	}
1349 
1350 	tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1351 	if (IS_ERR(tdma->rst)) {
1352 		dev_err(&pdev->dev, "Error: Missing reset\n");
1353 		return PTR_ERR(tdma->rst);
1354 	}
1355 
1356 	spin_lock_init(&tdma->global_lock);
1357 
1358 	pm_runtime_enable(&pdev->dev);
1359 	if (!pm_runtime_enabled(&pdev->dev)) {
1360 		ret = tegra_dma_runtime_resume(&pdev->dev);
1361 		if (ret) {
1362 			dev_err(&pdev->dev, "dma_runtime_resume failed %d\n",
1363 				ret);
1364 			goto err_pm_disable;
1365 		}
1366 	}
1367 
1368 	/* Enable clock before accessing registers */
1369 	ret = clk_prepare_enable(tdma->dma_clk);
1370 	if (ret < 0) {
1371 		dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
1372 		goto err_pm_disable;
1373 	}
1374 
1375 	/* Reset DMA controller */
1376 	reset_control_assert(tdma->rst);
1377 	udelay(2);
1378 	reset_control_deassert(tdma->rst);
1379 
1380 	/* Enable global DMA registers */
1381 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1382 	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1383 	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1384 
1385 	clk_disable_unprepare(tdma->dma_clk);
1386 
1387 	INIT_LIST_HEAD(&tdma->dma_dev.channels);
1388 	for (i = 0; i < cdata->nr_channels; i++) {
1389 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1390 
1391 		tdc->chan_addr = tdma->base_addr +
1392 				 TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1393 				 (i * cdata->channel_reg_size);
1394 
1395 		res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1396 		if (!res) {
1397 			ret = -EINVAL;
1398 			dev_err(&pdev->dev, "No irq resource for chan %d\n", i);
1399 			goto err_irq;
1400 		}
1401 		tdc->irq = res->start;
1402 		snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1403 		ret = devm_request_irq(&pdev->dev, tdc->irq,
1404 				tegra_dma_isr, 0, tdc->name, tdc);
1405 		if (ret) {
1406 			dev_err(&pdev->dev,
1407 				"request_irq failed with err %d channel %d\n",
1408 				ret, i);
1409 			goto err_irq;
1410 		}
1411 
1412 		tdc->dma_chan.device = &tdma->dma_dev;
1413 		dma_cookie_init(&tdc->dma_chan);
1414 		list_add_tail(&tdc->dma_chan.device_node,
1415 				&tdma->dma_dev.channels);
1416 		tdc->tdma = tdma;
1417 		tdc->id = i;
1418 
1419 		tasklet_init(&tdc->tasklet, tegra_dma_tasklet,
1420 				(unsigned long)tdc);
1421 		spin_lock_init(&tdc->lock);
1422 
1423 		INIT_LIST_HEAD(&tdc->pending_sg_req);
1424 		INIT_LIST_HEAD(&tdc->free_sg_req);
1425 		INIT_LIST_HEAD(&tdc->free_dma_desc);
1426 		INIT_LIST_HEAD(&tdc->cb_desc);
1427 	}
1428 
1429 	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1430 	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1431 	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1432 
1433 	tdma->global_pause_count = 0;
1434 	tdma->dma_dev.dev = &pdev->dev;
1435 	tdma->dma_dev.device_alloc_chan_resources =
1436 					tegra_dma_alloc_chan_resources;
1437 	tdma->dma_dev.device_free_chan_resources =
1438 					tegra_dma_free_chan_resources;
1439 	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1440 	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1441 	tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1442 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1443 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1444 		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1445 	tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1446 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1447 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1448 		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1449 	tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1450 	/*
1451 	 * XXX The hardware appears to support
1452 	 * DMA_RESIDUE_GRANULARITY_BURST-level reporting, but it's
1453 	 * only used by this driver during tegra_dma_terminate_all()
1454 	 */
1455 	tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1456 	tdma->dma_dev.device_config = tegra_dma_slave_config;
1457 	tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1458 	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1459 	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1460 
1461 	ret = dma_async_device_register(&tdma->dma_dev);
1462 	if (ret < 0) {
1463 		dev_err(&pdev->dev,
1464 			"Tegra20 APB DMA driver registration failed %d\n", ret);
1465 		goto err_irq;
1466 	}
1467 
1468 	ret = of_dma_controller_register(pdev->dev.of_node,
1469 					 tegra_dma_of_xlate, tdma);
1470 	if (ret < 0) {
1471 		dev_err(&pdev->dev,
1472 			"Tegra20 APB DMA OF registration failed %d\n", ret);
1473 		goto err_unregister_dma_dev;
1474 	}
1475 
1476 	dev_info(&pdev->dev, "Tegra20 APB DMA driver register %d channels\n",
1477 			cdata->nr_channels);
1478 	return 0;
1479 
1480 err_unregister_dma_dev:
1481 	dma_async_device_unregister(&tdma->dma_dev);
1482 err_irq:
1483 	while (--i >= 0) {
1484 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1485 		tasklet_kill(&tdc->tasklet);
1486 	}
1487 
1488 err_pm_disable:
1489 	pm_runtime_disable(&pdev->dev);
1490 	if (!pm_runtime_status_suspended(&pdev->dev))
1491 		tegra_dma_runtime_suspend(&pdev->dev);
1492 	return ret;
1493 }
1494 
1495 static int tegra_dma_remove(struct platform_device *pdev)
1496 {
1497 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1498 	int i;
1499 	struct tegra_dma_channel *tdc;
1500 
1501 	dma_async_device_unregister(&tdma->dma_dev);
1502 
1503 	for (i = 0; i < tdma->chip_data->nr_channels; ++i) {
1504 		tdc = &tdma->channels[i];
1505 		tasklet_kill(&tdc->tasklet);
1506 	}
1507 
1508 	pm_runtime_disable(&pdev->dev);
1509 	if (!pm_runtime_status_suspended(&pdev->dev))
1510 		tegra_dma_runtime_suspend(&pdev->dev);
1511 
1512 	return 0;
1513 }
1514 
1515 static int tegra_dma_runtime_suspend(struct device *dev)
1516 {
1517 	struct platform_device *pdev = to_platform_device(dev);
1518 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1519 
1520 	clk_disable_unprepare(tdma->dma_clk);
1521 	return 0;
1522 }
1523 
1524 static int tegra_dma_runtime_resume(struct device *dev)
1525 {
1526 	struct platform_device *pdev = to_platform_device(dev);
1527 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1528 	int ret;
1529 
1530 	ret = clk_prepare_enable(tdma->dma_clk);
1531 	if (ret < 0) {
1532 		dev_err(dev, "clk_enable failed: %d\n", ret);
1533 		return ret;
1534 	}
1535 	return 0;
1536 }
1537 
1538 #ifdef CONFIG_PM_SLEEP
1539 static int tegra_dma_pm_suspend(struct device *dev)
1540 {
1541 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1542 	int i;
1543 	int ret;
1544 
1545 	/* Enable clock before accessing register */
1546 	ret = tegra_dma_runtime_resume(dev);
1547 	if (ret < 0)
1548 		return ret;
1549 
1550 	tdma->reg_gen = tdma_read(tdma, TEGRA_APBDMA_GENERAL);
1551 	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1552 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1553 		struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1554 
1555 		ch_reg->csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
1556 		ch_reg->ahb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBPTR);
1557 		ch_reg->apb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBPTR);
1558 		ch_reg->ahb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBSEQ);
1559 		ch_reg->apb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBSEQ);
1560 	}
1561 
1562 	/* Disable clock */
1563 	tegra_dma_runtime_suspend(dev);
1564 	return 0;
1565 }
1566 
1567 static int tegra_dma_pm_resume(struct device *dev)
1568 {
1569 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1570 	int i;
1571 	int ret;
1572 
1573 	/* Enable clock before accessing register */
1574 	ret = tegra_dma_runtime_resume(dev);
1575 	if (ret < 0)
1576 		return ret;
1577 
1578 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, tdma->reg_gen);
1579 	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1580 	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1581 
1582 	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1583 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1584 		struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1585 
1586 		tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_reg->apb_seq);
1587 		tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_reg->apb_ptr);
1588 		tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_reg->ahb_seq);
1589 		tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_reg->ahb_ptr);
1590 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
1591 			(ch_reg->csr & ~TEGRA_APBDMA_CSR_ENB));
1592 	}
1593 
1594 	/* Disable clock */
1595 	tegra_dma_runtime_suspend(dev);
1596 	return 0;
1597 }
1598 #endif
1599 
1600 static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1601 #ifdef CONFIG_PM
1602 	.runtime_suspend = tegra_dma_runtime_suspend,
1603 	.runtime_resume = tegra_dma_runtime_resume,
1604 #endif
1605 	SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_pm_suspend, tegra_dma_pm_resume)
1606 };
1607 
1608 static struct platform_driver tegra_dmac_driver = {
1609 	.driver = {
1610 		.name	= "tegra-apbdma",
1611 		.pm	= &tegra_dma_dev_pm_ops,
1612 		.of_match_table = tegra_dma_of_match,
1613 	},
1614 	.probe		= tegra_dma_probe,
1615 	.remove		= tegra_dma_remove,
1616 };
1617 
1618 module_platform_driver(tegra_dmac_driver);
1619 
1620 MODULE_ALIAS("platform:tegra20-apbdma");
1621 MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1622 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1623 MODULE_LICENSE("GPL v2");
1624