xref: /openbmc/linux/drivers/dma/tegra20-apb-dma.c (revision c4ee0af3)
1 /*
2  * DMA driver for Nvidia's Tegra20 APB DMA controller.
3  *
4  * Copyright (c) 2012, NVIDIA CORPORATION.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include <linux/bitops.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/err.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/platform_device.h>
33 #include <linux/pm.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/slab.h>
36 #include <linux/clk/tegra.h>
37 
38 #include "dmaengine.h"
39 
40 #define TEGRA_APBDMA_GENERAL			0x0
41 #define TEGRA_APBDMA_GENERAL_ENABLE		BIT(31)
42 
43 #define TEGRA_APBDMA_CONTROL			0x010
44 #define TEGRA_APBDMA_IRQ_MASK			0x01c
45 #define TEGRA_APBDMA_IRQ_MASK_SET		0x020
46 
47 /* CSR register */
48 #define TEGRA_APBDMA_CHAN_CSR			0x00
49 #define TEGRA_APBDMA_CSR_ENB			BIT(31)
50 #define TEGRA_APBDMA_CSR_IE_EOC			BIT(30)
51 #define TEGRA_APBDMA_CSR_HOLD			BIT(29)
52 #define TEGRA_APBDMA_CSR_DIR			BIT(28)
53 #define TEGRA_APBDMA_CSR_ONCE			BIT(27)
54 #define TEGRA_APBDMA_CSR_FLOW			BIT(21)
55 #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT		16
56 #define TEGRA_APBDMA_CSR_WCOUNT_MASK		0xFFFC
57 
58 /* STATUS register */
59 #define TEGRA_APBDMA_CHAN_STATUS		0x004
60 #define TEGRA_APBDMA_STATUS_BUSY		BIT(31)
61 #define TEGRA_APBDMA_STATUS_ISE_EOC		BIT(30)
62 #define TEGRA_APBDMA_STATUS_HALT		BIT(29)
63 #define TEGRA_APBDMA_STATUS_PING_PONG		BIT(28)
64 #define TEGRA_APBDMA_STATUS_COUNT_SHIFT		2
65 #define TEGRA_APBDMA_STATUS_COUNT_MASK		0xFFFC
66 
67 #define TEGRA_APBDMA_CHAN_CSRE			0x00C
68 #define TEGRA_APBDMA_CHAN_CSRE_PAUSE		(1 << 31)
69 
70 /* AHB memory address */
71 #define TEGRA_APBDMA_CHAN_AHBPTR		0x010
72 
73 /* AHB sequence register */
74 #define TEGRA_APBDMA_CHAN_AHBSEQ		0x14
75 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB		BIT(31)
76 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8		(0 << 28)
77 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16	(1 << 28)
78 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32	(2 << 28)
79 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64	(3 << 28)
80 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128	(4 << 28)
81 #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP		BIT(27)
82 #define TEGRA_APBDMA_AHBSEQ_BURST_1		(4 << 24)
83 #define TEGRA_APBDMA_AHBSEQ_BURST_4		(5 << 24)
84 #define TEGRA_APBDMA_AHBSEQ_BURST_8		(6 << 24)
85 #define TEGRA_APBDMA_AHBSEQ_DBL_BUF		BIT(19)
86 #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT		16
87 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE		0
88 
89 /* APB address */
90 #define TEGRA_APBDMA_CHAN_APBPTR		0x018
91 
92 /* APB sequence register */
93 #define TEGRA_APBDMA_CHAN_APBSEQ		0x01c
94 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8		(0 << 28)
95 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16	(1 << 28)
96 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32	(2 << 28)
97 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64	(3 << 28)
98 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128	(4 << 28)
99 #define TEGRA_APBDMA_APBSEQ_DATA_SWAP		BIT(27)
100 #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1		(1 << 16)
101 
102 /*
103  * If any burst is in flight and DMA paused then this is the time to complete
104  * on-flight burst and update DMA status register.
105  */
106 #define TEGRA_APBDMA_BURST_COMPLETE_TIME	20
107 
108 /* Channel base address offset from APBDMA base address */
109 #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET	0x1000
110 
111 /* DMA channel register space size */
112 #define TEGRA_APBDMA_CHANNEL_REGISTER_SIZE	0x20
113 
114 struct tegra_dma;
115 
116 /*
117  * tegra_dma_chip_data Tegra chip specific DMA data
118  * @nr_channels: Number of channels available in the controller.
119  * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
120  * @support_channel_pause: Support channel wise pause of dma.
121  */
122 struct tegra_dma_chip_data {
123 	int nr_channels;
124 	int max_dma_count;
125 	bool support_channel_pause;
126 };
127 
128 /* DMA channel registers */
129 struct tegra_dma_channel_regs {
130 	unsigned long	csr;
131 	unsigned long	ahb_ptr;
132 	unsigned long	apb_ptr;
133 	unsigned long	ahb_seq;
134 	unsigned long	apb_seq;
135 };
136 
137 /*
138  * tegra_dma_sg_req: Dma request details to configure hardware. This
139  * contains the details for one transfer to configure DMA hw.
140  * The client's request for data transfer can be broken into multiple
141  * sub-transfer as per requester details and hw support.
142  * This sub transfer get added in the list of transfer and point to Tegra
143  * DMA descriptor which manages the transfer details.
144  */
145 struct tegra_dma_sg_req {
146 	struct tegra_dma_channel_regs	ch_regs;
147 	int				req_len;
148 	bool				configured;
149 	bool				last_sg;
150 	bool				half_done;
151 	struct list_head		node;
152 	struct tegra_dma_desc		*dma_desc;
153 };
154 
155 /*
156  * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
157  * This descriptor keep track of transfer status, callbacks and request
158  * counts etc.
159  */
160 struct tegra_dma_desc {
161 	struct dma_async_tx_descriptor	txd;
162 	int				bytes_requested;
163 	int				bytes_transferred;
164 	enum dma_status			dma_status;
165 	struct list_head		node;
166 	struct list_head		tx_list;
167 	struct list_head		cb_node;
168 	int				cb_count;
169 };
170 
171 struct tegra_dma_channel;
172 
173 typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
174 				bool to_terminate);
175 
176 /* tegra_dma_channel: Channel specific information */
177 struct tegra_dma_channel {
178 	struct dma_chan		dma_chan;
179 	char			name[30];
180 	bool			config_init;
181 	int			id;
182 	int			irq;
183 	unsigned long		chan_base_offset;
184 	spinlock_t		lock;
185 	bool			busy;
186 	struct tegra_dma	*tdma;
187 	bool			cyclic;
188 
189 	/* Different lists for managing the requests */
190 	struct list_head	free_sg_req;
191 	struct list_head	pending_sg_req;
192 	struct list_head	free_dma_desc;
193 	struct list_head	cb_desc;
194 
195 	/* ISR handler and tasklet for bottom half of isr handling */
196 	dma_isr_handler		isr_handler;
197 	struct tasklet_struct	tasklet;
198 	dma_async_tx_callback	callback;
199 	void			*callback_param;
200 
201 	/* Channel-slave specific configuration */
202 	struct dma_slave_config dma_sconfig;
203 	struct tegra_dma_channel_regs	channel_reg;
204 };
205 
206 /* tegra_dma: Tegra DMA specific information */
207 struct tegra_dma {
208 	struct dma_device		dma_dev;
209 	struct device			*dev;
210 	struct clk			*dma_clk;
211 	spinlock_t			global_lock;
212 	void __iomem			*base_addr;
213 	const struct tegra_dma_chip_data *chip_data;
214 
215 	/* Some register need to be cache before suspend */
216 	u32				reg_gen;
217 
218 	/* Last member of the structure */
219 	struct tegra_dma_channel channels[0];
220 };
221 
222 static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
223 {
224 	writel(val, tdma->base_addr + reg);
225 }
226 
227 static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
228 {
229 	return readl(tdma->base_addr + reg);
230 }
231 
232 static inline void tdc_write(struct tegra_dma_channel *tdc,
233 		u32 reg, u32 val)
234 {
235 	writel(val, tdc->tdma->base_addr + tdc->chan_base_offset + reg);
236 }
237 
238 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
239 {
240 	return readl(tdc->tdma->base_addr + tdc->chan_base_offset + reg);
241 }
242 
243 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
244 {
245 	return container_of(dc, struct tegra_dma_channel, dma_chan);
246 }
247 
248 static inline struct tegra_dma_desc *txd_to_tegra_dma_desc(
249 		struct dma_async_tx_descriptor *td)
250 {
251 	return container_of(td, struct tegra_dma_desc, txd);
252 }
253 
254 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
255 {
256 	return &tdc->dma_chan.dev->device;
257 }
258 
259 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
260 static int tegra_dma_runtime_suspend(struct device *dev);
261 static int tegra_dma_runtime_resume(struct device *dev);
262 
263 /* Get DMA desc from free list, if not there then allocate it.  */
264 static struct tegra_dma_desc *tegra_dma_desc_get(
265 		struct tegra_dma_channel *tdc)
266 {
267 	struct tegra_dma_desc *dma_desc;
268 	unsigned long flags;
269 
270 	spin_lock_irqsave(&tdc->lock, flags);
271 
272 	/* Do not allocate if desc are waiting for ack */
273 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
274 		if (async_tx_test_ack(&dma_desc->txd)) {
275 			list_del(&dma_desc->node);
276 			spin_unlock_irqrestore(&tdc->lock, flags);
277 			dma_desc->txd.flags = 0;
278 			return dma_desc;
279 		}
280 	}
281 
282 	spin_unlock_irqrestore(&tdc->lock, flags);
283 
284 	/* Allocate DMA desc */
285 	dma_desc = kzalloc(sizeof(*dma_desc), GFP_ATOMIC);
286 	if (!dma_desc) {
287 		dev_err(tdc2dev(tdc), "dma_desc alloc failed\n");
288 		return NULL;
289 	}
290 
291 	dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
292 	dma_desc->txd.tx_submit = tegra_dma_tx_submit;
293 	dma_desc->txd.flags = 0;
294 	return dma_desc;
295 }
296 
297 static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
298 		struct tegra_dma_desc *dma_desc)
299 {
300 	unsigned long flags;
301 
302 	spin_lock_irqsave(&tdc->lock, flags);
303 	if (!list_empty(&dma_desc->tx_list))
304 		list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
305 	list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
306 	spin_unlock_irqrestore(&tdc->lock, flags);
307 }
308 
309 static struct tegra_dma_sg_req *tegra_dma_sg_req_get(
310 		struct tegra_dma_channel *tdc)
311 {
312 	struct tegra_dma_sg_req *sg_req = NULL;
313 	unsigned long flags;
314 
315 	spin_lock_irqsave(&tdc->lock, flags);
316 	if (!list_empty(&tdc->free_sg_req)) {
317 		sg_req = list_first_entry(&tdc->free_sg_req,
318 					typeof(*sg_req), node);
319 		list_del(&sg_req->node);
320 		spin_unlock_irqrestore(&tdc->lock, flags);
321 		return sg_req;
322 	}
323 	spin_unlock_irqrestore(&tdc->lock, flags);
324 
325 	sg_req = kzalloc(sizeof(struct tegra_dma_sg_req), GFP_ATOMIC);
326 	if (!sg_req)
327 		dev_err(tdc2dev(tdc), "sg_req alloc failed\n");
328 	return sg_req;
329 }
330 
331 static int tegra_dma_slave_config(struct dma_chan *dc,
332 		struct dma_slave_config *sconfig)
333 {
334 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
335 
336 	if (!list_empty(&tdc->pending_sg_req)) {
337 		dev_err(tdc2dev(tdc), "Configuration not allowed\n");
338 		return -EBUSY;
339 	}
340 
341 	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
342 	tdc->config_init = true;
343 	return 0;
344 }
345 
346 static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
347 	bool wait_for_burst_complete)
348 {
349 	struct tegra_dma *tdma = tdc->tdma;
350 
351 	spin_lock(&tdma->global_lock);
352 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
353 	if (wait_for_burst_complete)
354 		udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
355 }
356 
357 static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
358 {
359 	struct tegra_dma *tdma = tdc->tdma;
360 
361 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
362 	spin_unlock(&tdma->global_lock);
363 }
364 
365 static void tegra_dma_pause(struct tegra_dma_channel *tdc,
366 	bool wait_for_burst_complete)
367 {
368 	struct tegra_dma *tdma = tdc->tdma;
369 
370 	if (tdma->chip_data->support_channel_pause) {
371 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
372 				TEGRA_APBDMA_CHAN_CSRE_PAUSE);
373 		if (wait_for_burst_complete)
374 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
375 	} else {
376 		tegra_dma_global_pause(tdc, wait_for_burst_complete);
377 	}
378 }
379 
380 static void tegra_dma_resume(struct tegra_dma_channel *tdc)
381 {
382 	struct tegra_dma *tdma = tdc->tdma;
383 
384 	if (tdma->chip_data->support_channel_pause) {
385 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
386 	} else {
387 		tegra_dma_global_resume(tdc);
388 	}
389 }
390 
391 static void tegra_dma_stop(struct tegra_dma_channel *tdc)
392 {
393 	u32 csr;
394 	u32 status;
395 
396 	/* Disable interrupts */
397 	csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
398 	csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
399 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
400 
401 	/* Disable DMA */
402 	csr &= ~TEGRA_APBDMA_CSR_ENB;
403 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
404 
405 	/* Clear interrupt status if it is there */
406 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
407 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
408 		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
409 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
410 	}
411 	tdc->busy = false;
412 }
413 
414 static void tegra_dma_start(struct tegra_dma_channel *tdc,
415 		struct tegra_dma_sg_req *sg_req)
416 {
417 	struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
418 
419 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
420 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
421 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
422 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
423 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
424 
425 	/* Start DMA */
426 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
427 				ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
428 }
429 
430 static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
431 		struct tegra_dma_sg_req *nsg_req)
432 {
433 	unsigned long status;
434 
435 	/*
436 	 * The DMA controller reloads the new configuration for next transfer
437 	 * after last burst of current transfer completes.
438 	 * If there is no IEC status then this makes sure that last burst
439 	 * has not be completed. There may be case that last burst is on
440 	 * flight and so it can complete but because DMA is paused, it
441 	 * will not generates interrupt as well as not reload the new
442 	 * configuration.
443 	 * If there is already IEC status then interrupt handler need to
444 	 * load new configuration.
445 	 */
446 	tegra_dma_pause(tdc, false);
447 	status  = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
448 
449 	/*
450 	 * If interrupt is pending then do nothing as the ISR will handle
451 	 * the programing for new request.
452 	 */
453 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
454 		dev_err(tdc2dev(tdc),
455 			"Skipping new configuration as interrupt is pending\n");
456 		tegra_dma_resume(tdc);
457 		return;
458 	}
459 
460 	/* Safe to program new configuration */
461 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
462 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
463 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
464 				nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
465 	nsg_req->configured = true;
466 
467 	tegra_dma_resume(tdc);
468 }
469 
470 static void tdc_start_head_req(struct tegra_dma_channel *tdc)
471 {
472 	struct tegra_dma_sg_req *sg_req;
473 
474 	if (list_empty(&tdc->pending_sg_req))
475 		return;
476 
477 	sg_req = list_first_entry(&tdc->pending_sg_req,
478 					typeof(*sg_req), node);
479 	tegra_dma_start(tdc, sg_req);
480 	sg_req->configured = true;
481 	tdc->busy = true;
482 }
483 
484 static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
485 {
486 	struct tegra_dma_sg_req *hsgreq;
487 	struct tegra_dma_sg_req *hnsgreq;
488 
489 	if (list_empty(&tdc->pending_sg_req))
490 		return;
491 
492 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
493 	if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
494 		hnsgreq = list_first_entry(&hsgreq->node,
495 					typeof(*hnsgreq), node);
496 		tegra_dma_configure_for_next(tdc, hnsgreq);
497 	}
498 }
499 
500 static inline int get_current_xferred_count(struct tegra_dma_channel *tdc,
501 	struct tegra_dma_sg_req *sg_req, unsigned long status)
502 {
503 	return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
504 }
505 
506 static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
507 {
508 	struct tegra_dma_sg_req *sgreq;
509 	struct tegra_dma_desc *dma_desc;
510 
511 	while (!list_empty(&tdc->pending_sg_req)) {
512 		sgreq = list_first_entry(&tdc->pending_sg_req,
513 						typeof(*sgreq), node);
514 		list_move_tail(&sgreq->node, &tdc->free_sg_req);
515 		if (sgreq->last_sg) {
516 			dma_desc = sgreq->dma_desc;
517 			dma_desc->dma_status = DMA_ERROR;
518 			list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
519 
520 			/* Add in cb list if it is not there. */
521 			if (!dma_desc->cb_count)
522 				list_add_tail(&dma_desc->cb_node,
523 							&tdc->cb_desc);
524 			dma_desc->cb_count++;
525 		}
526 	}
527 	tdc->isr_handler = NULL;
528 }
529 
530 static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
531 		struct tegra_dma_sg_req *last_sg_req, bool to_terminate)
532 {
533 	struct tegra_dma_sg_req *hsgreq = NULL;
534 
535 	if (list_empty(&tdc->pending_sg_req)) {
536 		dev_err(tdc2dev(tdc), "Dma is running without req\n");
537 		tegra_dma_stop(tdc);
538 		return false;
539 	}
540 
541 	/*
542 	 * Check that head req on list should be in flight.
543 	 * If it is not in flight then abort transfer as
544 	 * looping of transfer can not continue.
545 	 */
546 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
547 	if (!hsgreq->configured) {
548 		tegra_dma_stop(tdc);
549 		dev_err(tdc2dev(tdc), "Error in dma transfer, aborting dma\n");
550 		tegra_dma_abort_all(tdc);
551 		return false;
552 	}
553 
554 	/* Configure next request */
555 	if (!to_terminate)
556 		tdc_configure_next_head_desc(tdc);
557 	return true;
558 }
559 
560 static void handle_once_dma_done(struct tegra_dma_channel *tdc,
561 	bool to_terminate)
562 {
563 	struct tegra_dma_sg_req *sgreq;
564 	struct tegra_dma_desc *dma_desc;
565 
566 	tdc->busy = false;
567 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
568 	dma_desc = sgreq->dma_desc;
569 	dma_desc->bytes_transferred += sgreq->req_len;
570 
571 	list_del(&sgreq->node);
572 	if (sgreq->last_sg) {
573 		dma_desc->dma_status = DMA_COMPLETE;
574 		dma_cookie_complete(&dma_desc->txd);
575 		if (!dma_desc->cb_count)
576 			list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
577 		dma_desc->cb_count++;
578 		list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
579 	}
580 	list_add_tail(&sgreq->node, &tdc->free_sg_req);
581 
582 	/* Do not start DMA if it is going to be terminate */
583 	if (to_terminate || list_empty(&tdc->pending_sg_req))
584 		return;
585 
586 	tdc_start_head_req(tdc);
587 	return;
588 }
589 
590 static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
591 		bool to_terminate)
592 {
593 	struct tegra_dma_sg_req *sgreq;
594 	struct tegra_dma_desc *dma_desc;
595 	bool st;
596 
597 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
598 	dma_desc = sgreq->dma_desc;
599 	dma_desc->bytes_transferred += sgreq->req_len;
600 
601 	/* Callback need to be call */
602 	if (!dma_desc->cb_count)
603 		list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
604 	dma_desc->cb_count++;
605 
606 	/* If not last req then put at end of pending list */
607 	if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
608 		list_move_tail(&sgreq->node, &tdc->pending_sg_req);
609 		sgreq->configured = false;
610 		st = handle_continuous_head_request(tdc, sgreq, to_terminate);
611 		if (!st)
612 			dma_desc->dma_status = DMA_ERROR;
613 	}
614 	return;
615 }
616 
617 static void tegra_dma_tasklet(unsigned long data)
618 {
619 	struct tegra_dma_channel *tdc = (struct tegra_dma_channel *)data;
620 	dma_async_tx_callback callback = NULL;
621 	void *callback_param = NULL;
622 	struct tegra_dma_desc *dma_desc;
623 	unsigned long flags;
624 	int cb_count;
625 
626 	spin_lock_irqsave(&tdc->lock, flags);
627 	while (!list_empty(&tdc->cb_desc)) {
628 		dma_desc  = list_first_entry(&tdc->cb_desc,
629 					typeof(*dma_desc), cb_node);
630 		list_del(&dma_desc->cb_node);
631 		callback = dma_desc->txd.callback;
632 		callback_param = dma_desc->txd.callback_param;
633 		cb_count = dma_desc->cb_count;
634 		dma_desc->cb_count = 0;
635 		spin_unlock_irqrestore(&tdc->lock, flags);
636 		while (cb_count-- && callback)
637 			callback(callback_param);
638 		spin_lock_irqsave(&tdc->lock, flags);
639 	}
640 	spin_unlock_irqrestore(&tdc->lock, flags);
641 }
642 
643 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
644 {
645 	struct tegra_dma_channel *tdc = dev_id;
646 	unsigned long status;
647 	unsigned long flags;
648 
649 	spin_lock_irqsave(&tdc->lock, flags);
650 
651 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
652 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
653 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
654 		tdc->isr_handler(tdc, false);
655 		tasklet_schedule(&tdc->tasklet);
656 		spin_unlock_irqrestore(&tdc->lock, flags);
657 		return IRQ_HANDLED;
658 	}
659 
660 	spin_unlock_irqrestore(&tdc->lock, flags);
661 	dev_info(tdc2dev(tdc),
662 		"Interrupt already served status 0x%08lx\n", status);
663 	return IRQ_NONE;
664 }
665 
666 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
667 {
668 	struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
669 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
670 	unsigned long flags;
671 	dma_cookie_t cookie;
672 
673 	spin_lock_irqsave(&tdc->lock, flags);
674 	dma_desc->dma_status = DMA_IN_PROGRESS;
675 	cookie = dma_cookie_assign(&dma_desc->txd);
676 	list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
677 	spin_unlock_irqrestore(&tdc->lock, flags);
678 	return cookie;
679 }
680 
681 static void tegra_dma_issue_pending(struct dma_chan *dc)
682 {
683 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
684 	unsigned long flags;
685 
686 	spin_lock_irqsave(&tdc->lock, flags);
687 	if (list_empty(&tdc->pending_sg_req)) {
688 		dev_err(tdc2dev(tdc), "No DMA request\n");
689 		goto end;
690 	}
691 	if (!tdc->busy) {
692 		tdc_start_head_req(tdc);
693 
694 		/* Continuous single mode: Configure next req */
695 		if (tdc->cyclic) {
696 			/*
697 			 * Wait for 1 burst time for configure DMA for
698 			 * next transfer.
699 			 */
700 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
701 			tdc_configure_next_head_desc(tdc);
702 		}
703 	}
704 end:
705 	spin_unlock_irqrestore(&tdc->lock, flags);
706 	return;
707 }
708 
709 static void tegra_dma_terminate_all(struct dma_chan *dc)
710 {
711 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
712 	struct tegra_dma_sg_req *sgreq;
713 	struct tegra_dma_desc *dma_desc;
714 	unsigned long flags;
715 	unsigned long status;
716 	bool was_busy;
717 
718 	spin_lock_irqsave(&tdc->lock, flags);
719 	if (list_empty(&tdc->pending_sg_req)) {
720 		spin_unlock_irqrestore(&tdc->lock, flags);
721 		return;
722 	}
723 
724 	if (!tdc->busy)
725 		goto skip_dma_stop;
726 
727 	/* Pause DMA before checking the queue status */
728 	tegra_dma_pause(tdc, true);
729 
730 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
731 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
732 		dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
733 		tdc->isr_handler(tdc, true);
734 		status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
735 	}
736 
737 	was_busy = tdc->busy;
738 	tegra_dma_stop(tdc);
739 
740 	if (!list_empty(&tdc->pending_sg_req) && was_busy) {
741 		sgreq = list_first_entry(&tdc->pending_sg_req,
742 					typeof(*sgreq), node);
743 		sgreq->dma_desc->bytes_transferred +=
744 				get_current_xferred_count(tdc, sgreq, status);
745 	}
746 	tegra_dma_resume(tdc);
747 
748 skip_dma_stop:
749 	tegra_dma_abort_all(tdc);
750 
751 	while (!list_empty(&tdc->cb_desc)) {
752 		dma_desc  = list_first_entry(&tdc->cb_desc,
753 					typeof(*dma_desc), cb_node);
754 		list_del(&dma_desc->cb_node);
755 		dma_desc->cb_count = 0;
756 	}
757 	spin_unlock_irqrestore(&tdc->lock, flags);
758 }
759 
760 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
761 	dma_cookie_t cookie, struct dma_tx_state *txstate)
762 {
763 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
764 	struct tegra_dma_desc *dma_desc;
765 	struct tegra_dma_sg_req *sg_req;
766 	enum dma_status ret;
767 	unsigned long flags;
768 	unsigned int residual;
769 
770 	ret = dma_cookie_status(dc, cookie, txstate);
771 	if (ret == DMA_COMPLETE)
772 		return ret;
773 
774 	spin_lock_irqsave(&tdc->lock, flags);
775 
776 	/* Check on wait_ack desc status */
777 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
778 		if (dma_desc->txd.cookie == cookie) {
779 			residual =  dma_desc->bytes_requested -
780 					(dma_desc->bytes_transferred %
781 						dma_desc->bytes_requested);
782 			dma_set_residue(txstate, residual);
783 			ret = dma_desc->dma_status;
784 			spin_unlock_irqrestore(&tdc->lock, flags);
785 			return ret;
786 		}
787 	}
788 
789 	/* Check in pending list */
790 	list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
791 		dma_desc = sg_req->dma_desc;
792 		if (dma_desc->txd.cookie == cookie) {
793 			residual =  dma_desc->bytes_requested -
794 					(dma_desc->bytes_transferred %
795 						dma_desc->bytes_requested);
796 			dma_set_residue(txstate, residual);
797 			ret = dma_desc->dma_status;
798 			spin_unlock_irqrestore(&tdc->lock, flags);
799 			return ret;
800 		}
801 	}
802 
803 	dev_dbg(tdc2dev(tdc), "cookie %d does not found\n", cookie);
804 	spin_unlock_irqrestore(&tdc->lock, flags);
805 	return ret;
806 }
807 
808 static int tegra_dma_device_control(struct dma_chan *dc, enum dma_ctrl_cmd cmd,
809 			unsigned long arg)
810 {
811 	switch (cmd) {
812 	case DMA_SLAVE_CONFIG:
813 		return tegra_dma_slave_config(dc,
814 				(struct dma_slave_config *)arg);
815 
816 	case DMA_TERMINATE_ALL:
817 		tegra_dma_terminate_all(dc);
818 		return 0;
819 
820 	default:
821 		break;
822 	}
823 
824 	return -ENXIO;
825 }
826 
827 static inline int get_bus_width(struct tegra_dma_channel *tdc,
828 		enum dma_slave_buswidth slave_bw)
829 {
830 	switch (slave_bw) {
831 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
832 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
833 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
834 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
835 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
836 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
837 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
838 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
839 	default:
840 		dev_warn(tdc2dev(tdc),
841 			"slave bw is not supported, using 32bits\n");
842 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
843 	}
844 }
845 
846 static inline int get_burst_size(struct tegra_dma_channel *tdc,
847 	u32 burst_size, enum dma_slave_buswidth slave_bw, int len)
848 {
849 	int burst_byte;
850 	int burst_ahb_width;
851 
852 	/*
853 	 * burst_size from client is in terms of the bus_width.
854 	 * convert them into AHB memory width which is 4 byte.
855 	 */
856 	burst_byte = burst_size * slave_bw;
857 	burst_ahb_width = burst_byte / 4;
858 
859 	/* If burst size is 0 then calculate the burst size based on length */
860 	if (!burst_ahb_width) {
861 		if (len & 0xF)
862 			return TEGRA_APBDMA_AHBSEQ_BURST_1;
863 		else if ((len >> 4) & 0x1)
864 			return TEGRA_APBDMA_AHBSEQ_BURST_4;
865 		else
866 			return TEGRA_APBDMA_AHBSEQ_BURST_8;
867 	}
868 	if (burst_ahb_width < 4)
869 		return TEGRA_APBDMA_AHBSEQ_BURST_1;
870 	else if (burst_ahb_width < 8)
871 		return TEGRA_APBDMA_AHBSEQ_BURST_4;
872 	else
873 		return TEGRA_APBDMA_AHBSEQ_BURST_8;
874 }
875 
876 static int get_transfer_param(struct tegra_dma_channel *tdc,
877 	enum dma_transfer_direction direction, unsigned long *apb_addr,
878 	unsigned long *apb_seq,	unsigned long *csr, unsigned int *burst_size,
879 	enum dma_slave_buswidth *slave_bw)
880 {
881 
882 	switch (direction) {
883 	case DMA_MEM_TO_DEV:
884 		*apb_addr = tdc->dma_sconfig.dst_addr;
885 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
886 		*burst_size = tdc->dma_sconfig.dst_maxburst;
887 		*slave_bw = tdc->dma_sconfig.dst_addr_width;
888 		*csr = TEGRA_APBDMA_CSR_DIR;
889 		return 0;
890 
891 	case DMA_DEV_TO_MEM:
892 		*apb_addr = tdc->dma_sconfig.src_addr;
893 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
894 		*burst_size = tdc->dma_sconfig.src_maxburst;
895 		*slave_bw = tdc->dma_sconfig.src_addr_width;
896 		*csr = 0;
897 		return 0;
898 
899 	default:
900 		dev_err(tdc2dev(tdc), "Dma direction is not supported\n");
901 		return -EINVAL;
902 	}
903 	return -EINVAL;
904 }
905 
906 static struct dma_async_tx_descriptor *tegra_dma_prep_slave_sg(
907 	struct dma_chan *dc, struct scatterlist *sgl, unsigned int sg_len,
908 	enum dma_transfer_direction direction, unsigned long flags,
909 	void *context)
910 {
911 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
912 	struct tegra_dma_desc *dma_desc;
913 	unsigned int	    i;
914 	struct scatterlist      *sg;
915 	unsigned long csr, ahb_seq, apb_ptr, apb_seq;
916 	struct list_head req_list;
917 	struct tegra_dma_sg_req  *sg_req = NULL;
918 	u32 burst_size;
919 	enum dma_slave_buswidth slave_bw;
920 	int ret;
921 
922 	if (!tdc->config_init) {
923 		dev_err(tdc2dev(tdc), "dma channel is not configured\n");
924 		return NULL;
925 	}
926 	if (sg_len < 1) {
927 		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
928 		return NULL;
929 	}
930 
931 	ret = get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
932 				&burst_size, &slave_bw);
933 	if (ret < 0)
934 		return NULL;
935 
936 	INIT_LIST_HEAD(&req_list);
937 
938 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
939 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
940 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
941 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
942 
943 	csr |= TEGRA_APBDMA_CSR_ONCE | TEGRA_APBDMA_CSR_FLOW;
944 	csr |= tdc->dma_sconfig.slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
945 	if (flags & DMA_PREP_INTERRUPT)
946 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
947 
948 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
949 
950 	dma_desc = tegra_dma_desc_get(tdc);
951 	if (!dma_desc) {
952 		dev_err(tdc2dev(tdc), "Dma descriptors not available\n");
953 		return NULL;
954 	}
955 	INIT_LIST_HEAD(&dma_desc->tx_list);
956 	INIT_LIST_HEAD(&dma_desc->cb_node);
957 	dma_desc->cb_count = 0;
958 	dma_desc->bytes_requested = 0;
959 	dma_desc->bytes_transferred = 0;
960 	dma_desc->dma_status = DMA_IN_PROGRESS;
961 
962 	/* Make transfer requests */
963 	for_each_sg(sgl, sg, sg_len, i) {
964 		u32 len, mem;
965 
966 		mem = sg_dma_address(sg);
967 		len = sg_dma_len(sg);
968 
969 		if ((len & 3) || (mem & 3) ||
970 				(len > tdc->tdma->chip_data->max_dma_count)) {
971 			dev_err(tdc2dev(tdc),
972 				"Dma length/memory address is not supported\n");
973 			tegra_dma_desc_put(tdc, dma_desc);
974 			return NULL;
975 		}
976 
977 		sg_req = tegra_dma_sg_req_get(tdc);
978 		if (!sg_req) {
979 			dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
980 			tegra_dma_desc_put(tdc, dma_desc);
981 			return NULL;
982 		}
983 
984 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
985 		dma_desc->bytes_requested += len;
986 
987 		sg_req->ch_regs.apb_ptr = apb_ptr;
988 		sg_req->ch_regs.ahb_ptr = mem;
989 		sg_req->ch_regs.csr = csr | ((len - 4) & 0xFFFC);
990 		sg_req->ch_regs.apb_seq = apb_seq;
991 		sg_req->ch_regs.ahb_seq = ahb_seq;
992 		sg_req->configured = false;
993 		sg_req->last_sg = false;
994 		sg_req->dma_desc = dma_desc;
995 		sg_req->req_len = len;
996 
997 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
998 	}
999 	sg_req->last_sg = true;
1000 	if (flags & DMA_CTRL_ACK)
1001 		dma_desc->txd.flags = DMA_CTRL_ACK;
1002 
1003 	/*
1004 	 * Make sure that mode should not be conflicting with currently
1005 	 * configured mode.
1006 	 */
1007 	if (!tdc->isr_handler) {
1008 		tdc->isr_handler = handle_once_dma_done;
1009 		tdc->cyclic = false;
1010 	} else {
1011 		if (tdc->cyclic) {
1012 			dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1013 			tegra_dma_desc_put(tdc, dma_desc);
1014 			return NULL;
1015 		}
1016 	}
1017 
1018 	return &dma_desc->txd;
1019 }
1020 
1021 static struct dma_async_tx_descriptor *tegra_dma_prep_dma_cyclic(
1022 	struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
1023 	size_t period_len, enum dma_transfer_direction direction,
1024 	unsigned long flags, void *context)
1025 {
1026 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1027 	struct tegra_dma_desc *dma_desc = NULL;
1028 	struct tegra_dma_sg_req  *sg_req = NULL;
1029 	unsigned long csr, ahb_seq, apb_ptr, apb_seq;
1030 	int len;
1031 	size_t remain_len;
1032 	dma_addr_t mem = buf_addr;
1033 	u32 burst_size;
1034 	enum dma_slave_buswidth slave_bw;
1035 	int ret;
1036 
1037 	if (!buf_len || !period_len) {
1038 		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1039 		return NULL;
1040 	}
1041 
1042 	if (!tdc->config_init) {
1043 		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1044 		return NULL;
1045 	}
1046 
1047 	/*
1048 	 * We allow to take more number of requests till DMA is
1049 	 * not started. The driver will loop over all requests.
1050 	 * Once DMA is started then new requests can be queued only after
1051 	 * terminating the DMA.
1052 	 */
1053 	if (tdc->busy) {
1054 		dev_err(tdc2dev(tdc), "Request not allowed when dma running\n");
1055 		return NULL;
1056 	}
1057 
1058 	/*
1059 	 * We only support cycle transfer when buf_len is multiple of
1060 	 * period_len.
1061 	 */
1062 	if (buf_len % period_len) {
1063 		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1064 		return NULL;
1065 	}
1066 
1067 	len = period_len;
1068 	if ((len & 3) || (buf_addr & 3) ||
1069 			(len > tdc->tdma->chip_data->max_dma_count)) {
1070 		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1071 		return NULL;
1072 	}
1073 
1074 	ret = get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1075 				&burst_size, &slave_bw);
1076 	if (ret < 0)
1077 		return NULL;
1078 
1079 
1080 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1081 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1082 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1083 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1084 
1085 	csr |= TEGRA_APBDMA_CSR_FLOW;
1086 	if (flags & DMA_PREP_INTERRUPT)
1087 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1088 	csr |= tdc->dma_sconfig.slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1089 
1090 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1091 
1092 	dma_desc = tegra_dma_desc_get(tdc);
1093 	if (!dma_desc) {
1094 		dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1095 		return NULL;
1096 	}
1097 
1098 	INIT_LIST_HEAD(&dma_desc->tx_list);
1099 	INIT_LIST_HEAD(&dma_desc->cb_node);
1100 	dma_desc->cb_count = 0;
1101 
1102 	dma_desc->bytes_transferred = 0;
1103 	dma_desc->bytes_requested = buf_len;
1104 	remain_len = buf_len;
1105 
1106 	/* Split transfer equal to period size */
1107 	while (remain_len) {
1108 		sg_req = tegra_dma_sg_req_get(tdc);
1109 		if (!sg_req) {
1110 			dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
1111 			tegra_dma_desc_put(tdc, dma_desc);
1112 			return NULL;
1113 		}
1114 
1115 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1116 		sg_req->ch_regs.apb_ptr = apb_ptr;
1117 		sg_req->ch_regs.ahb_ptr = mem;
1118 		sg_req->ch_regs.csr = csr | ((len - 4) & 0xFFFC);
1119 		sg_req->ch_regs.apb_seq = apb_seq;
1120 		sg_req->ch_regs.ahb_seq = ahb_seq;
1121 		sg_req->configured = false;
1122 		sg_req->half_done = false;
1123 		sg_req->last_sg = false;
1124 		sg_req->dma_desc = dma_desc;
1125 		sg_req->req_len = len;
1126 
1127 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1128 		remain_len -= len;
1129 		mem += len;
1130 	}
1131 	sg_req->last_sg = true;
1132 	if (flags & DMA_CTRL_ACK)
1133 		dma_desc->txd.flags = DMA_CTRL_ACK;
1134 
1135 	/*
1136 	 * Make sure that mode should not be conflicting with currently
1137 	 * configured mode.
1138 	 */
1139 	if (!tdc->isr_handler) {
1140 		tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1141 		tdc->cyclic = true;
1142 	} else {
1143 		if (!tdc->cyclic) {
1144 			dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1145 			tegra_dma_desc_put(tdc, dma_desc);
1146 			return NULL;
1147 		}
1148 	}
1149 
1150 	return &dma_desc->txd;
1151 }
1152 
1153 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1154 {
1155 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1156 	struct tegra_dma *tdma = tdc->tdma;
1157 	int ret;
1158 
1159 	dma_cookie_init(&tdc->dma_chan);
1160 	tdc->config_init = false;
1161 	ret = clk_prepare_enable(tdma->dma_clk);
1162 	if (ret < 0)
1163 		dev_err(tdc2dev(tdc), "clk_prepare_enable failed: %d\n", ret);
1164 	return ret;
1165 }
1166 
1167 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1168 {
1169 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1170 	struct tegra_dma *tdma = tdc->tdma;
1171 
1172 	struct tegra_dma_desc *dma_desc;
1173 	struct tegra_dma_sg_req *sg_req;
1174 	struct list_head dma_desc_list;
1175 	struct list_head sg_req_list;
1176 	unsigned long flags;
1177 
1178 	INIT_LIST_HEAD(&dma_desc_list);
1179 	INIT_LIST_HEAD(&sg_req_list);
1180 
1181 	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1182 
1183 	if (tdc->busy)
1184 		tegra_dma_terminate_all(dc);
1185 
1186 	spin_lock_irqsave(&tdc->lock, flags);
1187 	list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1188 	list_splice_init(&tdc->free_sg_req, &sg_req_list);
1189 	list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1190 	INIT_LIST_HEAD(&tdc->cb_desc);
1191 	tdc->config_init = false;
1192 	tdc->isr_handler = NULL;
1193 	spin_unlock_irqrestore(&tdc->lock, flags);
1194 
1195 	while (!list_empty(&dma_desc_list)) {
1196 		dma_desc = list_first_entry(&dma_desc_list,
1197 					typeof(*dma_desc), node);
1198 		list_del(&dma_desc->node);
1199 		kfree(dma_desc);
1200 	}
1201 
1202 	while (!list_empty(&sg_req_list)) {
1203 		sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1204 		list_del(&sg_req->node);
1205 		kfree(sg_req);
1206 	}
1207 	clk_disable_unprepare(tdma->dma_clk);
1208 }
1209 
1210 /* Tegra20 specific DMA controller information */
1211 static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1212 	.nr_channels		= 16,
1213 	.max_dma_count		= 1024UL * 64,
1214 	.support_channel_pause	= false,
1215 };
1216 
1217 /* Tegra30 specific DMA controller information */
1218 static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1219 	.nr_channels		= 32,
1220 	.max_dma_count		= 1024UL * 64,
1221 	.support_channel_pause	= false,
1222 };
1223 
1224 /* Tegra114 specific DMA controller information */
1225 static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1226 	.nr_channels		= 32,
1227 	.max_dma_count		= 1024UL * 64,
1228 	.support_channel_pause	= true,
1229 };
1230 
1231 
1232 static const struct of_device_id tegra_dma_of_match[] = {
1233 	{
1234 		.compatible = "nvidia,tegra114-apbdma",
1235 		.data = &tegra114_dma_chip_data,
1236 	}, {
1237 		.compatible = "nvidia,tegra30-apbdma",
1238 		.data = &tegra30_dma_chip_data,
1239 	}, {
1240 		.compatible = "nvidia,tegra20-apbdma",
1241 		.data = &tegra20_dma_chip_data,
1242 	}, {
1243 	},
1244 };
1245 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1246 
1247 static int tegra_dma_probe(struct platform_device *pdev)
1248 {
1249 	struct resource	*res;
1250 	struct tegra_dma *tdma;
1251 	int ret;
1252 	int i;
1253 	const struct tegra_dma_chip_data *cdata = NULL;
1254 	const struct of_device_id *match;
1255 
1256 	match = of_match_device(tegra_dma_of_match, &pdev->dev);
1257 	if (!match) {
1258 		dev_err(&pdev->dev, "Error: No device match found\n");
1259 		return -ENODEV;
1260 	}
1261 	cdata = match->data;
1262 
1263 	tdma = devm_kzalloc(&pdev->dev, sizeof(*tdma) + cdata->nr_channels *
1264 			sizeof(struct tegra_dma_channel), GFP_KERNEL);
1265 	if (!tdma) {
1266 		dev_err(&pdev->dev, "Error: memory allocation failed\n");
1267 		return -ENOMEM;
1268 	}
1269 
1270 	tdma->dev = &pdev->dev;
1271 	tdma->chip_data = cdata;
1272 	platform_set_drvdata(pdev, tdma);
1273 
1274 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1275 	tdma->base_addr = devm_ioremap_resource(&pdev->dev, res);
1276 	if (IS_ERR(tdma->base_addr))
1277 		return PTR_ERR(tdma->base_addr);
1278 
1279 	tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1280 	if (IS_ERR(tdma->dma_clk)) {
1281 		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1282 		return PTR_ERR(tdma->dma_clk);
1283 	}
1284 
1285 	spin_lock_init(&tdma->global_lock);
1286 
1287 	pm_runtime_enable(&pdev->dev);
1288 	if (!pm_runtime_enabled(&pdev->dev)) {
1289 		ret = tegra_dma_runtime_resume(&pdev->dev);
1290 		if (ret) {
1291 			dev_err(&pdev->dev, "dma_runtime_resume failed %d\n",
1292 				ret);
1293 			goto err_pm_disable;
1294 		}
1295 	}
1296 
1297 	/* Enable clock before accessing registers */
1298 	ret = clk_prepare_enable(tdma->dma_clk);
1299 	if (ret < 0) {
1300 		dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
1301 		goto err_pm_disable;
1302 	}
1303 
1304 	/* Reset DMA controller */
1305 	tegra_periph_reset_assert(tdma->dma_clk);
1306 	udelay(2);
1307 	tegra_periph_reset_deassert(tdma->dma_clk);
1308 
1309 	/* Enable global DMA registers */
1310 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1311 	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1312 	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1313 
1314 	clk_disable_unprepare(tdma->dma_clk);
1315 
1316 	INIT_LIST_HEAD(&tdma->dma_dev.channels);
1317 	for (i = 0; i < cdata->nr_channels; i++) {
1318 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1319 
1320 		tdc->chan_base_offset = TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1321 					i * TEGRA_APBDMA_CHANNEL_REGISTER_SIZE;
1322 
1323 		res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1324 		if (!res) {
1325 			ret = -EINVAL;
1326 			dev_err(&pdev->dev, "No irq resource for chan %d\n", i);
1327 			goto err_irq;
1328 		}
1329 		tdc->irq = res->start;
1330 		snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1331 		ret = devm_request_irq(&pdev->dev, tdc->irq,
1332 				tegra_dma_isr, 0, tdc->name, tdc);
1333 		if (ret) {
1334 			dev_err(&pdev->dev,
1335 				"request_irq failed with err %d channel %d\n",
1336 				ret, i);
1337 			goto err_irq;
1338 		}
1339 
1340 		tdc->dma_chan.device = &tdma->dma_dev;
1341 		dma_cookie_init(&tdc->dma_chan);
1342 		list_add_tail(&tdc->dma_chan.device_node,
1343 				&tdma->dma_dev.channels);
1344 		tdc->tdma = tdma;
1345 		tdc->id = i;
1346 
1347 		tasklet_init(&tdc->tasklet, tegra_dma_tasklet,
1348 				(unsigned long)tdc);
1349 		spin_lock_init(&tdc->lock);
1350 
1351 		INIT_LIST_HEAD(&tdc->pending_sg_req);
1352 		INIT_LIST_HEAD(&tdc->free_sg_req);
1353 		INIT_LIST_HEAD(&tdc->free_dma_desc);
1354 		INIT_LIST_HEAD(&tdc->cb_desc);
1355 	}
1356 
1357 	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1358 	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1359 	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1360 
1361 	tdma->dma_dev.dev = &pdev->dev;
1362 	tdma->dma_dev.device_alloc_chan_resources =
1363 					tegra_dma_alloc_chan_resources;
1364 	tdma->dma_dev.device_free_chan_resources =
1365 					tegra_dma_free_chan_resources;
1366 	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1367 	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1368 	tdma->dma_dev.device_control = tegra_dma_device_control;
1369 	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1370 	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1371 
1372 	ret = dma_async_device_register(&tdma->dma_dev);
1373 	if (ret < 0) {
1374 		dev_err(&pdev->dev,
1375 			"Tegra20 APB DMA driver registration failed %d\n", ret);
1376 		goto err_irq;
1377 	}
1378 
1379 	dev_info(&pdev->dev, "Tegra20 APB DMA driver register %d channels\n",
1380 			cdata->nr_channels);
1381 	return 0;
1382 
1383 err_irq:
1384 	while (--i >= 0) {
1385 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1386 		tasklet_kill(&tdc->tasklet);
1387 	}
1388 
1389 err_pm_disable:
1390 	pm_runtime_disable(&pdev->dev);
1391 	if (!pm_runtime_status_suspended(&pdev->dev))
1392 		tegra_dma_runtime_suspend(&pdev->dev);
1393 	return ret;
1394 }
1395 
1396 static int tegra_dma_remove(struct platform_device *pdev)
1397 {
1398 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1399 	int i;
1400 	struct tegra_dma_channel *tdc;
1401 
1402 	dma_async_device_unregister(&tdma->dma_dev);
1403 
1404 	for (i = 0; i < tdma->chip_data->nr_channels; ++i) {
1405 		tdc = &tdma->channels[i];
1406 		tasklet_kill(&tdc->tasklet);
1407 	}
1408 
1409 	pm_runtime_disable(&pdev->dev);
1410 	if (!pm_runtime_status_suspended(&pdev->dev))
1411 		tegra_dma_runtime_suspend(&pdev->dev);
1412 
1413 	return 0;
1414 }
1415 
1416 static int tegra_dma_runtime_suspend(struct device *dev)
1417 {
1418 	struct platform_device *pdev = to_platform_device(dev);
1419 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1420 
1421 	clk_disable_unprepare(tdma->dma_clk);
1422 	return 0;
1423 }
1424 
1425 static int tegra_dma_runtime_resume(struct device *dev)
1426 {
1427 	struct platform_device *pdev = to_platform_device(dev);
1428 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1429 	int ret;
1430 
1431 	ret = clk_prepare_enable(tdma->dma_clk);
1432 	if (ret < 0) {
1433 		dev_err(dev, "clk_enable failed: %d\n", ret);
1434 		return ret;
1435 	}
1436 	return 0;
1437 }
1438 
1439 #ifdef CONFIG_PM_SLEEP
1440 static int tegra_dma_pm_suspend(struct device *dev)
1441 {
1442 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1443 	int i;
1444 	int ret;
1445 
1446 	/* Enable clock before accessing register */
1447 	ret = tegra_dma_runtime_resume(dev);
1448 	if (ret < 0)
1449 		return ret;
1450 
1451 	tdma->reg_gen = tdma_read(tdma, TEGRA_APBDMA_GENERAL);
1452 	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1453 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1454 		struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1455 
1456 		ch_reg->csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
1457 		ch_reg->ahb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBPTR);
1458 		ch_reg->apb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBPTR);
1459 		ch_reg->ahb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBSEQ);
1460 		ch_reg->apb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBSEQ);
1461 	}
1462 
1463 	/* Disable clock */
1464 	tegra_dma_runtime_suspend(dev);
1465 	return 0;
1466 }
1467 
1468 static int tegra_dma_pm_resume(struct device *dev)
1469 {
1470 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1471 	int i;
1472 	int ret;
1473 
1474 	/* Enable clock before accessing register */
1475 	ret = tegra_dma_runtime_resume(dev);
1476 	if (ret < 0)
1477 		return ret;
1478 
1479 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, tdma->reg_gen);
1480 	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1481 	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1482 
1483 	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1484 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1485 		struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1486 
1487 		tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_reg->apb_seq);
1488 		tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_reg->apb_ptr);
1489 		tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_reg->ahb_seq);
1490 		tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_reg->ahb_ptr);
1491 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
1492 			(ch_reg->csr & ~TEGRA_APBDMA_CSR_ENB));
1493 	}
1494 
1495 	/* Disable clock */
1496 	tegra_dma_runtime_suspend(dev);
1497 	return 0;
1498 }
1499 #endif
1500 
1501 static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1502 #ifdef CONFIG_PM_RUNTIME
1503 	.runtime_suspend = tegra_dma_runtime_suspend,
1504 	.runtime_resume = tegra_dma_runtime_resume,
1505 #endif
1506 	SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_pm_suspend, tegra_dma_pm_resume)
1507 };
1508 
1509 static struct platform_driver tegra_dmac_driver = {
1510 	.driver = {
1511 		.name	= "tegra-apbdma",
1512 		.owner = THIS_MODULE,
1513 		.pm	= &tegra_dma_dev_pm_ops,
1514 		.of_match_table = tegra_dma_of_match,
1515 	},
1516 	.probe		= tegra_dma_probe,
1517 	.remove		= tegra_dma_remove,
1518 };
1519 
1520 module_platform_driver(tegra_dmac_driver);
1521 
1522 MODULE_ALIAS("platform:tegra20-apbdma");
1523 MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1524 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1525 MODULE_LICENSE("GPL v2");
1526