xref: /openbmc/linux/drivers/dma/tegra20-apb-dma.c (revision 97da55fc)
1 /*
2  * DMA driver for Nvidia's Tegra20 APB DMA controller.
3  *
4  * Copyright (c) 2012, NVIDIA CORPORATION.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include <linux/bitops.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/err.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/platform_device.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/slab.h>
35 #include <linux/clk/tegra.h>
36 
37 #include "dmaengine.h"
38 
39 #define TEGRA_APBDMA_GENERAL			0x0
40 #define TEGRA_APBDMA_GENERAL_ENABLE		BIT(31)
41 
42 #define TEGRA_APBDMA_CONTROL			0x010
43 #define TEGRA_APBDMA_IRQ_MASK			0x01c
44 #define TEGRA_APBDMA_IRQ_MASK_SET		0x020
45 
46 /* CSR register */
47 #define TEGRA_APBDMA_CHAN_CSR			0x00
48 #define TEGRA_APBDMA_CSR_ENB			BIT(31)
49 #define TEGRA_APBDMA_CSR_IE_EOC			BIT(30)
50 #define TEGRA_APBDMA_CSR_HOLD			BIT(29)
51 #define TEGRA_APBDMA_CSR_DIR			BIT(28)
52 #define TEGRA_APBDMA_CSR_ONCE			BIT(27)
53 #define TEGRA_APBDMA_CSR_FLOW			BIT(21)
54 #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT		16
55 #define TEGRA_APBDMA_CSR_WCOUNT_MASK		0xFFFC
56 
57 /* STATUS register */
58 #define TEGRA_APBDMA_CHAN_STATUS		0x004
59 #define TEGRA_APBDMA_STATUS_BUSY		BIT(31)
60 #define TEGRA_APBDMA_STATUS_ISE_EOC		BIT(30)
61 #define TEGRA_APBDMA_STATUS_HALT		BIT(29)
62 #define TEGRA_APBDMA_STATUS_PING_PONG		BIT(28)
63 #define TEGRA_APBDMA_STATUS_COUNT_SHIFT		2
64 #define TEGRA_APBDMA_STATUS_COUNT_MASK		0xFFFC
65 
66 #define TEGRA_APBDMA_CHAN_CSRE			0x00C
67 #define TEGRA_APBDMA_CHAN_CSRE_PAUSE		(1 << 31)
68 
69 /* AHB memory address */
70 #define TEGRA_APBDMA_CHAN_AHBPTR		0x010
71 
72 /* AHB sequence register */
73 #define TEGRA_APBDMA_CHAN_AHBSEQ		0x14
74 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB		BIT(31)
75 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8		(0 << 28)
76 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16	(1 << 28)
77 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32	(2 << 28)
78 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64	(3 << 28)
79 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128	(4 << 28)
80 #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP		BIT(27)
81 #define TEGRA_APBDMA_AHBSEQ_BURST_1		(4 << 24)
82 #define TEGRA_APBDMA_AHBSEQ_BURST_4		(5 << 24)
83 #define TEGRA_APBDMA_AHBSEQ_BURST_8		(6 << 24)
84 #define TEGRA_APBDMA_AHBSEQ_DBL_BUF		BIT(19)
85 #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT		16
86 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE		0
87 
88 /* APB address */
89 #define TEGRA_APBDMA_CHAN_APBPTR		0x018
90 
91 /* APB sequence register */
92 #define TEGRA_APBDMA_CHAN_APBSEQ		0x01c
93 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8		(0 << 28)
94 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16	(1 << 28)
95 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32	(2 << 28)
96 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64	(3 << 28)
97 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128	(4 << 28)
98 #define TEGRA_APBDMA_APBSEQ_DATA_SWAP		BIT(27)
99 #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1		(1 << 16)
100 
101 /*
102  * If any burst is in flight and DMA paused then this is the time to complete
103  * on-flight burst and update DMA status register.
104  */
105 #define TEGRA_APBDMA_BURST_COMPLETE_TIME	20
106 
107 /* Channel base address offset from APBDMA base address */
108 #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET	0x1000
109 
110 /* DMA channel register space size */
111 #define TEGRA_APBDMA_CHANNEL_REGISTER_SIZE	0x20
112 
113 struct tegra_dma;
114 
115 /*
116  * tegra_dma_chip_data Tegra chip specific DMA data
117  * @nr_channels: Number of channels available in the controller.
118  * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
119  * @support_channel_pause: Support channel wise pause of dma.
120  */
121 struct tegra_dma_chip_data {
122 	int nr_channels;
123 	int max_dma_count;
124 	bool support_channel_pause;
125 };
126 
127 /* DMA channel registers */
128 struct tegra_dma_channel_regs {
129 	unsigned long	csr;
130 	unsigned long	ahb_ptr;
131 	unsigned long	apb_ptr;
132 	unsigned long	ahb_seq;
133 	unsigned long	apb_seq;
134 };
135 
136 /*
137  * tegra_dma_sg_req: Dma request details to configure hardware. This
138  * contains the details for one transfer to configure DMA hw.
139  * The client's request for data transfer can be broken into multiple
140  * sub-transfer as per requester details and hw support.
141  * This sub transfer get added in the list of transfer and point to Tegra
142  * DMA descriptor which manages the transfer details.
143  */
144 struct tegra_dma_sg_req {
145 	struct tegra_dma_channel_regs	ch_regs;
146 	int				req_len;
147 	bool				configured;
148 	bool				last_sg;
149 	bool				half_done;
150 	struct list_head		node;
151 	struct tegra_dma_desc		*dma_desc;
152 };
153 
154 /*
155  * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
156  * This descriptor keep track of transfer status, callbacks and request
157  * counts etc.
158  */
159 struct tegra_dma_desc {
160 	struct dma_async_tx_descriptor	txd;
161 	int				bytes_requested;
162 	int				bytes_transferred;
163 	enum dma_status			dma_status;
164 	struct list_head		node;
165 	struct list_head		tx_list;
166 	struct list_head		cb_node;
167 	int				cb_count;
168 };
169 
170 struct tegra_dma_channel;
171 
172 typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
173 				bool to_terminate);
174 
175 /* tegra_dma_channel: Channel specific information */
176 struct tegra_dma_channel {
177 	struct dma_chan		dma_chan;
178 	char			name[30];
179 	bool			config_init;
180 	int			id;
181 	int			irq;
182 	unsigned long		chan_base_offset;
183 	spinlock_t		lock;
184 	bool			busy;
185 	struct tegra_dma	*tdma;
186 	bool			cyclic;
187 
188 	/* Different lists for managing the requests */
189 	struct list_head	free_sg_req;
190 	struct list_head	pending_sg_req;
191 	struct list_head	free_dma_desc;
192 	struct list_head	cb_desc;
193 
194 	/* ISR handler and tasklet for bottom half of isr handling */
195 	dma_isr_handler		isr_handler;
196 	struct tasklet_struct	tasklet;
197 	dma_async_tx_callback	callback;
198 	void			*callback_param;
199 
200 	/* Channel-slave specific configuration */
201 	struct dma_slave_config dma_sconfig;
202 };
203 
204 /* tegra_dma: Tegra DMA specific information */
205 struct tegra_dma {
206 	struct dma_device		dma_dev;
207 	struct device			*dev;
208 	struct clk			*dma_clk;
209 	spinlock_t			global_lock;
210 	void __iomem			*base_addr;
211 	const struct tegra_dma_chip_data *chip_data;
212 
213 	/* Some register need to be cache before suspend */
214 	u32				reg_gen;
215 
216 	/* Last member of the structure */
217 	struct tegra_dma_channel channels[0];
218 };
219 
220 static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
221 {
222 	writel(val, tdma->base_addr + reg);
223 }
224 
225 static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
226 {
227 	return readl(tdma->base_addr + reg);
228 }
229 
230 static inline void tdc_write(struct tegra_dma_channel *tdc,
231 		u32 reg, u32 val)
232 {
233 	writel(val, tdc->tdma->base_addr + tdc->chan_base_offset + reg);
234 }
235 
236 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
237 {
238 	return readl(tdc->tdma->base_addr + tdc->chan_base_offset + reg);
239 }
240 
241 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
242 {
243 	return container_of(dc, struct tegra_dma_channel, dma_chan);
244 }
245 
246 static inline struct tegra_dma_desc *txd_to_tegra_dma_desc(
247 		struct dma_async_tx_descriptor *td)
248 {
249 	return container_of(td, struct tegra_dma_desc, txd);
250 }
251 
252 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
253 {
254 	return &tdc->dma_chan.dev->device;
255 }
256 
257 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
258 static int tegra_dma_runtime_suspend(struct device *dev);
259 static int tegra_dma_runtime_resume(struct device *dev);
260 
261 /* Get DMA desc from free list, if not there then allocate it.  */
262 static struct tegra_dma_desc *tegra_dma_desc_get(
263 		struct tegra_dma_channel *tdc)
264 {
265 	struct tegra_dma_desc *dma_desc;
266 	unsigned long flags;
267 
268 	spin_lock_irqsave(&tdc->lock, flags);
269 
270 	/* Do not allocate if desc are waiting for ack */
271 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
272 		if (async_tx_test_ack(&dma_desc->txd)) {
273 			list_del(&dma_desc->node);
274 			spin_unlock_irqrestore(&tdc->lock, flags);
275 			dma_desc->txd.flags = 0;
276 			return dma_desc;
277 		}
278 	}
279 
280 	spin_unlock_irqrestore(&tdc->lock, flags);
281 
282 	/* Allocate DMA desc */
283 	dma_desc = kzalloc(sizeof(*dma_desc), GFP_ATOMIC);
284 	if (!dma_desc) {
285 		dev_err(tdc2dev(tdc), "dma_desc alloc failed\n");
286 		return NULL;
287 	}
288 
289 	dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
290 	dma_desc->txd.tx_submit = tegra_dma_tx_submit;
291 	dma_desc->txd.flags = 0;
292 	return dma_desc;
293 }
294 
295 static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
296 		struct tegra_dma_desc *dma_desc)
297 {
298 	unsigned long flags;
299 
300 	spin_lock_irqsave(&tdc->lock, flags);
301 	if (!list_empty(&dma_desc->tx_list))
302 		list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
303 	list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
304 	spin_unlock_irqrestore(&tdc->lock, flags);
305 }
306 
307 static struct tegra_dma_sg_req *tegra_dma_sg_req_get(
308 		struct tegra_dma_channel *tdc)
309 {
310 	struct tegra_dma_sg_req *sg_req = NULL;
311 	unsigned long flags;
312 
313 	spin_lock_irqsave(&tdc->lock, flags);
314 	if (!list_empty(&tdc->free_sg_req)) {
315 		sg_req = list_first_entry(&tdc->free_sg_req,
316 					typeof(*sg_req), node);
317 		list_del(&sg_req->node);
318 		spin_unlock_irqrestore(&tdc->lock, flags);
319 		return sg_req;
320 	}
321 	spin_unlock_irqrestore(&tdc->lock, flags);
322 
323 	sg_req = kzalloc(sizeof(struct tegra_dma_sg_req), GFP_ATOMIC);
324 	if (!sg_req)
325 		dev_err(tdc2dev(tdc), "sg_req alloc failed\n");
326 	return sg_req;
327 }
328 
329 static int tegra_dma_slave_config(struct dma_chan *dc,
330 		struct dma_slave_config *sconfig)
331 {
332 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
333 
334 	if (!list_empty(&tdc->pending_sg_req)) {
335 		dev_err(tdc2dev(tdc), "Configuration not allowed\n");
336 		return -EBUSY;
337 	}
338 
339 	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
340 	tdc->config_init = true;
341 	return 0;
342 }
343 
344 static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
345 	bool wait_for_burst_complete)
346 {
347 	struct tegra_dma *tdma = tdc->tdma;
348 
349 	spin_lock(&tdma->global_lock);
350 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
351 	if (wait_for_burst_complete)
352 		udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
353 }
354 
355 static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
356 {
357 	struct tegra_dma *tdma = tdc->tdma;
358 
359 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
360 	spin_unlock(&tdma->global_lock);
361 }
362 
363 static void tegra_dma_pause(struct tegra_dma_channel *tdc,
364 	bool wait_for_burst_complete)
365 {
366 	struct tegra_dma *tdma = tdc->tdma;
367 
368 	if (tdma->chip_data->support_channel_pause) {
369 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
370 				TEGRA_APBDMA_CHAN_CSRE_PAUSE);
371 		if (wait_for_burst_complete)
372 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
373 	} else {
374 		tegra_dma_global_pause(tdc, wait_for_burst_complete);
375 	}
376 }
377 
378 static void tegra_dma_resume(struct tegra_dma_channel *tdc)
379 {
380 	struct tegra_dma *tdma = tdc->tdma;
381 
382 	if (tdma->chip_data->support_channel_pause) {
383 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
384 	} else {
385 		tegra_dma_global_resume(tdc);
386 	}
387 }
388 
389 static void tegra_dma_stop(struct tegra_dma_channel *tdc)
390 {
391 	u32 csr;
392 	u32 status;
393 
394 	/* Disable interrupts */
395 	csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
396 	csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
397 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
398 
399 	/* Disable DMA */
400 	csr &= ~TEGRA_APBDMA_CSR_ENB;
401 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
402 
403 	/* Clear interrupt status if it is there */
404 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
405 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
406 		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
407 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
408 	}
409 	tdc->busy = false;
410 }
411 
412 static void tegra_dma_start(struct tegra_dma_channel *tdc,
413 		struct tegra_dma_sg_req *sg_req)
414 {
415 	struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
416 
417 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
418 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
419 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
420 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
421 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
422 
423 	/* Start DMA */
424 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
425 				ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
426 }
427 
428 static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
429 		struct tegra_dma_sg_req *nsg_req)
430 {
431 	unsigned long status;
432 
433 	/*
434 	 * The DMA controller reloads the new configuration for next transfer
435 	 * after last burst of current transfer completes.
436 	 * If there is no IEC status then this makes sure that last burst
437 	 * has not be completed. There may be case that last burst is on
438 	 * flight and so it can complete but because DMA is paused, it
439 	 * will not generates interrupt as well as not reload the new
440 	 * configuration.
441 	 * If there is already IEC status then interrupt handler need to
442 	 * load new configuration.
443 	 */
444 	tegra_dma_pause(tdc, false);
445 	status  = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
446 
447 	/*
448 	 * If interrupt is pending then do nothing as the ISR will handle
449 	 * the programing for new request.
450 	 */
451 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
452 		dev_err(tdc2dev(tdc),
453 			"Skipping new configuration as interrupt is pending\n");
454 		tegra_dma_resume(tdc);
455 		return;
456 	}
457 
458 	/* Safe to program new configuration */
459 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
460 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
461 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
462 				nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
463 	nsg_req->configured = true;
464 
465 	tegra_dma_resume(tdc);
466 }
467 
468 static void tdc_start_head_req(struct tegra_dma_channel *tdc)
469 {
470 	struct tegra_dma_sg_req *sg_req;
471 
472 	if (list_empty(&tdc->pending_sg_req))
473 		return;
474 
475 	sg_req = list_first_entry(&tdc->pending_sg_req,
476 					typeof(*sg_req), node);
477 	tegra_dma_start(tdc, sg_req);
478 	sg_req->configured = true;
479 	tdc->busy = true;
480 }
481 
482 static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
483 {
484 	struct tegra_dma_sg_req *hsgreq;
485 	struct tegra_dma_sg_req *hnsgreq;
486 
487 	if (list_empty(&tdc->pending_sg_req))
488 		return;
489 
490 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
491 	if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
492 		hnsgreq = list_first_entry(&hsgreq->node,
493 					typeof(*hnsgreq), node);
494 		tegra_dma_configure_for_next(tdc, hnsgreq);
495 	}
496 }
497 
498 static inline int get_current_xferred_count(struct tegra_dma_channel *tdc,
499 	struct tegra_dma_sg_req *sg_req, unsigned long status)
500 {
501 	return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
502 }
503 
504 static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
505 {
506 	struct tegra_dma_sg_req *sgreq;
507 	struct tegra_dma_desc *dma_desc;
508 
509 	while (!list_empty(&tdc->pending_sg_req)) {
510 		sgreq = list_first_entry(&tdc->pending_sg_req,
511 						typeof(*sgreq), node);
512 		list_move_tail(&sgreq->node, &tdc->free_sg_req);
513 		if (sgreq->last_sg) {
514 			dma_desc = sgreq->dma_desc;
515 			dma_desc->dma_status = DMA_ERROR;
516 			list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
517 
518 			/* Add in cb list if it is not there. */
519 			if (!dma_desc->cb_count)
520 				list_add_tail(&dma_desc->cb_node,
521 							&tdc->cb_desc);
522 			dma_desc->cb_count++;
523 		}
524 	}
525 	tdc->isr_handler = NULL;
526 }
527 
528 static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
529 		struct tegra_dma_sg_req *last_sg_req, bool to_terminate)
530 {
531 	struct tegra_dma_sg_req *hsgreq = NULL;
532 
533 	if (list_empty(&tdc->pending_sg_req)) {
534 		dev_err(tdc2dev(tdc), "Dma is running without req\n");
535 		tegra_dma_stop(tdc);
536 		return false;
537 	}
538 
539 	/*
540 	 * Check that head req on list should be in flight.
541 	 * If it is not in flight then abort transfer as
542 	 * looping of transfer can not continue.
543 	 */
544 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
545 	if (!hsgreq->configured) {
546 		tegra_dma_stop(tdc);
547 		dev_err(tdc2dev(tdc), "Error in dma transfer, aborting dma\n");
548 		tegra_dma_abort_all(tdc);
549 		return false;
550 	}
551 
552 	/* Configure next request */
553 	if (!to_terminate)
554 		tdc_configure_next_head_desc(tdc);
555 	return true;
556 }
557 
558 static void handle_once_dma_done(struct tegra_dma_channel *tdc,
559 	bool to_terminate)
560 {
561 	struct tegra_dma_sg_req *sgreq;
562 	struct tegra_dma_desc *dma_desc;
563 
564 	tdc->busy = false;
565 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
566 	dma_desc = sgreq->dma_desc;
567 	dma_desc->bytes_transferred += sgreq->req_len;
568 
569 	list_del(&sgreq->node);
570 	if (sgreq->last_sg) {
571 		dma_desc->dma_status = DMA_SUCCESS;
572 		dma_cookie_complete(&dma_desc->txd);
573 		if (!dma_desc->cb_count)
574 			list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
575 		dma_desc->cb_count++;
576 		list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
577 	}
578 	list_add_tail(&sgreq->node, &tdc->free_sg_req);
579 
580 	/* Do not start DMA if it is going to be terminate */
581 	if (to_terminate || list_empty(&tdc->pending_sg_req))
582 		return;
583 
584 	tdc_start_head_req(tdc);
585 	return;
586 }
587 
588 static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
589 		bool to_terminate)
590 {
591 	struct tegra_dma_sg_req *sgreq;
592 	struct tegra_dma_desc *dma_desc;
593 	bool st;
594 
595 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
596 	dma_desc = sgreq->dma_desc;
597 	dma_desc->bytes_transferred += sgreq->req_len;
598 
599 	/* Callback need to be call */
600 	if (!dma_desc->cb_count)
601 		list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
602 	dma_desc->cb_count++;
603 
604 	/* If not last req then put at end of pending list */
605 	if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
606 		list_move_tail(&sgreq->node, &tdc->pending_sg_req);
607 		sgreq->configured = false;
608 		st = handle_continuous_head_request(tdc, sgreq, to_terminate);
609 		if (!st)
610 			dma_desc->dma_status = DMA_ERROR;
611 	}
612 	return;
613 }
614 
615 static void tegra_dma_tasklet(unsigned long data)
616 {
617 	struct tegra_dma_channel *tdc = (struct tegra_dma_channel *)data;
618 	dma_async_tx_callback callback = NULL;
619 	void *callback_param = NULL;
620 	struct tegra_dma_desc *dma_desc;
621 	unsigned long flags;
622 	int cb_count;
623 
624 	spin_lock_irqsave(&tdc->lock, flags);
625 	while (!list_empty(&tdc->cb_desc)) {
626 		dma_desc  = list_first_entry(&tdc->cb_desc,
627 					typeof(*dma_desc), cb_node);
628 		list_del(&dma_desc->cb_node);
629 		callback = dma_desc->txd.callback;
630 		callback_param = dma_desc->txd.callback_param;
631 		cb_count = dma_desc->cb_count;
632 		dma_desc->cb_count = 0;
633 		spin_unlock_irqrestore(&tdc->lock, flags);
634 		while (cb_count-- && callback)
635 			callback(callback_param);
636 		spin_lock_irqsave(&tdc->lock, flags);
637 	}
638 	spin_unlock_irqrestore(&tdc->lock, flags);
639 }
640 
641 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
642 {
643 	struct tegra_dma_channel *tdc = dev_id;
644 	unsigned long status;
645 	unsigned long flags;
646 
647 	spin_lock_irqsave(&tdc->lock, flags);
648 
649 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
650 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
651 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
652 		tdc->isr_handler(tdc, false);
653 		tasklet_schedule(&tdc->tasklet);
654 		spin_unlock_irqrestore(&tdc->lock, flags);
655 		return IRQ_HANDLED;
656 	}
657 
658 	spin_unlock_irqrestore(&tdc->lock, flags);
659 	dev_info(tdc2dev(tdc),
660 		"Interrupt already served status 0x%08lx\n", status);
661 	return IRQ_NONE;
662 }
663 
664 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
665 {
666 	struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
667 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
668 	unsigned long flags;
669 	dma_cookie_t cookie;
670 
671 	spin_lock_irqsave(&tdc->lock, flags);
672 	dma_desc->dma_status = DMA_IN_PROGRESS;
673 	cookie = dma_cookie_assign(&dma_desc->txd);
674 	list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
675 	spin_unlock_irqrestore(&tdc->lock, flags);
676 	return cookie;
677 }
678 
679 static void tegra_dma_issue_pending(struct dma_chan *dc)
680 {
681 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
682 	unsigned long flags;
683 
684 	spin_lock_irqsave(&tdc->lock, flags);
685 	if (list_empty(&tdc->pending_sg_req)) {
686 		dev_err(tdc2dev(tdc), "No DMA request\n");
687 		goto end;
688 	}
689 	if (!tdc->busy) {
690 		tdc_start_head_req(tdc);
691 
692 		/* Continuous single mode: Configure next req */
693 		if (tdc->cyclic) {
694 			/*
695 			 * Wait for 1 burst time for configure DMA for
696 			 * next transfer.
697 			 */
698 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
699 			tdc_configure_next_head_desc(tdc);
700 		}
701 	}
702 end:
703 	spin_unlock_irqrestore(&tdc->lock, flags);
704 	return;
705 }
706 
707 static void tegra_dma_terminate_all(struct dma_chan *dc)
708 {
709 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
710 	struct tegra_dma_sg_req *sgreq;
711 	struct tegra_dma_desc *dma_desc;
712 	unsigned long flags;
713 	unsigned long status;
714 	bool was_busy;
715 
716 	spin_lock_irqsave(&tdc->lock, flags);
717 	if (list_empty(&tdc->pending_sg_req)) {
718 		spin_unlock_irqrestore(&tdc->lock, flags);
719 		return;
720 	}
721 
722 	if (!tdc->busy)
723 		goto skip_dma_stop;
724 
725 	/* Pause DMA before checking the queue status */
726 	tegra_dma_pause(tdc, true);
727 
728 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
729 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
730 		dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
731 		tdc->isr_handler(tdc, true);
732 		status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
733 	}
734 
735 	was_busy = tdc->busy;
736 	tegra_dma_stop(tdc);
737 
738 	if (!list_empty(&tdc->pending_sg_req) && was_busy) {
739 		sgreq = list_first_entry(&tdc->pending_sg_req,
740 					typeof(*sgreq), node);
741 		sgreq->dma_desc->bytes_transferred +=
742 				get_current_xferred_count(tdc, sgreq, status);
743 	}
744 	tegra_dma_resume(tdc);
745 
746 skip_dma_stop:
747 	tegra_dma_abort_all(tdc);
748 
749 	while (!list_empty(&tdc->cb_desc)) {
750 		dma_desc  = list_first_entry(&tdc->cb_desc,
751 					typeof(*dma_desc), cb_node);
752 		list_del(&dma_desc->cb_node);
753 		dma_desc->cb_count = 0;
754 	}
755 	spin_unlock_irqrestore(&tdc->lock, flags);
756 }
757 
758 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
759 	dma_cookie_t cookie, struct dma_tx_state *txstate)
760 {
761 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
762 	struct tegra_dma_desc *dma_desc;
763 	struct tegra_dma_sg_req *sg_req;
764 	enum dma_status ret;
765 	unsigned long flags;
766 	unsigned int residual;
767 
768 	spin_lock_irqsave(&tdc->lock, flags);
769 
770 	ret = dma_cookie_status(dc, cookie, txstate);
771 	if (ret == DMA_SUCCESS) {
772 		spin_unlock_irqrestore(&tdc->lock, flags);
773 		return ret;
774 	}
775 
776 	/* Check on wait_ack desc status */
777 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
778 		if (dma_desc->txd.cookie == cookie) {
779 			residual =  dma_desc->bytes_requested -
780 					(dma_desc->bytes_transferred %
781 						dma_desc->bytes_requested);
782 			dma_set_residue(txstate, residual);
783 			ret = dma_desc->dma_status;
784 			spin_unlock_irqrestore(&tdc->lock, flags);
785 			return ret;
786 		}
787 	}
788 
789 	/* Check in pending list */
790 	list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
791 		dma_desc = sg_req->dma_desc;
792 		if (dma_desc->txd.cookie == cookie) {
793 			residual =  dma_desc->bytes_requested -
794 					(dma_desc->bytes_transferred %
795 						dma_desc->bytes_requested);
796 			dma_set_residue(txstate, residual);
797 			ret = dma_desc->dma_status;
798 			spin_unlock_irqrestore(&tdc->lock, flags);
799 			return ret;
800 		}
801 	}
802 
803 	dev_dbg(tdc2dev(tdc), "cookie %d does not found\n", cookie);
804 	spin_unlock_irqrestore(&tdc->lock, flags);
805 	return ret;
806 }
807 
808 static int tegra_dma_device_control(struct dma_chan *dc, enum dma_ctrl_cmd cmd,
809 			unsigned long arg)
810 {
811 	switch (cmd) {
812 	case DMA_SLAVE_CONFIG:
813 		return tegra_dma_slave_config(dc,
814 				(struct dma_slave_config *)arg);
815 
816 	case DMA_TERMINATE_ALL:
817 		tegra_dma_terminate_all(dc);
818 		return 0;
819 
820 	default:
821 		break;
822 	}
823 
824 	return -ENXIO;
825 }
826 
827 static inline int get_bus_width(struct tegra_dma_channel *tdc,
828 		enum dma_slave_buswidth slave_bw)
829 {
830 	switch (slave_bw) {
831 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
832 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
833 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
834 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
835 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
836 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
837 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
838 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
839 	default:
840 		dev_warn(tdc2dev(tdc),
841 			"slave bw is not supported, using 32bits\n");
842 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
843 	}
844 }
845 
846 static inline int get_burst_size(struct tegra_dma_channel *tdc,
847 	u32 burst_size, enum dma_slave_buswidth slave_bw, int len)
848 {
849 	int burst_byte;
850 	int burst_ahb_width;
851 
852 	/*
853 	 * burst_size from client is in terms of the bus_width.
854 	 * convert them into AHB memory width which is 4 byte.
855 	 */
856 	burst_byte = burst_size * slave_bw;
857 	burst_ahb_width = burst_byte / 4;
858 
859 	/* If burst size is 0 then calculate the burst size based on length */
860 	if (!burst_ahb_width) {
861 		if (len & 0xF)
862 			return TEGRA_APBDMA_AHBSEQ_BURST_1;
863 		else if ((len >> 4) & 0x1)
864 			return TEGRA_APBDMA_AHBSEQ_BURST_4;
865 		else
866 			return TEGRA_APBDMA_AHBSEQ_BURST_8;
867 	}
868 	if (burst_ahb_width < 4)
869 		return TEGRA_APBDMA_AHBSEQ_BURST_1;
870 	else if (burst_ahb_width < 8)
871 		return TEGRA_APBDMA_AHBSEQ_BURST_4;
872 	else
873 		return TEGRA_APBDMA_AHBSEQ_BURST_8;
874 }
875 
876 static int get_transfer_param(struct tegra_dma_channel *tdc,
877 	enum dma_transfer_direction direction, unsigned long *apb_addr,
878 	unsigned long *apb_seq,	unsigned long *csr, unsigned int *burst_size,
879 	enum dma_slave_buswidth *slave_bw)
880 {
881 
882 	switch (direction) {
883 	case DMA_MEM_TO_DEV:
884 		*apb_addr = tdc->dma_sconfig.dst_addr;
885 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
886 		*burst_size = tdc->dma_sconfig.dst_maxburst;
887 		*slave_bw = tdc->dma_sconfig.dst_addr_width;
888 		*csr = TEGRA_APBDMA_CSR_DIR;
889 		return 0;
890 
891 	case DMA_DEV_TO_MEM:
892 		*apb_addr = tdc->dma_sconfig.src_addr;
893 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
894 		*burst_size = tdc->dma_sconfig.src_maxburst;
895 		*slave_bw = tdc->dma_sconfig.src_addr_width;
896 		*csr = 0;
897 		return 0;
898 
899 	default:
900 		dev_err(tdc2dev(tdc), "Dma direction is not supported\n");
901 		return -EINVAL;
902 	}
903 	return -EINVAL;
904 }
905 
906 static struct dma_async_tx_descriptor *tegra_dma_prep_slave_sg(
907 	struct dma_chan *dc, struct scatterlist *sgl, unsigned int sg_len,
908 	enum dma_transfer_direction direction, unsigned long flags,
909 	void *context)
910 {
911 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
912 	struct tegra_dma_desc *dma_desc;
913 	unsigned int	    i;
914 	struct scatterlist      *sg;
915 	unsigned long csr, ahb_seq, apb_ptr, apb_seq;
916 	struct list_head req_list;
917 	struct tegra_dma_sg_req  *sg_req = NULL;
918 	u32 burst_size;
919 	enum dma_slave_buswidth slave_bw;
920 	int ret;
921 
922 	if (!tdc->config_init) {
923 		dev_err(tdc2dev(tdc), "dma channel is not configured\n");
924 		return NULL;
925 	}
926 	if (sg_len < 1) {
927 		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
928 		return NULL;
929 	}
930 
931 	ret = get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
932 				&burst_size, &slave_bw);
933 	if (ret < 0)
934 		return NULL;
935 
936 	INIT_LIST_HEAD(&req_list);
937 
938 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
939 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
940 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
941 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
942 
943 	csr |= TEGRA_APBDMA_CSR_ONCE | TEGRA_APBDMA_CSR_FLOW;
944 	csr |= tdc->dma_sconfig.slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
945 	if (flags & DMA_PREP_INTERRUPT)
946 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
947 
948 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
949 
950 	dma_desc = tegra_dma_desc_get(tdc);
951 	if (!dma_desc) {
952 		dev_err(tdc2dev(tdc), "Dma descriptors not available\n");
953 		return NULL;
954 	}
955 	INIT_LIST_HEAD(&dma_desc->tx_list);
956 	INIT_LIST_HEAD(&dma_desc->cb_node);
957 	dma_desc->cb_count = 0;
958 	dma_desc->bytes_requested = 0;
959 	dma_desc->bytes_transferred = 0;
960 	dma_desc->dma_status = DMA_IN_PROGRESS;
961 
962 	/* Make transfer requests */
963 	for_each_sg(sgl, sg, sg_len, i) {
964 		u32 len, mem;
965 
966 		mem = sg_dma_address(sg);
967 		len = sg_dma_len(sg);
968 
969 		if ((len & 3) || (mem & 3) ||
970 				(len > tdc->tdma->chip_data->max_dma_count)) {
971 			dev_err(tdc2dev(tdc),
972 				"Dma length/memory address is not supported\n");
973 			tegra_dma_desc_put(tdc, dma_desc);
974 			return NULL;
975 		}
976 
977 		sg_req = tegra_dma_sg_req_get(tdc);
978 		if (!sg_req) {
979 			dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
980 			tegra_dma_desc_put(tdc, dma_desc);
981 			return NULL;
982 		}
983 
984 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
985 		dma_desc->bytes_requested += len;
986 
987 		sg_req->ch_regs.apb_ptr = apb_ptr;
988 		sg_req->ch_regs.ahb_ptr = mem;
989 		sg_req->ch_regs.csr = csr | ((len - 4) & 0xFFFC);
990 		sg_req->ch_regs.apb_seq = apb_seq;
991 		sg_req->ch_regs.ahb_seq = ahb_seq;
992 		sg_req->configured = false;
993 		sg_req->last_sg = false;
994 		sg_req->dma_desc = dma_desc;
995 		sg_req->req_len = len;
996 
997 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
998 	}
999 	sg_req->last_sg = true;
1000 	if (flags & DMA_CTRL_ACK)
1001 		dma_desc->txd.flags = DMA_CTRL_ACK;
1002 
1003 	/*
1004 	 * Make sure that mode should not be conflicting with currently
1005 	 * configured mode.
1006 	 */
1007 	if (!tdc->isr_handler) {
1008 		tdc->isr_handler = handle_once_dma_done;
1009 		tdc->cyclic = false;
1010 	} else {
1011 		if (tdc->cyclic) {
1012 			dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1013 			tegra_dma_desc_put(tdc, dma_desc);
1014 			return NULL;
1015 		}
1016 	}
1017 
1018 	return &dma_desc->txd;
1019 }
1020 
1021 struct dma_async_tx_descriptor *tegra_dma_prep_dma_cyclic(
1022 	struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
1023 	size_t period_len, enum dma_transfer_direction direction,
1024 	unsigned long flags, void *context)
1025 {
1026 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1027 	struct tegra_dma_desc *dma_desc = NULL;
1028 	struct tegra_dma_sg_req  *sg_req = NULL;
1029 	unsigned long csr, ahb_seq, apb_ptr, apb_seq;
1030 	int len;
1031 	size_t remain_len;
1032 	dma_addr_t mem = buf_addr;
1033 	u32 burst_size;
1034 	enum dma_slave_buswidth slave_bw;
1035 	int ret;
1036 
1037 	if (!buf_len || !period_len) {
1038 		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1039 		return NULL;
1040 	}
1041 
1042 	if (!tdc->config_init) {
1043 		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1044 		return NULL;
1045 	}
1046 
1047 	/*
1048 	 * We allow to take more number of requests till DMA is
1049 	 * not started. The driver will loop over all requests.
1050 	 * Once DMA is started then new requests can be queued only after
1051 	 * terminating the DMA.
1052 	 */
1053 	if (tdc->busy) {
1054 		dev_err(tdc2dev(tdc), "Request not allowed when dma running\n");
1055 		return NULL;
1056 	}
1057 
1058 	/*
1059 	 * We only support cycle transfer when buf_len is multiple of
1060 	 * period_len.
1061 	 */
1062 	if (buf_len % period_len) {
1063 		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1064 		return NULL;
1065 	}
1066 
1067 	len = period_len;
1068 	if ((len & 3) || (buf_addr & 3) ||
1069 			(len > tdc->tdma->chip_data->max_dma_count)) {
1070 		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1071 		return NULL;
1072 	}
1073 
1074 	ret = get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1075 				&burst_size, &slave_bw);
1076 	if (ret < 0)
1077 		return NULL;
1078 
1079 
1080 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1081 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1082 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1083 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1084 
1085 	csr |= TEGRA_APBDMA_CSR_FLOW;
1086 	if (flags & DMA_PREP_INTERRUPT)
1087 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1088 	csr |= tdc->dma_sconfig.slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1089 
1090 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1091 
1092 	dma_desc = tegra_dma_desc_get(tdc);
1093 	if (!dma_desc) {
1094 		dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1095 		return NULL;
1096 	}
1097 
1098 	INIT_LIST_HEAD(&dma_desc->tx_list);
1099 	INIT_LIST_HEAD(&dma_desc->cb_node);
1100 	dma_desc->cb_count = 0;
1101 
1102 	dma_desc->bytes_transferred = 0;
1103 	dma_desc->bytes_requested = buf_len;
1104 	remain_len = buf_len;
1105 
1106 	/* Split transfer equal to period size */
1107 	while (remain_len) {
1108 		sg_req = tegra_dma_sg_req_get(tdc);
1109 		if (!sg_req) {
1110 			dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
1111 			tegra_dma_desc_put(tdc, dma_desc);
1112 			return NULL;
1113 		}
1114 
1115 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1116 		sg_req->ch_regs.apb_ptr = apb_ptr;
1117 		sg_req->ch_regs.ahb_ptr = mem;
1118 		sg_req->ch_regs.csr = csr | ((len - 4) & 0xFFFC);
1119 		sg_req->ch_regs.apb_seq = apb_seq;
1120 		sg_req->ch_regs.ahb_seq = ahb_seq;
1121 		sg_req->configured = false;
1122 		sg_req->half_done = false;
1123 		sg_req->last_sg = false;
1124 		sg_req->dma_desc = dma_desc;
1125 		sg_req->req_len = len;
1126 
1127 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1128 		remain_len -= len;
1129 		mem += len;
1130 	}
1131 	sg_req->last_sg = true;
1132 	if (flags & DMA_CTRL_ACK)
1133 		dma_desc->txd.flags = DMA_CTRL_ACK;
1134 
1135 	/*
1136 	 * Make sure that mode should not be conflicting with currently
1137 	 * configured mode.
1138 	 */
1139 	if (!tdc->isr_handler) {
1140 		tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1141 		tdc->cyclic = true;
1142 	} else {
1143 		if (!tdc->cyclic) {
1144 			dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1145 			tegra_dma_desc_put(tdc, dma_desc);
1146 			return NULL;
1147 		}
1148 	}
1149 
1150 	return &dma_desc->txd;
1151 }
1152 
1153 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1154 {
1155 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1156 	struct tegra_dma *tdma = tdc->tdma;
1157 	int ret;
1158 
1159 	dma_cookie_init(&tdc->dma_chan);
1160 	tdc->config_init = false;
1161 	ret = clk_prepare_enable(tdma->dma_clk);
1162 	if (ret < 0)
1163 		dev_err(tdc2dev(tdc), "clk_prepare_enable failed: %d\n", ret);
1164 	return ret;
1165 }
1166 
1167 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1168 {
1169 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1170 	struct tegra_dma *tdma = tdc->tdma;
1171 
1172 	struct tegra_dma_desc *dma_desc;
1173 	struct tegra_dma_sg_req *sg_req;
1174 	struct list_head dma_desc_list;
1175 	struct list_head sg_req_list;
1176 	unsigned long flags;
1177 
1178 	INIT_LIST_HEAD(&dma_desc_list);
1179 	INIT_LIST_HEAD(&sg_req_list);
1180 
1181 	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1182 
1183 	if (tdc->busy)
1184 		tegra_dma_terminate_all(dc);
1185 
1186 	spin_lock_irqsave(&tdc->lock, flags);
1187 	list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1188 	list_splice_init(&tdc->free_sg_req, &sg_req_list);
1189 	list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1190 	INIT_LIST_HEAD(&tdc->cb_desc);
1191 	tdc->config_init = false;
1192 	spin_unlock_irqrestore(&tdc->lock, flags);
1193 
1194 	while (!list_empty(&dma_desc_list)) {
1195 		dma_desc = list_first_entry(&dma_desc_list,
1196 					typeof(*dma_desc), node);
1197 		list_del(&dma_desc->node);
1198 		kfree(dma_desc);
1199 	}
1200 
1201 	while (!list_empty(&sg_req_list)) {
1202 		sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1203 		list_del(&sg_req->node);
1204 		kfree(sg_req);
1205 	}
1206 	clk_disable_unprepare(tdma->dma_clk);
1207 }
1208 
1209 /* Tegra20 specific DMA controller information */
1210 static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1211 	.nr_channels		= 16,
1212 	.max_dma_count		= 1024UL * 64,
1213 	.support_channel_pause	= false,
1214 };
1215 
1216 #if defined(CONFIG_OF)
1217 /* Tegra30 specific DMA controller information */
1218 static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1219 	.nr_channels		= 32,
1220 	.max_dma_count		= 1024UL * 64,
1221 	.support_channel_pause	= false,
1222 };
1223 
1224 /* Tegra114 specific DMA controller information */
1225 static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1226 	.nr_channels		= 32,
1227 	.max_dma_count		= 1024UL * 64,
1228 	.support_channel_pause	= true,
1229 };
1230 
1231 
1232 static const struct of_device_id tegra_dma_of_match[] = {
1233 	{
1234 		.compatible = "nvidia,tegra114-apbdma",
1235 		.data = &tegra114_dma_chip_data,
1236 	}, {
1237 		.compatible = "nvidia,tegra30-apbdma",
1238 		.data = &tegra30_dma_chip_data,
1239 	}, {
1240 		.compatible = "nvidia,tegra20-apbdma",
1241 		.data = &tegra20_dma_chip_data,
1242 	}, {
1243 	},
1244 };
1245 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1246 #endif
1247 
1248 static int tegra_dma_probe(struct platform_device *pdev)
1249 {
1250 	struct resource	*res;
1251 	struct tegra_dma *tdma;
1252 	int ret;
1253 	int i;
1254 	const struct tegra_dma_chip_data *cdata = NULL;
1255 
1256 	if (pdev->dev.of_node) {
1257 		const struct of_device_id *match;
1258 		match = of_match_device(of_match_ptr(tegra_dma_of_match),
1259 					&pdev->dev);
1260 		if (!match) {
1261 			dev_err(&pdev->dev, "Error: No device match found\n");
1262 			return -ENODEV;
1263 		}
1264 		cdata = match->data;
1265 	} else {
1266 		/* If no device tree then fallback to tegra20 */
1267 		cdata = &tegra20_dma_chip_data;
1268 	}
1269 
1270 	tdma = devm_kzalloc(&pdev->dev, sizeof(*tdma) + cdata->nr_channels *
1271 			sizeof(struct tegra_dma_channel), GFP_KERNEL);
1272 	if (!tdma) {
1273 		dev_err(&pdev->dev, "Error: memory allocation failed\n");
1274 		return -ENOMEM;
1275 	}
1276 
1277 	tdma->dev = &pdev->dev;
1278 	tdma->chip_data = cdata;
1279 	platform_set_drvdata(pdev, tdma);
1280 
1281 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1282 	if (!res) {
1283 		dev_err(&pdev->dev, "No mem resource for DMA\n");
1284 		return -EINVAL;
1285 	}
1286 
1287 	tdma->base_addr = devm_ioremap_resource(&pdev->dev, res);
1288 	if (IS_ERR(tdma->base_addr))
1289 		return PTR_ERR(tdma->base_addr);
1290 
1291 	tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1292 	if (IS_ERR(tdma->dma_clk)) {
1293 		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1294 		return PTR_ERR(tdma->dma_clk);
1295 	}
1296 
1297 	spin_lock_init(&tdma->global_lock);
1298 
1299 	pm_runtime_enable(&pdev->dev);
1300 	if (!pm_runtime_enabled(&pdev->dev)) {
1301 		ret = tegra_dma_runtime_resume(&pdev->dev);
1302 		if (ret) {
1303 			dev_err(&pdev->dev, "dma_runtime_resume failed %d\n",
1304 				ret);
1305 			goto err_pm_disable;
1306 		}
1307 	}
1308 
1309 	/* Enable clock before accessing registers */
1310 	ret = clk_prepare_enable(tdma->dma_clk);
1311 	if (ret < 0) {
1312 		dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
1313 		goto err_pm_disable;
1314 	}
1315 
1316 	/* Reset DMA controller */
1317 	tegra_periph_reset_assert(tdma->dma_clk);
1318 	udelay(2);
1319 	tegra_periph_reset_deassert(tdma->dma_clk);
1320 
1321 	/* Enable global DMA registers */
1322 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1323 	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1324 	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1325 
1326 	clk_disable_unprepare(tdma->dma_clk);
1327 
1328 	INIT_LIST_HEAD(&tdma->dma_dev.channels);
1329 	for (i = 0; i < cdata->nr_channels; i++) {
1330 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1331 
1332 		tdc->chan_base_offset = TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1333 					i * TEGRA_APBDMA_CHANNEL_REGISTER_SIZE;
1334 
1335 		res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1336 		if (!res) {
1337 			ret = -EINVAL;
1338 			dev_err(&pdev->dev, "No irq resource for chan %d\n", i);
1339 			goto err_irq;
1340 		}
1341 		tdc->irq = res->start;
1342 		snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1343 		ret = devm_request_irq(&pdev->dev, tdc->irq,
1344 				tegra_dma_isr, 0, tdc->name, tdc);
1345 		if (ret) {
1346 			dev_err(&pdev->dev,
1347 				"request_irq failed with err %d channel %d\n",
1348 				i, ret);
1349 			goto err_irq;
1350 		}
1351 
1352 		tdc->dma_chan.device = &tdma->dma_dev;
1353 		dma_cookie_init(&tdc->dma_chan);
1354 		list_add_tail(&tdc->dma_chan.device_node,
1355 				&tdma->dma_dev.channels);
1356 		tdc->tdma = tdma;
1357 		tdc->id = i;
1358 
1359 		tasklet_init(&tdc->tasklet, tegra_dma_tasklet,
1360 				(unsigned long)tdc);
1361 		spin_lock_init(&tdc->lock);
1362 
1363 		INIT_LIST_HEAD(&tdc->pending_sg_req);
1364 		INIT_LIST_HEAD(&tdc->free_sg_req);
1365 		INIT_LIST_HEAD(&tdc->free_dma_desc);
1366 		INIT_LIST_HEAD(&tdc->cb_desc);
1367 	}
1368 
1369 	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1370 	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1371 	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1372 
1373 	tdma->dma_dev.dev = &pdev->dev;
1374 	tdma->dma_dev.device_alloc_chan_resources =
1375 					tegra_dma_alloc_chan_resources;
1376 	tdma->dma_dev.device_free_chan_resources =
1377 					tegra_dma_free_chan_resources;
1378 	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1379 	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1380 	tdma->dma_dev.device_control = tegra_dma_device_control;
1381 	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1382 	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1383 
1384 	ret = dma_async_device_register(&tdma->dma_dev);
1385 	if (ret < 0) {
1386 		dev_err(&pdev->dev,
1387 			"Tegra20 APB DMA driver registration failed %d\n", ret);
1388 		goto err_irq;
1389 	}
1390 
1391 	dev_info(&pdev->dev, "Tegra20 APB DMA driver register %d channels\n",
1392 			cdata->nr_channels);
1393 	return 0;
1394 
1395 err_irq:
1396 	while (--i >= 0) {
1397 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1398 		tasklet_kill(&tdc->tasklet);
1399 	}
1400 
1401 err_pm_disable:
1402 	pm_runtime_disable(&pdev->dev);
1403 	if (!pm_runtime_status_suspended(&pdev->dev))
1404 		tegra_dma_runtime_suspend(&pdev->dev);
1405 	return ret;
1406 }
1407 
1408 static int tegra_dma_remove(struct platform_device *pdev)
1409 {
1410 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1411 	int i;
1412 	struct tegra_dma_channel *tdc;
1413 
1414 	dma_async_device_unregister(&tdma->dma_dev);
1415 
1416 	for (i = 0; i < tdma->chip_data->nr_channels; ++i) {
1417 		tdc = &tdma->channels[i];
1418 		tasklet_kill(&tdc->tasklet);
1419 	}
1420 
1421 	pm_runtime_disable(&pdev->dev);
1422 	if (!pm_runtime_status_suspended(&pdev->dev))
1423 		tegra_dma_runtime_suspend(&pdev->dev);
1424 
1425 	return 0;
1426 }
1427 
1428 static int tegra_dma_runtime_suspend(struct device *dev)
1429 {
1430 	struct platform_device *pdev = to_platform_device(dev);
1431 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1432 
1433 	clk_disable_unprepare(tdma->dma_clk);
1434 	return 0;
1435 }
1436 
1437 static int tegra_dma_runtime_resume(struct device *dev)
1438 {
1439 	struct platform_device *pdev = to_platform_device(dev);
1440 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1441 	int ret;
1442 
1443 	ret = clk_prepare_enable(tdma->dma_clk);
1444 	if (ret < 0) {
1445 		dev_err(dev, "clk_enable failed: %d\n", ret);
1446 		return ret;
1447 	}
1448 	return 0;
1449 }
1450 
1451 static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1452 #ifdef CONFIG_PM_RUNTIME
1453 	.runtime_suspend = tegra_dma_runtime_suspend,
1454 	.runtime_resume = tegra_dma_runtime_resume,
1455 #endif
1456 };
1457 
1458 static struct platform_driver tegra_dmac_driver = {
1459 	.driver = {
1460 		.name	= "tegra-apbdma",
1461 		.owner = THIS_MODULE,
1462 		.pm	= &tegra_dma_dev_pm_ops,
1463 		.of_match_table = of_match_ptr(tegra_dma_of_match),
1464 	},
1465 	.probe		= tegra_dma_probe,
1466 	.remove		= tegra_dma_remove,
1467 };
1468 
1469 module_platform_driver(tegra_dmac_driver);
1470 
1471 MODULE_ALIAS("platform:tegra20-apbdma");
1472 MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1473 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1474 MODULE_LICENSE("GPL v2");
1475