xref: /openbmc/linux/drivers/dma/tegra20-apb-dma.c (revision 66c98360)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DMA driver for Nvidia's Tegra20 APB DMA controller.
4  *
5  * Copyright (c) 2012-2013, NVIDIA CORPORATION.  All rights reserved.
6  */
7 
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/of_dma.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/reset.h>
26 #include <linux/slab.h>
27 #include <linux/wait.h>
28 
29 #include "dmaengine.h"
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/tegra_apb_dma.h>
33 
34 #define TEGRA_APBDMA_GENERAL			0x0
35 #define TEGRA_APBDMA_GENERAL_ENABLE		BIT(31)
36 
37 #define TEGRA_APBDMA_CONTROL			0x010
38 #define TEGRA_APBDMA_IRQ_MASK			0x01c
39 #define TEGRA_APBDMA_IRQ_MASK_SET		0x020
40 
41 /* CSR register */
42 #define TEGRA_APBDMA_CHAN_CSR			0x00
43 #define TEGRA_APBDMA_CSR_ENB			BIT(31)
44 #define TEGRA_APBDMA_CSR_IE_EOC			BIT(30)
45 #define TEGRA_APBDMA_CSR_HOLD			BIT(29)
46 #define TEGRA_APBDMA_CSR_DIR			BIT(28)
47 #define TEGRA_APBDMA_CSR_ONCE			BIT(27)
48 #define TEGRA_APBDMA_CSR_FLOW			BIT(21)
49 #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT		16
50 #define TEGRA_APBDMA_CSR_REQ_SEL_MASK		0x1F
51 #define TEGRA_APBDMA_CSR_WCOUNT_MASK		0xFFFC
52 
53 /* STATUS register */
54 #define TEGRA_APBDMA_CHAN_STATUS		0x004
55 #define TEGRA_APBDMA_STATUS_BUSY		BIT(31)
56 #define TEGRA_APBDMA_STATUS_ISE_EOC		BIT(30)
57 #define TEGRA_APBDMA_STATUS_HALT		BIT(29)
58 #define TEGRA_APBDMA_STATUS_PING_PONG		BIT(28)
59 #define TEGRA_APBDMA_STATUS_COUNT_SHIFT		2
60 #define TEGRA_APBDMA_STATUS_COUNT_MASK		0xFFFC
61 
62 #define TEGRA_APBDMA_CHAN_CSRE			0x00C
63 #define TEGRA_APBDMA_CHAN_CSRE_PAUSE		BIT(31)
64 
65 /* AHB memory address */
66 #define TEGRA_APBDMA_CHAN_AHBPTR		0x010
67 
68 /* AHB sequence register */
69 #define TEGRA_APBDMA_CHAN_AHBSEQ		0x14
70 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB		BIT(31)
71 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8		(0 << 28)
72 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16	(1 << 28)
73 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32	(2 << 28)
74 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64	(3 << 28)
75 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128	(4 << 28)
76 #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP		BIT(27)
77 #define TEGRA_APBDMA_AHBSEQ_BURST_1		(4 << 24)
78 #define TEGRA_APBDMA_AHBSEQ_BURST_4		(5 << 24)
79 #define TEGRA_APBDMA_AHBSEQ_BURST_8		(6 << 24)
80 #define TEGRA_APBDMA_AHBSEQ_DBL_BUF		BIT(19)
81 #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT		16
82 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE		0
83 
84 /* APB address */
85 #define TEGRA_APBDMA_CHAN_APBPTR		0x018
86 
87 /* APB sequence register */
88 #define TEGRA_APBDMA_CHAN_APBSEQ		0x01c
89 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8		(0 << 28)
90 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16	(1 << 28)
91 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32	(2 << 28)
92 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64	(3 << 28)
93 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128	(4 << 28)
94 #define TEGRA_APBDMA_APBSEQ_DATA_SWAP		BIT(27)
95 #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1		(1 << 16)
96 
97 /* Tegra148 specific registers */
98 #define TEGRA_APBDMA_CHAN_WCOUNT		0x20
99 
100 #define TEGRA_APBDMA_CHAN_WORD_TRANSFER		0x24
101 
102 /*
103  * If any burst is in flight and DMA paused then this is the time to complete
104  * on-flight burst and update DMA status register.
105  */
106 #define TEGRA_APBDMA_BURST_COMPLETE_TIME	20
107 
108 /* Channel base address offset from APBDMA base address */
109 #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET	0x1000
110 
111 #define TEGRA_APBDMA_SLAVE_ID_INVALID	(TEGRA_APBDMA_CSR_REQ_SEL_MASK + 1)
112 
113 struct tegra_dma;
114 
115 /*
116  * tegra_dma_chip_data Tegra chip specific DMA data
117  * @nr_channels: Number of channels available in the controller.
118  * @channel_reg_size: Channel register size/stride.
119  * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
120  * @support_channel_pause: Support channel wise pause of dma.
121  * @support_separate_wcount_reg: Support separate word count register.
122  */
123 struct tegra_dma_chip_data {
124 	unsigned int nr_channels;
125 	unsigned int channel_reg_size;
126 	unsigned int max_dma_count;
127 	bool support_channel_pause;
128 	bool support_separate_wcount_reg;
129 };
130 
131 /* DMA channel registers */
132 struct tegra_dma_channel_regs {
133 	u32 csr;
134 	u32 ahb_ptr;
135 	u32 apb_ptr;
136 	u32 ahb_seq;
137 	u32 apb_seq;
138 	u32 wcount;
139 };
140 
141 /*
142  * tegra_dma_sg_req: DMA request details to configure hardware. This
143  * contains the details for one transfer to configure DMA hw.
144  * The client's request for data transfer can be broken into multiple
145  * sub-transfer as per requester details and hw support.
146  * This sub transfer get added in the list of transfer and point to Tegra
147  * DMA descriptor which manages the transfer details.
148  */
149 struct tegra_dma_sg_req {
150 	struct tegra_dma_channel_regs	ch_regs;
151 	unsigned int			req_len;
152 	bool				configured;
153 	bool				last_sg;
154 	struct list_head		node;
155 	struct tegra_dma_desc		*dma_desc;
156 	unsigned int			words_xferred;
157 };
158 
159 /*
160  * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
161  * This descriptor keep track of transfer status, callbacks and request
162  * counts etc.
163  */
164 struct tegra_dma_desc {
165 	struct dma_async_tx_descriptor	txd;
166 	unsigned int			bytes_requested;
167 	unsigned int			bytes_transferred;
168 	enum dma_status			dma_status;
169 	struct list_head		node;
170 	struct list_head		tx_list;
171 	struct list_head		cb_node;
172 	unsigned int			cb_count;
173 };
174 
175 struct tegra_dma_channel;
176 
177 typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
178 				bool to_terminate);
179 
180 /* tegra_dma_channel: Channel specific information */
181 struct tegra_dma_channel {
182 	struct dma_chan		dma_chan;
183 	char			name[12];
184 	bool			config_init;
185 	unsigned int		id;
186 	void __iomem		*chan_addr;
187 	spinlock_t		lock;
188 	bool			busy;
189 	struct tegra_dma	*tdma;
190 	bool			cyclic;
191 
192 	/* Different lists for managing the requests */
193 	struct list_head	free_sg_req;
194 	struct list_head	pending_sg_req;
195 	struct list_head	free_dma_desc;
196 	struct list_head	cb_desc;
197 
198 	/* ISR handler and tasklet for bottom half of isr handling */
199 	dma_isr_handler		isr_handler;
200 	struct tasklet_struct	tasklet;
201 
202 	/* Channel-slave specific configuration */
203 	unsigned int slave_id;
204 	struct dma_slave_config dma_sconfig;
205 	struct tegra_dma_channel_regs channel_reg;
206 
207 	struct wait_queue_head wq;
208 };
209 
210 /* tegra_dma: Tegra DMA specific information */
211 struct tegra_dma {
212 	struct dma_device		dma_dev;
213 	struct device			*dev;
214 	struct clk			*dma_clk;
215 	struct reset_control		*rst;
216 	spinlock_t			global_lock;
217 	void __iomem			*base_addr;
218 	const struct tegra_dma_chip_data *chip_data;
219 
220 	/*
221 	 * Counter for managing global pausing of the DMA controller.
222 	 * Only applicable for devices that don't support individual
223 	 * channel pausing.
224 	 */
225 	u32				global_pause_count;
226 
227 	/* Last member of the structure */
228 	struct tegra_dma_channel channels[];
229 };
230 
231 static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
232 {
233 	writel(val, tdma->base_addr + reg);
234 }
235 
236 static inline void tdc_write(struct tegra_dma_channel *tdc,
237 			     u32 reg, u32 val)
238 {
239 	writel(val, tdc->chan_addr + reg);
240 }
241 
242 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
243 {
244 	return readl(tdc->chan_addr + reg);
245 }
246 
247 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
248 {
249 	return container_of(dc, struct tegra_dma_channel, dma_chan);
250 }
251 
252 static inline struct tegra_dma_desc *
253 txd_to_tegra_dma_desc(struct dma_async_tx_descriptor *td)
254 {
255 	return container_of(td, struct tegra_dma_desc, txd);
256 }
257 
258 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
259 {
260 	return &tdc->dma_chan.dev->device;
261 }
262 
263 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
264 
265 /* Get DMA desc from free list, if not there then allocate it.  */
266 static struct tegra_dma_desc *tegra_dma_desc_get(struct tegra_dma_channel *tdc)
267 {
268 	struct tegra_dma_desc *dma_desc;
269 	unsigned long flags;
270 
271 	spin_lock_irqsave(&tdc->lock, flags);
272 
273 	/* Do not allocate if desc are waiting for ack */
274 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
275 		if (async_tx_test_ack(&dma_desc->txd) && !dma_desc->cb_count) {
276 			list_del(&dma_desc->node);
277 			spin_unlock_irqrestore(&tdc->lock, flags);
278 			dma_desc->txd.flags = 0;
279 			return dma_desc;
280 		}
281 	}
282 
283 	spin_unlock_irqrestore(&tdc->lock, flags);
284 
285 	/* Allocate DMA desc */
286 	dma_desc = kzalloc(sizeof(*dma_desc), GFP_NOWAIT);
287 	if (!dma_desc)
288 		return NULL;
289 
290 	dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
291 	dma_desc->txd.tx_submit = tegra_dma_tx_submit;
292 	dma_desc->txd.flags = 0;
293 
294 	return dma_desc;
295 }
296 
297 static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
298 			       struct tegra_dma_desc *dma_desc)
299 {
300 	unsigned long flags;
301 
302 	spin_lock_irqsave(&tdc->lock, flags);
303 	if (!list_empty(&dma_desc->tx_list))
304 		list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
305 	list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
306 	spin_unlock_irqrestore(&tdc->lock, flags);
307 }
308 
309 static struct tegra_dma_sg_req *
310 tegra_dma_sg_req_get(struct tegra_dma_channel *tdc)
311 {
312 	struct tegra_dma_sg_req *sg_req;
313 	unsigned long flags;
314 
315 	spin_lock_irqsave(&tdc->lock, flags);
316 	if (!list_empty(&tdc->free_sg_req)) {
317 		sg_req = list_first_entry(&tdc->free_sg_req, typeof(*sg_req),
318 					  node);
319 		list_del(&sg_req->node);
320 		spin_unlock_irqrestore(&tdc->lock, flags);
321 		return sg_req;
322 	}
323 	spin_unlock_irqrestore(&tdc->lock, flags);
324 
325 	sg_req = kzalloc(sizeof(*sg_req), GFP_NOWAIT);
326 
327 	return sg_req;
328 }
329 
330 static int tegra_dma_slave_config(struct dma_chan *dc,
331 				  struct dma_slave_config *sconfig)
332 {
333 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
334 
335 	if (!list_empty(&tdc->pending_sg_req)) {
336 		dev_err(tdc2dev(tdc), "Configuration not allowed\n");
337 		return -EBUSY;
338 	}
339 
340 	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
341 	tdc->config_init = true;
342 
343 	return 0;
344 }
345 
346 static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
347 				   bool wait_for_burst_complete)
348 {
349 	struct tegra_dma *tdma = tdc->tdma;
350 
351 	spin_lock(&tdma->global_lock);
352 
353 	if (tdc->tdma->global_pause_count == 0) {
354 		tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
355 		if (wait_for_burst_complete)
356 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
357 	}
358 
359 	tdc->tdma->global_pause_count++;
360 
361 	spin_unlock(&tdma->global_lock);
362 }
363 
364 static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
365 {
366 	struct tegra_dma *tdma = tdc->tdma;
367 
368 	spin_lock(&tdma->global_lock);
369 
370 	if (WARN_ON(tdc->tdma->global_pause_count == 0))
371 		goto out;
372 
373 	if (--tdc->tdma->global_pause_count == 0)
374 		tdma_write(tdma, TEGRA_APBDMA_GENERAL,
375 			   TEGRA_APBDMA_GENERAL_ENABLE);
376 
377 out:
378 	spin_unlock(&tdma->global_lock);
379 }
380 
381 static void tegra_dma_pause(struct tegra_dma_channel *tdc,
382 			    bool wait_for_burst_complete)
383 {
384 	struct tegra_dma *tdma = tdc->tdma;
385 
386 	if (tdma->chip_data->support_channel_pause) {
387 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
388 			  TEGRA_APBDMA_CHAN_CSRE_PAUSE);
389 		if (wait_for_burst_complete)
390 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
391 	} else {
392 		tegra_dma_global_pause(tdc, wait_for_burst_complete);
393 	}
394 }
395 
396 static void tegra_dma_resume(struct tegra_dma_channel *tdc)
397 {
398 	struct tegra_dma *tdma = tdc->tdma;
399 
400 	if (tdma->chip_data->support_channel_pause)
401 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
402 	else
403 		tegra_dma_global_resume(tdc);
404 }
405 
406 static void tegra_dma_stop(struct tegra_dma_channel *tdc)
407 {
408 	u32 csr, status;
409 
410 	/* Disable interrupts */
411 	csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
412 	csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
413 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
414 
415 	/* Disable DMA */
416 	csr &= ~TEGRA_APBDMA_CSR_ENB;
417 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
418 
419 	/* Clear interrupt status if it is there */
420 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
421 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
422 		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
423 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
424 	}
425 	tdc->busy = false;
426 }
427 
428 static void tegra_dma_start(struct tegra_dma_channel *tdc,
429 			    struct tegra_dma_sg_req *sg_req)
430 {
431 	struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
432 
433 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
434 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
435 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
436 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
437 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
438 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
439 		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
440 
441 	/* Start DMA */
442 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
443 		  ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
444 }
445 
446 static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
447 					 struct tegra_dma_sg_req *nsg_req)
448 {
449 	unsigned long status;
450 
451 	/*
452 	 * The DMA controller reloads the new configuration for next transfer
453 	 * after last burst of current transfer completes.
454 	 * If there is no IEC status then this makes sure that last burst
455 	 * has not be completed. There may be case that last burst is on
456 	 * flight and so it can complete but because DMA is paused, it
457 	 * will not generates interrupt as well as not reload the new
458 	 * configuration.
459 	 * If there is already IEC status then interrupt handler need to
460 	 * load new configuration.
461 	 */
462 	tegra_dma_pause(tdc, false);
463 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
464 
465 	/*
466 	 * If interrupt is pending then do nothing as the ISR will handle
467 	 * the programing for new request.
468 	 */
469 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
470 		dev_err(tdc2dev(tdc),
471 			"Skipping new configuration as interrupt is pending\n");
472 		tegra_dma_resume(tdc);
473 		return;
474 	}
475 
476 	/* Safe to program new configuration */
477 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
478 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
479 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
480 		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
481 			  nsg_req->ch_regs.wcount);
482 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
483 		  nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
484 	nsg_req->configured = true;
485 	nsg_req->words_xferred = 0;
486 
487 	tegra_dma_resume(tdc);
488 }
489 
490 static void tdc_start_head_req(struct tegra_dma_channel *tdc)
491 {
492 	struct tegra_dma_sg_req *sg_req;
493 
494 	sg_req = list_first_entry(&tdc->pending_sg_req, typeof(*sg_req), node);
495 	tegra_dma_start(tdc, sg_req);
496 	sg_req->configured = true;
497 	sg_req->words_xferred = 0;
498 	tdc->busy = true;
499 }
500 
501 static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
502 {
503 	struct tegra_dma_sg_req *hsgreq, *hnsgreq;
504 
505 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
506 	if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
507 		hnsgreq = list_first_entry(&hsgreq->node, typeof(*hnsgreq),
508 					   node);
509 		tegra_dma_configure_for_next(tdc, hnsgreq);
510 	}
511 }
512 
513 static inline unsigned int
514 get_current_xferred_count(struct tegra_dma_channel *tdc,
515 			  struct tegra_dma_sg_req *sg_req,
516 			  unsigned long status)
517 {
518 	return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
519 }
520 
521 static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
522 {
523 	struct tegra_dma_desc *dma_desc;
524 	struct tegra_dma_sg_req *sgreq;
525 
526 	while (!list_empty(&tdc->pending_sg_req)) {
527 		sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
528 					 node);
529 		list_move_tail(&sgreq->node, &tdc->free_sg_req);
530 		if (sgreq->last_sg) {
531 			dma_desc = sgreq->dma_desc;
532 			dma_desc->dma_status = DMA_ERROR;
533 			list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
534 
535 			/* Add in cb list if it is not there. */
536 			if (!dma_desc->cb_count)
537 				list_add_tail(&dma_desc->cb_node,
538 					      &tdc->cb_desc);
539 			dma_desc->cb_count++;
540 		}
541 	}
542 	tdc->isr_handler = NULL;
543 }
544 
545 static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
546 					   bool to_terminate)
547 {
548 	struct tegra_dma_sg_req *hsgreq;
549 
550 	/*
551 	 * Check that head req on list should be in flight.
552 	 * If it is not in flight then abort transfer as
553 	 * looping of transfer can not continue.
554 	 */
555 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
556 	if (!hsgreq->configured) {
557 		tegra_dma_stop(tdc);
558 		pm_runtime_put(tdc->tdma->dev);
559 		dev_err(tdc2dev(tdc), "DMA transfer underflow, aborting DMA\n");
560 		tegra_dma_abort_all(tdc);
561 		return false;
562 	}
563 
564 	/* Configure next request */
565 	if (!to_terminate)
566 		tdc_configure_next_head_desc(tdc);
567 
568 	return true;
569 }
570 
571 static void handle_once_dma_done(struct tegra_dma_channel *tdc,
572 				 bool to_terminate)
573 {
574 	struct tegra_dma_desc *dma_desc;
575 	struct tegra_dma_sg_req *sgreq;
576 
577 	tdc->busy = false;
578 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
579 	dma_desc = sgreq->dma_desc;
580 	dma_desc->bytes_transferred += sgreq->req_len;
581 
582 	list_del(&sgreq->node);
583 	if (sgreq->last_sg) {
584 		dma_desc->dma_status = DMA_COMPLETE;
585 		dma_cookie_complete(&dma_desc->txd);
586 		if (!dma_desc->cb_count)
587 			list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
588 		dma_desc->cb_count++;
589 		list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
590 	}
591 	list_add_tail(&sgreq->node, &tdc->free_sg_req);
592 
593 	/* Do not start DMA if it is going to be terminate */
594 	if (to_terminate)
595 		return;
596 
597 	if (list_empty(&tdc->pending_sg_req)) {
598 		pm_runtime_put(tdc->tdma->dev);
599 		return;
600 	}
601 
602 	tdc_start_head_req(tdc);
603 }
604 
605 static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
606 					    bool to_terminate)
607 {
608 	struct tegra_dma_desc *dma_desc;
609 	struct tegra_dma_sg_req *sgreq;
610 	bool st;
611 
612 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
613 	dma_desc = sgreq->dma_desc;
614 	/* if we dma for long enough the transfer count will wrap */
615 	dma_desc->bytes_transferred =
616 		(dma_desc->bytes_transferred + sgreq->req_len) %
617 		dma_desc->bytes_requested;
618 
619 	/* Callback need to be call */
620 	if (!dma_desc->cb_count)
621 		list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
622 	dma_desc->cb_count++;
623 
624 	sgreq->words_xferred = 0;
625 
626 	/* If not last req then put at end of pending list */
627 	if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
628 		list_move_tail(&sgreq->node, &tdc->pending_sg_req);
629 		sgreq->configured = false;
630 		st = handle_continuous_head_request(tdc, to_terminate);
631 		if (!st)
632 			dma_desc->dma_status = DMA_ERROR;
633 	}
634 }
635 
636 static void tegra_dma_tasklet(struct tasklet_struct *t)
637 {
638 	struct tegra_dma_channel *tdc = from_tasklet(tdc, t, tasklet);
639 	struct dmaengine_desc_callback cb;
640 	struct tegra_dma_desc *dma_desc;
641 	unsigned int cb_count;
642 	unsigned long flags;
643 
644 	spin_lock_irqsave(&tdc->lock, flags);
645 	while (!list_empty(&tdc->cb_desc)) {
646 		dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
647 					    cb_node);
648 		list_del(&dma_desc->cb_node);
649 		dmaengine_desc_get_callback(&dma_desc->txd, &cb);
650 		cb_count = dma_desc->cb_count;
651 		dma_desc->cb_count = 0;
652 		trace_tegra_dma_complete_cb(&tdc->dma_chan, cb_count,
653 					    cb.callback);
654 		spin_unlock_irqrestore(&tdc->lock, flags);
655 		while (cb_count--)
656 			dmaengine_desc_callback_invoke(&cb, NULL);
657 		spin_lock_irqsave(&tdc->lock, flags);
658 	}
659 	spin_unlock_irqrestore(&tdc->lock, flags);
660 }
661 
662 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
663 {
664 	struct tegra_dma_channel *tdc = dev_id;
665 	u32 status;
666 
667 	spin_lock(&tdc->lock);
668 
669 	trace_tegra_dma_isr(&tdc->dma_chan, irq);
670 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
671 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
672 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
673 		tdc->isr_handler(tdc, false);
674 		tasklet_schedule(&tdc->tasklet);
675 		wake_up_all(&tdc->wq);
676 		spin_unlock(&tdc->lock);
677 		return IRQ_HANDLED;
678 	}
679 
680 	spin_unlock(&tdc->lock);
681 	dev_info(tdc2dev(tdc), "Interrupt already served status 0x%08x\n",
682 		 status);
683 
684 	return IRQ_NONE;
685 }
686 
687 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
688 {
689 	struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
690 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
691 	unsigned long flags;
692 	dma_cookie_t cookie;
693 
694 	spin_lock_irqsave(&tdc->lock, flags);
695 	dma_desc->dma_status = DMA_IN_PROGRESS;
696 	cookie = dma_cookie_assign(&dma_desc->txd);
697 	list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
698 	spin_unlock_irqrestore(&tdc->lock, flags);
699 
700 	return cookie;
701 }
702 
703 static void tegra_dma_issue_pending(struct dma_chan *dc)
704 {
705 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
706 	unsigned long flags;
707 	int err;
708 
709 	spin_lock_irqsave(&tdc->lock, flags);
710 	if (list_empty(&tdc->pending_sg_req)) {
711 		dev_err(tdc2dev(tdc), "No DMA request\n");
712 		goto end;
713 	}
714 	if (!tdc->busy) {
715 		err = pm_runtime_resume_and_get(tdc->tdma->dev);
716 		if (err < 0) {
717 			dev_err(tdc2dev(tdc), "Failed to enable DMA\n");
718 			goto end;
719 		}
720 
721 		tdc_start_head_req(tdc);
722 
723 		/* Continuous single mode: Configure next req */
724 		if (tdc->cyclic) {
725 			/*
726 			 * Wait for 1 burst time for configure DMA for
727 			 * next transfer.
728 			 */
729 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
730 			tdc_configure_next_head_desc(tdc);
731 		}
732 	}
733 end:
734 	spin_unlock_irqrestore(&tdc->lock, flags);
735 }
736 
737 static int tegra_dma_terminate_all(struct dma_chan *dc)
738 {
739 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
740 	struct tegra_dma_desc *dma_desc;
741 	struct tegra_dma_sg_req *sgreq;
742 	unsigned long flags;
743 	u32 status, wcount;
744 	bool was_busy;
745 
746 	spin_lock_irqsave(&tdc->lock, flags);
747 
748 	if (!tdc->busy)
749 		goto skip_dma_stop;
750 
751 	/* Pause DMA before checking the queue status */
752 	tegra_dma_pause(tdc, true);
753 
754 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
755 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
756 		dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
757 		tdc->isr_handler(tdc, true);
758 		status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
759 	}
760 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
761 		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
762 	else
763 		wcount = status;
764 
765 	was_busy = tdc->busy;
766 	tegra_dma_stop(tdc);
767 
768 	if (!list_empty(&tdc->pending_sg_req) && was_busy) {
769 		sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
770 					 node);
771 		sgreq->dma_desc->bytes_transferred +=
772 				get_current_xferred_count(tdc, sgreq, wcount);
773 	}
774 	tegra_dma_resume(tdc);
775 
776 	pm_runtime_put(tdc->tdma->dev);
777 	wake_up_all(&tdc->wq);
778 
779 skip_dma_stop:
780 	tegra_dma_abort_all(tdc);
781 
782 	while (!list_empty(&tdc->cb_desc)) {
783 		dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
784 					    cb_node);
785 		list_del(&dma_desc->cb_node);
786 		dma_desc->cb_count = 0;
787 	}
788 	spin_unlock_irqrestore(&tdc->lock, flags);
789 
790 	return 0;
791 }
792 
793 static bool tegra_dma_eoc_interrupt_deasserted(struct tegra_dma_channel *tdc)
794 {
795 	unsigned long flags;
796 	u32 status;
797 
798 	spin_lock_irqsave(&tdc->lock, flags);
799 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
800 	spin_unlock_irqrestore(&tdc->lock, flags);
801 
802 	return !(status & TEGRA_APBDMA_STATUS_ISE_EOC);
803 }
804 
805 static void tegra_dma_synchronize(struct dma_chan *dc)
806 {
807 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
808 	int err;
809 
810 	err = pm_runtime_resume_and_get(tdc->tdma->dev);
811 	if (err < 0) {
812 		dev_err(tdc2dev(tdc), "Failed to synchronize DMA: %d\n", err);
813 		return;
814 	}
815 
816 	/*
817 	 * CPU, which handles interrupt, could be busy in
818 	 * uninterruptible state, in this case sibling CPU
819 	 * should wait until interrupt is handled.
820 	 */
821 	wait_event(tdc->wq, tegra_dma_eoc_interrupt_deasserted(tdc));
822 
823 	tasklet_kill(&tdc->tasklet);
824 
825 	pm_runtime_put(tdc->tdma->dev);
826 }
827 
828 static unsigned int tegra_dma_sg_bytes_xferred(struct tegra_dma_channel *tdc,
829 					       struct tegra_dma_sg_req *sg_req)
830 {
831 	u32 status, wcount = 0;
832 
833 	if (!list_is_first(&sg_req->node, &tdc->pending_sg_req))
834 		return 0;
835 
836 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
837 		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
838 
839 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
840 
841 	if (!tdc->tdma->chip_data->support_separate_wcount_reg)
842 		wcount = status;
843 
844 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC)
845 		return sg_req->req_len;
846 
847 	wcount = get_current_xferred_count(tdc, sg_req, wcount);
848 
849 	if (!wcount) {
850 		/*
851 		 * If wcount wasn't ever polled for this SG before, then
852 		 * simply assume that transfer hasn't started yet.
853 		 *
854 		 * Otherwise it's the end of the transfer.
855 		 *
856 		 * The alternative would be to poll the status register
857 		 * until EOC bit is set or wcount goes UP. That's so
858 		 * because EOC bit is getting set only after the last
859 		 * burst's completion and counter is less than the actual
860 		 * transfer size by 4 bytes. The counter value wraps around
861 		 * in a cyclic mode before EOC is set(!), so we can't easily
862 		 * distinguish start of transfer from its end.
863 		 */
864 		if (sg_req->words_xferred)
865 			wcount = sg_req->req_len - 4;
866 
867 	} else if (wcount < sg_req->words_xferred) {
868 		/*
869 		 * This case will never happen for a non-cyclic transfer.
870 		 *
871 		 * For a cyclic transfer, although it is possible for the
872 		 * next transfer to have already started (resetting the word
873 		 * count), this case should still not happen because we should
874 		 * have detected that the EOC bit is set and hence the transfer
875 		 * was completed.
876 		 */
877 		WARN_ON_ONCE(1);
878 
879 		wcount = sg_req->req_len - 4;
880 	} else {
881 		sg_req->words_xferred = wcount;
882 	}
883 
884 	return wcount;
885 }
886 
887 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
888 					   dma_cookie_t cookie,
889 					   struct dma_tx_state *txstate)
890 {
891 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
892 	struct tegra_dma_desc *dma_desc;
893 	struct tegra_dma_sg_req *sg_req;
894 	enum dma_status ret;
895 	unsigned long flags;
896 	unsigned int residual;
897 	unsigned int bytes = 0;
898 
899 	ret = dma_cookie_status(dc, cookie, txstate);
900 	if (ret == DMA_COMPLETE)
901 		return ret;
902 
903 	spin_lock_irqsave(&tdc->lock, flags);
904 
905 	/* Check on wait_ack desc status */
906 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
907 		if (dma_desc->txd.cookie == cookie) {
908 			ret = dma_desc->dma_status;
909 			goto found;
910 		}
911 	}
912 
913 	/* Check in pending list */
914 	list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
915 		dma_desc = sg_req->dma_desc;
916 		if (dma_desc->txd.cookie == cookie) {
917 			bytes = tegra_dma_sg_bytes_xferred(tdc, sg_req);
918 			ret = dma_desc->dma_status;
919 			goto found;
920 		}
921 	}
922 
923 	dev_dbg(tdc2dev(tdc), "cookie %d not found\n", cookie);
924 	dma_desc = NULL;
925 
926 found:
927 	if (dma_desc && txstate) {
928 		residual = dma_desc->bytes_requested -
929 			   ((dma_desc->bytes_transferred + bytes) %
930 			    dma_desc->bytes_requested);
931 		dma_set_residue(txstate, residual);
932 	}
933 
934 	trace_tegra_dma_tx_status(&tdc->dma_chan, cookie, txstate);
935 	spin_unlock_irqrestore(&tdc->lock, flags);
936 
937 	return ret;
938 }
939 
940 static inline unsigned int get_bus_width(struct tegra_dma_channel *tdc,
941 					 enum dma_slave_buswidth slave_bw)
942 {
943 	switch (slave_bw) {
944 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
945 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
946 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
947 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
948 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
949 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
950 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
951 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
952 	default:
953 		dev_warn(tdc2dev(tdc),
954 			 "slave bw is not supported, using 32bits\n");
955 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
956 	}
957 }
958 
959 static inline unsigned int get_burst_size(struct tegra_dma_channel *tdc,
960 					  u32 burst_size,
961 					  enum dma_slave_buswidth slave_bw,
962 					  u32 len)
963 {
964 	unsigned int burst_byte, burst_ahb_width;
965 
966 	/*
967 	 * burst_size from client is in terms of the bus_width.
968 	 * convert them into AHB memory width which is 4 byte.
969 	 */
970 	burst_byte = burst_size * slave_bw;
971 	burst_ahb_width = burst_byte / 4;
972 
973 	/* If burst size is 0 then calculate the burst size based on length */
974 	if (!burst_ahb_width) {
975 		if (len & 0xF)
976 			return TEGRA_APBDMA_AHBSEQ_BURST_1;
977 		else if ((len >> 4) & 0x1)
978 			return TEGRA_APBDMA_AHBSEQ_BURST_4;
979 		else
980 			return TEGRA_APBDMA_AHBSEQ_BURST_8;
981 	}
982 	if (burst_ahb_width < 4)
983 		return TEGRA_APBDMA_AHBSEQ_BURST_1;
984 	else if (burst_ahb_width < 8)
985 		return TEGRA_APBDMA_AHBSEQ_BURST_4;
986 	else
987 		return TEGRA_APBDMA_AHBSEQ_BURST_8;
988 }
989 
990 static int get_transfer_param(struct tegra_dma_channel *tdc,
991 			      enum dma_transfer_direction direction,
992 			      u32 *apb_addr,
993 			      u32 *apb_seq,
994 			      u32 *csr,
995 			      unsigned int *burst_size,
996 			      enum dma_slave_buswidth *slave_bw)
997 {
998 	switch (direction) {
999 	case DMA_MEM_TO_DEV:
1000 		*apb_addr = tdc->dma_sconfig.dst_addr;
1001 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
1002 		*burst_size = tdc->dma_sconfig.dst_maxburst;
1003 		*slave_bw = tdc->dma_sconfig.dst_addr_width;
1004 		*csr = TEGRA_APBDMA_CSR_DIR;
1005 		return 0;
1006 
1007 	case DMA_DEV_TO_MEM:
1008 		*apb_addr = tdc->dma_sconfig.src_addr;
1009 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
1010 		*burst_size = tdc->dma_sconfig.src_maxburst;
1011 		*slave_bw = tdc->dma_sconfig.src_addr_width;
1012 		*csr = 0;
1013 		return 0;
1014 
1015 	default:
1016 		dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
1017 		break;
1018 	}
1019 
1020 	return -EINVAL;
1021 }
1022 
1023 static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
1024 				  struct tegra_dma_channel_regs *ch_regs,
1025 				  u32 len)
1026 {
1027 	u32 len_field = (len - 4) & 0xFFFC;
1028 
1029 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
1030 		ch_regs->wcount = len_field;
1031 	else
1032 		ch_regs->csr |= len_field;
1033 }
1034 
1035 static struct dma_async_tx_descriptor *
1036 tegra_dma_prep_slave_sg(struct dma_chan *dc,
1037 			struct scatterlist *sgl,
1038 			unsigned int sg_len,
1039 			enum dma_transfer_direction direction,
1040 			unsigned long flags,
1041 			void *context)
1042 {
1043 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1044 	struct tegra_dma_sg_req *sg_req = NULL;
1045 	u32 csr, ahb_seq, apb_ptr, apb_seq;
1046 	enum dma_slave_buswidth slave_bw;
1047 	struct tegra_dma_desc *dma_desc;
1048 	struct list_head req_list;
1049 	struct scatterlist *sg;
1050 	unsigned int burst_size;
1051 	unsigned int i;
1052 
1053 	if (!tdc->config_init) {
1054 		dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
1055 		return NULL;
1056 	}
1057 	if (sg_len < 1) {
1058 		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
1059 		return NULL;
1060 	}
1061 
1062 	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1063 			       &burst_size, &slave_bw) < 0)
1064 		return NULL;
1065 
1066 	INIT_LIST_HEAD(&req_list);
1067 
1068 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1069 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1070 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1071 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1072 
1073 	csr |= TEGRA_APBDMA_CSR_ONCE;
1074 
1075 	if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1076 		csr |= TEGRA_APBDMA_CSR_FLOW;
1077 		csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1078 	}
1079 
1080 	if (flags & DMA_PREP_INTERRUPT) {
1081 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1082 	} else {
1083 		WARN_ON_ONCE(1);
1084 		return NULL;
1085 	}
1086 
1087 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1088 
1089 	dma_desc = tegra_dma_desc_get(tdc);
1090 	if (!dma_desc) {
1091 		dev_err(tdc2dev(tdc), "DMA descriptors not available\n");
1092 		return NULL;
1093 	}
1094 	INIT_LIST_HEAD(&dma_desc->tx_list);
1095 	INIT_LIST_HEAD(&dma_desc->cb_node);
1096 	dma_desc->cb_count = 0;
1097 	dma_desc->bytes_requested = 0;
1098 	dma_desc->bytes_transferred = 0;
1099 	dma_desc->dma_status = DMA_IN_PROGRESS;
1100 
1101 	/* Make transfer requests */
1102 	for_each_sg(sgl, sg, sg_len, i) {
1103 		u32 len, mem;
1104 
1105 		mem = sg_dma_address(sg);
1106 		len = sg_dma_len(sg);
1107 
1108 		if ((len & 3) || (mem & 3) ||
1109 		    len > tdc->tdma->chip_data->max_dma_count) {
1110 			dev_err(tdc2dev(tdc),
1111 				"DMA length/memory address is not supported\n");
1112 			tegra_dma_desc_put(tdc, dma_desc);
1113 			return NULL;
1114 		}
1115 
1116 		sg_req = tegra_dma_sg_req_get(tdc);
1117 		if (!sg_req) {
1118 			dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1119 			tegra_dma_desc_put(tdc, dma_desc);
1120 			return NULL;
1121 		}
1122 
1123 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1124 		dma_desc->bytes_requested += len;
1125 
1126 		sg_req->ch_regs.apb_ptr = apb_ptr;
1127 		sg_req->ch_regs.ahb_ptr = mem;
1128 		sg_req->ch_regs.csr = csr;
1129 		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1130 		sg_req->ch_regs.apb_seq = apb_seq;
1131 		sg_req->ch_regs.ahb_seq = ahb_seq;
1132 		sg_req->configured = false;
1133 		sg_req->last_sg = false;
1134 		sg_req->dma_desc = dma_desc;
1135 		sg_req->req_len = len;
1136 
1137 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1138 	}
1139 	sg_req->last_sg = true;
1140 	if (flags & DMA_CTRL_ACK)
1141 		dma_desc->txd.flags = DMA_CTRL_ACK;
1142 
1143 	/*
1144 	 * Make sure that mode should not be conflicting with currently
1145 	 * configured mode.
1146 	 */
1147 	if (!tdc->isr_handler) {
1148 		tdc->isr_handler = handle_once_dma_done;
1149 		tdc->cyclic = false;
1150 	} else {
1151 		if (tdc->cyclic) {
1152 			dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1153 			tegra_dma_desc_put(tdc, dma_desc);
1154 			return NULL;
1155 		}
1156 	}
1157 
1158 	return &dma_desc->txd;
1159 }
1160 
1161 static struct dma_async_tx_descriptor *
1162 tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr,
1163 			  size_t buf_len,
1164 			  size_t period_len,
1165 			  enum dma_transfer_direction direction,
1166 			  unsigned long flags)
1167 {
1168 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1169 	struct tegra_dma_sg_req *sg_req = NULL;
1170 	u32 csr, ahb_seq, apb_ptr, apb_seq;
1171 	enum dma_slave_buswidth slave_bw;
1172 	struct tegra_dma_desc *dma_desc;
1173 	dma_addr_t mem = buf_addr;
1174 	unsigned int burst_size;
1175 	size_t len, remain_len;
1176 
1177 	if (!buf_len || !period_len) {
1178 		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1179 		return NULL;
1180 	}
1181 
1182 	if (!tdc->config_init) {
1183 		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1184 		return NULL;
1185 	}
1186 
1187 	/*
1188 	 * We allow to take more number of requests till DMA is
1189 	 * not started. The driver will loop over all requests.
1190 	 * Once DMA is started then new requests can be queued only after
1191 	 * terminating the DMA.
1192 	 */
1193 	if (tdc->busy) {
1194 		dev_err(tdc2dev(tdc), "Request not allowed when DMA running\n");
1195 		return NULL;
1196 	}
1197 
1198 	/*
1199 	 * We only support cycle transfer when buf_len is multiple of
1200 	 * period_len.
1201 	 */
1202 	if (buf_len % period_len) {
1203 		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1204 		return NULL;
1205 	}
1206 
1207 	len = period_len;
1208 	if ((len & 3) || (buf_addr & 3) ||
1209 	    len > tdc->tdma->chip_data->max_dma_count) {
1210 		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1211 		return NULL;
1212 	}
1213 
1214 	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1215 			       &burst_size, &slave_bw) < 0)
1216 		return NULL;
1217 
1218 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1219 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1220 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1221 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1222 
1223 	if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1224 		csr |= TEGRA_APBDMA_CSR_FLOW;
1225 		csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1226 	}
1227 
1228 	if (flags & DMA_PREP_INTERRUPT) {
1229 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1230 	} else {
1231 		WARN_ON_ONCE(1);
1232 		return NULL;
1233 	}
1234 
1235 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1236 
1237 	dma_desc = tegra_dma_desc_get(tdc);
1238 	if (!dma_desc) {
1239 		dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1240 		return NULL;
1241 	}
1242 
1243 	INIT_LIST_HEAD(&dma_desc->tx_list);
1244 	INIT_LIST_HEAD(&dma_desc->cb_node);
1245 	dma_desc->cb_count = 0;
1246 
1247 	dma_desc->bytes_transferred = 0;
1248 	dma_desc->bytes_requested = buf_len;
1249 	remain_len = buf_len;
1250 
1251 	/* Split transfer equal to period size */
1252 	while (remain_len) {
1253 		sg_req = tegra_dma_sg_req_get(tdc);
1254 		if (!sg_req) {
1255 			dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1256 			tegra_dma_desc_put(tdc, dma_desc);
1257 			return NULL;
1258 		}
1259 
1260 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1261 		sg_req->ch_regs.apb_ptr = apb_ptr;
1262 		sg_req->ch_regs.ahb_ptr = mem;
1263 		sg_req->ch_regs.csr = csr;
1264 		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1265 		sg_req->ch_regs.apb_seq = apb_seq;
1266 		sg_req->ch_regs.ahb_seq = ahb_seq;
1267 		sg_req->configured = false;
1268 		sg_req->last_sg = false;
1269 		sg_req->dma_desc = dma_desc;
1270 		sg_req->req_len = len;
1271 
1272 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1273 		remain_len -= len;
1274 		mem += len;
1275 	}
1276 	sg_req->last_sg = true;
1277 	if (flags & DMA_CTRL_ACK)
1278 		dma_desc->txd.flags = DMA_CTRL_ACK;
1279 
1280 	/*
1281 	 * Make sure that mode should not be conflicting with currently
1282 	 * configured mode.
1283 	 */
1284 	if (!tdc->isr_handler) {
1285 		tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1286 		tdc->cyclic = true;
1287 	} else {
1288 		if (!tdc->cyclic) {
1289 			dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1290 			tegra_dma_desc_put(tdc, dma_desc);
1291 			return NULL;
1292 		}
1293 	}
1294 
1295 	return &dma_desc->txd;
1296 }
1297 
1298 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1299 {
1300 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1301 
1302 	dma_cookie_init(&tdc->dma_chan);
1303 
1304 	return 0;
1305 }
1306 
1307 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1308 {
1309 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1310 	struct tegra_dma_desc *dma_desc;
1311 	struct tegra_dma_sg_req *sg_req;
1312 	struct list_head dma_desc_list;
1313 	struct list_head sg_req_list;
1314 
1315 	INIT_LIST_HEAD(&dma_desc_list);
1316 	INIT_LIST_HEAD(&sg_req_list);
1317 
1318 	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1319 
1320 	tegra_dma_terminate_all(dc);
1321 	tasklet_kill(&tdc->tasklet);
1322 
1323 	list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1324 	list_splice_init(&tdc->free_sg_req, &sg_req_list);
1325 	list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1326 	INIT_LIST_HEAD(&tdc->cb_desc);
1327 	tdc->config_init = false;
1328 	tdc->isr_handler = NULL;
1329 
1330 	while (!list_empty(&dma_desc_list)) {
1331 		dma_desc = list_first_entry(&dma_desc_list, typeof(*dma_desc),
1332 					    node);
1333 		list_del(&dma_desc->node);
1334 		kfree(dma_desc);
1335 	}
1336 
1337 	while (!list_empty(&sg_req_list)) {
1338 		sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1339 		list_del(&sg_req->node);
1340 		kfree(sg_req);
1341 	}
1342 
1343 	tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1344 }
1345 
1346 static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1347 					   struct of_dma *ofdma)
1348 {
1349 	struct tegra_dma *tdma = ofdma->of_dma_data;
1350 	struct tegra_dma_channel *tdc;
1351 	struct dma_chan *chan;
1352 
1353 	if (dma_spec->args[0] > TEGRA_APBDMA_CSR_REQ_SEL_MASK) {
1354 		dev_err(tdma->dev, "Invalid slave id: %d\n", dma_spec->args[0]);
1355 		return NULL;
1356 	}
1357 
1358 	chan = dma_get_any_slave_channel(&tdma->dma_dev);
1359 	if (!chan)
1360 		return NULL;
1361 
1362 	tdc = to_tegra_dma_chan(chan);
1363 	tdc->slave_id = dma_spec->args[0];
1364 
1365 	return chan;
1366 }
1367 
1368 /* Tegra20 specific DMA controller information */
1369 static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1370 	.nr_channels		= 16,
1371 	.channel_reg_size	= 0x20,
1372 	.max_dma_count		= 1024UL * 64,
1373 	.support_channel_pause	= false,
1374 	.support_separate_wcount_reg = false,
1375 };
1376 
1377 /* Tegra30 specific DMA controller information */
1378 static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1379 	.nr_channels		= 32,
1380 	.channel_reg_size	= 0x20,
1381 	.max_dma_count		= 1024UL * 64,
1382 	.support_channel_pause	= false,
1383 	.support_separate_wcount_reg = false,
1384 };
1385 
1386 /* Tegra114 specific DMA controller information */
1387 static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1388 	.nr_channels		= 32,
1389 	.channel_reg_size	= 0x20,
1390 	.max_dma_count		= 1024UL * 64,
1391 	.support_channel_pause	= true,
1392 	.support_separate_wcount_reg = false,
1393 };
1394 
1395 /* Tegra148 specific DMA controller information */
1396 static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1397 	.nr_channels		= 32,
1398 	.channel_reg_size	= 0x40,
1399 	.max_dma_count		= 1024UL * 64,
1400 	.support_channel_pause	= true,
1401 	.support_separate_wcount_reg = true,
1402 };
1403 
1404 static int tegra_dma_init_hw(struct tegra_dma *tdma)
1405 {
1406 	int err;
1407 
1408 	err = reset_control_assert(tdma->rst);
1409 	if (err) {
1410 		dev_err(tdma->dev, "failed to assert reset: %d\n", err);
1411 		return err;
1412 	}
1413 
1414 	err = clk_enable(tdma->dma_clk);
1415 	if (err) {
1416 		dev_err(tdma->dev, "failed to enable clk: %d\n", err);
1417 		return err;
1418 	}
1419 
1420 	/* reset DMA controller */
1421 	udelay(2);
1422 	reset_control_deassert(tdma->rst);
1423 
1424 	/* enable global DMA registers */
1425 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1426 	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1427 	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFF);
1428 
1429 	clk_disable(tdma->dma_clk);
1430 
1431 	return 0;
1432 }
1433 
1434 static int tegra_dma_probe(struct platform_device *pdev)
1435 {
1436 	const struct tegra_dma_chip_data *cdata;
1437 	struct tegra_dma *tdma;
1438 	unsigned int i;
1439 	size_t size;
1440 	int ret;
1441 
1442 	cdata = of_device_get_match_data(&pdev->dev);
1443 	size = struct_size(tdma, channels, cdata->nr_channels);
1444 
1445 	tdma = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1446 	if (!tdma)
1447 		return -ENOMEM;
1448 
1449 	tdma->dev = &pdev->dev;
1450 	tdma->chip_data = cdata;
1451 	platform_set_drvdata(pdev, tdma);
1452 
1453 	tdma->base_addr = devm_platform_ioremap_resource(pdev, 0);
1454 	if (IS_ERR(tdma->base_addr))
1455 		return PTR_ERR(tdma->base_addr);
1456 
1457 	tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1458 	if (IS_ERR(tdma->dma_clk)) {
1459 		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1460 		return PTR_ERR(tdma->dma_clk);
1461 	}
1462 
1463 	tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1464 	if (IS_ERR(tdma->rst)) {
1465 		dev_err(&pdev->dev, "Error: Missing reset\n");
1466 		return PTR_ERR(tdma->rst);
1467 	}
1468 
1469 	spin_lock_init(&tdma->global_lock);
1470 
1471 	ret = clk_prepare(tdma->dma_clk);
1472 	if (ret)
1473 		return ret;
1474 
1475 	ret = tegra_dma_init_hw(tdma);
1476 	if (ret)
1477 		goto err_clk_unprepare;
1478 
1479 	pm_runtime_irq_safe(&pdev->dev);
1480 	pm_runtime_enable(&pdev->dev);
1481 
1482 	INIT_LIST_HEAD(&tdma->dma_dev.channels);
1483 	for (i = 0; i < cdata->nr_channels; i++) {
1484 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1485 		int irq;
1486 
1487 		tdc->chan_addr = tdma->base_addr +
1488 				 TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1489 				 (i * cdata->channel_reg_size);
1490 
1491 		irq = platform_get_irq(pdev, i);
1492 		if (irq < 0) {
1493 			ret = irq;
1494 			goto err_pm_disable;
1495 		}
1496 
1497 		snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1498 		ret = devm_request_irq(&pdev->dev, irq, tegra_dma_isr, 0,
1499 				       tdc->name, tdc);
1500 		if (ret) {
1501 			dev_err(&pdev->dev,
1502 				"request_irq failed with err %d channel %d\n",
1503 				ret, i);
1504 			goto err_pm_disable;
1505 		}
1506 
1507 		tdc->dma_chan.device = &tdma->dma_dev;
1508 		dma_cookie_init(&tdc->dma_chan);
1509 		list_add_tail(&tdc->dma_chan.device_node,
1510 			      &tdma->dma_dev.channels);
1511 		tdc->tdma = tdma;
1512 		tdc->id = i;
1513 		tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1514 
1515 		tasklet_setup(&tdc->tasklet, tegra_dma_tasklet);
1516 		spin_lock_init(&tdc->lock);
1517 		init_waitqueue_head(&tdc->wq);
1518 
1519 		INIT_LIST_HEAD(&tdc->pending_sg_req);
1520 		INIT_LIST_HEAD(&tdc->free_sg_req);
1521 		INIT_LIST_HEAD(&tdc->free_dma_desc);
1522 		INIT_LIST_HEAD(&tdc->cb_desc);
1523 	}
1524 
1525 	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1526 	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1527 	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1528 
1529 	tdma->global_pause_count = 0;
1530 	tdma->dma_dev.dev = &pdev->dev;
1531 	tdma->dma_dev.device_alloc_chan_resources =
1532 					tegra_dma_alloc_chan_resources;
1533 	tdma->dma_dev.device_free_chan_resources =
1534 					tegra_dma_free_chan_resources;
1535 	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1536 	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1537 	tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1538 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1539 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1540 		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1541 	tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1542 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1543 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1544 		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1545 	tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1546 	tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1547 	tdma->dma_dev.device_config = tegra_dma_slave_config;
1548 	tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1549 	tdma->dma_dev.device_synchronize = tegra_dma_synchronize;
1550 	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1551 	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1552 
1553 	ret = dma_async_device_register(&tdma->dma_dev);
1554 	if (ret < 0) {
1555 		dev_err(&pdev->dev,
1556 			"Tegra20 APB DMA driver registration failed %d\n", ret);
1557 		goto err_pm_disable;
1558 	}
1559 
1560 	ret = of_dma_controller_register(pdev->dev.of_node,
1561 					 tegra_dma_of_xlate, tdma);
1562 	if (ret < 0) {
1563 		dev_err(&pdev->dev,
1564 			"Tegra20 APB DMA OF registration failed %d\n", ret);
1565 		goto err_unregister_dma_dev;
1566 	}
1567 
1568 	dev_info(&pdev->dev, "Tegra20 APB DMA driver registered %u channels\n",
1569 		 cdata->nr_channels);
1570 
1571 	return 0;
1572 
1573 err_unregister_dma_dev:
1574 	dma_async_device_unregister(&tdma->dma_dev);
1575 
1576 err_pm_disable:
1577 	pm_runtime_disable(&pdev->dev);
1578 
1579 err_clk_unprepare:
1580 	clk_unprepare(tdma->dma_clk);
1581 
1582 	return ret;
1583 }
1584 
1585 static int tegra_dma_remove(struct platform_device *pdev)
1586 {
1587 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1588 
1589 	of_dma_controller_free(pdev->dev.of_node);
1590 	dma_async_device_unregister(&tdma->dma_dev);
1591 	pm_runtime_disable(&pdev->dev);
1592 	clk_unprepare(tdma->dma_clk);
1593 
1594 	return 0;
1595 }
1596 
1597 static int __maybe_unused tegra_dma_runtime_suspend(struct device *dev)
1598 {
1599 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1600 
1601 	clk_disable(tdma->dma_clk);
1602 
1603 	return 0;
1604 }
1605 
1606 static int __maybe_unused tegra_dma_runtime_resume(struct device *dev)
1607 {
1608 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1609 
1610 	return clk_enable(tdma->dma_clk);
1611 }
1612 
1613 static int __maybe_unused tegra_dma_dev_suspend(struct device *dev)
1614 {
1615 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1616 	unsigned long flags;
1617 	unsigned int i;
1618 	bool busy;
1619 
1620 	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1621 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1622 
1623 		tasklet_kill(&tdc->tasklet);
1624 
1625 		spin_lock_irqsave(&tdc->lock, flags);
1626 		busy = tdc->busy;
1627 		spin_unlock_irqrestore(&tdc->lock, flags);
1628 
1629 		if (busy) {
1630 			dev_err(tdma->dev, "channel %u busy\n", i);
1631 			return -EBUSY;
1632 		}
1633 	}
1634 
1635 	return pm_runtime_force_suspend(dev);
1636 }
1637 
1638 static int __maybe_unused tegra_dma_dev_resume(struct device *dev)
1639 {
1640 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1641 	int err;
1642 
1643 	err = tegra_dma_init_hw(tdma);
1644 	if (err)
1645 		return err;
1646 
1647 	return pm_runtime_force_resume(dev);
1648 }
1649 
1650 static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1651 	SET_RUNTIME_PM_OPS(tegra_dma_runtime_suspend, tegra_dma_runtime_resume,
1652 			   NULL)
1653 	SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_dev_suspend, tegra_dma_dev_resume)
1654 };
1655 
1656 static const struct of_device_id tegra_dma_of_match[] = {
1657 	{
1658 		.compatible = "nvidia,tegra148-apbdma",
1659 		.data = &tegra148_dma_chip_data,
1660 	}, {
1661 		.compatible = "nvidia,tegra114-apbdma",
1662 		.data = &tegra114_dma_chip_data,
1663 	}, {
1664 		.compatible = "nvidia,tegra30-apbdma",
1665 		.data = &tegra30_dma_chip_data,
1666 	}, {
1667 		.compatible = "nvidia,tegra20-apbdma",
1668 		.data = &tegra20_dma_chip_data,
1669 	}, {
1670 	},
1671 };
1672 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1673 
1674 static struct platform_driver tegra_dmac_driver = {
1675 	.driver = {
1676 		.name	= "tegra-apbdma",
1677 		.pm	= &tegra_dma_dev_pm_ops,
1678 		.of_match_table = tegra_dma_of_match,
1679 	},
1680 	.probe		= tegra_dma_probe,
1681 	.remove		= tegra_dma_remove,
1682 };
1683 
1684 module_platform_driver(tegra_dmac_driver);
1685 
1686 MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1687 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1688 MODULE_LICENSE("GPL v2");
1689