xref: /openbmc/linux/drivers/dma/tegra20-apb-dma.c (revision ee89bd6b)
1 /*
2  * DMA driver for Nvidia's Tegra20 APB DMA controller.
3  *
4  * Copyright (c) 2012, NVIDIA CORPORATION.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include <linux/bitops.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/err.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/platform_device.h>
33 #include <linux/pm.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/slab.h>
36 #include <linux/clk/tegra.h>
37 
38 #include "dmaengine.h"
39 
40 #define TEGRA_APBDMA_GENERAL			0x0
41 #define TEGRA_APBDMA_GENERAL_ENABLE		BIT(31)
42 
43 #define TEGRA_APBDMA_CONTROL			0x010
44 #define TEGRA_APBDMA_IRQ_MASK			0x01c
45 #define TEGRA_APBDMA_IRQ_MASK_SET		0x020
46 
47 /* CSR register */
48 #define TEGRA_APBDMA_CHAN_CSR			0x00
49 #define TEGRA_APBDMA_CSR_ENB			BIT(31)
50 #define TEGRA_APBDMA_CSR_IE_EOC			BIT(30)
51 #define TEGRA_APBDMA_CSR_HOLD			BIT(29)
52 #define TEGRA_APBDMA_CSR_DIR			BIT(28)
53 #define TEGRA_APBDMA_CSR_ONCE			BIT(27)
54 #define TEGRA_APBDMA_CSR_FLOW			BIT(21)
55 #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT		16
56 #define TEGRA_APBDMA_CSR_WCOUNT_MASK		0xFFFC
57 
58 /* STATUS register */
59 #define TEGRA_APBDMA_CHAN_STATUS		0x004
60 #define TEGRA_APBDMA_STATUS_BUSY		BIT(31)
61 #define TEGRA_APBDMA_STATUS_ISE_EOC		BIT(30)
62 #define TEGRA_APBDMA_STATUS_HALT		BIT(29)
63 #define TEGRA_APBDMA_STATUS_PING_PONG		BIT(28)
64 #define TEGRA_APBDMA_STATUS_COUNT_SHIFT		2
65 #define TEGRA_APBDMA_STATUS_COUNT_MASK		0xFFFC
66 
67 #define TEGRA_APBDMA_CHAN_CSRE			0x00C
68 #define TEGRA_APBDMA_CHAN_CSRE_PAUSE		(1 << 31)
69 
70 /* AHB memory address */
71 #define TEGRA_APBDMA_CHAN_AHBPTR		0x010
72 
73 /* AHB sequence register */
74 #define TEGRA_APBDMA_CHAN_AHBSEQ		0x14
75 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB		BIT(31)
76 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8		(0 << 28)
77 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16	(1 << 28)
78 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32	(2 << 28)
79 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64	(3 << 28)
80 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128	(4 << 28)
81 #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP		BIT(27)
82 #define TEGRA_APBDMA_AHBSEQ_BURST_1		(4 << 24)
83 #define TEGRA_APBDMA_AHBSEQ_BURST_4		(5 << 24)
84 #define TEGRA_APBDMA_AHBSEQ_BURST_8		(6 << 24)
85 #define TEGRA_APBDMA_AHBSEQ_DBL_BUF		BIT(19)
86 #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT		16
87 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE		0
88 
89 /* APB address */
90 #define TEGRA_APBDMA_CHAN_APBPTR		0x018
91 
92 /* APB sequence register */
93 #define TEGRA_APBDMA_CHAN_APBSEQ		0x01c
94 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8		(0 << 28)
95 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16	(1 << 28)
96 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32	(2 << 28)
97 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64	(3 << 28)
98 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128	(4 << 28)
99 #define TEGRA_APBDMA_APBSEQ_DATA_SWAP		BIT(27)
100 #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1		(1 << 16)
101 
102 /*
103  * If any burst is in flight and DMA paused then this is the time to complete
104  * on-flight burst and update DMA status register.
105  */
106 #define TEGRA_APBDMA_BURST_COMPLETE_TIME	20
107 
108 /* Channel base address offset from APBDMA base address */
109 #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET	0x1000
110 
111 /* DMA channel register space size */
112 #define TEGRA_APBDMA_CHANNEL_REGISTER_SIZE	0x20
113 
114 struct tegra_dma;
115 
116 /*
117  * tegra_dma_chip_data Tegra chip specific DMA data
118  * @nr_channels: Number of channels available in the controller.
119  * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
120  * @support_channel_pause: Support channel wise pause of dma.
121  */
122 struct tegra_dma_chip_data {
123 	int nr_channels;
124 	int max_dma_count;
125 	bool support_channel_pause;
126 };
127 
128 /* DMA channel registers */
129 struct tegra_dma_channel_regs {
130 	unsigned long	csr;
131 	unsigned long	ahb_ptr;
132 	unsigned long	apb_ptr;
133 	unsigned long	ahb_seq;
134 	unsigned long	apb_seq;
135 };
136 
137 /*
138  * tegra_dma_sg_req: Dma request details to configure hardware. This
139  * contains the details for one transfer to configure DMA hw.
140  * The client's request for data transfer can be broken into multiple
141  * sub-transfer as per requester details and hw support.
142  * This sub transfer get added in the list of transfer and point to Tegra
143  * DMA descriptor which manages the transfer details.
144  */
145 struct tegra_dma_sg_req {
146 	struct tegra_dma_channel_regs	ch_regs;
147 	int				req_len;
148 	bool				configured;
149 	bool				last_sg;
150 	bool				half_done;
151 	struct list_head		node;
152 	struct tegra_dma_desc		*dma_desc;
153 };
154 
155 /*
156  * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
157  * This descriptor keep track of transfer status, callbacks and request
158  * counts etc.
159  */
160 struct tegra_dma_desc {
161 	struct dma_async_tx_descriptor	txd;
162 	int				bytes_requested;
163 	int				bytes_transferred;
164 	enum dma_status			dma_status;
165 	struct list_head		node;
166 	struct list_head		tx_list;
167 	struct list_head		cb_node;
168 	int				cb_count;
169 };
170 
171 struct tegra_dma_channel;
172 
173 typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
174 				bool to_terminate);
175 
176 /* tegra_dma_channel: Channel specific information */
177 struct tegra_dma_channel {
178 	struct dma_chan		dma_chan;
179 	char			name[30];
180 	bool			config_init;
181 	int			id;
182 	int			irq;
183 	unsigned long		chan_base_offset;
184 	spinlock_t		lock;
185 	bool			busy;
186 	struct tegra_dma	*tdma;
187 	bool			cyclic;
188 
189 	/* Different lists for managing the requests */
190 	struct list_head	free_sg_req;
191 	struct list_head	pending_sg_req;
192 	struct list_head	free_dma_desc;
193 	struct list_head	cb_desc;
194 
195 	/* ISR handler and tasklet for bottom half of isr handling */
196 	dma_isr_handler		isr_handler;
197 	struct tasklet_struct	tasklet;
198 	dma_async_tx_callback	callback;
199 	void			*callback_param;
200 
201 	/* Channel-slave specific configuration */
202 	struct dma_slave_config dma_sconfig;
203 	struct tegra_dma_channel_regs	channel_reg;
204 };
205 
206 /* tegra_dma: Tegra DMA specific information */
207 struct tegra_dma {
208 	struct dma_device		dma_dev;
209 	struct device			*dev;
210 	struct clk			*dma_clk;
211 	spinlock_t			global_lock;
212 	void __iomem			*base_addr;
213 	const struct tegra_dma_chip_data *chip_data;
214 
215 	/* Some register need to be cache before suspend */
216 	u32				reg_gen;
217 
218 	/* Last member of the structure */
219 	struct tegra_dma_channel channels[0];
220 };
221 
222 static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
223 {
224 	writel(val, tdma->base_addr + reg);
225 }
226 
227 static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
228 {
229 	return readl(tdma->base_addr + reg);
230 }
231 
232 static inline void tdc_write(struct tegra_dma_channel *tdc,
233 		u32 reg, u32 val)
234 {
235 	writel(val, tdc->tdma->base_addr + tdc->chan_base_offset + reg);
236 }
237 
238 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
239 {
240 	return readl(tdc->tdma->base_addr + tdc->chan_base_offset + reg);
241 }
242 
243 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
244 {
245 	return container_of(dc, struct tegra_dma_channel, dma_chan);
246 }
247 
248 static inline struct tegra_dma_desc *txd_to_tegra_dma_desc(
249 		struct dma_async_tx_descriptor *td)
250 {
251 	return container_of(td, struct tegra_dma_desc, txd);
252 }
253 
254 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
255 {
256 	return &tdc->dma_chan.dev->device;
257 }
258 
259 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
260 static int tegra_dma_runtime_suspend(struct device *dev);
261 static int tegra_dma_runtime_resume(struct device *dev);
262 
263 /* Get DMA desc from free list, if not there then allocate it.  */
264 static struct tegra_dma_desc *tegra_dma_desc_get(
265 		struct tegra_dma_channel *tdc)
266 {
267 	struct tegra_dma_desc *dma_desc;
268 	unsigned long flags;
269 
270 	spin_lock_irqsave(&tdc->lock, flags);
271 
272 	/* Do not allocate if desc are waiting for ack */
273 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
274 		if (async_tx_test_ack(&dma_desc->txd)) {
275 			list_del(&dma_desc->node);
276 			spin_unlock_irqrestore(&tdc->lock, flags);
277 			dma_desc->txd.flags = 0;
278 			return dma_desc;
279 		}
280 	}
281 
282 	spin_unlock_irqrestore(&tdc->lock, flags);
283 
284 	/* Allocate DMA desc */
285 	dma_desc = kzalloc(sizeof(*dma_desc), GFP_ATOMIC);
286 	if (!dma_desc) {
287 		dev_err(tdc2dev(tdc), "dma_desc alloc failed\n");
288 		return NULL;
289 	}
290 
291 	dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
292 	dma_desc->txd.tx_submit = tegra_dma_tx_submit;
293 	dma_desc->txd.flags = 0;
294 	return dma_desc;
295 }
296 
297 static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
298 		struct tegra_dma_desc *dma_desc)
299 {
300 	unsigned long flags;
301 
302 	spin_lock_irqsave(&tdc->lock, flags);
303 	if (!list_empty(&dma_desc->tx_list))
304 		list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
305 	list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
306 	spin_unlock_irqrestore(&tdc->lock, flags);
307 }
308 
309 static struct tegra_dma_sg_req *tegra_dma_sg_req_get(
310 		struct tegra_dma_channel *tdc)
311 {
312 	struct tegra_dma_sg_req *sg_req = NULL;
313 	unsigned long flags;
314 
315 	spin_lock_irqsave(&tdc->lock, flags);
316 	if (!list_empty(&tdc->free_sg_req)) {
317 		sg_req = list_first_entry(&tdc->free_sg_req,
318 					typeof(*sg_req), node);
319 		list_del(&sg_req->node);
320 		spin_unlock_irqrestore(&tdc->lock, flags);
321 		return sg_req;
322 	}
323 	spin_unlock_irqrestore(&tdc->lock, flags);
324 
325 	sg_req = kzalloc(sizeof(struct tegra_dma_sg_req), GFP_ATOMIC);
326 	if (!sg_req)
327 		dev_err(tdc2dev(tdc), "sg_req alloc failed\n");
328 	return sg_req;
329 }
330 
331 static int tegra_dma_slave_config(struct dma_chan *dc,
332 		struct dma_slave_config *sconfig)
333 {
334 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
335 
336 	if (!list_empty(&tdc->pending_sg_req)) {
337 		dev_err(tdc2dev(tdc), "Configuration not allowed\n");
338 		return -EBUSY;
339 	}
340 
341 	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
342 	tdc->config_init = true;
343 	return 0;
344 }
345 
346 static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
347 	bool wait_for_burst_complete)
348 {
349 	struct tegra_dma *tdma = tdc->tdma;
350 
351 	spin_lock(&tdma->global_lock);
352 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
353 	if (wait_for_burst_complete)
354 		udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
355 }
356 
357 static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
358 {
359 	struct tegra_dma *tdma = tdc->tdma;
360 
361 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
362 	spin_unlock(&tdma->global_lock);
363 }
364 
365 static void tegra_dma_pause(struct tegra_dma_channel *tdc,
366 	bool wait_for_burst_complete)
367 {
368 	struct tegra_dma *tdma = tdc->tdma;
369 
370 	if (tdma->chip_data->support_channel_pause) {
371 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
372 				TEGRA_APBDMA_CHAN_CSRE_PAUSE);
373 		if (wait_for_burst_complete)
374 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
375 	} else {
376 		tegra_dma_global_pause(tdc, wait_for_burst_complete);
377 	}
378 }
379 
380 static void tegra_dma_resume(struct tegra_dma_channel *tdc)
381 {
382 	struct tegra_dma *tdma = tdc->tdma;
383 
384 	if (tdma->chip_data->support_channel_pause) {
385 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
386 	} else {
387 		tegra_dma_global_resume(tdc);
388 	}
389 }
390 
391 static void tegra_dma_stop(struct tegra_dma_channel *tdc)
392 {
393 	u32 csr;
394 	u32 status;
395 
396 	/* Disable interrupts */
397 	csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
398 	csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
399 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
400 
401 	/* Disable DMA */
402 	csr &= ~TEGRA_APBDMA_CSR_ENB;
403 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
404 
405 	/* Clear interrupt status if it is there */
406 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
407 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
408 		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
409 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
410 	}
411 	tdc->busy = false;
412 }
413 
414 static void tegra_dma_start(struct tegra_dma_channel *tdc,
415 		struct tegra_dma_sg_req *sg_req)
416 {
417 	struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
418 
419 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
420 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
421 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
422 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
423 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
424 
425 	/* Start DMA */
426 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
427 				ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
428 }
429 
430 static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
431 		struct tegra_dma_sg_req *nsg_req)
432 {
433 	unsigned long status;
434 
435 	/*
436 	 * The DMA controller reloads the new configuration for next transfer
437 	 * after last burst of current transfer completes.
438 	 * If there is no IEC status then this makes sure that last burst
439 	 * has not be completed. There may be case that last burst is on
440 	 * flight and so it can complete but because DMA is paused, it
441 	 * will not generates interrupt as well as not reload the new
442 	 * configuration.
443 	 * If there is already IEC status then interrupt handler need to
444 	 * load new configuration.
445 	 */
446 	tegra_dma_pause(tdc, false);
447 	status  = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
448 
449 	/*
450 	 * If interrupt is pending then do nothing as the ISR will handle
451 	 * the programing for new request.
452 	 */
453 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
454 		dev_err(tdc2dev(tdc),
455 			"Skipping new configuration as interrupt is pending\n");
456 		tegra_dma_resume(tdc);
457 		return;
458 	}
459 
460 	/* Safe to program new configuration */
461 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
462 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
463 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
464 				nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
465 	nsg_req->configured = true;
466 
467 	tegra_dma_resume(tdc);
468 }
469 
470 static void tdc_start_head_req(struct tegra_dma_channel *tdc)
471 {
472 	struct tegra_dma_sg_req *sg_req;
473 
474 	if (list_empty(&tdc->pending_sg_req))
475 		return;
476 
477 	sg_req = list_first_entry(&tdc->pending_sg_req,
478 					typeof(*sg_req), node);
479 	tegra_dma_start(tdc, sg_req);
480 	sg_req->configured = true;
481 	tdc->busy = true;
482 }
483 
484 static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
485 {
486 	struct tegra_dma_sg_req *hsgreq;
487 	struct tegra_dma_sg_req *hnsgreq;
488 
489 	if (list_empty(&tdc->pending_sg_req))
490 		return;
491 
492 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
493 	if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
494 		hnsgreq = list_first_entry(&hsgreq->node,
495 					typeof(*hnsgreq), node);
496 		tegra_dma_configure_for_next(tdc, hnsgreq);
497 	}
498 }
499 
500 static inline int get_current_xferred_count(struct tegra_dma_channel *tdc,
501 	struct tegra_dma_sg_req *sg_req, unsigned long status)
502 {
503 	return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
504 }
505 
506 static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
507 {
508 	struct tegra_dma_sg_req *sgreq;
509 	struct tegra_dma_desc *dma_desc;
510 
511 	while (!list_empty(&tdc->pending_sg_req)) {
512 		sgreq = list_first_entry(&tdc->pending_sg_req,
513 						typeof(*sgreq), node);
514 		list_move_tail(&sgreq->node, &tdc->free_sg_req);
515 		if (sgreq->last_sg) {
516 			dma_desc = sgreq->dma_desc;
517 			dma_desc->dma_status = DMA_ERROR;
518 			list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
519 
520 			/* Add in cb list if it is not there. */
521 			if (!dma_desc->cb_count)
522 				list_add_tail(&dma_desc->cb_node,
523 							&tdc->cb_desc);
524 			dma_desc->cb_count++;
525 		}
526 	}
527 	tdc->isr_handler = NULL;
528 }
529 
530 static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
531 		struct tegra_dma_sg_req *last_sg_req, bool to_terminate)
532 {
533 	struct tegra_dma_sg_req *hsgreq = NULL;
534 
535 	if (list_empty(&tdc->pending_sg_req)) {
536 		dev_err(tdc2dev(tdc), "Dma is running without req\n");
537 		tegra_dma_stop(tdc);
538 		return false;
539 	}
540 
541 	/*
542 	 * Check that head req on list should be in flight.
543 	 * If it is not in flight then abort transfer as
544 	 * looping of transfer can not continue.
545 	 */
546 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
547 	if (!hsgreq->configured) {
548 		tegra_dma_stop(tdc);
549 		dev_err(tdc2dev(tdc), "Error in dma transfer, aborting dma\n");
550 		tegra_dma_abort_all(tdc);
551 		return false;
552 	}
553 
554 	/* Configure next request */
555 	if (!to_terminate)
556 		tdc_configure_next_head_desc(tdc);
557 	return true;
558 }
559 
560 static void handle_once_dma_done(struct tegra_dma_channel *tdc,
561 	bool to_terminate)
562 {
563 	struct tegra_dma_sg_req *sgreq;
564 	struct tegra_dma_desc *dma_desc;
565 
566 	tdc->busy = false;
567 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
568 	dma_desc = sgreq->dma_desc;
569 	dma_desc->bytes_transferred += sgreq->req_len;
570 
571 	list_del(&sgreq->node);
572 	if (sgreq->last_sg) {
573 		dma_desc->dma_status = DMA_SUCCESS;
574 		dma_cookie_complete(&dma_desc->txd);
575 		if (!dma_desc->cb_count)
576 			list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
577 		dma_desc->cb_count++;
578 		list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
579 	}
580 	list_add_tail(&sgreq->node, &tdc->free_sg_req);
581 
582 	/* Do not start DMA if it is going to be terminate */
583 	if (to_terminate || list_empty(&tdc->pending_sg_req))
584 		return;
585 
586 	tdc_start_head_req(tdc);
587 	return;
588 }
589 
590 static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
591 		bool to_terminate)
592 {
593 	struct tegra_dma_sg_req *sgreq;
594 	struct tegra_dma_desc *dma_desc;
595 	bool st;
596 
597 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
598 	dma_desc = sgreq->dma_desc;
599 	dma_desc->bytes_transferred += sgreq->req_len;
600 
601 	/* Callback need to be call */
602 	if (!dma_desc->cb_count)
603 		list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
604 	dma_desc->cb_count++;
605 
606 	/* If not last req then put at end of pending list */
607 	if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
608 		list_move_tail(&sgreq->node, &tdc->pending_sg_req);
609 		sgreq->configured = false;
610 		st = handle_continuous_head_request(tdc, sgreq, to_terminate);
611 		if (!st)
612 			dma_desc->dma_status = DMA_ERROR;
613 	}
614 	return;
615 }
616 
617 static void tegra_dma_tasklet(unsigned long data)
618 {
619 	struct tegra_dma_channel *tdc = (struct tegra_dma_channel *)data;
620 	dma_async_tx_callback callback = NULL;
621 	void *callback_param = NULL;
622 	struct tegra_dma_desc *dma_desc;
623 	unsigned long flags;
624 	int cb_count;
625 
626 	spin_lock_irqsave(&tdc->lock, flags);
627 	while (!list_empty(&tdc->cb_desc)) {
628 		dma_desc  = list_first_entry(&tdc->cb_desc,
629 					typeof(*dma_desc), cb_node);
630 		list_del(&dma_desc->cb_node);
631 		callback = dma_desc->txd.callback;
632 		callback_param = dma_desc->txd.callback_param;
633 		cb_count = dma_desc->cb_count;
634 		dma_desc->cb_count = 0;
635 		spin_unlock_irqrestore(&tdc->lock, flags);
636 		while (cb_count-- && callback)
637 			callback(callback_param);
638 		spin_lock_irqsave(&tdc->lock, flags);
639 	}
640 	spin_unlock_irqrestore(&tdc->lock, flags);
641 }
642 
643 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
644 {
645 	struct tegra_dma_channel *tdc = dev_id;
646 	unsigned long status;
647 	unsigned long flags;
648 
649 	spin_lock_irqsave(&tdc->lock, flags);
650 
651 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
652 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
653 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
654 		tdc->isr_handler(tdc, false);
655 		tasklet_schedule(&tdc->tasklet);
656 		spin_unlock_irqrestore(&tdc->lock, flags);
657 		return IRQ_HANDLED;
658 	}
659 
660 	spin_unlock_irqrestore(&tdc->lock, flags);
661 	dev_info(tdc2dev(tdc),
662 		"Interrupt already served status 0x%08lx\n", status);
663 	return IRQ_NONE;
664 }
665 
666 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
667 {
668 	struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
669 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
670 	unsigned long flags;
671 	dma_cookie_t cookie;
672 
673 	spin_lock_irqsave(&tdc->lock, flags);
674 	dma_desc->dma_status = DMA_IN_PROGRESS;
675 	cookie = dma_cookie_assign(&dma_desc->txd);
676 	list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
677 	spin_unlock_irqrestore(&tdc->lock, flags);
678 	return cookie;
679 }
680 
681 static void tegra_dma_issue_pending(struct dma_chan *dc)
682 {
683 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
684 	unsigned long flags;
685 
686 	spin_lock_irqsave(&tdc->lock, flags);
687 	if (list_empty(&tdc->pending_sg_req)) {
688 		dev_err(tdc2dev(tdc), "No DMA request\n");
689 		goto end;
690 	}
691 	if (!tdc->busy) {
692 		tdc_start_head_req(tdc);
693 
694 		/* Continuous single mode: Configure next req */
695 		if (tdc->cyclic) {
696 			/*
697 			 * Wait for 1 burst time for configure DMA for
698 			 * next transfer.
699 			 */
700 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
701 			tdc_configure_next_head_desc(tdc);
702 		}
703 	}
704 end:
705 	spin_unlock_irqrestore(&tdc->lock, flags);
706 	return;
707 }
708 
709 static void tegra_dma_terminate_all(struct dma_chan *dc)
710 {
711 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
712 	struct tegra_dma_sg_req *sgreq;
713 	struct tegra_dma_desc *dma_desc;
714 	unsigned long flags;
715 	unsigned long status;
716 	bool was_busy;
717 
718 	spin_lock_irqsave(&tdc->lock, flags);
719 	if (list_empty(&tdc->pending_sg_req)) {
720 		spin_unlock_irqrestore(&tdc->lock, flags);
721 		return;
722 	}
723 
724 	if (!tdc->busy)
725 		goto skip_dma_stop;
726 
727 	/* Pause DMA before checking the queue status */
728 	tegra_dma_pause(tdc, true);
729 
730 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
731 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
732 		dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
733 		tdc->isr_handler(tdc, true);
734 		status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
735 	}
736 
737 	was_busy = tdc->busy;
738 	tegra_dma_stop(tdc);
739 
740 	if (!list_empty(&tdc->pending_sg_req) && was_busy) {
741 		sgreq = list_first_entry(&tdc->pending_sg_req,
742 					typeof(*sgreq), node);
743 		sgreq->dma_desc->bytes_transferred +=
744 				get_current_xferred_count(tdc, sgreq, status);
745 	}
746 	tegra_dma_resume(tdc);
747 
748 skip_dma_stop:
749 	tegra_dma_abort_all(tdc);
750 
751 	while (!list_empty(&tdc->cb_desc)) {
752 		dma_desc  = list_first_entry(&tdc->cb_desc,
753 					typeof(*dma_desc), cb_node);
754 		list_del(&dma_desc->cb_node);
755 		dma_desc->cb_count = 0;
756 	}
757 	spin_unlock_irqrestore(&tdc->lock, flags);
758 }
759 
760 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
761 	dma_cookie_t cookie, struct dma_tx_state *txstate)
762 {
763 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
764 	struct tegra_dma_desc *dma_desc;
765 	struct tegra_dma_sg_req *sg_req;
766 	enum dma_status ret;
767 	unsigned long flags;
768 	unsigned int residual;
769 
770 	spin_lock_irqsave(&tdc->lock, flags);
771 
772 	ret = dma_cookie_status(dc, cookie, txstate);
773 	if (ret == DMA_SUCCESS) {
774 		spin_unlock_irqrestore(&tdc->lock, flags);
775 		return ret;
776 	}
777 
778 	/* Check on wait_ack desc status */
779 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
780 		if (dma_desc->txd.cookie == cookie) {
781 			residual =  dma_desc->bytes_requested -
782 					(dma_desc->bytes_transferred %
783 						dma_desc->bytes_requested);
784 			dma_set_residue(txstate, residual);
785 			ret = dma_desc->dma_status;
786 			spin_unlock_irqrestore(&tdc->lock, flags);
787 			return ret;
788 		}
789 	}
790 
791 	/* Check in pending list */
792 	list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
793 		dma_desc = sg_req->dma_desc;
794 		if (dma_desc->txd.cookie == cookie) {
795 			residual =  dma_desc->bytes_requested -
796 					(dma_desc->bytes_transferred %
797 						dma_desc->bytes_requested);
798 			dma_set_residue(txstate, residual);
799 			ret = dma_desc->dma_status;
800 			spin_unlock_irqrestore(&tdc->lock, flags);
801 			return ret;
802 		}
803 	}
804 
805 	dev_dbg(tdc2dev(tdc), "cookie %d does not found\n", cookie);
806 	spin_unlock_irqrestore(&tdc->lock, flags);
807 	return ret;
808 }
809 
810 static int tegra_dma_device_control(struct dma_chan *dc, enum dma_ctrl_cmd cmd,
811 			unsigned long arg)
812 {
813 	switch (cmd) {
814 	case DMA_SLAVE_CONFIG:
815 		return tegra_dma_slave_config(dc,
816 				(struct dma_slave_config *)arg);
817 
818 	case DMA_TERMINATE_ALL:
819 		tegra_dma_terminate_all(dc);
820 		return 0;
821 
822 	default:
823 		break;
824 	}
825 
826 	return -ENXIO;
827 }
828 
829 static inline int get_bus_width(struct tegra_dma_channel *tdc,
830 		enum dma_slave_buswidth slave_bw)
831 {
832 	switch (slave_bw) {
833 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
834 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
835 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
836 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
837 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
838 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
839 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
840 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
841 	default:
842 		dev_warn(tdc2dev(tdc),
843 			"slave bw is not supported, using 32bits\n");
844 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
845 	}
846 }
847 
848 static inline int get_burst_size(struct tegra_dma_channel *tdc,
849 	u32 burst_size, enum dma_slave_buswidth slave_bw, int len)
850 {
851 	int burst_byte;
852 	int burst_ahb_width;
853 
854 	/*
855 	 * burst_size from client is in terms of the bus_width.
856 	 * convert them into AHB memory width which is 4 byte.
857 	 */
858 	burst_byte = burst_size * slave_bw;
859 	burst_ahb_width = burst_byte / 4;
860 
861 	/* If burst size is 0 then calculate the burst size based on length */
862 	if (!burst_ahb_width) {
863 		if (len & 0xF)
864 			return TEGRA_APBDMA_AHBSEQ_BURST_1;
865 		else if ((len >> 4) & 0x1)
866 			return TEGRA_APBDMA_AHBSEQ_BURST_4;
867 		else
868 			return TEGRA_APBDMA_AHBSEQ_BURST_8;
869 	}
870 	if (burst_ahb_width < 4)
871 		return TEGRA_APBDMA_AHBSEQ_BURST_1;
872 	else if (burst_ahb_width < 8)
873 		return TEGRA_APBDMA_AHBSEQ_BURST_4;
874 	else
875 		return TEGRA_APBDMA_AHBSEQ_BURST_8;
876 }
877 
878 static int get_transfer_param(struct tegra_dma_channel *tdc,
879 	enum dma_transfer_direction direction, unsigned long *apb_addr,
880 	unsigned long *apb_seq,	unsigned long *csr, unsigned int *burst_size,
881 	enum dma_slave_buswidth *slave_bw)
882 {
883 
884 	switch (direction) {
885 	case DMA_MEM_TO_DEV:
886 		*apb_addr = tdc->dma_sconfig.dst_addr;
887 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
888 		*burst_size = tdc->dma_sconfig.dst_maxburst;
889 		*slave_bw = tdc->dma_sconfig.dst_addr_width;
890 		*csr = TEGRA_APBDMA_CSR_DIR;
891 		return 0;
892 
893 	case DMA_DEV_TO_MEM:
894 		*apb_addr = tdc->dma_sconfig.src_addr;
895 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
896 		*burst_size = tdc->dma_sconfig.src_maxburst;
897 		*slave_bw = tdc->dma_sconfig.src_addr_width;
898 		*csr = 0;
899 		return 0;
900 
901 	default:
902 		dev_err(tdc2dev(tdc), "Dma direction is not supported\n");
903 		return -EINVAL;
904 	}
905 	return -EINVAL;
906 }
907 
908 static struct dma_async_tx_descriptor *tegra_dma_prep_slave_sg(
909 	struct dma_chan *dc, struct scatterlist *sgl, unsigned int sg_len,
910 	enum dma_transfer_direction direction, unsigned long flags,
911 	void *context)
912 {
913 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
914 	struct tegra_dma_desc *dma_desc;
915 	unsigned int	    i;
916 	struct scatterlist      *sg;
917 	unsigned long csr, ahb_seq, apb_ptr, apb_seq;
918 	struct list_head req_list;
919 	struct tegra_dma_sg_req  *sg_req = NULL;
920 	u32 burst_size;
921 	enum dma_slave_buswidth slave_bw;
922 	int ret;
923 
924 	if (!tdc->config_init) {
925 		dev_err(tdc2dev(tdc), "dma channel is not configured\n");
926 		return NULL;
927 	}
928 	if (sg_len < 1) {
929 		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
930 		return NULL;
931 	}
932 
933 	ret = get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
934 				&burst_size, &slave_bw);
935 	if (ret < 0)
936 		return NULL;
937 
938 	INIT_LIST_HEAD(&req_list);
939 
940 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
941 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
942 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
943 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
944 
945 	csr |= TEGRA_APBDMA_CSR_ONCE | TEGRA_APBDMA_CSR_FLOW;
946 	csr |= tdc->dma_sconfig.slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
947 	if (flags & DMA_PREP_INTERRUPT)
948 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
949 
950 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
951 
952 	dma_desc = tegra_dma_desc_get(tdc);
953 	if (!dma_desc) {
954 		dev_err(tdc2dev(tdc), "Dma descriptors not available\n");
955 		return NULL;
956 	}
957 	INIT_LIST_HEAD(&dma_desc->tx_list);
958 	INIT_LIST_HEAD(&dma_desc->cb_node);
959 	dma_desc->cb_count = 0;
960 	dma_desc->bytes_requested = 0;
961 	dma_desc->bytes_transferred = 0;
962 	dma_desc->dma_status = DMA_IN_PROGRESS;
963 
964 	/* Make transfer requests */
965 	for_each_sg(sgl, sg, sg_len, i) {
966 		u32 len, mem;
967 
968 		mem = sg_dma_address(sg);
969 		len = sg_dma_len(sg);
970 
971 		if ((len & 3) || (mem & 3) ||
972 				(len > tdc->tdma->chip_data->max_dma_count)) {
973 			dev_err(tdc2dev(tdc),
974 				"Dma length/memory address is not supported\n");
975 			tegra_dma_desc_put(tdc, dma_desc);
976 			return NULL;
977 		}
978 
979 		sg_req = tegra_dma_sg_req_get(tdc);
980 		if (!sg_req) {
981 			dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
982 			tegra_dma_desc_put(tdc, dma_desc);
983 			return NULL;
984 		}
985 
986 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
987 		dma_desc->bytes_requested += len;
988 
989 		sg_req->ch_regs.apb_ptr = apb_ptr;
990 		sg_req->ch_regs.ahb_ptr = mem;
991 		sg_req->ch_regs.csr = csr | ((len - 4) & 0xFFFC);
992 		sg_req->ch_regs.apb_seq = apb_seq;
993 		sg_req->ch_regs.ahb_seq = ahb_seq;
994 		sg_req->configured = false;
995 		sg_req->last_sg = false;
996 		sg_req->dma_desc = dma_desc;
997 		sg_req->req_len = len;
998 
999 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1000 	}
1001 	sg_req->last_sg = true;
1002 	if (flags & DMA_CTRL_ACK)
1003 		dma_desc->txd.flags = DMA_CTRL_ACK;
1004 
1005 	/*
1006 	 * Make sure that mode should not be conflicting with currently
1007 	 * configured mode.
1008 	 */
1009 	if (!tdc->isr_handler) {
1010 		tdc->isr_handler = handle_once_dma_done;
1011 		tdc->cyclic = false;
1012 	} else {
1013 		if (tdc->cyclic) {
1014 			dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1015 			tegra_dma_desc_put(tdc, dma_desc);
1016 			return NULL;
1017 		}
1018 	}
1019 
1020 	return &dma_desc->txd;
1021 }
1022 
1023 struct dma_async_tx_descriptor *tegra_dma_prep_dma_cyclic(
1024 	struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
1025 	size_t period_len, enum dma_transfer_direction direction,
1026 	unsigned long flags, void *context)
1027 {
1028 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1029 	struct tegra_dma_desc *dma_desc = NULL;
1030 	struct tegra_dma_sg_req  *sg_req = NULL;
1031 	unsigned long csr, ahb_seq, apb_ptr, apb_seq;
1032 	int len;
1033 	size_t remain_len;
1034 	dma_addr_t mem = buf_addr;
1035 	u32 burst_size;
1036 	enum dma_slave_buswidth slave_bw;
1037 	int ret;
1038 
1039 	if (!buf_len || !period_len) {
1040 		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1041 		return NULL;
1042 	}
1043 
1044 	if (!tdc->config_init) {
1045 		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1046 		return NULL;
1047 	}
1048 
1049 	/*
1050 	 * We allow to take more number of requests till DMA is
1051 	 * not started. The driver will loop over all requests.
1052 	 * Once DMA is started then new requests can be queued only after
1053 	 * terminating the DMA.
1054 	 */
1055 	if (tdc->busy) {
1056 		dev_err(tdc2dev(tdc), "Request not allowed when dma running\n");
1057 		return NULL;
1058 	}
1059 
1060 	/*
1061 	 * We only support cycle transfer when buf_len is multiple of
1062 	 * period_len.
1063 	 */
1064 	if (buf_len % period_len) {
1065 		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1066 		return NULL;
1067 	}
1068 
1069 	len = period_len;
1070 	if ((len & 3) || (buf_addr & 3) ||
1071 			(len > tdc->tdma->chip_data->max_dma_count)) {
1072 		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1073 		return NULL;
1074 	}
1075 
1076 	ret = get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1077 				&burst_size, &slave_bw);
1078 	if (ret < 0)
1079 		return NULL;
1080 
1081 
1082 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1083 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1084 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1085 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1086 
1087 	csr |= TEGRA_APBDMA_CSR_FLOW;
1088 	if (flags & DMA_PREP_INTERRUPT)
1089 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1090 	csr |= tdc->dma_sconfig.slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1091 
1092 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1093 
1094 	dma_desc = tegra_dma_desc_get(tdc);
1095 	if (!dma_desc) {
1096 		dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1097 		return NULL;
1098 	}
1099 
1100 	INIT_LIST_HEAD(&dma_desc->tx_list);
1101 	INIT_LIST_HEAD(&dma_desc->cb_node);
1102 	dma_desc->cb_count = 0;
1103 
1104 	dma_desc->bytes_transferred = 0;
1105 	dma_desc->bytes_requested = buf_len;
1106 	remain_len = buf_len;
1107 
1108 	/* Split transfer equal to period size */
1109 	while (remain_len) {
1110 		sg_req = tegra_dma_sg_req_get(tdc);
1111 		if (!sg_req) {
1112 			dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
1113 			tegra_dma_desc_put(tdc, dma_desc);
1114 			return NULL;
1115 		}
1116 
1117 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1118 		sg_req->ch_regs.apb_ptr = apb_ptr;
1119 		sg_req->ch_regs.ahb_ptr = mem;
1120 		sg_req->ch_regs.csr = csr | ((len - 4) & 0xFFFC);
1121 		sg_req->ch_regs.apb_seq = apb_seq;
1122 		sg_req->ch_regs.ahb_seq = ahb_seq;
1123 		sg_req->configured = false;
1124 		sg_req->half_done = false;
1125 		sg_req->last_sg = false;
1126 		sg_req->dma_desc = dma_desc;
1127 		sg_req->req_len = len;
1128 
1129 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1130 		remain_len -= len;
1131 		mem += len;
1132 	}
1133 	sg_req->last_sg = true;
1134 	if (flags & DMA_CTRL_ACK)
1135 		dma_desc->txd.flags = DMA_CTRL_ACK;
1136 
1137 	/*
1138 	 * Make sure that mode should not be conflicting with currently
1139 	 * configured mode.
1140 	 */
1141 	if (!tdc->isr_handler) {
1142 		tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1143 		tdc->cyclic = true;
1144 	} else {
1145 		if (!tdc->cyclic) {
1146 			dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1147 			tegra_dma_desc_put(tdc, dma_desc);
1148 			return NULL;
1149 		}
1150 	}
1151 
1152 	return &dma_desc->txd;
1153 }
1154 
1155 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1156 {
1157 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1158 	struct tegra_dma *tdma = tdc->tdma;
1159 	int ret;
1160 
1161 	dma_cookie_init(&tdc->dma_chan);
1162 	tdc->config_init = false;
1163 	ret = clk_prepare_enable(tdma->dma_clk);
1164 	if (ret < 0)
1165 		dev_err(tdc2dev(tdc), "clk_prepare_enable failed: %d\n", ret);
1166 	return ret;
1167 }
1168 
1169 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1170 {
1171 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1172 	struct tegra_dma *tdma = tdc->tdma;
1173 
1174 	struct tegra_dma_desc *dma_desc;
1175 	struct tegra_dma_sg_req *sg_req;
1176 	struct list_head dma_desc_list;
1177 	struct list_head sg_req_list;
1178 	unsigned long flags;
1179 
1180 	INIT_LIST_HEAD(&dma_desc_list);
1181 	INIT_LIST_HEAD(&sg_req_list);
1182 
1183 	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1184 
1185 	if (tdc->busy)
1186 		tegra_dma_terminate_all(dc);
1187 
1188 	spin_lock_irqsave(&tdc->lock, flags);
1189 	list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1190 	list_splice_init(&tdc->free_sg_req, &sg_req_list);
1191 	list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1192 	INIT_LIST_HEAD(&tdc->cb_desc);
1193 	tdc->config_init = false;
1194 	spin_unlock_irqrestore(&tdc->lock, flags);
1195 
1196 	while (!list_empty(&dma_desc_list)) {
1197 		dma_desc = list_first_entry(&dma_desc_list,
1198 					typeof(*dma_desc), node);
1199 		list_del(&dma_desc->node);
1200 		kfree(dma_desc);
1201 	}
1202 
1203 	while (!list_empty(&sg_req_list)) {
1204 		sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1205 		list_del(&sg_req->node);
1206 		kfree(sg_req);
1207 	}
1208 	clk_disable_unprepare(tdma->dma_clk);
1209 }
1210 
1211 /* Tegra20 specific DMA controller information */
1212 static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1213 	.nr_channels		= 16,
1214 	.max_dma_count		= 1024UL * 64,
1215 	.support_channel_pause	= false,
1216 };
1217 
1218 /* Tegra30 specific DMA controller information */
1219 static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1220 	.nr_channels		= 32,
1221 	.max_dma_count		= 1024UL * 64,
1222 	.support_channel_pause	= false,
1223 };
1224 
1225 /* Tegra114 specific DMA controller information */
1226 static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1227 	.nr_channels		= 32,
1228 	.max_dma_count		= 1024UL * 64,
1229 	.support_channel_pause	= true,
1230 };
1231 
1232 
1233 static const struct of_device_id tegra_dma_of_match[] = {
1234 	{
1235 		.compatible = "nvidia,tegra114-apbdma",
1236 		.data = &tegra114_dma_chip_data,
1237 	}, {
1238 		.compatible = "nvidia,tegra30-apbdma",
1239 		.data = &tegra30_dma_chip_data,
1240 	}, {
1241 		.compatible = "nvidia,tegra20-apbdma",
1242 		.data = &tegra20_dma_chip_data,
1243 	}, {
1244 	},
1245 };
1246 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1247 
1248 static int tegra_dma_probe(struct platform_device *pdev)
1249 {
1250 	struct resource	*res;
1251 	struct tegra_dma *tdma;
1252 	int ret;
1253 	int i;
1254 	const struct tegra_dma_chip_data *cdata = NULL;
1255 	const struct of_device_id *match;
1256 
1257 	match = of_match_device(tegra_dma_of_match, &pdev->dev);
1258 	if (!match) {
1259 		dev_err(&pdev->dev, "Error: No device match found\n");
1260 		return -ENODEV;
1261 	}
1262 	cdata = match->data;
1263 
1264 	tdma = devm_kzalloc(&pdev->dev, sizeof(*tdma) + cdata->nr_channels *
1265 			sizeof(struct tegra_dma_channel), GFP_KERNEL);
1266 	if (!tdma) {
1267 		dev_err(&pdev->dev, "Error: memory allocation failed\n");
1268 		return -ENOMEM;
1269 	}
1270 
1271 	tdma->dev = &pdev->dev;
1272 	tdma->chip_data = cdata;
1273 	platform_set_drvdata(pdev, tdma);
1274 
1275 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1276 	tdma->base_addr = devm_ioremap_resource(&pdev->dev, res);
1277 	if (IS_ERR(tdma->base_addr))
1278 		return PTR_ERR(tdma->base_addr);
1279 
1280 	tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1281 	if (IS_ERR(tdma->dma_clk)) {
1282 		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1283 		return PTR_ERR(tdma->dma_clk);
1284 	}
1285 
1286 	spin_lock_init(&tdma->global_lock);
1287 
1288 	pm_runtime_enable(&pdev->dev);
1289 	if (!pm_runtime_enabled(&pdev->dev)) {
1290 		ret = tegra_dma_runtime_resume(&pdev->dev);
1291 		if (ret) {
1292 			dev_err(&pdev->dev, "dma_runtime_resume failed %d\n",
1293 				ret);
1294 			goto err_pm_disable;
1295 		}
1296 	}
1297 
1298 	/* Enable clock before accessing registers */
1299 	ret = clk_prepare_enable(tdma->dma_clk);
1300 	if (ret < 0) {
1301 		dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
1302 		goto err_pm_disable;
1303 	}
1304 
1305 	/* Reset DMA controller */
1306 	tegra_periph_reset_assert(tdma->dma_clk);
1307 	udelay(2);
1308 	tegra_periph_reset_deassert(tdma->dma_clk);
1309 
1310 	/* Enable global DMA registers */
1311 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1312 	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1313 	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1314 
1315 	clk_disable_unprepare(tdma->dma_clk);
1316 
1317 	INIT_LIST_HEAD(&tdma->dma_dev.channels);
1318 	for (i = 0; i < cdata->nr_channels; i++) {
1319 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1320 
1321 		tdc->chan_base_offset = TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1322 					i * TEGRA_APBDMA_CHANNEL_REGISTER_SIZE;
1323 
1324 		res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1325 		if (!res) {
1326 			ret = -EINVAL;
1327 			dev_err(&pdev->dev, "No irq resource for chan %d\n", i);
1328 			goto err_irq;
1329 		}
1330 		tdc->irq = res->start;
1331 		snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1332 		ret = devm_request_irq(&pdev->dev, tdc->irq,
1333 				tegra_dma_isr, 0, tdc->name, tdc);
1334 		if (ret) {
1335 			dev_err(&pdev->dev,
1336 				"request_irq failed with err %d channel %d\n",
1337 				i, ret);
1338 			goto err_irq;
1339 		}
1340 
1341 		tdc->dma_chan.device = &tdma->dma_dev;
1342 		dma_cookie_init(&tdc->dma_chan);
1343 		list_add_tail(&tdc->dma_chan.device_node,
1344 				&tdma->dma_dev.channels);
1345 		tdc->tdma = tdma;
1346 		tdc->id = i;
1347 
1348 		tasklet_init(&tdc->tasklet, tegra_dma_tasklet,
1349 				(unsigned long)tdc);
1350 		spin_lock_init(&tdc->lock);
1351 
1352 		INIT_LIST_HEAD(&tdc->pending_sg_req);
1353 		INIT_LIST_HEAD(&tdc->free_sg_req);
1354 		INIT_LIST_HEAD(&tdc->free_dma_desc);
1355 		INIT_LIST_HEAD(&tdc->cb_desc);
1356 	}
1357 
1358 	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1359 	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1360 	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1361 
1362 	tdma->dma_dev.dev = &pdev->dev;
1363 	tdma->dma_dev.device_alloc_chan_resources =
1364 					tegra_dma_alloc_chan_resources;
1365 	tdma->dma_dev.device_free_chan_resources =
1366 					tegra_dma_free_chan_resources;
1367 	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1368 	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1369 	tdma->dma_dev.device_control = tegra_dma_device_control;
1370 	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1371 	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1372 
1373 	ret = dma_async_device_register(&tdma->dma_dev);
1374 	if (ret < 0) {
1375 		dev_err(&pdev->dev,
1376 			"Tegra20 APB DMA driver registration failed %d\n", ret);
1377 		goto err_irq;
1378 	}
1379 
1380 	dev_info(&pdev->dev, "Tegra20 APB DMA driver register %d channels\n",
1381 			cdata->nr_channels);
1382 	return 0;
1383 
1384 err_irq:
1385 	while (--i >= 0) {
1386 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1387 		tasklet_kill(&tdc->tasklet);
1388 	}
1389 
1390 err_pm_disable:
1391 	pm_runtime_disable(&pdev->dev);
1392 	if (!pm_runtime_status_suspended(&pdev->dev))
1393 		tegra_dma_runtime_suspend(&pdev->dev);
1394 	return ret;
1395 }
1396 
1397 static int tegra_dma_remove(struct platform_device *pdev)
1398 {
1399 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1400 	int i;
1401 	struct tegra_dma_channel *tdc;
1402 
1403 	dma_async_device_unregister(&tdma->dma_dev);
1404 
1405 	for (i = 0; i < tdma->chip_data->nr_channels; ++i) {
1406 		tdc = &tdma->channels[i];
1407 		tasklet_kill(&tdc->tasklet);
1408 	}
1409 
1410 	pm_runtime_disable(&pdev->dev);
1411 	if (!pm_runtime_status_suspended(&pdev->dev))
1412 		tegra_dma_runtime_suspend(&pdev->dev);
1413 
1414 	return 0;
1415 }
1416 
1417 static int tegra_dma_runtime_suspend(struct device *dev)
1418 {
1419 	struct platform_device *pdev = to_platform_device(dev);
1420 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1421 
1422 	clk_disable_unprepare(tdma->dma_clk);
1423 	return 0;
1424 }
1425 
1426 static int tegra_dma_runtime_resume(struct device *dev)
1427 {
1428 	struct platform_device *pdev = to_platform_device(dev);
1429 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1430 	int ret;
1431 
1432 	ret = clk_prepare_enable(tdma->dma_clk);
1433 	if (ret < 0) {
1434 		dev_err(dev, "clk_enable failed: %d\n", ret);
1435 		return ret;
1436 	}
1437 	return 0;
1438 }
1439 
1440 #ifdef CONFIG_PM_SLEEP
1441 static int tegra_dma_pm_suspend(struct device *dev)
1442 {
1443 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1444 	int i;
1445 	int ret;
1446 
1447 	/* Enable clock before accessing register */
1448 	ret = tegra_dma_runtime_resume(dev);
1449 	if (ret < 0)
1450 		return ret;
1451 
1452 	tdma->reg_gen = tdma_read(tdma, TEGRA_APBDMA_GENERAL);
1453 	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1454 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1455 		struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1456 
1457 		ch_reg->csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
1458 		ch_reg->ahb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBPTR);
1459 		ch_reg->apb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBPTR);
1460 		ch_reg->ahb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBSEQ);
1461 		ch_reg->apb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBSEQ);
1462 	}
1463 
1464 	/* Disable clock */
1465 	tegra_dma_runtime_suspend(dev);
1466 	return 0;
1467 }
1468 
1469 static int tegra_dma_pm_resume(struct device *dev)
1470 {
1471 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1472 	int i;
1473 	int ret;
1474 
1475 	/* Enable clock before accessing register */
1476 	ret = tegra_dma_runtime_resume(dev);
1477 	if (ret < 0)
1478 		return ret;
1479 
1480 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, tdma->reg_gen);
1481 	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1482 	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1483 
1484 	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1485 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1486 		struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1487 
1488 		tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_reg->apb_seq);
1489 		tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_reg->apb_ptr);
1490 		tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_reg->ahb_seq);
1491 		tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_reg->ahb_ptr);
1492 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
1493 			(ch_reg->csr & ~TEGRA_APBDMA_CSR_ENB));
1494 	}
1495 
1496 	/* Disable clock */
1497 	tegra_dma_runtime_suspend(dev);
1498 	return 0;
1499 }
1500 #endif
1501 
1502 static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1503 #ifdef CONFIG_PM_RUNTIME
1504 	.runtime_suspend = tegra_dma_runtime_suspend,
1505 	.runtime_resume = tegra_dma_runtime_resume,
1506 #endif
1507 	SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_pm_suspend, tegra_dma_pm_resume)
1508 };
1509 
1510 static struct platform_driver tegra_dmac_driver = {
1511 	.driver = {
1512 		.name	= "tegra-apbdma",
1513 		.owner = THIS_MODULE,
1514 		.pm	= &tegra_dma_dev_pm_ops,
1515 		.of_match_table = tegra_dma_of_match,
1516 	},
1517 	.probe		= tegra_dma_probe,
1518 	.remove		= tegra_dma_remove,
1519 };
1520 
1521 module_platform_driver(tegra_dmac_driver);
1522 
1523 MODULE_ALIAS("platform:tegra20-apbdma");
1524 MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1525 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1526 MODULE_LICENSE("GPL v2");
1527