xref: /openbmc/linux/drivers/dma/tegra20-apb-dma.c (revision 9d749629)
1 /*
2  * DMA driver for Nvidia's Tegra20 APB DMA controller.
3  *
4  * Copyright (c) 2012, NVIDIA CORPORATION.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include <linux/bitops.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/io.h>
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/platform_device.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/slab.h>
34 
35 #include <mach/clk.h>
36 #include "dmaengine.h"
37 
38 #define TEGRA_APBDMA_GENERAL			0x0
39 #define TEGRA_APBDMA_GENERAL_ENABLE		BIT(31)
40 
41 #define TEGRA_APBDMA_CONTROL			0x010
42 #define TEGRA_APBDMA_IRQ_MASK			0x01c
43 #define TEGRA_APBDMA_IRQ_MASK_SET		0x020
44 
45 /* CSR register */
46 #define TEGRA_APBDMA_CHAN_CSR			0x00
47 #define TEGRA_APBDMA_CSR_ENB			BIT(31)
48 #define TEGRA_APBDMA_CSR_IE_EOC			BIT(30)
49 #define TEGRA_APBDMA_CSR_HOLD			BIT(29)
50 #define TEGRA_APBDMA_CSR_DIR			BIT(28)
51 #define TEGRA_APBDMA_CSR_ONCE			BIT(27)
52 #define TEGRA_APBDMA_CSR_FLOW			BIT(21)
53 #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT		16
54 #define TEGRA_APBDMA_CSR_WCOUNT_MASK		0xFFFC
55 
56 /* STATUS register */
57 #define TEGRA_APBDMA_CHAN_STATUS		0x004
58 #define TEGRA_APBDMA_STATUS_BUSY		BIT(31)
59 #define TEGRA_APBDMA_STATUS_ISE_EOC		BIT(30)
60 #define TEGRA_APBDMA_STATUS_HALT		BIT(29)
61 #define TEGRA_APBDMA_STATUS_PING_PONG		BIT(28)
62 #define TEGRA_APBDMA_STATUS_COUNT_SHIFT		2
63 #define TEGRA_APBDMA_STATUS_COUNT_MASK		0xFFFC
64 
65 /* AHB memory address */
66 #define TEGRA_APBDMA_CHAN_AHBPTR		0x010
67 
68 /* AHB sequence register */
69 #define TEGRA_APBDMA_CHAN_AHBSEQ		0x14
70 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB		BIT(31)
71 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8		(0 << 28)
72 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16	(1 << 28)
73 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32	(2 << 28)
74 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64	(3 << 28)
75 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128	(4 << 28)
76 #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP		BIT(27)
77 #define TEGRA_APBDMA_AHBSEQ_BURST_1		(4 << 24)
78 #define TEGRA_APBDMA_AHBSEQ_BURST_4		(5 << 24)
79 #define TEGRA_APBDMA_AHBSEQ_BURST_8		(6 << 24)
80 #define TEGRA_APBDMA_AHBSEQ_DBL_BUF		BIT(19)
81 #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT		16
82 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE		0
83 
84 /* APB address */
85 #define TEGRA_APBDMA_CHAN_APBPTR		0x018
86 
87 /* APB sequence register */
88 #define TEGRA_APBDMA_CHAN_APBSEQ		0x01c
89 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8		(0 << 28)
90 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16	(1 << 28)
91 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32	(2 << 28)
92 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64	(3 << 28)
93 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128	(4 << 28)
94 #define TEGRA_APBDMA_APBSEQ_DATA_SWAP		BIT(27)
95 #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1		(1 << 16)
96 
97 /*
98  * If any burst is in flight and DMA paused then this is the time to complete
99  * on-flight burst and update DMA status register.
100  */
101 #define TEGRA_APBDMA_BURST_COMPLETE_TIME	20
102 
103 /* Channel base address offset from APBDMA base address */
104 #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET	0x1000
105 
106 /* DMA channel register space size */
107 #define TEGRA_APBDMA_CHANNEL_REGISTER_SIZE	0x20
108 
109 struct tegra_dma;
110 
111 /*
112  * tegra_dma_chip_data Tegra chip specific DMA data
113  * @nr_channels: Number of channels available in the controller.
114  * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
115  */
116 struct tegra_dma_chip_data {
117 	int nr_channels;
118 	int max_dma_count;
119 };
120 
121 /* DMA channel registers */
122 struct tegra_dma_channel_regs {
123 	unsigned long	csr;
124 	unsigned long	ahb_ptr;
125 	unsigned long	apb_ptr;
126 	unsigned long	ahb_seq;
127 	unsigned long	apb_seq;
128 };
129 
130 /*
131  * tegra_dma_sg_req: Dma request details to configure hardware. This
132  * contains the details for one transfer to configure DMA hw.
133  * The client's request for data transfer can be broken into multiple
134  * sub-transfer as per requester details and hw support.
135  * This sub transfer get added in the list of transfer and point to Tegra
136  * DMA descriptor which manages the transfer details.
137  */
138 struct tegra_dma_sg_req {
139 	struct tegra_dma_channel_regs	ch_regs;
140 	int				req_len;
141 	bool				configured;
142 	bool				last_sg;
143 	bool				half_done;
144 	struct list_head		node;
145 	struct tegra_dma_desc		*dma_desc;
146 };
147 
148 /*
149  * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
150  * This descriptor keep track of transfer status, callbacks and request
151  * counts etc.
152  */
153 struct tegra_dma_desc {
154 	struct dma_async_tx_descriptor	txd;
155 	int				bytes_requested;
156 	int				bytes_transferred;
157 	enum dma_status			dma_status;
158 	struct list_head		node;
159 	struct list_head		tx_list;
160 	struct list_head		cb_node;
161 	int				cb_count;
162 };
163 
164 struct tegra_dma_channel;
165 
166 typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
167 				bool to_terminate);
168 
169 /* tegra_dma_channel: Channel specific information */
170 struct tegra_dma_channel {
171 	struct dma_chan		dma_chan;
172 	char			name[30];
173 	bool			config_init;
174 	int			id;
175 	int			irq;
176 	unsigned long		chan_base_offset;
177 	spinlock_t		lock;
178 	bool			busy;
179 	struct tegra_dma	*tdma;
180 	bool			cyclic;
181 
182 	/* Different lists for managing the requests */
183 	struct list_head	free_sg_req;
184 	struct list_head	pending_sg_req;
185 	struct list_head	free_dma_desc;
186 	struct list_head	cb_desc;
187 
188 	/* ISR handler and tasklet for bottom half of isr handling */
189 	dma_isr_handler		isr_handler;
190 	struct tasklet_struct	tasklet;
191 	dma_async_tx_callback	callback;
192 	void			*callback_param;
193 
194 	/* Channel-slave specific configuration */
195 	struct dma_slave_config dma_sconfig;
196 };
197 
198 /* tegra_dma: Tegra DMA specific information */
199 struct tegra_dma {
200 	struct dma_device		dma_dev;
201 	struct device			*dev;
202 	struct clk			*dma_clk;
203 	spinlock_t			global_lock;
204 	void __iomem			*base_addr;
205 	const struct tegra_dma_chip_data *chip_data;
206 
207 	/* Some register need to be cache before suspend */
208 	u32				reg_gen;
209 
210 	/* Last member of the structure */
211 	struct tegra_dma_channel channels[0];
212 };
213 
214 static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
215 {
216 	writel(val, tdma->base_addr + reg);
217 }
218 
219 static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
220 {
221 	return readl(tdma->base_addr + reg);
222 }
223 
224 static inline void tdc_write(struct tegra_dma_channel *tdc,
225 		u32 reg, u32 val)
226 {
227 	writel(val, tdc->tdma->base_addr + tdc->chan_base_offset + reg);
228 }
229 
230 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
231 {
232 	return readl(tdc->tdma->base_addr + tdc->chan_base_offset + reg);
233 }
234 
235 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
236 {
237 	return container_of(dc, struct tegra_dma_channel, dma_chan);
238 }
239 
240 static inline struct tegra_dma_desc *txd_to_tegra_dma_desc(
241 		struct dma_async_tx_descriptor *td)
242 {
243 	return container_of(td, struct tegra_dma_desc, txd);
244 }
245 
246 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
247 {
248 	return &tdc->dma_chan.dev->device;
249 }
250 
251 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
252 static int tegra_dma_runtime_suspend(struct device *dev);
253 static int tegra_dma_runtime_resume(struct device *dev);
254 
255 /* Get DMA desc from free list, if not there then allocate it.  */
256 static struct tegra_dma_desc *tegra_dma_desc_get(
257 		struct tegra_dma_channel *tdc)
258 {
259 	struct tegra_dma_desc *dma_desc;
260 	unsigned long flags;
261 
262 	spin_lock_irqsave(&tdc->lock, flags);
263 
264 	/* Do not allocate if desc are waiting for ack */
265 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
266 		if (async_tx_test_ack(&dma_desc->txd)) {
267 			list_del(&dma_desc->node);
268 			spin_unlock_irqrestore(&tdc->lock, flags);
269 			dma_desc->txd.flags = 0;
270 			return dma_desc;
271 		}
272 	}
273 
274 	spin_unlock_irqrestore(&tdc->lock, flags);
275 
276 	/* Allocate DMA desc */
277 	dma_desc = kzalloc(sizeof(*dma_desc), GFP_ATOMIC);
278 	if (!dma_desc) {
279 		dev_err(tdc2dev(tdc), "dma_desc alloc failed\n");
280 		return NULL;
281 	}
282 
283 	dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
284 	dma_desc->txd.tx_submit = tegra_dma_tx_submit;
285 	dma_desc->txd.flags = 0;
286 	return dma_desc;
287 }
288 
289 static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
290 		struct tegra_dma_desc *dma_desc)
291 {
292 	unsigned long flags;
293 
294 	spin_lock_irqsave(&tdc->lock, flags);
295 	if (!list_empty(&dma_desc->tx_list))
296 		list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
297 	list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
298 	spin_unlock_irqrestore(&tdc->lock, flags);
299 }
300 
301 static struct tegra_dma_sg_req *tegra_dma_sg_req_get(
302 		struct tegra_dma_channel *tdc)
303 {
304 	struct tegra_dma_sg_req *sg_req = NULL;
305 	unsigned long flags;
306 
307 	spin_lock_irqsave(&tdc->lock, flags);
308 	if (!list_empty(&tdc->free_sg_req)) {
309 		sg_req = list_first_entry(&tdc->free_sg_req,
310 					typeof(*sg_req), node);
311 		list_del(&sg_req->node);
312 		spin_unlock_irqrestore(&tdc->lock, flags);
313 		return sg_req;
314 	}
315 	spin_unlock_irqrestore(&tdc->lock, flags);
316 
317 	sg_req = kzalloc(sizeof(struct tegra_dma_sg_req), GFP_ATOMIC);
318 	if (!sg_req)
319 		dev_err(tdc2dev(tdc), "sg_req alloc failed\n");
320 	return sg_req;
321 }
322 
323 static int tegra_dma_slave_config(struct dma_chan *dc,
324 		struct dma_slave_config *sconfig)
325 {
326 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
327 
328 	if (!list_empty(&tdc->pending_sg_req)) {
329 		dev_err(tdc2dev(tdc), "Configuration not allowed\n");
330 		return -EBUSY;
331 	}
332 
333 	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
334 	tdc->config_init = true;
335 	return 0;
336 }
337 
338 static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
339 	bool wait_for_burst_complete)
340 {
341 	struct tegra_dma *tdma = tdc->tdma;
342 
343 	spin_lock(&tdma->global_lock);
344 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
345 	if (wait_for_burst_complete)
346 		udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
347 }
348 
349 static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
350 {
351 	struct tegra_dma *tdma = tdc->tdma;
352 
353 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
354 	spin_unlock(&tdma->global_lock);
355 }
356 
357 static void tegra_dma_stop(struct tegra_dma_channel *tdc)
358 {
359 	u32 csr;
360 	u32 status;
361 
362 	/* Disable interrupts */
363 	csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
364 	csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
365 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
366 
367 	/* Disable DMA */
368 	csr &= ~TEGRA_APBDMA_CSR_ENB;
369 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
370 
371 	/* Clear interrupt status if it is there */
372 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
373 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
374 		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
375 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
376 	}
377 	tdc->busy = false;
378 }
379 
380 static void tegra_dma_start(struct tegra_dma_channel *tdc,
381 		struct tegra_dma_sg_req *sg_req)
382 {
383 	struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
384 
385 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
386 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
387 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
388 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
389 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
390 
391 	/* Start DMA */
392 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
393 				ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
394 }
395 
396 static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
397 		struct tegra_dma_sg_req *nsg_req)
398 {
399 	unsigned long status;
400 
401 	/*
402 	 * The DMA controller reloads the new configuration for next transfer
403 	 * after last burst of current transfer completes.
404 	 * If there is no IEC status then this makes sure that last burst
405 	 * has not be completed. There may be case that last burst is on
406 	 * flight and so it can complete but because DMA is paused, it
407 	 * will not generates interrupt as well as not reload the new
408 	 * configuration.
409 	 * If there is already IEC status then interrupt handler need to
410 	 * load new configuration.
411 	 */
412 	tegra_dma_global_pause(tdc, false);
413 	status  = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
414 
415 	/*
416 	 * If interrupt is pending then do nothing as the ISR will handle
417 	 * the programing for new request.
418 	 */
419 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
420 		dev_err(tdc2dev(tdc),
421 			"Skipping new configuration as interrupt is pending\n");
422 		tegra_dma_global_resume(tdc);
423 		return;
424 	}
425 
426 	/* Safe to program new configuration */
427 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
428 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
429 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
430 				nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
431 	nsg_req->configured = true;
432 
433 	tegra_dma_global_resume(tdc);
434 }
435 
436 static void tdc_start_head_req(struct tegra_dma_channel *tdc)
437 {
438 	struct tegra_dma_sg_req *sg_req;
439 
440 	if (list_empty(&tdc->pending_sg_req))
441 		return;
442 
443 	sg_req = list_first_entry(&tdc->pending_sg_req,
444 					typeof(*sg_req), node);
445 	tegra_dma_start(tdc, sg_req);
446 	sg_req->configured = true;
447 	tdc->busy = true;
448 }
449 
450 static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
451 {
452 	struct tegra_dma_sg_req *hsgreq;
453 	struct tegra_dma_sg_req *hnsgreq;
454 
455 	if (list_empty(&tdc->pending_sg_req))
456 		return;
457 
458 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
459 	if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
460 		hnsgreq = list_first_entry(&hsgreq->node,
461 					typeof(*hnsgreq), node);
462 		tegra_dma_configure_for_next(tdc, hnsgreq);
463 	}
464 }
465 
466 static inline int get_current_xferred_count(struct tegra_dma_channel *tdc,
467 	struct tegra_dma_sg_req *sg_req, unsigned long status)
468 {
469 	return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
470 }
471 
472 static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
473 {
474 	struct tegra_dma_sg_req *sgreq;
475 	struct tegra_dma_desc *dma_desc;
476 
477 	while (!list_empty(&tdc->pending_sg_req)) {
478 		sgreq = list_first_entry(&tdc->pending_sg_req,
479 						typeof(*sgreq), node);
480 		list_move_tail(&sgreq->node, &tdc->free_sg_req);
481 		if (sgreq->last_sg) {
482 			dma_desc = sgreq->dma_desc;
483 			dma_desc->dma_status = DMA_ERROR;
484 			list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
485 
486 			/* Add in cb list if it is not there. */
487 			if (!dma_desc->cb_count)
488 				list_add_tail(&dma_desc->cb_node,
489 							&tdc->cb_desc);
490 			dma_desc->cb_count++;
491 		}
492 	}
493 	tdc->isr_handler = NULL;
494 }
495 
496 static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
497 		struct tegra_dma_sg_req *last_sg_req, bool to_terminate)
498 {
499 	struct tegra_dma_sg_req *hsgreq = NULL;
500 
501 	if (list_empty(&tdc->pending_sg_req)) {
502 		dev_err(tdc2dev(tdc), "Dma is running without req\n");
503 		tegra_dma_stop(tdc);
504 		return false;
505 	}
506 
507 	/*
508 	 * Check that head req on list should be in flight.
509 	 * If it is not in flight then abort transfer as
510 	 * looping of transfer can not continue.
511 	 */
512 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
513 	if (!hsgreq->configured) {
514 		tegra_dma_stop(tdc);
515 		dev_err(tdc2dev(tdc), "Error in dma transfer, aborting dma\n");
516 		tegra_dma_abort_all(tdc);
517 		return false;
518 	}
519 
520 	/* Configure next request */
521 	if (!to_terminate)
522 		tdc_configure_next_head_desc(tdc);
523 	return true;
524 }
525 
526 static void handle_once_dma_done(struct tegra_dma_channel *tdc,
527 	bool to_terminate)
528 {
529 	struct tegra_dma_sg_req *sgreq;
530 	struct tegra_dma_desc *dma_desc;
531 
532 	tdc->busy = false;
533 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
534 	dma_desc = sgreq->dma_desc;
535 	dma_desc->bytes_transferred += sgreq->req_len;
536 
537 	list_del(&sgreq->node);
538 	if (sgreq->last_sg) {
539 		dma_desc->dma_status = DMA_SUCCESS;
540 		dma_cookie_complete(&dma_desc->txd);
541 		if (!dma_desc->cb_count)
542 			list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
543 		dma_desc->cb_count++;
544 		list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
545 	}
546 	list_add_tail(&sgreq->node, &tdc->free_sg_req);
547 
548 	/* Do not start DMA if it is going to be terminate */
549 	if (to_terminate || list_empty(&tdc->pending_sg_req))
550 		return;
551 
552 	tdc_start_head_req(tdc);
553 	return;
554 }
555 
556 static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
557 		bool to_terminate)
558 {
559 	struct tegra_dma_sg_req *sgreq;
560 	struct tegra_dma_desc *dma_desc;
561 	bool st;
562 
563 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
564 	dma_desc = sgreq->dma_desc;
565 	dma_desc->bytes_transferred += sgreq->req_len;
566 
567 	/* Callback need to be call */
568 	if (!dma_desc->cb_count)
569 		list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
570 	dma_desc->cb_count++;
571 
572 	/* If not last req then put at end of pending list */
573 	if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
574 		list_move_tail(&sgreq->node, &tdc->pending_sg_req);
575 		sgreq->configured = false;
576 		st = handle_continuous_head_request(tdc, sgreq, to_terminate);
577 		if (!st)
578 			dma_desc->dma_status = DMA_ERROR;
579 	}
580 	return;
581 }
582 
583 static void tegra_dma_tasklet(unsigned long data)
584 {
585 	struct tegra_dma_channel *tdc = (struct tegra_dma_channel *)data;
586 	dma_async_tx_callback callback = NULL;
587 	void *callback_param = NULL;
588 	struct tegra_dma_desc *dma_desc;
589 	unsigned long flags;
590 	int cb_count;
591 
592 	spin_lock_irqsave(&tdc->lock, flags);
593 	while (!list_empty(&tdc->cb_desc)) {
594 		dma_desc  = list_first_entry(&tdc->cb_desc,
595 					typeof(*dma_desc), cb_node);
596 		list_del(&dma_desc->cb_node);
597 		callback = dma_desc->txd.callback;
598 		callback_param = dma_desc->txd.callback_param;
599 		cb_count = dma_desc->cb_count;
600 		dma_desc->cb_count = 0;
601 		spin_unlock_irqrestore(&tdc->lock, flags);
602 		while (cb_count-- && callback)
603 			callback(callback_param);
604 		spin_lock_irqsave(&tdc->lock, flags);
605 	}
606 	spin_unlock_irqrestore(&tdc->lock, flags);
607 }
608 
609 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
610 {
611 	struct tegra_dma_channel *tdc = dev_id;
612 	unsigned long status;
613 	unsigned long flags;
614 
615 	spin_lock_irqsave(&tdc->lock, flags);
616 
617 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
618 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
619 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
620 		tdc->isr_handler(tdc, false);
621 		tasklet_schedule(&tdc->tasklet);
622 		spin_unlock_irqrestore(&tdc->lock, flags);
623 		return IRQ_HANDLED;
624 	}
625 
626 	spin_unlock_irqrestore(&tdc->lock, flags);
627 	dev_info(tdc2dev(tdc),
628 		"Interrupt already served status 0x%08lx\n", status);
629 	return IRQ_NONE;
630 }
631 
632 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
633 {
634 	struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
635 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
636 	unsigned long flags;
637 	dma_cookie_t cookie;
638 
639 	spin_lock_irqsave(&tdc->lock, flags);
640 	dma_desc->dma_status = DMA_IN_PROGRESS;
641 	cookie = dma_cookie_assign(&dma_desc->txd);
642 	list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
643 	spin_unlock_irqrestore(&tdc->lock, flags);
644 	return cookie;
645 }
646 
647 static void tegra_dma_issue_pending(struct dma_chan *dc)
648 {
649 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
650 	unsigned long flags;
651 
652 	spin_lock_irqsave(&tdc->lock, flags);
653 	if (list_empty(&tdc->pending_sg_req)) {
654 		dev_err(tdc2dev(tdc), "No DMA request\n");
655 		goto end;
656 	}
657 	if (!tdc->busy) {
658 		tdc_start_head_req(tdc);
659 
660 		/* Continuous single mode: Configure next req */
661 		if (tdc->cyclic) {
662 			/*
663 			 * Wait for 1 burst time for configure DMA for
664 			 * next transfer.
665 			 */
666 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
667 			tdc_configure_next_head_desc(tdc);
668 		}
669 	}
670 end:
671 	spin_unlock_irqrestore(&tdc->lock, flags);
672 	return;
673 }
674 
675 static void tegra_dma_terminate_all(struct dma_chan *dc)
676 {
677 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
678 	struct tegra_dma_sg_req *sgreq;
679 	struct tegra_dma_desc *dma_desc;
680 	unsigned long flags;
681 	unsigned long status;
682 	bool was_busy;
683 
684 	spin_lock_irqsave(&tdc->lock, flags);
685 	if (list_empty(&tdc->pending_sg_req)) {
686 		spin_unlock_irqrestore(&tdc->lock, flags);
687 		return;
688 	}
689 
690 	if (!tdc->busy)
691 		goto skip_dma_stop;
692 
693 	/* Pause DMA before checking the queue status */
694 	tegra_dma_global_pause(tdc, true);
695 
696 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
697 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
698 		dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
699 		tdc->isr_handler(tdc, true);
700 		status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
701 	}
702 
703 	was_busy = tdc->busy;
704 	tegra_dma_stop(tdc);
705 
706 	if (!list_empty(&tdc->pending_sg_req) && was_busy) {
707 		sgreq = list_first_entry(&tdc->pending_sg_req,
708 					typeof(*sgreq), node);
709 		sgreq->dma_desc->bytes_transferred +=
710 				get_current_xferred_count(tdc, sgreq, status);
711 	}
712 	tegra_dma_global_resume(tdc);
713 
714 skip_dma_stop:
715 	tegra_dma_abort_all(tdc);
716 
717 	while (!list_empty(&tdc->cb_desc)) {
718 		dma_desc  = list_first_entry(&tdc->cb_desc,
719 					typeof(*dma_desc), cb_node);
720 		list_del(&dma_desc->cb_node);
721 		dma_desc->cb_count = 0;
722 	}
723 	spin_unlock_irqrestore(&tdc->lock, flags);
724 }
725 
726 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
727 	dma_cookie_t cookie, struct dma_tx_state *txstate)
728 {
729 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
730 	struct tegra_dma_desc *dma_desc;
731 	struct tegra_dma_sg_req *sg_req;
732 	enum dma_status ret;
733 	unsigned long flags;
734 	unsigned int residual;
735 
736 	spin_lock_irqsave(&tdc->lock, flags);
737 
738 	ret = dma_cookie_status(dc, cookie, txstate);
739 	if (ret == DMA_SUCCESS) {
740 		dma_set_residue(txstate, 0);
741 		spin_unlock_irqrestore(&tdc->lock, flags);
742 		return ret;
743 	}
744 
745 	/* Check on wait_ack desc status */
746 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
747 		if (dma_desc->txd.cookie == cookie) {
748 			residual =  dma_desc->bytes_requested -
749 					(dma_desc->bytes_transferred %
750 						dma_desc->bytes_requested);
751 			dma_set_residue(txstate, residual);
752 			ret = dma_desc->dma_status;
753 			spin_unlock_irqrestore(&tdc->lock, flags);
754 			return ret;
755 		}
756 	}
757 
758 	/* Check in pending list */
759 	list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
760 		dma_desc = sg_req->dma_desc;
761 		if (dma_desc->txd.cookie == cookie) {
762 			residual =  dma_desc->bytes_requested -
763 					(dma_desc->bytes_transferred %
764 						dma_desc->bytes_requested);
765 			dma_set_residue(txstate, residual);
766 			ret = dma_desc->dma_status;
767 			spin_unlock_irqrestore(&tdc->lock, flags);
768 			return ret;
769 		}
770 	}
771 
772 	dev_dbg(tdc2dev(tdc), "cookie %d does not found\n", cookie);
773 	spin_unlock_irqrestore(&tdc->lock, flags);
774 	return ret;
775 }
776 
777 static int tegra_dma_device_control(struct dma_chan *dc, enum dma_ctrl_cmd cmd,
778 			unsigned long arg)
779 {
780 	switch (cmd) {
781 	case DMA_SLAVE_CONFIG:
782 		return tegra_dma_slave_config(dc,
783 				(struct dma_slave_config *)arg);
784 
785 	case DMA_TERMINATE_ALL:
786 		tegra_dma_terminate_all(dc);
787 		return 0;
788 
789 	default:
790 		break;
791 	}
792 
793 	return -ENXIO;
794 }
795 
796 static inline int get_bus_width(struct tegra_dma_channel *tdc,
797 		enum dma_slave_buswidth slave_bw)
798 {
799 	switch (slave_bw) {
800 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
801 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
802 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
803 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
804 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
805 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
806 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
807 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
808 	default:
809 		dev_warn(tdc2dev(tdc),
810 			"slave bw is not supported, using 32bits\n");
811 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
812 	}
813 }
814 
815 static inline int get_burst_size(struct tegra_dma_channel *tdc,
816 	u32 burst_size, enum dma_slave_buswidth slave_bw, int len)
817 {
818 	int burst_byte;
819 	int burst_ahb_width;
820 
821 	/*
822 	 * burst_size from client is in terms of the bus_width.
823 	 * convert them into AHB memory width which is 4 byte.
824 	 */
825 	burst_byte = burst_size * slave_bw;
826 	burst_ahb_width = burst_byte / 4;
827 
828 	/* If burst size is 0 then calculate the burst size based on length */
829 	if (!burst_ahb_width) {
830 		if (len & 0xF)
831 			return TEGRA_APBDMA_AHBSEQ_BURST_1;
832 		else if ((len >> 4) & 0x1)
833 			return TEGRA_APBDMA_AHBSEQ_BURST_4;
834 		else
835 			return TEGRA_APBDMA_AHBSEQ_BURST_8;
836 	}
837 	if (burst_ahb_width < 4)
838 		return TEGRA_APBDMA_AHBSEQ_BURST_1;
839 	else if (burst_ahb_width < 8)
840 		return TEGRA_APBDMA_AHBSEQ_BURST_4;
841 	else
842 		return TEGRA_APBDMA_AHBSEQ_BURST_8;
843 }
844 
845 static int get_transfer_param(struct tegra_dma_channel *tdc,
846 	enum dma_transfer_direction direction, unsigned long *apb_addr,
847 	unsigned long *apb_seq,	unsigned long *csr, unsigned int *burst_size,
848 	enum dma_slave_buswidth *slave_bw)
849 {
850 
851 	switch (direction) {
852 	case DMA_MEM_TO_DEV:
853 		*apb_addr = tdc->dma_sconfig.dst_addr;
854 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
855 		*burst_size = tdc->dma_sconfig.dst_maxburst;
856 		*slave_bw = tdc->dma_sconfig.dst_addr_width;
857 		*csr = TEGRA_APBDMA_CSR_DIR;
858 		return 0;
859 
860 	case DMA_DEV_TO_MEM:
861 		*apb_addr = tdc->dma_sconfig.src_addr;
862 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
863 		*burst_size = tdc->dma_sconfig.src_maxburst;
864 		*slave_bw = tdc->dma_sconfig.src_addr_width;
865 		*csr = 0;
866 		return 0;
867 
868 	default:
869 		dev_err(tdc2dev(tdc), "Dma direction is not supported\n");
870 		return -EINVAL;
871 	}
872 	return -EINVAL;
873 }
874 
875 static struct dma_async_tx_descriptor *tegra_dma_prep_slave_sg(
876 	struct dma_chan *dc, struct scatterlist *sgl, unsigned int sg_len,
877 	enum dma_transfer_direction direction, unsigned long flags,
878 	void *context)
879 {
880 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
881 	struct tegra_dma_desc *dma_desc;
882 	unsigned int	    i;
883 	struct scatterlist      *sg;
884 	unsigned long csr, ahb_seq, apb_ptr, apb_seq;
885 	struct list_head req_list;
886 	struct tegra_dma_sg_req  *sg_req = NULL;
887 	u32 burst_size;
888 	enum dma_slave_buswidth slave_bw;
889 	int ret;
890 
891 	if (!tdc->config_init) {
892 		dev_err(tdc2dev(tdc), "dma channel is not configured\n");
893 		return NULL;
894 	}
895 	if (sg_len < 1) {
896 		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
897 		return NULL;
898 	}
899 
900 	ret = get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
901 				&burst_size, &slave_bw);
902 	if (ret < 0)
903 		return NULL;
904 
905 	INIT_LIST_HEAD(&req_list);
906 
907 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
908 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
909 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
910 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
911 
912 	csr |= TEGRA_APBDMA_CSR_ONCE | TEGRA_APBDMA_CSR_FLOW;
913 	csr |= tdc->dma_sconfig.slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
914 	if (flags & DMA_PREP_INTERRUPT)
915 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
916 
917 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
918 
919 	dma_desc = tegra_dma_desc_get(tdc);
920 	if (!dma_desc) {
921 		dev_err(tdc2dev(tdc), "Dma descriptors not available\n");
922 		return NULL;
923 	}
924 	INIT_LIST_HEAD(&dma_desc->tx_list);
925 	INIT_LIST_HEAD(&dma_desc->cb_node);
926 	dma_desc->cb_count = 0;
927 	dma_desc->bytes_requested = 0;
928 	dma_desc->bytes_transferred = 0;
929 	dma_desc->dma_status = DMA_IN_PROGRESS;
930 
931 	/* Make transfer requests */
932 	for_each_sg(sgl, sg, sg_len, i) {
933 		u32 len, mem;
934 
935 		mem = sg_dma_address(sg);
936 		len = sg_dma_len(sg);
937 
938 		if ((len & 3) || (mem & 3) ||
939 				(len > tdc->tdma->chip_data->max_dma_count)) {
940 			dev_err(tdc2dev(tdc),
941 				"Dma length/memory address is not supported\n");
942 			tegra_dma_desc_put(tdc, dma_desc);
943 			return NULL;
944 		}
945 
946 		sg_req = tegra_dma_sg_req_get(tdc);
947 		if (!sg_req) {
948 			dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
949 			tegra_dma_desc_put(tdc, dma_desc);
950 			return NULL;
951 		}
952 
953 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
954 		dma_desc->bytes_requested += len;
955 
956 		sg_req->ch_regs.apb_ptr = apb_ptr;
957 		sg_req->ch_regs.ahb_ptr = mem;
958 		sg_req->ch_regs.csr = csr | ((len - 4) & 0xFFFC);
959 		sg_req->ch_regs.apb_seq = apb_seq;
960 		sg_req->ch_regs.ahb_seq = ahb_seq;
961 		sg_req->configured = false;
962 		sg_req->last_sg = false;
963 		sg_req->dma_desc = dma_desc;
964 		sg_req->req_len = len;
965 
966 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
967 	}
968 	sg_req->last_sg = true;
969 	if (flags & DMA_CTRL_ACK)
970 		dma_desc->txd.flags = DMA_CTRL_ACK;
971 
972 	/*
973 	 * Make sure that mode should not be conflicting with currently
974 	 * configured mode.
975 	 */
976 	if (!tdc->isr_handler) {
977 		tdc->isr_handler = handle_once_dma_done;
978 		tdc->cyclic = false;
979 	} else {
980 		if (tdc->cyclic) {
981 			dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
982 			tegra_dma_desc_put(tdc, dma_desc);
983 			return NULL;
984 		}
985 	}
986 
987 	return &dma_desc->txd;
988 }
989 
990 struct dma_async_tx_descriptor *tegra_dma_prep_dma_cyclic(
991 	struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
992 	size_t period_len, enum dma_transfer_direction direction,
993 	unsigned long flags, void *context)
994 {
995 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
996 	struct tegra_dma_desc *dma_desc = NULL;
997 	struct tegra_dma_sg_req  *sg_req = NULL;
998 	unsigned long csr, ahb_seq, apb_ptr, apb_seq;
999 	int len;
1000 	size_t remain_len;
1001 	dma_addr_t mem = buf_addr;
1002 	u32 burst_size;
1003 	enum dma_slave_buswidth slave_bw;
1004 	int ret;
1005 
1006 	if (!buf_len || !period_len) {
1007 		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1008 		return NULL;
1009 	}
1010 
1011 	if (!tdc->config_init) {
1012 		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1013 		return NULL;
1014 	}
1015 
1016 	/*
1017 	 * We allow to take more number of requests till DMA is
1018 	 * not started. The driver will loop over all requests.
1019 	 * Once DMA is started then new requests can be queued only after
1020 	 * terminating the DMA.
1021 	 */
1022 	if (tdc->busy) {
1023 		dev_err(tdc2dev(tdc), "Request not allowed when dma running\n");
1024 		return NULL;
1025 	}
1026 
1027 	/*
1028 	 * We only support cycle transfer when buf_len is multiple of
1029 	 * period_len.
1030 	 */
1031 	if (buf_len % period_len) {
1032 		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1033 		return NULL;
1034 	}
1035 
1036 	len = period_len;
1037 	if ((len & 3) || (buf_addr & 3) ||
1038 			(len > tdc->tdma->chip_data->max_dma_count)) {
1039 		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1040 		return NULL;
1041 	}
1042 
1043 	ret = get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1044 				&burst_size, &slave_bw);
1045 	if (ret < 0)
1046 		return NULL;
1047 
1048 
1049 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1050 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1051 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1052 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1053 
1054 	csr |= TEGRA_APBDMA_CSR_FLOW;
1055 	if (flags & DMA_PREP_INTERRUPT)
1056 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1057 	csr |= tdc->dma_sconfig.slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1058 
1059 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1060 
1061 	dma_desc = tegra_dma_desc_get(tdc);
1062 	if (!dma_desc) {
1063 		dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1064 		return NULL;
1065 	}
1066 
1067 	INIT_LIST_HEAD(&dma_desc->tx_list);
1068 	INIT_LIST_HEAD(&dma_desc->cb_node);
1069 	dma_desc->cb_count = 0;
1070 
1071 	dma_desc->bytes_transferred = 0;
1072 	dma_desc->bytes_requested = buf_len;
1073 	remain_len = buf_len;
1074 
1075 	/* Split transfer equal to period size */
1076 	while (remain_len) {
1077 		sg_req = tegra_dma_sg_req_get(tdc);
1078 		if (!sg_req) {
1079 			dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
1080 			tegra_dma_desc_put(tdc, dma_desc);
1081 			return NULL;
1082 		}
1083 
1084 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1085 		sg_req->ch_regs.apb_ptr = apb_ptr;
1086 		sg_req->ch_regs.ahb_ptr = mem;
1087 		sg_req->ch_regs.csr = csr | ((len - 4) & 0xFFFC);
1088 		sg_req->ch_regs.apb_seq = apb_seq;
1089 		sg_req->ch_regs.ahb_seq = ahb_seq;
1090 		sg_req->configured = false;
1091 		sg_req->half_done = false;
1092 		sg_req->last_sg = false;
1093 		sg_req->dma_desc = dma_desc;
1094 		sg_req->req_len = len;
1095 
1096 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1097 		remain_len -= len;
1098 		mem += len;
1099 	}
1100 	sg_req->last_sg = true;
1101 	if (flags & DMA_CTRL_ACK)
1102 		dma_desc->txd.flags = DMA_CTRL_ACK;
1103 
1104 	/*
1105 	 * Make sure that mode should not be conflicting with currently
1106 	 * configured mode.
1107 	 */
1108 	if (!tdc->isr_handler) {
1109 		tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1110 		tdc->cyclic = true;
1111 	} else {
1112 		if (!tdc->cyclic) {
1113 			dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1114 			tegra_dma_desc_put(tdc, dma_desc);
1115 			return NULL;
1116 		}
1117 	}
1118 
1119 	return &dma_desc->txd;
1120 }
1121 
1122 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1123 {
1124 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1125 	struct tegra_dma *tdma = tdc->tdma;
1126 	int ret;
1127 
1128 	dma_cookie_init(&tdc->dma_chan);
1129 	tdc->config_init = false;
1130 	ret = clk_prepare_enable(tdma->dma_clk);
1131 	if (ret < 0)
1132 		dev_err(tdc2dev(tdc), "clk_prepare_enable failed: %d\n", ret);
1133 	return ret;
1134 }
1135 
1136 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1137 {
1138 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1139 	struct tegra_dma *tdma = tdc->tdma;
1140 
1141 	struct tegra_dma_desc *dma_desc;
1142 	struct tegra_dma_sg_req *sg_req;
1143 	struct list_head dma_desc_list;
1144 	struct list_head sg_req_list;
1145 	unsigned long flags;
1146 
1147 	INIT_LIST_HEAD(&dma_desc_list);
1148 	INIT_LIST_HEAD(&sg_req_list);
1149 
1150 	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1151 
1152 	if (tdc->busy)
1153 		tegra_dma_terminate_all(dc);
1154 
1155 	spin_lock_irqsave(&tdc->lock, flags);
1156 	list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1157 	list_splice_init(&tdc->free_sg_req, &sg_req_list);
1158 	list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1159 	INIT_LIST_HEAD(&tdc->cb_desc);
1160 	tdc->config_init = false;
1161 	spin_unlock_irqrestore(&tdc->lock, flags);
1162 
1163 	while (!list_empty(&dma_desc_list)) {
1164 		dma_desc = list_first_entry(&dma_desc_list,
1165 					typeof(*dma_desc), node);
1166 		list_del(&dma_desc->node);
1167 		kfree(dma_desc);
1168 	}
1169 
1170 	while (!list_empty(&sg_req_list)) {
1171 		sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1172 		list_del(&sg_req->node);
1173 		kfree(sg_req);
1174 	}
1175 	clk_disable_unprepare(tdma->dma_clk);
1176 }
1177 
1178 /* Tegra20 specific DMA controller information */
1179 static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1180 	.nr_channels		= 16,
1181 	.max_dma_count		= 1024UL * 64,
1182 };
1183 
1184 #if defined(CONFIG_OF)
1185 /* Tegra30 specific DMA controller information */
1186 static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1187 	.nr_channels		= 32,
1188 	.max_dma_count		= 1024UL * 64,
1189 };
1190 
1191 static const struct of_device_id tegra_dma_of_match[] = {
1192 	{
1193 		.compatible = "nvidia,tegra30-apbdma",
1194 		.data = &tegra30_dma_chip_data,
1195 	}, {
1196 		.compatible = "nvidia,tegra20-apbdma",
1197 		.data = &tegra20_dma_chip_data,
1198 	}, {
1199 	},
1200 };
1201 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1202 #endif
1203 
1204 static int tegra_dma_probe(struct platform_device *pdev)
1205 {
1206 	struct resource	*res;
1207 	struct tegra_dma *tdma;
1208 	int ret;
1209 	int i;
1210 	const struct tegra_dma_chip_data *cdata = NULL;
1211 
1212 	if (pdev->dev.of_node) {
1213 		const struct of_device_id *match;
1214 		match = of_match_device(of_match_ptr(tegra_dma_of_match),
1215 					&pdev->dev);
1216 		if (!match) {
1217 			dev_err(&pdev->dev, "Error: No device match found\n");
1218 			return -ENODEV;
1219 		}
1220 		cdata = match->data;
1221 	} else {
1222 		/* If no device tree then fallback to tegra20 */
1223 		cdata = &tegra20_dma_chip_data;
1224 	}
1225 
1226 	tdma = devm_kzalloc(&pdev->dev, sizeof(*tdma) + cdata->nr_channels *
1227 			sizeof(struct tegra_dma_channel), GFP_KERNEL);
1228 	if (!tdma) {
1229 		dev_err(&pdev->dev, "Error: memory allocation failed\n");
1230 		return -ENOMEM;
1231 	}
1232 
1233 	tdma->dev = &pdev->dev;
1234 	tdma->chip_data = cdata;
1235 	platform_set_drvdata(pdev, tdma);
1236 
1237 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1238 	if (!res) {
1239 		dev_err(&pdev->dev, "No mem resource for DMA\n");
1240 		return -EINVAL;
1241 	}
1242 
1243 	tdma->base_addr = devm_request_and_ioremap(&pdev->dev, res);
1244 	if (!tdma->base_addr) {
1245 		dev_err(&pdev->dev,
1246 			"Cannot request memregion/iomap dma address\n");
1247 		return -EADDRNOTAVAIL;
1248 	}
1249 
1250 	tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1251 	if (IS_ERR(tdma->dma_clk)) {
1252 		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1253 		return PTR_ERR(tdma->dma_clk);
1254 	}
1255 
1256 	spin_lock_init(&tdma->global_lock);
1257 
1258 	pm_runtime_enable(&pdev->dev);
1259 	if (!pm_runtime_enabled(&pdev->dev)) {
1260 		ret = tegra_dma_runtime_resume(&pdev->dev);
1261 		if (ret) {
1262 			dev_err(&pdev->dev, "dma_runtime_resume failed %d\n",
1263 				ret);
1264 			goto err_pm_disable;
1265 		}
1266 	}
1267 
1268 	/* Enable clock before accessing registers */
1269 	ret = clk_prepare_enable(tdma->dma_clk);
1270 	if (ret < 0) {
1271 		dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
1272 		goto err_pm_disable;
1273 	}
1274 
1275 	/* Reset DMA controller */
1276 	tegra_periph_reset_assert(tdma->dma_clk);
1277 	udelay(2);
1278 	tegra_periph_reset_deassert(tdma->dma_clk);
1279 
1280 	/* Enable global DMA registers */
1281 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1282 	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1283 	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1284 
1285 	clk_disable_unprepare(tdma->dma_clk);
1286 
1287 	INIT_LIST_HEAD(&tdma->dma_dev.channels);
1288 	for (i = 0; i < cdata->nr_channels; i++) {
1289 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1290 
1291 		tdc->chan_base_offset = TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1292 					i * TEGRA_APBDMA_CHANNEL_REGISTER_SIZE;
1293 
1294 		res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1295 		if (!res) {
1296 			ret = -EINVAL;
1297 			dev_err(&pdev->dev, "No irq resource for chan %d\n", i);
1298 			goto err_irq;
1299 		}
1300 		tdc->irq = res->start;
1301 		snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1302 		ret = devm_request_irq(&pdev->dev, tdc->irq,
1303 				tegra_dma_isr, 0, tdc->name, tdc);
1304 		if (ret) {
1305 			dev_err(&pdev->dev,
1306 				"request_irq failed with err %d channel %d\n",
1307 				i, ret);
1308 			goto err_irq;
1309 		}
1310 
1311 		tdc->dma_chan.device = &tdma->dma_dev;
1312 		dma_cookie_init(&tdc->dma_chan);
1313 		list_add_tail(&tdc->dma_chan.device_node,
1314 				&tdma->dma_dev.channels);
1315 		tdc->tdma = tdma;
1316 		tdc->id = i;
1317 
1318 		tasklet_init(&tdc->tasklet, tegra_dma_tasklet,
1319 				(unsigned long)tdc);
1320 		spin_lock_init(&tdc->lock);
1321 
1322 		INIT_LIST_HEAD(&tdc->pending_sg_req);
1323 		INIT_LIST_HEAD(&tdc->free_sg_req);
1324 		INIT_LIST_HEAD(&tdc->free_dma_desc);
1325 		INIT_LIST_HEAD(&tdc->cb_desc);
1326 	}
1327 
1328 	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1329 	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1330 	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1331 
1332 	tdma->dma_dev.dev = &pdev->dev;
1333 	tdma->dma_dev.device_alloc_chan_resources =
1334 					tegra_dma_alloc_chan_resources;
1335 	tdma->dma_dev.device_free_chan_resources =
1336 					tegra_dma_free_chan_resources;
1337 	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1338 	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1339 	tdma->dma_dev.device_control = tegra_dma_device_control;
1340 	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1341 	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1342 
1343 	ret = dma_async_device_register(&tdma->dma_dev);
1344 	if (ret < 0) {
1345 		dev_err(&pdev->dev,
1346 			"Tegra20 APB DMA driver registration failed %d\n", ret);
1347 		goto err_irq;
1348 	}
1349 
1350 	dev_info(&pdev->dev, "Tegra20 APB DMA driver register %d channels\n",
1351 			cdata->nr_channels);
1352 	return 0;
1353 
1354 err_irq:
1355 	while (--i >= 0) {
1356 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1357 		tasklet_kill(&tdc->tasklet);
1358 	}
1359 
1360 err_pm_disable:
1361 	pm_runtime_disable(&pdev->dev);
1362 	if (!pm_runtime_status_suspended(&pdev->dev))
1363 		tegra_dma_runtime_suspend(&pdev->dev);
1364 	return ret;
1365 }
1366 
1367 static int tegra_dma_remove(struct platform_device *pdev)
1368 {
1369 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1370 	int i;
1371 	struct tegra_dma_channel *tdc;
1372 
1373 	dma_async_device_unregister(&tdma->dma_dev);
1374 
1375 	for (i = 0; i < tdma->chip_data->nr_channels; ++i) {
1376 		tdc = &tdma->channels[i];
1377 		tasklet_kill(&tdc->tasklet);
1378 	}
1379 
1380 	pm_runtime_disable(&pdev->dev);
1381 	if (!pm_runtime_status_suspended(&pdev->dev))
1382 		tegra_dma_runtime_suspend(&pdev->dev);
1383 
1384 	return 0;
1385 }
1386 
1387 static int tegra_dma_runtime_suspend(struct device *dev)
1388 {
1389 	struct platform_device *pdev = to_platform_device(dev);
1390 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1391 
1392 	clk_disable_unprepare(tdma->dma_clk);
1393 	return 0;
1394 }
1395 
1396 static int tegra_dma_runtime_resume(struct device *dev)
1397 {
1398 	struct platform_device *pdev = to_platform_device(dev);
1399 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1400 	int ret;
1401 
1402 	ret = clk_prepare_enable(tdma->dma_clk);
1403 	if (ret < 0) {
1404 		dev_err(dev, "clk_enable failed: %d\n", ret);
1405 		return ret;
1406 	}
1407 	return 0;
1408 }
1409 
1410 static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1411 #ifdef CONFIG_PM_RUNTIME
1412 	.runtime_suspend = tegra_dma_runtime_suspend,
1413 	.runtime_resume = tegra_dma_runtime_resume,
1414 #endif
1415 };
1416 
1417 static struct platform_driver tegra_dmac_driver = {
1418 	.driver = {
1419 		.name	= "tegra-apbdma",
1420 		.owner = THIS_MODULE,
1421 		.pm	= &tegra_dma_dev_pm_ops,
1422 		.of_match_table = of_match_ptr(tegra_dma_of_match),
1423 	},
1424 	.probe		= tegra_dma_probe,
1425 	.remove		= tegra_dma_remove,
1426 };
1427 
1428 module_platform_driver(tegra_dmac_driver);
1429 
1430 MODULE_ALIAS("platform:tegra20-apbdma");
1431 MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1432 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1433 MODULE_LICENSE("GPL v2");
1434