1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DMA driver for NVIDIA Tegra GPC DMA controller.
4  *
5  * Copyright (c) 2014-2022, NVIDIA CORPORATION.  All rights reserved.
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/iommu.h>
13 #include <linux/iopoll.h>
14 #include <linux/minmax.h>
15 #include <linux/module.h>
16 #include <linux/of_device.h>
17 #include <linux/of_dma.h>
18 #include <linux/platform_device.h>
19 #include <linux/reset.h>
20 #include <linux/slab.h>
21 #include <dt-bindings/memory/tegra186-mc.h>
22 #include "virt-dma.h"
23 
24 /* CSR register */
25 #define TEGRA_GPCDMA_CHAN_CSR			0x00
26 #define TEGRA_GPCDMA_CSR_ENB			BIT(31)
27 #define TEGRA_GPCDMA_CSR_IE_EOC			BIT(30)
28 #define TEGRA_GPCDMA_CSR_ONCE			BIT(27)
29 
30 #define TEGRA_GPCDMA_CSR_FC_MODE		GENMASK(25, 24)
31 #define TEGRA_GPCDMA_CSR_FC_MODE_NO_MMIO	\
32 		FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 0)
33 #define TEGRA_GPCDMA_CSR_FC_MODE_ONE_MMIO	\
34 		FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 1)
35 #define TEGRA_GPCDMA_CSR_FC_MODE_TWO_MMIO	\
36 		FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 2)
37 #define TEGRA_GPCDMA_CSR_FC_MODE_FOUR_MMIO	\
38 		FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 3)
39 
40 #define TEGRA_GPCDMA_CSR_DMA			GENMASK(23, 21)
41 #define TEGRA_GPCDMA_CSR_DMA_IO2MEM_NO_FC	\
42 		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 0)
43 #define TEGRA_GPCDMA_CSR_DMA_IO2MEM_FC		\
44 		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 1)
45 #define TEGRA_GPCDMA_CSR_DMA_MEM2IO_NO_FC	\
46 		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 2)
47 #define TEGRA_GPCDMA_CSR_DMA_MEM2IO_FC		\
48 		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 3)
49 #define TEGRA_GPCDMA_CSR_DMA_MEM2MEM		\
50 		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 4)
51 #define TEGRA_GPCDMA_CSR_DMA_FIXED_PAT		\
52 		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 6)
53 
54 #define TEGRA_GPCDMA_CSR_REQ_SEL_MASK		GENMASK(20, 16)
55 #define TEGRA_GPCDMA_CSR_REQ_SEL_UNUSED		\
56 					FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, 4)
57 #define TEGRA_GPCDMA_CSR_IRQ_MASK		BIT(15)
58 #define TEGRA_GPCDMA_CSR_WEIGHT			GENMASK(13, 10)
59 
60 /* STATUS register */
61 #define TEGRA_GPCDMA_CHAN_STATUS		0x004
62 #define TEGRA_GPCDMA_STATUS_BUSY		BIT(31)
63 #define TEGRA_GPCDMA_STATUS_ISE_EOC		BIT(30)
64 #define TEGRA_GPCDMA_STATUS_PING_PONG		BIT(28)
65 #define TEGRA_GPCDMA_STATUS_DMA_ACTIVITY	BIT(27)
66 #define TEGRA_GPCDMA_STATUS_CHANNEL_PAUSE	BIT(26)
67 #define TEGRA_GPCDMA_STATUS_CHANNEL_RX		BIT(25)
68 #define TEGRA_GPCDMA_STATUS_CHANNEL_TX		BIT(24)
69 #define TEGRA_GPCDMA_STATUS_IRQ_INTR_STA	BIT(23)
70 #define TEGRA_GPCDMA_STATUS_IRQ_STA		BIT(21)
71 #define TEGRA_GPCDMA_STATUS_IRQ_TRIG_STA	BIT(20)
72 
73 #define TEGRA_GPCDMA_CHAN_CSRE			0x008
74 #define TEGRA_GPCDMA_CHAN_CSRE_PAUSE		BIT(31)
75 
76 /* Source address */
77 #define TEGRA_GPCDMA_CHAN_SRC_PTR		0x00C
78 
79 /* Destination address */
80 #define TEGRA_GPCDMA_CHAN_DST_PTR		0x010
81 
82 /* High address pointer */
83 #define TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR		0x014
84 #define TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR		GENMASK(7, 0)
85 #define TEGRA_GPCDMA_HIGH_ADDR_DST_PTR		GENMASK(23, 16)
86 
87 /* MC sequence register */
88 #define TEGRA_GPCDMA_CHAN_MCSEQ			0x18
89 #define TEGRA_GPCDMA_MCSEQ_DATA_SWAP		BIT(31)
90 #define TEGRA_GPCDMA_MCSEQ_REQ_COUNT		GENMASK(30, 25)
91 #define TEGRA_GPCDMA_MCSEQ_BURST		GENMASK(24, 23)
92 #define TEGRA_GPCDMA_MCSEQ_BURST_2		\
93 		FIELD_PREP(TEGRA_GPCDMA_MCSEQ_BURST, 0)
94 #define TEGRA_GPCDMA_MCSEQ_BURST_16		\
95 		FIELD_PREP(TEGRA_GPCDMA_MCSEQ_BURST, 3)
96 #define TEGRA_GPCDMA_MCSEQ_WRAP1		GENMASK(22, 20)
97 #define TEGRA_GPCDMA_MCSEQ_WRAP0		GENMASK(19, 17)
98 #define TEGRA_GPCDMA_MCSEQ_WRAP_NONE		0
99 
100 #define TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK	GENMASK(13, 7)
101 #define TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK	GENMASK(6, 0)
102 
103 /* MMIO sequence register */
104 #define TEGRA_GPCDMA_CHAN_MMIOSEQ			0x01c
105 #define TEGRA_GPCDMA_MMIOSEQ_DBL_BUF		BIT(31)
106 #define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH		GENMASK(30, 28)
107 #define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_8	\
108 		FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 0)
109 #define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_16	\
110 		FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 1)
111 #define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_32	\
112 		FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 2)
113 #define TEGRA_GPCDMA_MMIOSEQ_DATA_SWAP		BIT(27)
114 #define TEGRA_GPCDMA_MMIOSEQ_BURST_SHIFT	23
115 #define TEGRA_GPCDMA_MMIOSEQ_BURST_MIN		2U
116 #define TEGRA_GPCDMA_MMIOSEQ_BURST_MAX		32U
117 #define TEGRA_GPCDMA_MMIOSEQ_BURST(bs)	\
118 		(GENMASK((fls(bs) - 2), 0) << TEGRA_GPCDMA_MMIOSEQ_BURST_SHIFT)
119 #define TEGRA_GPCDMA_MMIOSEQ_MASTER_ID		GENMASK(22, 19)
120 #define TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD		GENMASK(18, 16)
121 #define TEGRA_GPCDMA_MMIOSEQ_MMIO_PROT		GENMASK(8, 7)
122 
123 /* Channel WCOUNT */
124 #define TEGRA_GPCDMA_CHAN_WCOUNT		0x20
125 
126 /* Transfer count */
127 #define TEGRA_GPCDMA_CHAN_XFER_COUNT		0x24
128 
129 /* DMA byte count status */
130 #define TEGRA_GPCDMA_CHAN_DMA_BYTE_STATUS	0x28
131 
132 /* Error Status Register */
133 #define TEGRA_GPCDMA_CHAN_ERR_STATUS		0x30
134 #define TEGRA_GPCDMA_CHAN_ERR_TYPE_SHIFT	8
135 #define TEGRA_GPCDMA_CHAN_ERR_TYPE_MASK	0xF
136 #define TEGRA_GPCDMA_CHAN_ERR_TYPE(err)	(			\
137 		((err) >> TEGRA_GPCDMA_CHAN_ERR_TYPE_SHIFT) &	\
138 		TEGRA_GPCDMA_CHAN_ERR_TYPE_MASK)
139 #define TEGRA_DMA_BM_FIFO_FULL_ERR		0xF
140 #define TEGRA_DMA_PERIPH_FIFO_FULL_ERR		0xE
141 #define TEGRA_DMA_PERIPH_ID_ERR			0xD
142 #define TEGRA_DMA_STREAM_ID_ERR			0xC
143 #define TEGRA_DMA_MC_SLAVE_ERR			0xB
144 #define TEGRA_DMA_MMIO_SLAVE_ERR		0xA
145 
146 /* Fixed Pattern */
147 #define TEGRA_GPCDMA_CHAN_FIXED_PATTERN		0x34
148 
149 #define TEGRA_GPCDMA_CHAN_TZ			0x38
150 #define TEGRA_GPCDMA_CHAN_TZ_MMIO_PROT_1	BIT(0)
151 #define TEGRA_GPCDMA_CHAN_TZ_MC_PROT_1		BIT(1)
152 
153 #define TEGRA_GPCDMA_CHAN_SPARE			0x3c
154 #define TEGRA_GPCDMA_CHAN_SPARE_EN_LEGACY_FC	BIT(16)
155 
156 /*
157  * If any burst is in flight and DMA paused then this is the time to complete
158  * on-flight burst and update DMA status register.
159  */
160 #define TEGRA_GPCDMA_BURST_COMPLETE_TIME	20
161 #define TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT	100
162 
163 /* Channel base address offset from GPCDMA base address */
164 #define TEGRA_GPCDMA_CHANNEL_BASE_ADD_OFFSET	0x20000
165 
166 struct tegra_dma;
167 struct tegra_dma_channel;
168 
169 /*
170  * tegra_dma_chip_data Tegra chip specific DMA data
171  * @nr_channels: Number of channels available in the controller.
172  * @channel_reg_size: Channel register size.
173  * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
174  * @hw_support_pause: DMA HW engine support pause of the channel.
175  */
176 struct tegra_dma_chip_data {
177 	bool hw_support_pause;
178 	unsigned int nr_channels;
179 	unsigned int channel_reg_size;
180 	unsigned int max_dma_count;
181 	int (*terminate)(struct tegra_dma_channel *tdc);
182 };
183 
184 /* DMA channel registers */
185 struct tegra_dma_channel_regs {
186 	u32 csr;
187 	u32 src_ptr;
188 	u32 dst_ptr;
189 	u32 high_addr_ptr;
190 	u32 mc_seq;
191 	u32 mmio_seq;
192 	u32 wcount;
193 	u32 fixed_pattern;
194 };
195 
196 /*
197  * tegra_dma_sg_req: DMA request details to configure hardware. This
198  * contains the details for one transfer to configure DMA hw.
199  * The client's request for data transfer can be broken into multiple
200  * sub-transfer as per requester details and hw support. This sub transfer
201  * get added as an array in Tegra DMA desc which manages the transfer details.
202  */
203 struct tegra_dma_sg_req {
204 	unsigned int len;
205 	struct tegra_dma_channel_regs ch_regs;
206 };
207 
208 /*
209  * tegra_dma_desc: Tegra DMA descriptors which uses virt_dma_desc to
210  * manage client request and keep track of transfer status, callbacks
211  * and request counts etc.
212  */
213 struct tegra_dma_desc {
214 	bool cyclic;
215 	unsigned int bytes_req;
216 	unsigned int bytes_xfer;
217 	unsigned int sg_idx;
218 	unsigned int sg_count;
219 	struct virt_dma_desc vd;
220 	struct tegra_dma_channel *tdc;
221 	struct tegra_dma_sg_req sg_req[];
222 };
223 
224 /*
225  * tegra_dma_channel: Channel specific information
226  */
227 struct tegra_dma_channel {
228 	bool config_init;
229 	char name[30];
230 	enum dma_transfer_direction sid_dir;
231 	int id;
232 	int irq;
233 	int slave_id;
234 	struct tegra_dma *tdma;
235 	struct virt_dma_chan vc;
236 	struct tegra_dma_desc *dma_desc;
237 	struct dma_slave_config dma_sconfig;
238 	unsigned int stream_id;
239 	unsigned long chan_base_offset;
240 };
241 
242 /*
243  * tegra_dma: Tegra DMA specific information
244  */
245 struct tegra_dma {
246 	const struct tegra_dma_chip_data *chip_data;
247 	unsigned long sid_m2d_reserved;
248 	unsigned long sid_d2m_reserved;
249 	void __iomem *base_addr;
250 	struct device *dev;
251 	struct dma_device dma_dev;
252 	struct reset_control *rst;
253 	struct tegra_dma_channel channels[];
254 };
255 
256 static inline void tdc_write(struct tegra_dma_channel *tdc,
257 			     u32 reg, u32 val)
258 {
259 	writel_relaxed(val, tdc->tdma->base_addr + tdc->chan_base_offset + reg);
260 }
261 
262 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
263 {
264 	return readl_relaxed(tdc->tdma->base_addr + tdc->chan_base_offset + reg);
265 }
266 
267 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
268 {
269 	return container_of(dc, struct tegra_dma_channel, vc.chan);
270 }
271 
272 static inline struct tegra_dma_desc *vd_to_tegra_dma_desc(struct virt_dma_desc *vd)
273 {
274 	return container_of(vd, struct tegra_dma_desc, vd);
275 }
276 
277 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
278 {
279 	return tdc->vc.chan.device->dev;
280 }
281 
282 static void tegra_dma_dump_chan_regs(struct tegra_dma_channel *tdc)
283 {
284 	dev_dbg(tdc2dev(tdc), "DMA Channel %d name %s register dump:\n",
285 		tdc->id, tdc->name);
286 	dev_dbg(tdc2dev(tdc), "CSR %x STA %x CSRE %x SRC %x DST %x\n",
287 		tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR),
288 		tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS),
289 		tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE),
290 		tdc_read(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR),
291 		tdc_read(tdc, TEGRA_GPCDMA_CHAN_DST_PTR)
292 	);
293 	dev_dbg(tdc2dev(tdc), "MCSEQ %x IOSEQ %x WCNT %x XFER %x BSTA %x\n",
294 		tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ),
295 		tdc_read(tdc, TEGRA_GPCDMA_CHAN_MMIOSEQ),
296 		tdc_read(tdc, TEGRA_GPCDMA_CHAN_WCOUNT),
297 		tdc_read(tdc, TEGRA_GPCDMA_CHAN_XFER_COUNT),
298 		tdc_read(tdc, TEGRA_GPCDMA_CHAN_DMA_BYTE_STATUS)
299 	);
300 	dev_dbg(tdc2dev(tdc), "DMA ERR_STA %x\n",
301 		tdc_read(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS));
302 }
303 
304 static int tegra_dma_sid_reserve(struct tegra_dma_channel *tdc,
305 				 enum dma_transfer_direction direction)
306 {
307 	struct tegra_dma *tdma = tdc->tdma;
308 	int sid = tdc->slave_id;
309 
310 	if (!is_slave_direction(direction))
311 		return 0;
312 
313 	switch (direction) {
314 	case DMA_MEM_TO_DEV:
315 		if (test_and_set_bit(sid, &tdma->sid_m2d_reserved)) {
316 			dev_err(tdma->dev, "slave id already in use\n");
317 			return -EINVAL;
318 		}
319 		break;
320 	case DMA_DEV_TO_MEM:
321 		if (test_and_set_bit(sid, &tdma->sid_d2m_reserved)) {
322 			dev_err(tdma->dev, "slave id already in use\n");
323 			return -EINVAL;
324 		}
325 		break;
326 	default:
327 		break;
328 	}
329 
330 	tdc->sid_dir = direction;
331 
332 	return 0;
333 }
334 
335 static void tegra_dma_sid_free(struct tegra_dma_channel *tdc)
336 {
337 	struct tegra_dma *tdma = tdc->tdma;
338 	int sid = tdc->slave_id;
339 
340 	switch (tdc->sid_dir) {
341 	case DMA_MEM_TO_DEV:
342 		clear_bit(sid,  &tdma->sid_m2d_reserved);
343 		break;
344 	case DMA_DEV_TO_MEM:
345 		clear_bit(sid,  &tdma->sid_d2m_reserved);
346 		break;
347 	default:
348 		break;
349 	}
350 
351 	tdc->sid_dir = DMA_TRANS_NONE;
352 }
353 
354 static void tegra_dma_desc_free(struct virt_dma_desc *vd)
355 {
356 	kfree(container_of(vd, struct tegra_dma_desc, vd));
357 }
358 
359 static int tegra_dma_slave_config(struct dma_chan *dc,
360 				  struct dma_slave_config *sconfig)
361 {
362 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
363 
364 	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
365 	tdc->config_init = true;
366 
367 	return 0;
368 }
369 
370 static int tegra_dma_pause(struct tegra_dma_channel *tdc)
371 {
372 	int ret;
373 	u32 val;
374 
375 	val = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE);
376 	val |= TEGRA_GPCDMA_CHAN_CSRE_PAUSE;
377 	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSRE, val);
378 
379 	/* Wait until busy bit is de-asserted */
380 	ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr +
381 			tdc->chan_base_offset + TEGRA_GPCDMA_CHAN_STATUS,
382 			val,
383 			!(val & TEGRA_GPCDMA_STATUS_BUSY),
384 			TEGRA_GPCDMA_BURST_COMPLETE_TIME,
385 			TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT);
386 
387 	if (ret) {
388 		dev_err(tdc2dev(tdc), "DMA pause timed out\n");
389 		tegra_dma_dump_chan_regs(tdc);
390 	}
391 
392 	return ret;
393 }
394 
395 static int tegra_dma_device_pause(struct dma_chan *dc)
396 {
397 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
398 	unsigned long flags;
399 	int ret;
400 
401 	if (!tdc->tdma->chip_data->hw_support_pause)
402 		return -ENOSYS;
403 
404 	spin_lock_irqsave(&tdc->vc.lock, flags);
405 	ret = tegra_dma_pause(tdc);
406 	spin_unlock_irqrestore(&tdc->vc.lock, flags);
407 
408 	return ret;
409 }
410 
411 static void tegra_dma_resume(struct tegra_dma_channel *tdc)
412 {
413 	u32 val;
414 
415 	val = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE);
416 	val &= ~TEGRA_GPCDMA_CHAN_CSRE_PAUSE;
417 	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSRE, val);
418 }
419 
420 static int tegra_dma_device_resume(struct dma_chan *dc)
421 {
422 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
423 	unsigned long flags;
424 
425 	if (!tdc->tdma->chip_data->hw_support_pause)
426 		return -ENOSYS;
427 
428 	spin_lock_irqsave(&tdc->vc.lock, flags);
429 	tegra_dma_resume(tdc);
430 	spin_unlock_irqrestore(&tdc->vc.lock, flags);
431 
432 	return 0;
433 }
434 
435 static void tegra_dma_disable(struct tegra_dma_channel *tdc)
436 {
437 	u32 csr, status;
438 
439 	csr = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR);
440 
441 	/* Disable interrupts */
442 	csr &= ~TEGRA_GPCDMA_CSR_IE_EOC;
443 
444 	/* Disable DMA */
445 	csr &= ~TEGRA_GPCDMA_CSR_ENB;
446 	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, csr);
447 
448 	/* Clear interrupt status if it is there */
449 	status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS);
450 	if (status & TEGRA_GPCDMA_STATUS_ISE_EOC) {
451 		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
452 		tdc_write(tdc, TEGRA_GPCDMA_CHAN_STATUS, status);
453 	}
454 }
455 
456 static void tegra_dma_configure_next_sg(struct tegra_dma_channel *tdc)
457 {
458 	struct tegra_dma_desc *dma_desc = tdc->dma_desc;
459 	struct tegra_dma_channel_regs *ch_regs;
460 	int ret;
461 	u32 val;
462 
463 	dma_desc->sg_idx++;
464 
465 	/* Reset the sg index for cyclic transfers */
466 	if (dma_desc->sg_idx == dma_desc->sg_count)
467 		dma_desc->sg_idx = 0;
468 
469 	/* Configure next transfer immediately after DMA is busy */
470 	ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr +
471 			tdc->chan_base_offset + TEGRA_GPCDMA_CHAN_STATUS,
472 			val,
473 			(val & TEGRA_GPCDMA_STATUS_BUSY), 0,
474 			TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT);
475 	if (ret)
476 		return;
477 
478 	ch_regs = &dma_desc->sg_req[dma_desc->sg_idx].ch_regs;
479 
480 	tdc_write(tdc, TEGRA_GPCDMA_CHAN_WCOUNT, ch_regs->wcount);
481 	tdc_write(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR, ch_regs->src_ptr);
482 	tdc_write(tdc, TEGRA_GPCDMA_CHAN_DST_PTR, ch_regs->dst_ptr);
483 	tdc_write(tdc, TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR, ch_regs->high_addr_ptr);
484 
485 	/* Start DMA */
486 	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR,
487 		  ch_regs->csr | TEGRA_GPCDMA_CSR_ENB);
488 }
489 
490 static void tegra_dma_start(struct tegra_dma_channel *tdc)
491 {
492 	struct tegra_dma_desc *dma_desc = tdc->dma_desc;
493 	struct tegra_dma_channel_regs *ch_regs;
494 	struct virt_dma_desc *vdesc;
495 
496 	if (!dma_desc) {
497 		vdesc = vchan_next_desc(&tdc->vc);
498 		if (!vdesc)
499 			return;
500 
501 		dma_desc = vd_to_tegra_dma_desc(vdesc);
502 		list_del(&vdesc->node);
503 		dma_desc->tdc = tdc;
504 		tdc->dma_desc = dma_desc;
505 
506 		tegra_dma_resume(tdc);
507 	}
508 
509 	ch_regs = &dma_desc->sg_req[dma_desc->sg_idx].ch_regs;
510 
511 	tdc_write(tdc, TEGRA_GPCDMA_CHAN_WCOUNT, ch_regs->wcount);
512 	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, 0);
513 	tdc_write(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR, ch_regs->src_ptr);
514 	tdc_write(tdc, TEGRA_GPCDMA_CHAN_DST_PTR, ch_regs->dst_ptr);
515 	tdc_write(tdc, TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR, ch_regs->high_addr_ptr);
516 	tdc_write(tdc, TEGRA_GPCDMA_CHAN_FIXED_PATTERN, ch_regs->fixed_pattern);
517 	tdc_write(tdc, TEGRA_GPCDMA_CHAN_MMIOSEQ, ch_regs->mmio_seq);
518 	tdc_write(tdc, TEGRA_GPCDMA_CHAN_MCSEQ, ch_regs->mc_seq);
519 	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, ch_regs->csr);
520 
521 	/* Start DMA */
522 	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR,
523 		  ch_regs->csr | TEGRA_GPCDMA_CSR_ENB);
524 }
525 
526 static void tegra_dma_xfer_complete(struct tegra_dma_channel *tdc)
527 {
528 	vchan_cookie_complete(&tdc->dma_desc->vd);
529 
530 	tegra_dma_sid_free(tdc);
531 	tdc->dma_desc = NULL;
532 }
533 
534 static void tegra_dma_chan_decode_error(struct tegra_dma_channel *tdc,
535 					unsigned int err_status)
536 {
537 	switch (TEGRA_GPCDMA_CHAN_ERR_TYPE(err_status)) {
538 	case TEGRA_DMA_BM_FIFO_FULL_ERR:
539 		dev_err(tdc->tdma->dev,
540 			"GPCDMA CH%d bm fifo full\n", tdc->id);
541 		break;
542 
543 	case TEGRA_DMA_PERIPH_FIFO_FULL_ERR:
544 		dev_err(tdc->tdma->dev,
545 			"GPCDMA CH%d peripheral fifo full\n", tdc->id);
546 		break;
547 
548 	case TEGRA_DMA_PERIPH_ID_ERR:
549 		dev_err(tdc->tdma->dev,
550 			"GPCDMA CH%d illegal peripheral id\n", tdc->id);
551 		break;
552 
553 	case TEGRA_DMA_STREAM_ID_ERR:
554 		dev_err(tdc->tdma->dev,
555 			"GPCDMA CH%d illegal stream id\n", tdc->id);
556 		break;
557 
558 	case TEGRA_DMA_MC_SLAVE_ERR:
559 		dev_err(tdc->tdma->dev,
560 			"GPCDMA CH%d mc slave error\n", tdc->id);
561 		break;
562 
563 	case TEGRA_DMA_MMIO_SLAVE_ERR:
564 		dev_err(tdc->tdma->dev,
565 			"GPCDMA CH%d mmio slave error\n", tdc->id);
566 		break;
567 
568 	default:
569 		dev_err(tdc->tdma->dev,
570 			"GPCDMA CH%d security violation %x\n", tdc->id,
571 			err_status);
572 	}
573 }
574 
575 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
576 {
577 	struct tegra_dma_channel *tdc = dev_id;
578 	struct tegra_dma_desc *dma_desc = tdc->dma_desc;
579 	struct tegra_dma_sg_req *sg_req;
580 	u32 status;
581 
582 	/* Check channel error status register */
583 	status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS);
584 	if (status) {
585 		tegra_dma_chan_decode_error(tdc, status);
586 		tegra_dma_dump_chan_regs(tdc);
587 		tdc_write(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS, 0xFFFFFFFF);
588 	}
589 
590 	spin_lock(&tdc->vc.lock);
591 	status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS);
592 	if (!(status & TEGRA_GPCDMA_STATUS_ISE_EOC))
593 		goto irq_done;
594 
595 	tdc_write(tdc, TEGRA_GPCDMA_CHAN_STATUS,
596 		  TEGRA_GPCDMA_STATUS_ISE_EOC);
597 
598 	if (!dma_desc)
599 		goto irq_done;
600 
601 	sg_req = dma_desc->sg_req;
602 	dma_desc->bytes_xfer += sg_req[dma_desc->sg_idx].len;
603 
604 	if (dma_desc->cyclic) {
605 		vchan_cyclic_callback(&dma_desc->vd);
606 		tegra_dma_configure_next_sg(tdc);
607 	} else {
608 		dma_desc->sg_idx++;
609 		if (dma_desc->sg_idx == dma_desc->sg_count)
610 			tegra_dma_xfer_complete(tdc);
611 		else
612 			tegra_dma_start(tdc);
613 	}
614 
615 irq_done:
616 	spin_unlock(&tdc->vc.lock);
617 	return IRQ_HANDLED;
618 }
619 
620 static void tegra_dma_issue_pending(struct dma_chan *dc)
621 {
622 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
623 	unsigned long flags;
624 
625 	if (tdc->dma_desc)
626 		return;
627 
628 	spin_lock_irqsave(&tdc->vc.lock, flags);
629 	if (vchan_issue_pending(&tdc->vc))
630 		tegra_dma_start(tdc);
631 
632 	/*
633 	 * For cyclic DMA transfers, program the second
634 	 * transfer parameters as soon as the first DMA
635 	 * transfer is started inorder for the DMA
636 	 * controller to trigger the second transfer
637 	 * with the correct parameters.
638 	 */
639 	if (tdc->dma_desc && tdc->dma_desc->cyclic)
640 		tegra_dma_configure_next_sg(tdc);
641 
642 	spin_unlock_irqrestore(&tdc->vc.lock, flags);
643 }
644 
645 static int tegra_dma_stop_client(struct tegra_dma_channel *tdc)
646 {
647 	int ret;
648 	u32 status, csr;
649 
650 	/*
651 	 * Change the client associated with the DMA channel
652 	 * to stop DMA engine from starting any more bursts for
653 	 * the given client and wait for in flight bursts to complete
654 	 */
655 	csr = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR);
656 	csr &= ~(TEGRA_GPCDMA_CSR_REQ_SEL_MASK);
657 	csr |= TEGRA_GPCDMA_CSR_REQ_SEL_UNUSED;
658 	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, csr);
659 
660 	/* Wait for in flight data transfer to finish */
661 	udelay(TEGRA_GPCDMA_BURST_COMPLETE_TIME);
662 
663 	/* If TX/RX path is still active wait till it becomes
664 	 * inactive
665 	 */
666 
667 	ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr +
668 				tdc->chan_base_offset +
669 				TEGRA_GPCDMA_CHAN_STATUS,
670 				status,
671 				!(status & (TEGRA_GPCDMA_STATUS_CHANNEL_TX |
672 				TEGRA_GPCDMA_STATUS_CHANNEL_RX)),
673 				5,
674 				TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT);
675 	if (ret) {
676 		dev_err(tdc2dev(tdc), "Timeout waiting for DMA burst completion!\n");
677 		tegra_dma_dump_chan_regs(tdc);
678 	}
679 
680 	return ret;
681 }
682 
683 static int tegra_dma_terminate_all(struct dma_chan *dc)
684 {
685 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
686 	unsigned long flags;
687 	LIST_HEAD(head);
688 	int err;
689 
690 	spin_lock_irqsave(&tdc->vc.lock, flags);
691 
692 	if (tdc->dma_desc) {
693 		err = tdc->tdma->chip_data->terminate(tdc);
694 		if (err) {
695 			spin_unlock_irqrestore(&tdc->vc.lock, flags);
696 			return err;
697 		}
698 
699 		tegra_dma_disable(tdc);
700 		tdc->dma_desc = NULL;
701 	}
702 
703 	tegra_dma_sid_free(tdc);
704 	vchan_get_all_descriptors(&tdc->vc, &head);
705 	spin_unlock_irqrestore(&tdc->vc.lock, flags);
706 
707 	vchan_dma_desc_free_list(&tdc->vc, &head);
708 
709 	return 0;
710 }
711 
712 static int tegra_dma_get_residual(struct tegra_dma_channel *tdc)
713 {
714 	struct tegra_dma_desc *dma_desc = tdc->dma_desc;
715 	struct tegra_dma_sg_req *sg_req = dma_desc->sg_req;
716 	unsigned int bytes_xfer, residual;
717 	u32 wcount = 0, status;
718 
719 	wcount = tdc_read(tdc, TEGRA_GPCDMA_CHAN_XFER_COUNT);
720 
721 	/*
722 	 * Set wcount = 0 if EOC bit is set. The transfer would have
723 	 * already completed and the CHAN_XFER_COUNT could have updated
724 	 * for the next transfer, specifically in case of cyclic transfers.
725 	 */
726 	status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS);
727 	if (status & TEGRA_GPCDMA_STATUS_ISE_EOC)
728 		wcount = 0;
729 
730 	bytes_xfer = dma_desc->bytes_xfer +
731 		     sg_req[dma_desc->sg_idx].len - (wcount * 4);
732 
733 	residual = dma_desc->bytes_req - (bytes_xfer % dma_desc->bytes_req);
734 
735 	return residual;
736 }
737 
738 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
739 					   dma_cookie_t cookie,
740 					   struct dma_tx_state *txstate)
741 {
742 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
743 	struct tegra_dma_desc *dma_desc;
744 	struct virt_dma_desc *vd;
745 	unsigned int residual;
746 	unsigned long flags;
747 	enum dma_status ret;
748 
749 	ret = dma_cookie_status(dc, cookie, txstate);
750 	if (ret == DMA_COMPLETE)
751 		return ret;
752 
753 	spin_lock_irqsave(&tdc->vc.lock, flags);
754 	vd = vchan_find_desc(&tdc->vc, cookie);
755 	if (vd) {
756 		dma_desc = vd_to_tegra_dma_desc(vd);
757 		residual = dma_desc->bytes_req;
758 		dma_set_residue(txstate, residual);
759 	} else if (tdc->dma_desc && tdc->dma_desc->vd.tx.cookie == cookie) {
760 		residual =  tegra_dma_get_residual(tdc);
761 		dma_set_residue(txstate, residual);
762 	} else {
763 		dev_err(tdc2dev(tdc), "cookie %d is not found\n", cookie);
764 	}
765 	spin_unlock_irqrestore(&tdc->vc.lock, flags);
766 
767 	return ret;
768 }
769 
770 static inline int get_bus_width(struct tegra_dma_channel *tdc,
771 				enum dma_slave_buswidth slave_bw)
772 {
773 	switch (slave_bw) {
774 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
775 		return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_8;
776 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
777 		return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_16;
778 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
779 		return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_32;
780 	default:
781 		dev_err(tdc2dev(tdc), "given slave bus width is not supported\n");
782 		return -EINVAL;
783 	}
784 }
785 
786 static unsigned int get_burst_size(struct tegra_dma_channel *tdc,
787 				   u32 burst_size, enum dma_slave_buswidth slave_bw,
788 				   int len)
789 {
790 	unsigned int burst_mmio_width, burst_byte;
791 
792 	/*
793 	 * burst_size from client is in terms of the bus_width.
794 	 * convert that into words.
795 	 * If burst_size is not specified from client, then use
796 	 * len to calculate the optimum burst size
797 	 */
798 	burst_byte = burst_size ? burst_size * slave_bw : len;
799 	burst_mmio_width = burst_byte / 4;
800 
801 	if (burst_mmio_width < TEGRA_GPCDMA_MMIOSEQ_BURST_MIN)
802 		return 0;
803 
804 	burst_mmio_width = min(burst_mmio_width, TEGRA_GPCDMA_MMIOSEQ_BURST_MAX);
805 
806 	return TEGRA_GPCDMA_MMIOSEQ_BURST(burst_mmio_width);
807 }
808 
809 static int get_transfer_param(struct tegra_dma_channel *tdc,
810 			      enum dma_transfer_direction direction,
811 			      u32 *apb_addr,
812 			      u32 *mmio_seq,
813 			      u32 *csr,
814 			      unsigned int *burst_size,
815 			      enum dma_slave_buswidth *slave_bw)
816 {
817 	switch (direction) {
818 	case DMA_MEM_TO_DEV:
819 		*apb_addr = tdc->dma_sconfig.dst_addr;
820 		*mmio_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
821 		*burst_size = tdc->dma_sconfig.dst_maxburst;
822 		*slave_bw = tdc->dma_sconfig.dst_addr_width;
823 		*csr = TEGRA_GPCDMA_CSR_DMA_MEM2IO_FC;
824 		return 0;
825 	case DMA_DEV_TO_MEM:
826 		*apb_addr = tdc->dma_sconfig.src_addr;
827 		*mmio_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
828 		*burst_size = tdc->dma_sconfig.src_maxburst;
829 		*slave_bw = tdc->dma_sconfig.src_addr_width;
830 		*csr = TEGRA_GPCDMA_CSR_DMA_IO2MEM_FC;
831 		return 0;
832 	default:
833 		dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
834 	}
835 
836 	return -EINVAL;
837 }
838 
839 static struct dma_async_tx_descriptor *
840 tegra_dma_prep_dma_memset(struct dma_chan *dc, dma_addr_t dest, int value,
841 			  size_t len, unsigned long flags)
842 {
843 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
844 	unsigned int max_dma_count = tdc->tdma->chip_data->max_dma_count;
845 	struct tegra_dma_sg_req *sg_req;
846 	struct tegra_dma_desc *dma_desc;
847 	u32 csr, mc_seq;
848 
849 	if ((len & 3) || (dest & 3) || len > max_dma_count) {
850 		dev_err(tdc2dev(tdc),
851 			"DMA length/memory address is not supported\n");
852 		return NULL;
853 	}
854 
855 	/* Set DMA mode to fixed pattern */
856 	csr = TEGRA_GPCDMA_CSR_DMA_FIXED_PAT;
857 	/* Enable once or continuous mode */
858 	csr |= TEGRA_GPCDMA_CSR_ONCE;
859 	/* Enable IRQ mask */
860 	csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
861 	/* Enable the DMA interrupt */
862 	if (flags & DMA_PREP_INTERRUPT)
863 		csr |= TEGRA_GPCDMA_CSR_IE_EOC;
864 	/* Configure default priority weight for the channel */
865 	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
866 
867 	mc_seq =  tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
868 	/* retain stream-id and clean rest */
869 	mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK;
870 
871 	/* Set the address wrapping */
872 	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
873 						TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
874 	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
875 						TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
876 
877 	/* Program outstanding MC requests */
878 	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
879 	/* Set burst size */
880 	mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
881 
882 	dma_desc = kzalloc(struct_size(dma_desc, sg_req, 1), GFP_NOWAIT);
883 	if (!dma_desc)
884 		return NULL;
885 
886 	dma_desc->bytes_req = len;
887 	dma_desc->sg_count = 1;
888 	sg_req = dma_desc->sg_req;
889 
890 	sg_req[0].ch_regs.src_ptr = 0;
891 	sg_req[0].ch_regs.dst_ptr = dest;
892 	sg_req[0].ch_regs.high_addr_ptr =
893 			FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (dest >> 32));
894 	sg_req[0].ch_regs.fixed_pattern = value;
895 	/* Word count reg takes value as (N +1) words */
896 	sg_req[0].ch_regs.wcount = ((len - 4) >> 2);
897 	sg_req[0].ch_regs.csr = csr;
898 	sg_req[0].ch_regs.mmio_seq = 0;
899 	sg_req[0].ch_regs.mc_seq = mc_seq;
900 	sg_req[0].len = len;
901 
902 	dma_desc->cyclic = false;
903 	return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
904 }
905 
906 static struct dma_async_tx_descriptor *
907 tegra_dma_prep_dma_memcpy(struct dma_chan *dc, dma_addr_t dest,
908 			  dma_addr_t src, size_t len, unsigned long flags)
909 {
910 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
911 	struct tegra_dma_sg_req *sg_req;
912 	struct tegra_dma_desc *dma_desc;
913 	unsigned int max_dma_count;
914 	u32 csr, mc_seq;
915 
916 	max_dma_count = tdc->tdma->chip_data->max_dma_count;
917 	if ((len & 3) || (src & 3) || (dest & 3) || len > max_dma_count) {
918 		dev_err(tdc2dev(tdc),
919 			"DMA length/memory address is not supported\n");
920 		return NULL;
921 	}
922 
923 	/* Set DMA mode to memory to memory transfer */
924 	csr = TEGRA_GPCDMA_CSR_DMA_MEM2MEM;
925 	/* Enable once or continuous mode */
926 	csr |= TEGRA_GPCDMA_CSR_ONCE;
927 	/* Enable IRQ mask */
928 	csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
929 	/* Enable the DMA interrupt */
930 	if (flags & DMA_PREP_INTERRUPT)
931 		csr |= TEGRA_GPCDMA_CSR_IE_EOC;
932 	/* Configure default priority weight for the channel */
933 	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
934 
935 	mc_seq =  tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
936 	/* retain stream-id and clean rest */
937 	mc_seq &= (TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK) |
938 		  (TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK);
939 
940 	/* Set the address wrapping */
941 	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
942 			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
943 	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
944 			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
945 
946 	/* Program outstanding MC requests */
947 	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
948 	/* Set burst size */
949 	mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
950 
951 	dma_desc = kzalloc(struct_size(dma_desc, sg_req, 1), GFP_NOWAIT);
952 	if (!dma_desc)
953 		return NULL;
954 
955 	dma_desc->bytes_req = len;
956 	dma_desc->sg_count = 1;
957 	sg_req = dma_desc->sg_req;
958 
959 	sg_req[0].ch_regs.src_ptr = src;
960 	sg_req[0].ch_regs.dst_ptr = dest;
961 	sg_req[0].ch_regs.high_addr_ptr =
962 		FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (src >> 32));
963 	sg_req[0].ch_regs.high_addr_ptr |=
964 		FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (dest >> 32));
965 	/* Word count reg takes value as (N +1) words */
966 	sg_req[0].ch_regs.wcount = ((len - 4) >> 2);
967 	sg_req[0].ch_regs.csr = csr;
968 	sg_req[0].ch_regs.mmio_seq = 0;
969 	sg_req[0].ch_regs.mc_seq = mc_seq;
970 	sg_req[0].len = len;
971 
972 	dma_desc->cyclic = false;
973 	return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
974 }
975 
976 static struct dma_async_tx_descriptor *
977 tegra_dma_prep_slave_sg(struct dma_chan *dc, struct scatterlist *sgl,
978 			unsigned int sg_len, enum dma_transfer_direction direction,
979 			unsigned long flags, void *context)
980 {
981 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
982 	unsigned int max_dma_count = tdc->tdma->chip_data->max_dma_count;
983 	enum dma_slave_buswidth slave_bw = DMA_SLAVE_BUSWIDTH_UNDEFINED;
984 	u32 csr, mc_seq, apb_ptr = 0, mmio_seq = 0;
985 	struct tegra_dma_sg_req *sg_req;
986 	struct tegra_dma_desc *dma_desc;
987 	struct scatterlist *sg;
988 	u32 burst_size;
989 	unsigned int i;
990 	int ret;
991 
992 	if (!tdc->config_init) {
993 		dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
994 		return NULL;
995 	}
996 	if (sg_len < 1) {
997 		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
998 		return NULL;
999 	}
1000 
1001 	ret = tegra_dma_sid_reserve(tdc, direction);
1002 	if (ret)
1003 		return NULL;
1004 
1005 	ret = get_transfer_param(tdc, direction, &apb_ptr, &mmio_seq, &csr,
1006 				 &burst_size, &slave_bw);
1007 	if (ret < 0)
1008 		return NULL;
1009 
1010 	/* Enable once or continuous mode */
1011 	csr |= TEGRA_GPCDMA_CSR_ONCE;
1012 	/* Program the slave id in requestor select */
1013 	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, tdc->slave_id);
1014 	/* Enable IRQ mask */
1015 	csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
1016 	/* Configure default priority weight for the channel*/
1017 	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
1018 
1019 	/* Enable the DMA interrupt */
1020 	if (flags & DMA_PREP_INTERRUPT)
1021 		csr |= TEGRA_GPCDMA_CSR_IE_EOC;
1022 
1023 	mc_seq =  tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
1024 	/* retain stream-id and clean rest */
1025 	mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK;
1026 
1027 	/* Set the address wrapping on both MC and MMIO side */
1028 
1029 	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
1030 			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
1031 	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
1032 			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
1033 	mmio_seq |= FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD, 1);
1034 
1035 	/* Program 2 MC outstanding requests by default. */
1036 	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
1037 
1038 	/* Setting MC burst size depending on MMIO burst size */
1039 	if (burst_size == 64)
1040 		mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
1041 	else
1042 		mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_2;
1043 
1044 	dma_desc = kzalloc(struct_size(dma_desc, sg_req, sg_len), GFP_NOWAIT);
1045 	if (!dma_desc)
1046 		return NULL;
1047 
1048 	dma_desc->sg_count = sg_len;
1049 	sg_req = dma_desc->sg_req;
1050 
1051 	/* Make transfer requests */
1052 	for_each_sg(sgl, sg, sg_len, i) {
1053 		u32 len;
1054 		dma_addr_t mem;
1055 
1056 		mem = sg_dma_address(sg);
1057 		len = sg_dma_len(sg);
1058 
1059 		if ((len & 3) || (mem & 3) || len > max_dma_count) {
1060 			dev_err(tdc2dev(tdc),
1061 				"DMA length/memory address is not supported\n");
1062 			kfree(dma_desc);
1063 			return NULL;
1064 		}
1065 
1066 		mmio_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1067 		dma_desc->bytes_req += len;
1068 
1069 		if (direction == DMA_MEM_TO_DEV) {
1070 			sg_req[i].ch_regs.src_ptr = mem;
1071 			sg_req[i].ch_regs.dst_ptr = apb_ptr;
1072 			sg_req[i].ch_regs.high_addr_ptr =
1073 				FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (mem >> 32));
1074 		} else if (direction == DMA_DEV_TO_MEM) {
1075 			sg_req[i].ch_regs.src_ptr = apb_ptr;
1076 			sg_req[i].ch_regs.dst_ptr = mem;
1077 			sg_req[i].ch_regs.high_addr_ptr =
1078 				FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (mem >> 32));
1079 		}
1080 
1081 		/*
1082 		 * Word count register takes input in words. Writing a value
1083 		 * of N into word count register means a req of (N+1) words.
1084 		 */
1085 		sg_req[i].ch_regs.wcount = ((len - 4) >> 2);
1086 		sg_req[i].ch_regs.csr = csr;
1087 		sg_req[i].ch_regs.mmio_seq = mmio_seq;
1088 		sg_req[i].ch_regs.mc_seq = mc_seq;
1089 		sg_req[i].len = len;
1090 	}
1091 
1092 	dma_desc->cyclic = false;
1093 	return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
1094 }
1095 
1096 static struct dma_async_tx_descriptor *
1097 tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
1098 			  size_t period_len, enum dma_transfer_direction direction,
1099 			  unsigned long flags)
1100 {
1101 	enum dma_slave_buswidth slave_bw = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1102 	u32 csr, mc_seq, apb_ptr = 0, mmio_seq = 0, burst_size;
1103 	unsigned int max_dma_count, len, period_count, i;
1104 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1105 	struct tegra_dma_desc *dma_desc;
1106 	struct tegra_dma_sg_req *sg_req;
1107 	dma_addr_t mem = buf_addr;
1108 	int ret;
1109 
1110 	if (!buf_len || !period_len) {
1111 		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1112 		return NULL;
1113 	}
1114 
1115 	if (!tdc->config_init) {
1116 		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1117 		return NULL;
1118 	}
1119 
1120 	ret = tegra_dma_sid_reserve(tdc, direction);
1121 	if (ret)
1122 		return NULL;
1123 
1124 	/*
1125 	 * We only support cycle transfer when buf_len is multiple of
1126 	 * period_len.
1127 	 */
1128 	if (buf_len % period_len) {
1129 		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1130 		return NULL;
1131 	}
1132 
1133 	len = period_len;
1134 	max_dma_count = tdc->tdma->chip_data->max_dma_count;
1135 	if ((len & 3) || (buf_addr & 3) || len > max_dma_count) {
1136 		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1137 		return NULL;
1138 	}
1139 
1140 	ret = get_transfer_param(tdc, direction, &apb_ptr, &mmio_seq, &csr,
1141 				 &burst_size, &slave_bw);
1142 	if (ret < 0)
1143 		return NULL;
1144 
1145 	/* Enable once or continuous mode */
1146 	csr &= ~TEGRA_GPCDMA_CSR_ONCE;
1147 	/* Program the slave id in requestor select */
1148 	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, tdc->slave_id);
1149 	/* Enable IRQ mask */
1150 	csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
1151 	/* Configure default priority weight for the channel*/
1152 	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
1153 
1154 	/* Enable the DMA interrupt */
1155 	if (flags & DMA_PREP_INTERRUPT)
1156 		csr |= TEGRA_GPCDMA_CSR_IE_EOC;
1157 
1158 	mmio_seq |= FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD, 1);
1159 
1160 	mc_seq =  tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
1161 	/* retain stream-id and clean rest */
1162 	mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK;
1163 
1164 	/* Set the address wrapping on both MC and MMIO side */
1165 	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
1166 			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
1167 	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
1168 			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
1169 
1170 	/* Program 2 MC outstanding requests by default. */
1171 	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
1172 	/* Setting MC burst size depending on MMIO burst size */
1173 	if (burst_size == 64)
1174 		mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
1175 	else
1176 		mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_2;
1177 
1178 	period_count = buf_len / period_len;
1179 	dma_desc = kzalloc(struct_size(dma_desc, sg_req, period_count),
1180 			   GFP_NOWAIT);
1181 	if (!dma_desc)
1182 		return NULL;
1183 
1184 	dma_desc->bytes_req = buf_len;
1185 	dma_desc->sg_count = period_count;
1186 	sg_req = dma_desc->sg_req;
1187 
1188 	/* Split transfer equal to period size */
1189 	for (i = 0; i < period_count; i++) {
1190 		mmio_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1191 		if (direction == DMA_MEM_TO_DEV) {
1192 			sg_req[i].ch_regs.src_ptr = mem;
1193 			sg_req[i].ch_regs.dst_ptr = apb_ptr;
1194 			sg_req[i].ch_regs.high_addr_ptr =
1195 				FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (mem >> 32));
1196 		} else if (direction == DMA_DEV_TO_MEM) {
1197 			sg_req[i].ch_regs.src_ptr = apb_ptr;
1198 			sg_req[i].ch_regs.dst_ptr = mem;
1199 			sg_req[i].ch_regs.high_addr_ptr =
1200 				FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (mem >> 32));
1201 		}
1202 		/*
1203 		 * Word count register takes input in words. Writing a value
1204 		 * of N into word count register means a req of (N+1) words.
1205 		 */
1206 		sg_req[i].ch_regs.wcount = ((len - 4) >> 2);
1207 		sg_req[i].ch_regs.csr = csr;
1208 		sg_req[i].ch_regs.mmio_seq = mmio_seq;
1209 		sg_req[i].ch_regs.mc_seq = mc_seq;
1210 		sg_req[i].len = len;
1211 
1212 		mem += len;
1213 	}
1214 
1215 	dma_desc->cyclic = true;
1216 
1217 	return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
1218 }
1219 
1220 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1221 {
1222 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1223 	int ret;
1224 
1225 	ret = request_irq(tdc->irq, tegra_dma_isr, 0, tdc->name, tdc);
1226 	if (ret) {
1227 		dev_err(tdc2dev(tdc), "request_irq failed for %s\n", tdc->name);
1228 		return ret;
1229 	}
1230 
1231 	dma_cookie_init(&tdc->vc.chan);
1232 	tdc->config_init = false;
1233 	return 0;
1234 }
1235 
1236 static void tegra_dma_chan_synchronize(struct dma_chan *dc)
1237 {
1238 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1239 
1240 	synchronize_irq(tdc->irq);
1241 	vchan_synchronize(&tdc->vc);
1242 }
1243 
1244 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1245 {
1246 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1247 
1248 	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1249 
1250 	tegra_dma_terminate_all(dc);
1251 	synchronize_irq(tdc->irq);
1252 
1253 	tasklet_kill(&tdc->vc.task);
1254 	tdc->config_init = false;
1255 	tdc->slave_id = -1;
1256 	tdc->sid_dir = DMA_TRANS_NONE;
1257 	free_irq(tdc->irq, tdc);
1258 
1259 	vchan_free_chan_resources(&tdc->vc);
1260 }
1261 
1262 static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1263 					   struct of_dma *ofdma)
1264 {
1265 	struct tegra_dma *tdma = ofdma->of_dma_data;
1266 	struct tegra_dma_channel *tdc;
1267 	struct dma_chan *chan;
1268 
1269 	chan = dma_get_any_slave_channel(&tdma->dma_dev);
1270 	if (!chan)
1271 		return NULL;
1272 
1273 	tdc = to_tegra_dma_chan(chan);
1274 	tdc->slave_id = dma_spec->args[0];
1275 
1276 	return chan;
1277 }
1278 
1279 static const struct tegra_dma_chip_data tegra186_dma_chip_data = {
1280 	.nr_channels = 31,
1281 	.channel_reg_size = SZ_64K,
1282 	.max_dma_count = SZ_1G,
1283 	.hw_support_pause = false,
1284 	.terminate = tegra_dma_stop_client,
1285 };
1286 
1287 static const struct tegra_dma_chip_data tegra194_dma_chip_data = {
1288 	.nr_channels = 31,
1289 	.channel_reg_size = SZ_64K,
1290 	.max_dma_count = SZ_1G,
1291 	.hw_support_pause = true,
1292 	.terminate = tegra_dma_pause,
1293 };
1294 
1295 static const struct of_device_id tegra_dma_of_match[] = {
1296 	{
1297 		.compatible = "nvidia,tegra186-gpcdma",
1298 		.data = &tegra186_dma_chip_data,
1299 	}, {
1300 		.compatible = "nvidia,tegra194-gpcdma",
1301 		.data = &tegra194_dma_chip_data,
1302 	}, {
1303 	},
1304 };
1305 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1306 
1307 static int tegra_dma_program_sid(struct tegra_dma_channel *tdc, int stream_id)
1308 {
1309 	unsigned int reg_val =  tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
1310 
1311 	reg_val &= ~(TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK);
1312 	reg_val &= ~(TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK);
1313 
1314 	reg_val |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK, stream_id);
1315 	reg_val |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK, stream_id);
1316 
1317 	tdc_write(tdc, TEGRA_GPCDMA_CHAN_MCSEQ, reg_val);
1318 	return 0;
1319 }
1320 
1321 static int tegra_dma_probe(struct platform_device *pdev)
1322 {
1323 	const struct tegra_dma_chip_data *cdata = NULL;
1324 	struct iommu_fwspec *iommu_spec;
1325 	unsigned int stream_id, i;
1326 	struct tegra_dma *tdma;
1327 	int ret;
1328 
1329 	cdata = of_device_get_match_data(&pdev->dev);
1330 
1331 	tdma = devm_kzalloc(&pdev->dev,
1332 			    struct_size(tdma, channels, cdata->nr_channels),
1333 			    GFP_KERNEL);
1334 	if (!tdma)
1335 		return -ENOMEM;
1336 
1337 	tdma->dev = &pdev->dev;
1338 	tdma->chip_data = cdata;
1339 	platform_set_drvdata(pdev, tdma);
1340 
1341 	tdma->base_addr = devm_platform_ioremap_resource(pdev, 0);
1342 	if (IS_ERR(tdma->base_addr))
1343 		return PTR_ERR(tdma->base_addr);
1344 
1345 	tdma->rst = devm_reset_control_get_exclusive(&pdev->dev, "gpcdma");
1346 	if (IS_ERR(tdma->rst)) {
1347 		return dev_err_probe(&pdev->dev, PTR_ERR(tdma->rst),
1348 			      "Missing controller reset\n");
1349 	}
1350 	reset_control_reset(tdma->rst);
1351 
1352 	tdma->dma_dev.dev = &pdev->dev;
1353 
1354 	iommu_spec = dev_iommu_fwspec_get(&pdev->dev);
1355 	if (!iommu_spec) {
1356 		dev_err(&pdev->dev, "Missing iommu stream-id\n");
1357 		return -EINVAL;
1358 	}
1359 	stream_id = iommu_spec->ids[0] & 0xffff;
1360 
1361 	INIT_LIST_HEAD(&tdma->dma_dev.channels);
1362 	for (i = 0; i < cdata->nr_channels; i++) {
1363 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1364 
1365 		tdc->irq = platform_get_irq(pdev, i);
1366 		if (tdc->irq < 0)
1367 			return tdc->irq;
1368 
1369 		tdc->chan_base_offset = TEGRA_GPCDMA_CHANNEL_BASE_ADD_OFFSET +
1370 					i * cdata->channel_reg_size;
1371 		snprintf(tdc->name, sizeof(tdc->name), "gpcdma.%d", i);
1372 		tdc->tdma = tdma;
1373 		tdc->id = i;
1374 		tdc->slave_id = -1;
1375 
1376 		vchan_init(&tdc->vc, &tdma->dma_dev);
1377 		tdc->vc.desc_free = tegra_dma_desc_free;
1378 
1379 		/* program stream-id for this channel */
1380 		tegra_dma_program_sid(tdc, stream_id);
1381 		tdc->stream_id = stream_id;
1382 	}
1383 
1384 	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1385 	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1386 	dma_cap_set(DMA_MEMCPY, tdma->dma_dev.cap_mask);
1387 	dma_cap_set(DMA_MEMSET, tdma->dma_dev.cap_mask);
1388 	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1389 
1390 	/*
1391 	 * Only word aligned transfers are supported. Set the copy
1392 	 * alignment shift.
1393 	 */
1394 	tdma->dma_dev.copy_align = 2;
1395 	tdma->dma_dev.fill_align = 2;
1396 	tdma->dma_dev.device_alloc_chan_resources =
1397 					tegra_dma_alloc_chan_resources;
1398 	tdma->dma_dev.device_free_chan_resources =
1399 					tegra_dma_free_chan_resources;
1400 	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1401 	tdma->dma_dev.device_prep_dma_memcpy = tegra_dma_prep_dma_memcpy;
1402 	tdma->dma_dev.device_prep_dma_memset = tegra_dma_prep_dma_memset;
1403 	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1404 	tdma->dma_dev.device_config = tegra_dma_slave_config;
1405 	tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1406 	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1407 	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1408 	tdma->dma_dev.device_pause = tegra_dma_device_pause;
1409 	tdma->dma_dev.device_resume = tegra_dma_device_resume;
1410 	tdma->dma_dev.device_synchronize = tegra_dma_chan_synchronize;
1411 	tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1412 
1413 	ret = dma_async_device_register(&tdma->dma_dev);
1414 	if (ret < 0) {
1415 		dev_err_probe(&pdev->dev, ret,
1416 			      "GPC DMA driver registration failed\n");
1417 		return ret;
1418 	}
1419 
1420 	ret = of_dma_controller_register(pdev->dev.of_node,
1421 					 tegra_dma_of_xlate, tdma);
1422 	if (ret < 0) {
1423 		dev_err_probe(&pdev->dev, ret,
1424 			      "GPC DMA OF registration failed\n");
1425 
1426 		dma_async_device_unregister(&tdma->dma_dev);
1427 		return ret;
1428 	}
1429 
1430 	dev_info(&pdev->dev, "GPC DMA driver register %d channels\n",
1431 		 cdata->nr_channels);
1432 
1433 	return 0;
1434 }
1435 
1436 static int tegra_dma_remove(struct platform_device *pdev)
1437 {
1438 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1439 
1440 	of_dma_controller_free(pdev->dev.of_node);
1441 	dma_async_device_unregister(&tdma->dma_dev);
1442 
1443 	return 0;
1444 }
1445 
1446 static int __maybe_unused tegra_dma_pm_suspend(struct device *dev)
1447 {
1448 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1449 	unsigned int i;
1450 
1451 	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1452 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1453 
1454 		if (tdc->dma_desc) {
1455 			dev_err(tdma->dev, "channel %u busy\n", i);
1456 			return -EBUSY;
1457 		}
1458 	}
1459 
1460 	return 0;
1461 }
1462 
1463 static int __maybe_unused tegra_dma_pm_resume(struct device *dev)
1464 {
1465 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1466 	unsigned int i;
1467 
1468 	reset_control_reset(tdma->rst);
1469 
1470 	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1471 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1472 
1473 		tegra_dma_program_sid(tdc, tdc->stream_id);
1474 	}
1475 
1476 	return 0;
1477 }
1478 
1479 static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1480 	SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_pm_suspend, tegra_dma_pm_resume)
1481 };
1482 
1483 static struct platform_driver tegra_dma_driver = {
1484 	.driver = {
1485 		.name	= "tegra-gpcdma",
1486 		.pm	= &tegra_dma_dev_pm_ops,
1487 		.of_match_table = tegra_dma_of_match,
1488 	},
1489 	.probe		= tegra_dma_probe,
1490 	.remove		= tegra_dma_remove,
1491 };
1492 
1493 module_platform_driver(tegra_dma_driver);
1494 
1495 MODULE_DESCRIPTION("NVIDIA Tegra GPC DMA Controller driver");
1496 MODULE_AUTHOR("Pavan Kunapuli <pkunapuli@nvidia.com>");
1497 MODULE_AUTHOR("Rajesh Gumasta <rgumasta@nvidia.com>");
1498 MODULE_LICENSE("GPL");
1499