xref: /openbmc/linux/drivers/dma/tegra20-apb-dma.c (revision bc5aa3a0)
1 /*
2  * DMA driver for Nvidia's Tegra20 APB DMA controller.
3  *
4  * Copyright (c) 2012-2013, NVIDIA CORPORATION.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include <linux/bitops.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/err.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/of_dma.h>
33 #include <linux/platform_device.h>
34 #include <linux/pm.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/reset.h>
37 #include <linux/slab.h>
38 
39 #include "dmaengine.h"
40 
41 #define TEGRA_APBDMA_GENERAL			0x0
42 #define TEGRA_APBDMA_GENERAL_ENABLE		BIT(31)
43 
44 #define TEGRA_APBDMA_CONTROL			0x010
45 #define TEGRA_APBDMA_IRQ_MASK			0x01c
46 #define TEGRA_APBDMA_IRQ_MASK_SET		0x020
47 
48 /* CSR register */
49 #define TEGRA_APBDMA_CHAN_CSR			0x00
50 #define TEGRA_APBDMA_CSR_ENB			BIT(31)
51 #define TEGRA_APBDMA_CSR_IE_EOC			BIT(30)
52 #define TEGRA_APBDMA_CSR_HOLD			BIT(29)
53 #define TEGRA_APBDMA_CSR_DIR			BIT(28)
54 #define TEGRA_APBDMA_CSR_ONCE			BIT(27)
55 #define TEGRA_APBDMA_CSR_FLOW			BIT(21)
56 #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT		16
57 #define TEGRA_APBDMA_CSR_REQ_SEL_MASK		0x1F
58 #define TEGRA_APBDMA_CSR_WCOUNT_MASK		0xFFFC
59 
60 /* STATUS register */
61 #define TEGRA_APBDMA_CHAN_STATUS		0x004
62 #define TEGRA_APBDMA_STATUS_BUSY		BIT(31)
63 #define TEGRA_APBDMA_STATUS_ISE_EOC		BIT(30)
64 #define TEGRA_APBDMA_STATUS_HALT		BIT(29)
65 #define TEGRA_APBDMA_STATUS_PING_PONG		BIT(28)
66 #define TEGRA_APBDMA_STATUS_COUNT_SHIFT		2
67 #define TEGRA_APBDMA_STATUS_COUNT_MASK		0xFFFC
68 
69 #define TEGRA_APBDMA_CHAN_CSRE			0x00C
70 #define TEGRA_APBDMA_CHAN_CSRE_PAUSE		(1 << 31)
71 
72 /* AHB memory address */
73 #define TEGRA_APBDMA_CHAN_AHBPTR		0x010
74 
75 /* AHB sequence register */
76 #define TEGRA_APBDMA_CHAN_AHBSEQ		0x14
77 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB		BIT(31)
78 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8		(0 << 28)
79 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16	(1 << 28)
80 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32	(2 << 28)
81 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64	(3 << 28)
82 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128	(4 << 28)
83 #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP		BIT(27)
84 #define TEGRA_APBDMA_AHBSEQ_BURST_1		(4 << 24)
85 #define TEGRA_APBDMA_AHBSEQ_BURST_4		(5 << 24)
86 #define TEGRA_APBDMA_AHBSEQ_BURST_8		(6 << 24)
87 #define TEGRA_APBDMA_AHBSEQ_DBL_BUF		BIT(19)
88 #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT		16
89 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE		0
90 
91 /* APB address */
92 #define TEGRA_APBDMA_CHAN_APBPTR		0x018
93 
94 /* APB sequence register */
95 #define TEGRA_APBDMA_CHAN_APBSEQ		0x01c
96 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8		(0 << 28)
97 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16	(1 << 28)
98 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32	(2 << 28)
99 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64	(3 << 28)
100 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128	(4 << 28)
101 #define TEGRA_APBDMA_APBSEQ_DATA_SWAP		BIT(27)
102 #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1		(1 << 16)
103 
104 /* Tegra148 specific registers */
105 #define TEGRA_APBDMA_CHAN_WCOUNT		0x20
106 
107 #define TEGRA_APBDMA_CHAN_WORD_TRANSFER		0x24
108 
109 /*
110  * If any burst is in flight and DMA paused then this is the time to complete
111  * on-flight burst and update DMA status register.
112  */
113 #define TEGRA_APBDMA_BURST_COMPLETE_TIME	20
114 
115 /* Channel base address offset from APBDMA base address */
116 #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET	0x1000
117 
118 #define TEGRA_APBDMA_SLAVE_ID_INVALID	(TEGRA_APBDMA_CSR_REQ_SEL_MASK + 1)
119 
120 struct tegra_dma;
121 
122 /*
123  * tegra_dma_chip_data Tegra chip specific DMA data
124  * @nr_channels: Number of channels available in the controller.
125  * @channel_reg_size: Channel register size/stride.
126  * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
127  * @support_channel_pause: Support channel wise pause of dma.
128  * @support_separate_wcount_reg: Support separate word count register.
129  */
130 struct tegra_dma_chip_data {
131 	int nr_channels;
132 	int channel_reg_size;
133 	int max_dma_count;
134 	bool support_channel_pause;
135 	bool support_separate_wcount_reg;
136 };
137 
138 /* DMA channel registers */
139 struct tegra_dma_channel_regs {
140 	unsigned long	csr;
141 	unsigned long	ahb_ptr;
142 	unsigned long	apb_ptr;
143 	unsigned long	ahb_seq;
144 	unsigned long	apb_seq;
145 	unsigned long	wcount;
146 };
147 
148 /*
149  * tegra_dma_sg_req: Dma request details to configure hardware. This
150  * contains the details for one transfer to configure DMA hw.
151  * The client's request for data transfer can be broken into multiple
152  * sub-transfer as per requester details and hw support.
153  * This sub transfer get added in the list of transfer and point to Tegra
154  * DMA descriptor which manages the transfer details.
155  */
156 struct tegra_dma_sg_req {
157 	struct tegra_dma_channel_regs	ch_regs;
158 	int				req_len;
159 	bool				configured;
160 	bool				last_sg;
161 	struct list_head		node;
162 	struct tegra_dma_desc		*dma_desc;
163 };
164 
165 /*
166  * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
167  * This descriptor keep track of transfer status, callbacks and request
168  * counts etc.
169  */
170 struct tegra_dma_desc {
171 	struct dma_async_tx_descriptor	txd;
172 	int				bytes_requested;
173 	int				bytes_transferred;
174 	enum dma_status			dma_status;
175 	struct list_head		node;
176 	struct list_head		tx_list;
177 	struct list_head		cb_node;
178 	int				cb_count;
179 };
180 
181 struct tegra_dma_channel;
182 
183 typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
184 				bool to_terminate);
185 
186 /* tegra_dma_channel: Channel specific information */
187 struct tegra_dma_channel {
188 	struct dma_chan		dma_chan;
189 	char			name[30];
190 	bool			config_init;
191 	int			id;
192 	int			irq;
193 	void __iomem		*chan_addr;
194 	spinlock_t		lock;
195 	bool			busy;
196 	struct tegra_dma	*tdma;
197 	bool			cyclic;
198 
199 	/* Different lists for managing the requests */
200 	struct list_head	free_sg_req;
201 	struct list_head	pending_sg_req;
202 	struct list_head	free_dma_desc;
203 	struct list_head	cb_desc;
204 
205 	/* ISR handler and tasklet for bottom half of isr handling */
206 	dma_isr_handler		isr_handler;
207 	struct tasklet_struct	tasklet;
208 
209 	/* Channel-slave specific configuration */
210 	unsigned int slave_id;
211 	struct dma_slave_config dma_sconfig;
212 	struct tegra_dma_channel_regs	channel_reg;
213 };
214 
215 /* tegra_dma: Tegra DMA specific information */
216 struct tegra_dma {
217 	struct dma_device		dma_dev;
218 	struct device			*dev;
219 	struct clk			*dma_clk;
220 	struct reset_control		*rst;
221 	spinlock_t			global_lock;
222 	void __iomem			*base_addr;
223 	const struct tegra_dma_chip_data *chip_data;
224 
225 	/*
226 	 * Counter for managing global pausing of the DMA controller.
227 	 * Only applicable for devices that don't support individual
228 	 * channel pausing.
229 	 */
230 	u32				global_pause_count;
231 
232 	/* Some register need to be cache before suspend */
233 	u32				reg_gen;
234 
235 	/* Last member of the structure */
236 	struct tegra_dma_channel channels[0];
237 };
238 
239 static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
240 {
241 	writel(val, tdma->base_addr + reg);
242 }
243 
244 static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
245 {
246 	return readl(tdma->base_addr + reg);
247 }
248 
249 static inline void tdc_write(struct tegra_dma_channel *tdc,
250 		u32 reg, u32 val)
251 {
252 	writel(val, tdc->chan_addr + reg);
253 }
254 
255 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
256 {
257 	return readl(tdc->chan_addr + reg);
258 }
259 
260 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
261 {
262 	return container_of(dc, struct tegra_dma_channel, dma_chan);
263 }
264 
265 static inline struct tegra_dma_desc *txd_to_tegra_dma_desc(
266 		struct dma_async_tx_descriptor *td)
267 {
268 	return container_of(td, struct tegra_dma_desc, txd);
269 }
270 
271 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
272 {
273 	return &tdc->dma_chan.dev->device;
274 }
275 
276 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
277 static int tegra_dma_runtime_suspend(struct device *dev);
278 static int tegra_dma_runtime_resume(struct device *dev);
279 
280 /* Get DMA desc from free list, if not there then allocate it.  */
281 static struct tegra_dma_desc *tegra_dma_desc_get(
282 		struct tegra_dma_channel *tdc)
283 {
284 	struct tegra_dma_desc *dma_desc;
285 	unsigned long flags;
286 
287 	spin_lock_irqsave(&tdc->lock, flags);
288 
289 	/* Do not allocate if desc are waiting for ack */
290 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
291 		if (async_tx_test_ack(&dma_desc->txd)) {
292 			list_del(&dma_desc->node);
293 			spin_unlock_irqrestore(&tdc->lock, flags);
294 			dma_desc->txd.flags = 0;
295 			return dma_desc;
296 		}
297 	}
298 
299 	spin_unlock_irqrestore(&tdc->lock, flags);
300 
301 	/* Allocate DMA desc */
302 	dma_desc = kzalloc(sizeof(*dma_desc), GFP_NOWAIT);
303 	if (!dma_desc)
304 		return NULL;
305 
306 	dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
307 	dma_desc->txd.tx_submit = tegra_dma_tx_submit;
308 	dma_desc->txd.flags = 0;
309 	return dma_desc;
310 }
311 
312 static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
313 		struct tegra_dma_desc *dma_desc)
314 {
315 	unsigned long flags;
316 
317 	spin_lock_irqsave(&tdc->lock, flags);
318 	if (!list_empty(&dma_desc->tx_list))
319 		list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
320 	list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
321 	spin_unlock_irqrestore(&tdc->lock, flags);
322 }
323 
324 static struct tegra_dma_sg_req *tegra_dma_sg_req_get(
325 		struct tegra_dma_channel *tdc)
326 {
327 	struct tegra_dma_sg_req *sg_req = NULL;
328 	unsigned long flags;
329 
330 	spin_lock_irqsave(&tdc->lock, flags);
331 	if (!list_empty(&tdc->free_sg_req)) {
332 		sg_req = list_first_entry(&tdc->free_sg_req,
333 					typeof(*sg_req), node);
334 		list_del(&sg_req->node);
335 		spin_unlock_irqrestore(&tdc->lock, flags);
336 		return sg_req;
337 	}
338 	spin_unlock_irqrestore(&tdc->lock, flags);
339 
340 	sg_req = kzalloc(sizeof(struct tegra_dma_sg_req), GFP_NOWAIT);
341 
342 	return sg_req;
343 }
344 
345 static int tegra_dma_slave_config(struct dma_chan *dc,
346 		struct dma_slave_config *sconfig)
347 {
348 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
349 
350 	if (!list_empty(&tdc->pending_sg_req)) {
351 		dev_err(tdc2dev(tdc), "Configuration not allowed\n");
352 		return -EBUSY;
353 	}
354 
355 	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
356 	if (tdc->slave_id == TEGRA_APBDMA_SLAVE_ID_INVALID) {
357 		if (sconfig->slave_id > TEGRA_APBDMA_CSR_REQ_SEL_MASK)
358 			return -EINVAL;
359 		tdc->slave_id = sconfig->slave_id;
360 	}
361 	tdc->config_init = true;
362 	return 0;
363 }
364 
365 static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
366 	bool wait_for_burst_complete)
367 {
368 	struct tegra_dma *tdma = tdc->tdma;
369 
370 	spin_lock(&tdma->global_lock);
371 
372 	if (tdc->tdma->global_pause_count == 0) {
373 		tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
374 		if (wait_for_burst_complete)
375 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
376 	}
377 
378 	tdc->tdma->global_pause_count++;
379 
380 	spin_unlock(&tdma->global_lock);
381 }
382 
383 static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
384 {
385 	struct tegra_dma *tdma = tdc->tdma;
386 
387 	spin_lock(&tdma->global_lock);
388 
389 	if (WARN_ON(tdc->tdma->global_pause_count == 0))
390 		goto out;
391 
392 	if (--tdc->tdma->global_pause_count == 0)
393 		tdma_write(tdma, TEGRA_APBDMA_GENERAL,
394 			   TEGRA_APBDMA_GENERAL_ENABLE);
395 
396 out:
397 	spin_unlock(&tdma->global_lock);
398 }
399 
400 static void tegra_dma_pause(struct tegra_dma_channel *tdc,
401 	bool wait_for_burst_complete)
402 {
403 	struct tegra_dma *tdma = tdc->tdma;
404 
405 	if (tdma->chip_data->support_channel_pause) {
406 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
407 				TEGRA_APBDMA_CHAN_CSRE_PAUSE);
408 		if (wait_for_burst_complete)
409 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
410 	} else {
411 		tegra_dma_global_pause(tdc, wait_for_burst_complete);
412 	}
413 }
414 
415 static void tegra_dma_resume(struct tegra_dma_channel *tdc)
416 {
417 	struct tegra_dma *tdma = tdc->tdma;
418 
419 	if (tdma->chip_data->support_channel_pause) {
420 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
421 	} else {
422 		tegra_dma_global_resume(tdc);
423 	}
424 }
425 
426 static void tegra_dma_stop(struct tegra_dma_channel *tdc)
427 {
428 	u32 csr;
429 	u32 status;
430 
431 	/* Disable interrupts */
432 	csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
433 	csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
434 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
435 
436 	/* Disable DMA */
437 	csr &= ~TEGRA_APBDMA_CSR_ENB;
438 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
439 
440 	/* Clear interrupt status if it is there */
441 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
442 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
443 		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
444 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
445 	}
446 	tdc->busy = false;
447 }
448 
449 static void tegra_dma_start(struct tegra_dma_channel *tdc,
450 		struct tegra_dma_sg_req *sg_req)
451 {
452 	struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
453 
454 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
455 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
456 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
457 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
458 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
459 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
460 		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
461 
462 	/* Start DMA */
463 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
464 				ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
465 }
466 
467 static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
468 		struct tegra_dma_sg_req *nsg_req)
469 {
470 	unsigned long status;
471 
472 	/*
473 	 * The DMA controller reloads the new configuration for next transfer
474 	 * after last burst of current transfer completes.
475 	 * If there is no IEC status then this makes sure that last burst
476 	 * has not be completed. There may be case that last burst is on
477 	 * flight and so it can complete but because DMA is paused, it
478 	 * will not generates interrupt as well as not reload the new
479 	 * configuration.
480 	 * If there is already IEC status then interrupt handler need to
481 	 * load new configuration.
482 	 */
483 	tegra_dma_pause(tdc, false);
484 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
485 
486 	/*
487 	 * If interrupt is pending then do nothing as the ISR will handle
488 	 * the programing for new request.
489 	 */
490 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
491 		dev_err(tdc2dev(tdc),
492 			"Skipping new configuration as interrupt is pending\n");
493 		tegra_dma_resume(tdc);
494 		return;
495 	}
496 
497 	/* Safe to program new configuration */
498 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
499 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
500 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
501 		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
502 						nsg_req->ch_regs.wcount);
503 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
504 				nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
505 	nsg_req->configured = true;
506 
507 	tegra_dma_resume(tdc);
508 }
509 
510 static void tdc_start_head_req(struct tegra_dma_channel *tdc)
511 {
512 	struct tegra_dma_sg_req *sg_req;
513 
514 	if (list_empty(&tdc->pending_sg_req))
515 		return;
516 
517 	sg_req = list_first_entry(&tdc->pending_sg_req,
518 					typeof(*sg_req), node);
519 	tegra_dma_start(tdc, sg_req);
520 	sg_req->configured = true;
521 	tdc->busy = true;
522 }
523 
524 static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
525 {
526 	struct tegra_dma_sg_req *hsgreq;
527 	struct tegra_dma_sg_req *hnsgreq;
528 
529 	if (list_empty(&tdc->pending_sg_req))
530 		return;
531 
532 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
533 	if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
534 		hnsgreq = list_first_entry(&hsgreq->node,
535 					typeof(*hnsgreq), node);
536 		tegra_dma_configure_for_next(tdc, hnsgreq);
537 	}
538 }
539 
540 static inline int get_current_xferred_count(struct tegra_dma_channel *tdc,
541 	struct tegra_dma_sg_req *sg_req, unsigned long status)
542 {
543 	return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
544 }
545 
546 static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
547 {
548 	struct tegra_dma_sg_req *sgreq;
549 	struct tegra_dma_desc *dma_desc;
550 
551 	while (!list_empty(&tdc->pending_sg_req)) {
552 		sgreq = list_first_entry(&tdc->pending_sg_req,
553 						typeof(*sgreq), node);
554 		list_move_tail(&sgreq->node, &tdc->free_sg_req);
555 		if (sgreq->last_sg) {
556 			dma_desc = sgreq->dma_desc;
557 			dma_desc->dma_status = DMA_ERROR;
558 			list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
559 
560 			/* Add in cb list if it is not there. */
561 			if (!dma_desc->cb_count)
562 				list_add_tail(&dma_desc->cb_node,
563 							&tdc->cb_desc);
564 			dma_desc->cb_count++;
565 		}
566 	}
567 	tdc->isr_handler = NULL;
568 }
569 
570 static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
571 		struct tegra_dma_sg_req *last_sg_req, bool to_terminate)
572 {
573 	struct tegra_dma_sg_req *hsgreq = NULL;
574 
575 	if (list_empty(&tdc->pending_sg_req)) {
576 		dev_err(tdc2dev(tdc), "Dma is running without req\n");
577 		tegra_dma_stop(tdc);
578 		return false;
579 	}
580 
581 	/*
582 	 * Check that head req on list should be in flight.
583 	 * If it is not in flight then abort transfer as
584 	 * looping of transfer can not continue.
585 	 */
586 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
587 	if (!hsgreq->configured) {
588 		tegra_dma_stop(tdc);
589 		dev_err(tdc2dev(tdc), "Error in dma transfer, aborting dma\n");
590 		tegra_dma_abort_all(tdc);
591 		return false;
592 	}
593 
594 	/* Configure next request */
595 	if (!to_terminate)
596 		tdc_configure_next_head_desc(tdc);
597 	return true;
598 }
599 
600 static void handle_once_dma_done(struct tegra_dma_channel *tdc,
601 	bool to_terminate)
602 {
603 	struct tegra_dma_sg_req *sgreq;
604 	struct tegra_dma_desc *dma_desc;
605 
606 	tdc->busy = false;
607 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
608 	dma_desc = sgreq->dma_desc;
609 	dma_desc->bytes_transferred += sgreq->req_len;
610 
611 	list_del(&sgreq->node);
612 	if (sgreq->last_sg) {
613 		dma_desc->dma_status = DMA_COMPLETE;
614 		dma_cookie_complete(&dma_desc->txd);
615 		if (!dma_desc->cb_count)
616 			list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
617 		dma_desc->cb_count++;
618 		list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
619 	}
620 	list_add_tail(&sgreq->node, &tdc->free_sg_req);
621 
622 	/* Do not start DMA if it is going to be terminate */
623 	if (to_terminate || list_empty(&tdc->pending_sg_req))
624 		return;
625 
626 	tdc_start_head_req(tdc);
627 }
628 
629 static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
630 		bool to_terminate)
631 {
632 	struct tegra_dma_sg_req *sgreq;
633 	struct tegra_dma_desc *dma_desc;
634 	bool st;
635 
636 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
637 	dma_desc = sgreq->dma_desc;
638 	dma_desc->bytes_transferred += sgreq->req_len;
639 
640 	/* Callback need to be call */
641 	if (!dma_desc->cb_count)
642 		list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
643 	dma_desc->cb_count++;
644 
645 	/* If not last req then put at end of pending list */
646 	if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
647 		list_move_tail(&sgreq->node, &tdc->pending_sg_req);
648 		sgreq->configured = false;
649 		st = handle_continuous_head_request(tdc, sgreq, to_terminate);
650 		if (!st)
651 			dma_desc->dma_status = DMA_ERROR;
652 	}
653 }
654 
655 static void tegra_dma_tasklet(unsigned long data)
656 {
657 	struct tegra_dma_channel *tdc = (struct tegra_dma_channel *)data;
658 	dma_async_tx_callback callback = NULL;
659 	void *callback_param = NULL;
660 	struct tegra_dma_desc *dma_desc;
661 	unsigned long flags;
662 	int cb_count;
663 
664 	spin_lock_irqsave(&tdc->lock, flags);
665 	while (!list_empty(&tdc->cb_desc)) {
666 		dma_desc  = list_first_entry(&tdc->cb_desc,
667 					typeof(*dma_desc), cb_node);
668 		list_del(&dma_desc->cb_node);
669 		callback = dma_desc->txd.callback;
670 		callback_param = dma_desc->txd.callback_param;
671 		cb_count = dma_desc->cb_count;
672 		dma_desc->cb_count = 0;
673 		spin_unlock_irqrestore(&tdc->lock, flags);
674 		while (cb_count-- && callback)
675 			callback(callback_param);
676 		spin_lock_irqsave(&tdc->lock, flags);
677 	}
678 	spin_unlock_irqrestore(&tdc->lock, flags);
679 }
680 
681 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
682 {
683 	struct tegra_dma_channel *tdc = dev_id;
684 	unsigned long status;
685 	unsigned long flags;
686 
687 	spin_lock_irqsave(&tdc->lock, flags);
688 
689 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
690 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
691 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
692 		tdc->isr_handler(tdc, false);
693 		tasklet_schedule(&tdc->tasklet);
694 		spin_unlock_irqrestore(&tdc->lock, flags);
695 		return IRQ_HANDLED;
696 	}
697 
698 	spin_unlock_irqrestore(&tdc->lock, flags);
699 	dev_info(tdc2dev(tdc),
700 		"Interrupt already served status 0x%08lx\n", status);
701 	return IRQ_NONE;
702 }
703 
704 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
705 {
706 	struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
707 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
708 	unsigned long flags;
709 	dma_cookie_t cookie;
710 
711 	spin_lock_irqsave(&tdc->lock, flags);
712 	dma_desc->dma_status = DMA_IN_PROGRESS;
713 	cookie = dma_cookie_assign(&dma_desc->txd);
714 	list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
715 	spin_unlock_irqrestore(&tdc->lock, flags);
716 	return cookie;
717 }
718 
719 static void tegra_dma_issue_pending(struct dma_chan *dc)
720 {
721 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
722 	unsigned long flags;
723 
724 	spin_lock_irqsave(&tdc->lock, flags);
725 	if (list_empty(&tdc->pending_sg_req)) {
726 		dev_err(tdc2dev(tdc), "No DMA request\n");
727 		goto end;
728 	}
729 	if (!tdc->busy) {
730 		tdc_start_head_req(tdc);
731 
732 		/* Continuous single mode: Configure next req */
733 		if (tdc->cyclic) {
734 			/*
735 			 * Wait for 1 burst time for configure DMA for
736 			 * next transfer.
737 			 */
738 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
739 			tdc_configure_next_head_desc(tdc);
740 		}
741 	}
742 end:
743 	spin_unlock_irqrestore(&tdc->lock, flags);
744 }
745 
746 static int tegra_dma_terminate_all(struct dma_chan *dc)
747 {
748 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
749 	struct tegra_dma_sg_req *sgreq;
750 	struct tegra_dma_desc *dma_desc;
751 	unsigned long flags;
752 	unsigned long status;
753 	unsigned long wcount;
754 	bool was_busy;
755 
756 	spin_lock_irqsave(&tdc->lock, flags);
757 	if (list_empty(&tdc->pending_sg_req)) {
758 		spin_unlock_irqrestore(&tdc->lock, flags);
759 		return 0;
760 	}
761 
762 	if (!tdc->busy)
763 		goto skip_dma_stop;
764 
765 	/* Pause DMA before checking the queue status */
766 	tegra_dma_pause(tdc, true);
767 
768 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
769 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
770 		dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
771 		tdc->isr_handler(tdc, true);
772 		status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
773 	}
774 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
775 		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
776 	else
777 		wcount = status;
778 
779 	was_busy = tdc->busy;
780 	tegra_dma_stop(tdc);
781 
782 	if (!list_empty(&tdc->pending_sg_req) && was_busy) {
783 		sgreq = list_first_entry(&tdc->pending_sg_req,
784 					typeof(*sgreq), node);
785 		sgreq->dma_desc->bytes_transferred +=
786 				get_current_xferred_count(tdc, sgreq, wcount);
787 	}
788 	tegra_dma_resume(tdc);
789 
790 skip_dma_stop:
791 	tegra_dma_abort_all(tdc);
792 
793 	while (!list_empty(&tdc->cb_desc)) {
794 		dma_desc  = list_first_entry(&tdc->cb_desc,
795 					typeof(*dma_desc), cb_node);
796 		list_del(&dma_desc->cb_node);
797 		dma_desc->cb_count = 0;
798 	}
799 	spin_unlock_irqrestore(&tdc->lock, flags);
800 	return 0;
801 }
802 
803 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
804 	dma_cookie_t cookie, struct dma_tx_state *txstate)
805 {
806 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
807 	struct tegra_dma_desc *dma_desc;
808 	struct tegra_dma_sg_req *sg_req;
809 	enum dma_status ret;
810 	unsigned long flags;
811 	unsigned int residual;
812 
813 	ret = dma_cookie_status(dc, cookie, txstate);
814 	if (ret == DMA_COMPLETE)
815 		return ret;
816 
817 	spin_lock_irqsave(&tdc->lock, flags);
818 
819 	/* Check on wait_ack desc status */
820 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
821 		if (dma_desc->txd.cookie == cookie) {
822 			ret = dma_desc->dma_status;
823 			goto found;
824 		}
825 	}
826 
827 	/* Check in pending list */
828 	list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
829 		dma_desc = sg_req->dma_desc;
830 		if (dma_desc->txd.cookie == cookie) {
831 			ret = dma_desc->dma_status;
832 			goto found;
833 		}
834 	}
835 
836 	dev_dbg(tdc2dev(tdc), "cookie %d not found\n", cookie);
837 	dma_desc = NULL;
838 
839 found:
840 	if (dma_desc && txstate) {
841 		residual = dma_desc->bytes_requested -
842 			   (dma_desc->bytes_transferred %
843 			    dma_desc->bytes_requested);
844 		dma_set_residue(txstate, residual);
845 	}
846 
847 	spin_unlock_irqrestore(&tdc->lock, flags);
848 	return ret;
849 }
850 
851 static inline int get_bus_width(struct tegra_dma_channel *tdc,
852 		enum dma_slave_buswidth slave_bw)
853 {
854 	switch (slave_bw) {
855 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
856 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
857 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
858 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
859 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
860 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
861 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
862 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
863 	default:
864 		dev_warn(tdc2dev(tdc),
865 			"slave bw is not supported, using 32bits\n");
866 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
867 	}
868 }
869 
870 static inline int get_burst_size(struct tegra_dma_channel *tdc,
871 	u32 burst_size, enum dma_slave_buswidth slave_bw, int len)
872 {
873 	int burst_byte;
874 	int burst_ahb_width;
875 
876 	/*
877 	 * burst_size from client is in terms of the bus_width.
878 	 * convert them into AHB memory width which is 4 byte.
879 	 */
880 	burst_byte = burst_size * slave_bw;
881 	burst_ahb_width = burst_byte / 4;
882 
883 	/* If burst size is 0 then calculate the burst size based on length */
884 	if (!burst_ahb_width) {
885 		if (len & 0xF)
886 			return TEGRA_APBDMA_AHBSEQ_BURST_1;
887 		else if ((len >> 4) & 0x1)
888 			return TEGRA_APBDMA_AHBSEQ_BURST_4;
889 		else
890 			return TEGRA_APBDMA_AHBSEQ_BURST_8;
891 	}
892 	if (burst_ahb_width < 4)
893 		return TEGRA_APBDMA_AHBSEQ_BURST_1;
894 	else if (burst_ahb_width < 8)
895 		return TEGRA_APBDMA_AHBSEQ_BURST_4;
896 	else
897 		return TEGRA_APBDMA_AHBSEQ_BURST_8;
898 }
899 
900 static int get_transfer_param(struct tegra_dma_channel *tdc,
901 	enum dma_transfer_direction direction, unsigned long *apb_addr,
902 	unsigned long *apb_seq,	unsigned long *csr, unsigned int *burst_size,
903 	enum dma_slave_buswidth *slave_bw)
904 {
905 	switch (direction) {
906 	case DMA_MEM_TO_DEV:
907 		*apb_addr = tdc->dma_sconfig.dst_addr;
908 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
909 		*burst_size = tdc->dma_sconfig.dst_maxburst;
910 		*slave_bw = tdc->dma_sconfig.dst_addr_width;
911 		*csr = TEGRA_APBDMA_CSR_DIR;
912 		return 0;
913 
914 	case DMA_DEV_TO_MEM:
915 		*apb_addr = tdc->dma_sconfig.src_addr;
916 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
917 		*burst_size = tdc->dma_sconfig.src_maxburst;
918 		*slave_bw = tdc->dma_sconfig.src_addr_width;
919 		*csr = 0;
920 		return 0;
921 
922 	default:
923 		dev_err(tdc2dev(tdc), "Dma direction is not supported\n");
924 		return -EINVAL;
925 	}
926 	return -EINVAL;
927 }
928 
929 static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
930 	struct tegra_dma_channel_regs *ch_regs, u32 len)
931 {
932 	u32 len_field = (len - 4) & 0xFFFC;
933 
934 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
935 		ch_regs->wcount = len_field;
936 	else
937 		ch_regs->csr |= len_field;
938 }
939 
940 static struct dma_async_tx_descriptor *tegra_dma_prep_slave_sg(
941 	struct dma_chan *dc, struct scatterlist *sgl, unsigned int sg_len,
942 	enum dma_transfer_direction direction, unsigned long flags,
943 	void *context)
944 {
945 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
946 	struct tegra_dma_desc *dma_desc;
947 	unsigned int i;
948 	struct scatterlist *sg;
949 	unsigned long csr, ahb_seq, apb_ptr, apb_seq;
950 	struct list_head req_list;
951 	struct tegra_dma_sg_req  *sg_req = NULL;
952 	u32 burst_size;
953 	enum dma_slave_buswidth slave_bw;
954 
955 	if (!tdc->config_init) {
956 		dev_err(tdc2dev(tdc), "dma channel is not configured\n");
957 		return NULL;
958 	}
959 	if (sg_len < 1) {
960 		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
961 		return NULL;
962 	}
963 
964 	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
965 				&burst_size, &slave_bw) < 0)
966 		return NULL;
967 
968 	INIT_LIST_HEAD(&req_list);
969 
970 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
971 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
972 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
973 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
974 
975 	csr |= TEGRA_APBDMA_CSR_ONCE | TEGRA_APBDMA_CSR_FLOW;
976 	csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
977 	if (flags & DMA_PREP_INTERRUPT)
978 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
979 
980 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
981 
982 	dma_desc = tegra_dma_desc_get(tdc);
983 	if (!dma_desc) {
984 		dev_err(tdc2dev(tdc), "Dma descriptors not available\n");
985 		return NULL;
986 	}
987 	INIT_LIST_HEAD(&dma_desc->tx_list);
988 	INIT_LIST_HEAD(&dma_desc->cb_node);
989 	dma_desc->cb_count = 0;
990 	dma_desc->bytes_requested = 0;
991 	dma_desc->bytes_transferred = 0;
992 	dma_desc->dma_status = DMA_IN_PROGRESS;
993 
994 	/* Make transfer requests */
995 	for_each_sg(sgl, sg, sg_len, i) {
996 		u32 len, mem;
997 
998 		mem = sg_dma_address(sg);
999 		len = sg_dma_len(sg);
1000 
1001 		if ((len & 3) || (mem & 3) ||
1002 				(len > tdc->tdma->chip_data->max_dma_count)) {
1003 			dev_err(tdc2dev(tdc),
1004 				"Dma length/memory address is not supported\n");
1005 			tegra_dma_desc_put(tdc, dma_desc);
1006 			return NULL;
1007 		}
1008 
1009 		sg_req = tegra_dma_sg_req_get(tdc);
1010 		if (!sg_req) {
1011 			dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
1012 			tegra_dma_desc_put(tdc, dma_desc);
1013 			return NULL;
1014 		}
1015 
1016 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1017 		dma_desc->bytes_requested += len;
1018 
1019 		sg_req->ch_regs.apb_ptr = apb_ptr;
1020 		sg_req->ch_regs.ahb_ptr = mem;
1021 		sg_req->ch_regs.csr = csr;
1022 		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1023 		sg_req->ch_regs.apb_seq = apb_seq;
1024 		sg_req->ch_regs.ahb_seq = ahb_seq;
1025 		sg_req->configured = false;
1026 		sg_req->last_sg = false;
1027 		sg_req->dma_desc = dma_desc;
1028 		sg_req->req_len = len;
1029 
1030 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1031 	}
1032 	sg_req->last_sg = true;
1033 	if (flags & DMA_CTRL_ACK)
1034 		dma_desc->txd.flags = DMA_CTRL_ACK;
1035 
1036 	/*
1037 	 * Make sure that mode should not be conflicting with currently
1038 	 * configured mode.
1039 	 */
1040 	if (!tdc->isr_handler) {
1041 		tdc->isr_handler = handle_once_dma_done;
1042 		tdc->cyclic = false;
1043 	} else {
1044 		if (tdc->cyclic) {
1045 			dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1046 			tegra_dma_desc_put(tdc, dma_desc);
1047 			return NULL;
1048 		}
1049 	}
1050 
1051 	return &dma_desc->txd;
1052 }
1053 
1054 static struct dma_async_tx_descriptor *tegra_dma_prep_dma_cyclic(
1055 	struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
1056 	size_t period_len, enum dma_transfer_direction direction,
1057 	unsigned long flags)
1058 {
1059 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1060 	struct tegra_dma_desc *dma_desc = NULL;
1061 	struct tegra_dma_sg_req *sg_req = NULL;
1062 	unsigned long csr, ahb_seq, apb_ptr, apb_seq;
1063 	int len;
1064 	size_t remain_len;
1065 	dma_addr_t mem = buf_addr;
1066 	u32 burst_size;
1067 	enum dma_slave_buswidth slave_bw;
1068 
1069 	if (!buf_len || !period_len) {
1070 		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1071 		return NULL;
1072 	}
1073 
1074 	if (!tdc->config_init) {
1075 		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1076 		return NULL;
1077 	}
1078 
1079 	/*
1080 	 * We allow to take more number of requests till DMA is
1081 	 * not started. The driver will loop over all requests.
1082 	 * Once DMA is started then new requests can be queued only after
1083 	 * terminating the DMA.
1084 	 */
1085 	if (tdc->busy) {
1086 		dev_err(tdc2dev(tdc), "Request not allowed when dma running\n");
1087 		return NULL;
1088 	}
1089 
1090 	/*
1091 	 * We only support cycle transfer when buf_len is multiple of
1092 	 * period_len.
1093 	 */
1094 	if (buf_len % period_len) {
1095 		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1096 		return NULL;
1097 	}
1098 
1099 	len = period_len;
1100 	if ((len & 3) || (buf_addr & 3) ||
1101 			(len > tdc->tdma->chip_data->max_dma_count)) {
1102 		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1103 		return NULL;
1104 	}
1105 
1106 	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1107 				&burst_size, &slave_bw) < 0)
1108 		return NULL;
1109 
1110 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1111 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1112 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1113 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1114 
1115 	csr |= TEGRA_APBDMA_CSR_FLOW;
1116 	if (flags & DMA_PREP_INTERRUPT)
1117 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1118 	csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1119 
1120 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1121 
1122 	dma_desc = tegra_dma_desc_get(tdc);
1123 	if (!dma_desc) {
1124 		dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1125 		return NULL;
1126 	}
1127 
1128 	INIT_LIST_HEAD(&dma_desc->tx_list);
1129 	INIT_LIST_HEAD(&dma_desc->cb_node);
1130 	dma_desc->cb_count = 0;
1131 
1132 	dma_desc->bytes_transferred = 0;
1133 	dma_desc->bytes_requested = buf_len;
1134 	remain_len = buf_len;
1135 
1136 	/* Split transfer equal to period size */
1137 	while (remain_len) {
1138 		sg_req = tegra_dma_sg_req_get(tdc);
1139 		if (!sg_req) {
1140 			dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
1141 			tegra_dma_desc_put(tdc, dma_desc);
1142 			return NULL;
1143 		}
1144 
1145 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1146 		sg_req->ch_regs.apb_ptr = apb_ptr;
1147 		sg_req->ch_regs.ahb_ptr = mem;
1148 		sg_req->ch_regs.csr = csr;
1149 		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1150 		sg_req->ch_regs.apb_seq = apb_seq;
1151 		sg_req->ch_regs.ahb_seq = ahb_seq;
1152 		sg_req->configured = false;
1153 		sg_req->last_sg = false;
1154 		sg_req->dma_desc = dma_desc;
1155 		sg_req->req_len = len;
1156 
1157 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1158 		remain_len -= len;
1159 		mem += len;
1160 	}
1161 	sg_req->last_sg = true;
1162 	if (flags & DMA_CTRL_ACK)
1163 		dma_desc->txd.flags = DMA_CTRL_ACK;
1164 
1165 	/*
1166 	 * Make sure that mode should not be conflicting with currently
1167 	 * configured mode.
1168 	 */
1169 	if (!tdc->isr_handler) {
1170 		tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1171 		tdc->cyclic = true;
1172 	} else {
1173 		if (!tdc->cyclic) {
1174 			dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1175 			tegra_dma_desc_put(tdc, dma_desc);
1176 			return NULL;
1177 		}
1178 	}
1179 
1180 	return &dma_desc->txd;
1181 }
1182 
1183 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1184 {
1185 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1186 	struct tegra_dma *tdma = tdc->tdma;
1187 	int ret;
1188 
1189 	dma_cookie_init(&tdc->dma_chan);
1190 	tdc->config_init = false;
1191 
1192 	ret = pm_runtime_get_sync(tdma->dev);
1193 	if (ret < 0)
1194 		return ret;
1195 
1196 	return 0;
1197 }
1198 
1199 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1200 {
1201 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1202 	struct tegra_dma *tdma = tdc->tdma;
1203 	struct tegra_dma_desc *dma_desc;
1204 	struct tegra_dma_sg_req *sg_req;
1205 	struct list_head dma_desc_list;
1206 	struct list_head sg_req_list;
1207 	unsigned long flags;
1208 
1209 	INIT_LIST_HEAD(&dma_desc_list);
1210 	INIT_LIST_HEAD(&sg_req_list);
1211 
1212 	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1213 
1214 	if (tdc->busy)
1215 		tegra_dma_terminate_all(dc);
1216 
1217 	spin_lock_irqsave(&tdc->lock, flags);
1218 	list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1219 	list_splice_init(&tdc->free_sg_req, &sg_req_list);
1220 	list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1221 	INIT_LIST_HEAD(&tdc->cb_desc);
1222 	tdc->config_init = false;
1223 	tdc->isr_handler = NULL;
1224 	spin_unlock_irqrestore(&tdc->lock, flags);
1225 
1226 	while (!list_empty(&dma_desc_list)) {
1227 		dma_desc = list_first_entry(&dma_desc_list,
1228 					typeof(*dma_desc), node);
1229 		list_del(&dma_desc->node);
1230 		kfree(dma_desc);
1231 	}
1232 
1233 	while (!list_empty(&sg_req_list)) {
1234 		sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1235 		list_del(&sg_req->node);
1236 		kfree(sg_req);
1237 	}
1238 	pm_runtime_put(tdma->dev);
1239 
1240 	tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1241 }
1242 
1243 static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1244 					   struct of_dma *ofdma)
1245 {
1246 	struct tegra_dma *tdma = ofdma->of_dma_data;
1247 	struct dma_chan *chan;
1248 	struct tegra_dma_channel *tdc;
1249 
1250 	if (dma_spec->args[0] > TEGRA_APBDMA_CSR_REQ_SEL_MASK) {
1251 		dev_err(tdma->dev, "Invalid slave id: %d\n", dma_spec->args[0]);
1252 		return NULL;
1253 	}
1254 
1255 	chan = dma_get_any_slave_channel(&tdma->dma_dev);
1256 	if (!chan)
1257 		return NULL;
1258 
1259 	tdc = to_tegra_dma_chan(chan);
1260 	tdc->slave_id = dma_spec->args[0];
1261 
1262 	return chan;
1263 }
1264 
1265 /* Tegra20 specific DMA controller information */
1266 static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1267 	.nr_channels		= 16,
1268 	.channel_reg_size	= 0x20,
1269 	.max_dma_count		= 1024UL * 64,
1270 	.support_channel_pause	= false,
1271 	.support_separate_wcount_reg = false,
1272 };
1273 
1274 /* Tegra30 specific DMA controller information */
1275 static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1276 	.nr_channels		= 32,
1277 	.channel_reg_size	= 0x20,
1278 	.max_dma_count		= 1024UL * 64,
1279 	.support_channel_pause	= false,
1280 	.support_separate_wcount_reg = false,
1281 };
1282 
1283 /* Tegra114 specific DMA controller information */
1284 static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1285 	.nr_channels		= 32,
1286 	.channel_reg_size	= 0x20,
1287 	.max_dma_count		= 1024UL * 64,
1288 	.support_channel_pause	= true,
1289 	.support_separate_wcount_reg = false,
1290 };
1291 
1292 /* Tegra148 specific DMA controller information */
1293 static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1294 	.nr_channels		= 32,
1295 	.channel_reg_size	= 0x40,
1296 	.max_dma_count		= 1024UL * 64,
1297 	.support_channel_pause	= true,
1298 	.support_separate_wcount_reg = true,
1299 };
1300 
1301 static int tegra_dma_probe(struct platform_device *pdev)
1302 {
1303 	struct resource *res;
1304 	struct tegra_dma *tdma;
1305 	int ret;
1306 	int i;
1307 	const struct tegra_dma_chip_data *cdata;
1308 
1309 	cdata = of_device_get_match_data(&pdev->dev);
1310 	if (!cdata) {
1311 		dev_err(&pdev->dev, "Error: No device match data found\n");
1312 		return -ENODEV;
1313 	}
1314 
1315 	tdma = devm_kzalloc(&pdev->dev, sizeof(*tdma) + cdata->nr_channels *
1316 			sizeof(struct tegra_dma_channel), GFP_KERNEL);
1317 	if (!tdma)
1318 		return -ENOMEM;
1319 
1320 	tdma->dev = &pdev->dev;
1321 	tdma->chip_data = cdata;
1322 	platform_set_drvdata(pdev, tdma);
1323 
1324 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1325 	tdma->base_addr = devm_ioremap_resource(&pdev->dev, res);
1326 	if (IS_ERR(tdma->base_addr))
1327 		return PTR_ERR(tdma->base_addr);
1328 
1329 	tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1330 	if (IS_ERR(tdma->dma_clk)) {
1331 		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1332 		return PTR_ERR(tdma->dma_clk);
1333 	}
1334 
1335 	tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1336 	if (IS_ERR(tdma->rst)) {
1337 		dev_err(&pdev->dev, "Error: Missing reset\n");
1338 		return PTR_ERR(tdma->rst);
1339 	}
1340 
1341 	spin_lock_init(&tdma->global_lock);
1342 
1343 	pm_runtime_enable(&pdev->dev);
1344 	if (!pm_runtime_enabled(&pdev->dev))
1345 		ret = tegra_dma_runtime_resume(&pdev->dev);
1346 	else
1347 		ret = pm_runtime_get_sync(&pdev->dev);
1348 
1349 	if (ret < 0) {
1350 		pm_runtime_disable(&pdev->dev);
1351 		return ret;
1352 	}
1353 
1354 	/* Reset DMA controller */
1355 	reset_control_assert(tdma->rst);
1356 	udelay(2);
1357 	reset_control_deassert(tdma->rst);
1358 
1359 	/* Enable global DMA registers */
1360 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1361 	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1362 	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1363 
1364 	pm_runtime_put(&pdev->dev);
1365 
1366 	INIT_LIST_HEAD(&tdma->dma_dev.channels);
1367 	for (i = 0; i < cdata->nr_channels; i++) {
1368 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1369 
1370 		tdc->chan_addr = tdma->base_addr +
1371 				 TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1372 				 (i * cdata->channel_reg_size);
1373 
1374 		res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1375 		if (!res) {
1376 			ret = -EINVAL;
1377 			dev_err(&pdev->dev, "No irq resource for chan %d\n", i);
1378 			goto err_irq;
1379 		}
1380 		tdc->irq = res->start;
1381 		snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1382 		ret = request_irq(tdc->irq, tegra_dma_isr, 0, tdc->name, tdc);
1383 		if (ret) {
1384 			dev_err(&pdev->dev,
1385 				"request_irq failed with err %d channel %d\n",
1386 				ret, i);
1387 			goto err_irq;
1388 		}
1389 
1390 		tdc->dma_chan.device = &tdma->dma_dev;
1391 		dma_cookie_init(&tdc->dma_chan);
1392 		list_add_tail(&tdc->dma_chan.device_node,
1393 				&tdma->dma_dev.channels);
1394 		tdc->tdma = tdma;
1395 		tdc->id = i;
1396 		tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1397 
1398 		tasklet_init(&tdc->tasklet, tegra_dma_tasklet,
1399 				(unsigned long)tdc);
1400 		spin_lock_init(&tdc->lock);
1401 
1402 		INIT_LIST_HEAD(&tdc->pending_sg_req);
1403 		INIT_LIST_HEAD(&tdc->free_sg_req);
1404 		INIT_LIST_HEAD(&tdc->free_dma_desc);
1405 		INIT_LIST_HEAD(&tdc->cb_desc);
1406 	}
1407 
1408 	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1409 	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1410 	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1411 
1412 	tdma->global_pause_count = 0;
1413 	tdma->dma_dev.dev = &pdev->dev;
1414 	tdma->dma_dev.device_alloc_chan_resources =
1415 					tegra_dma_alloc_chan_resources;
1416 	tdma->dma_dev.device_free_chan_resources =
1417 					tegra_dma_free_chan_resources;
1418 	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1419 	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1420 	tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1421 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1422 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1423 		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1424 	tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1425 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1426 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1427 		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1428 	tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1429 	/*
1430 	 * XXX The hardware appears to support
1431 	 * DMA_RESIDUE_GRANULARITY_BURST-level reporting, but it's
1432 	 * only used by this driver during tegra_dma_terminate_all()
1433 	 */
1434 	tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1435 	tdma->dma_dev.device_config = tegra_dma_slave_config;
1436 	tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1437 	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1438 	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1439 
1440 	ret = dma_async_device_register(&tdma->dma_dev);
1441 	if (ret < 0) {
1442 		dev_err(&pdev->dev,
1443 			"Tegra20 APB DMA driver registration failed %d\n", ret);
1444 		goto err_irq;
1445 	}
1446 
1447 	ret = of_dma_controller_register(pdev->dev.of_node,
1448 					 tegra_dma_of_xlate, tdma);
1449 	if (ret < 0) {
1450 		dev_err(&pdev->dev,
1451 			"Tegra20 APB DMA OF registration failed %d\n", ret);
1452 		goto err_unregister_dma_dev;
1453 	}
1454 
1455 	dev_info(&pdev->dev, "Tegra20 APB DMA driver register %d channels\n",
1456 			cdata->nr_channels);
1457 	return 0;
1458 
1459 err_unregister_dma_dev:
1460 	dma_async_device_unregister(&tdma->dma_dev);
1461 err_irq:
1462 	while (--i >= 0) {
1463 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1464 
1465 		free_irq(tdc->irq, tdc);
1466 		tasklet_kill(&tdc->tasklet);
1467 	}
1468 
1469 	pm_runtime_disable(&pdev->dev);
1470 	if (!pm_runtime_status_suspended(&pdev->dev))
1471 		tegra_dma_runtime_suspend(&pdev->dev);
1472 	return ret;
1473 }
1474 
1475 static int tegra_dma_remove(struct platform_device *pdev)
1476 {
1477 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1478 	int i;
1479 	struct tegra_dma_channel *tdc;
1480 
1481 	dma_async_device_unregister(&tdma->dma_dev);
1482 
1483 	for (i = 0; i < tdma->chip_data->nr_channels; ++i) {
1484 		tdc = &tdma->channels[i];
1485 		free_irq(tdc->irq, tdc);
1486 		tasklet_kill(&tdc->tasklet);
1487 	}
1488 
1489 	pm_runtime_disable(&pdev->dev);
1490 	if (!pm_runtime_status_suspended(&pdev->dev))
1491 		tegra_dma_runtime_suspend(&pdev->dev);
1492 
1493 	return 0;
1494 }
1495 
1496 static int tegra_dma_runtime_suspend(struct device *dev)
1497 {
1498 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1499 
1500 	clk_disable_unprepare(tdma->dma_clk);
1501 	return 0;
1502 }
1503 
1504 static int tegra_dma_runtime_resume(struct device *dev)
1505 {
1506 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1507 	int ret;
1508 
1509 	ret = clk_prepare_enable(tdma->dma_clk);
1510 	if (ret < 0) {
1511 		dev_err(dev, "clk_enable failed: %d\n", ret);
1512 		return ret;
1513 	}
1514 	return 0;
1515 }
1516 
1517 #ifdef CONFIG_PM_SLEEP
1518 static int tegra_dma_pm_suspend(struct device *dev)
1519 {
1520 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1521 	int i;
1522 	int ret;
1523 
1524 	/* Enable clock before accessing register */
1525 	ret = pm_runtime_get_sync(dev);
1526 	if (ret < 0)
1527 		return ret;
1528 
1529 	tdma->reg_gen = tdma_read(tdma, TEGRA_APBDMA_GENERAL);
1530 	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1531 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1532 		struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1533 
1534 		/* Only save the state of DMA channels that are in use */
1535 		if (!tdc->config_init)
1536 			continue;
1537 
1538 		ch_reg->csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
1539 		ch_reg->ahb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBPTR);
1540 		ch_reg->apb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBPTR);
1541 		ch_reg->ahb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBSEQ);
1542 		ch_reg->apb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBSEQ);
1543 		if (tdma->chip_data->support_separate_wcount_reg)
1544 			ch_reg->wcount = tdc_read(tdc,
1545 						  TEGRA_APBDMA_CHAN_WCOUNT);
1546 	}
1547 
1548 	/* Disable clock */
1549 	pm_runtime_put(dev);
1550 	return 0;
1551 }
1552 
1553 static int tegra_dma_pm_resume(struct device *dev)
1554 {
1555 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1556 	int i;
1557 	int ret;
1558 
1559 	/* Enable clock before accessing register */
1560 	ret = pm_runtime_get_sync(dev);
1561 	if (ret < 0)
1562 		return ret;
1563 
1564 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, tdma->reg_gen);
1565 	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1566 	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1567 
1568 	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1569 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1570 		struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1571 
1572 		/* Only restore the state of DMA channels that are in use */
1573 		if (!tdc->config_init)
1574 			continue;
1575 
1576 		if (tdma->chip_data->support_separate_wcount_reg)
1577 			tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
1578 				  ch_reg->wcount);
1579 		tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_reg->apb_seq);
1580 		tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_reg->apb_ptr);
1581 		tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_reg->ahb_seq);
1582 		tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_reg->ahb_ptr);
1583 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
1584 			(ch_reg->csr & ~TEGRA_APBDMA_CSR_ENB));
1585 	}
1586 
1587 	/* Disable clock */
1588 	pm_runtime_put(dev);
1589 	return 0;
1590 }
1591 #endif
1592 
1593 static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1594 	SET_RUNTIME_PM_OPS(tegra_dma_runtime_suspend, tegra_dma_runtime_resume,
1595 			   NULL)
1596 	SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_pm_suspend, tegra_dma_pm_resume)
1597 };
1598 
1599 static const struct of_device_id tegra_dma_of_match[] = {
1600 	{
1601 		.compatible = "nvidia,tegra148-apbdma",
1602 		.data = &tegra148_dma_chip_data,
1603 	}, {
1604 		.compatible = "nvidia,tegra114-apbdma",
1605 		.data = &tegra114_dma_chip_data,
1606 	}, {
1607 		.compatible = "nvidia,tegra30-apbdma",
1608 		.data = &tegra30_dma_chip_data,
1609 	}, {
1610 		.compatible = "nvidia,tegra20-apbdma",
1611 		.data = &tegra20_dma_chip_data,
1612 	}, {
1613 	},
1614 };
1615 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1616 
1617 static struct platform_driver tegra_dmac_driver = {
1618 	.driver = {
1619 		.name	= "tegra-apbdma",
1620 		.pm	= &tegra_dma_dev_pm_ops,
1621 		.of_match_table = tegra_dma_of_match,
1622 	},
1623 	.probe		= tegra_dma_probe,
1624 	.remove		= tegra_dma_remove,
1625 };
1626 
1627 module_platform_driver(tegra_dmac_driver);
1628 
1629 MODULE_ALIAS("platform:tegra20-apbdma");
1630 MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1631 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1632 MODULE_LICENSE("GPL v2");
1633