1 /* 2 * Copyright (C) 2014 Emilio López 3 * Emilio López <emilio@elopez.com.ar> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 */ 10 11 #include <linux/bitmap.h> 12 #include <linux/bitops.h> 13 #include <linux/clk.h> 14 #include <linux/dmaengine.h> 15 #include <linux/dmapool.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/of_dma.h> 19 #include <linux/platform_device.h> 20 #include <linux/slab.h> 21 #include <linux/spinlock.h> 22 23 #include "virt-dma.h" 24 25 /** Common macros to normal and dedicated DMA registers **/ 26 27 #define SUN4I_DMA_CFG_LOADING BIT(31) 28 #define SUN4I_DMA_CFG_DST_DATA_WIDTH(width) ((width) << 25) 29 #define SUN4I_DMA_CFG_DST_BURST_LENGTH(len) ((len) << 23) 30 #define SUN4I_DMA_CFG_DST_ADDR_MODE(mode) ((mode) << 21) 31 #define SUN4I_DMA_CFG_DST_DRQ_TYPE(type) ((type) << 16) 32 #define SUN4I_DMA_CFG_SRC_DATA_WIDTH(width) ((width) << 9) 33 #define SUN4I_DMA_CFG_SRC_BURST_LENGTH(len) ((len) << 7) 34 #define SUN4I_DMA_CFG_SRC_ADDR_MODE(mode) ((mode) << 5) 35 #define SUN4I_DMA_CFG_SRC_DRQ_TYPE(type) (type) 36 37 /** Normal DMA register values **/ 38 39 /* Normal DMA source/destination data request type values */ 40 #define SUN4I_NDMA_DRQ_TYPE_SDRAM 0x16 41 #define SUN4I_NDMA_DRQ_TYPE_LIMIT (0x1F + 1) 42 43 /** Normal DMA register layout **/ 44 45 /* Dedicated DMA source/destination address mode values */ 46 #define SUN4I_NDMA_ADDR_MODE_LINEAR 0 47 #define SUN4I_NDMA_ADDR_MODE_IO 1 48 49 /* Normal DMA configuration register layout */ 50 #define SUN4I_NDMA_CFG_CONT_MODE BIT(30) 51 #define SUN4I_NDMA_CFG_WAIT_STATE(n) ((n) << 27) 52 #define SUN4I_NDMA_CFG_DST_NON_SECURE BIT(22) 53 #define SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15) 54 #define SUN4I_NDMA_CFG_SRC_NON_SECURE BIT(6) 55 56 /** Dedicated DMA register values **/ 57 58 /* Dedicated DMA source/destination address mode values */ 59 #define SUN4I_DDMA_ADDR_MODE_LINEAR 0 60 #define SUN4I_DDMA_ADDR_MODE_IO 1 61 #define SUN4I_DDMA_ADDR_MODE_HORIZONTAL_PAGE 2 62 #define SUN4I_DDMA_ADDR_MODE_VERTICAL_PAGE 3 63 64 /* Dedicated DMA source/destination data request type values */ 65 #define SUN4I_DDMA_DRQ_TYPE_SDRAM 0x1 66 #define SUN4I_DDMA_DRQ_TYPE_LIMIT (0x1F + 1) 67 68 /** Dedicated DMA register layout **/ 69 70 /* Dedicated DMA configuration register layout */ 71 #define SUN4I_DDMA_CFG_BUSY BIT(30) 72 #define SUN4I_DDMA_CFG_CONT_MODE BIT(29) 73 #define SUN4I_DDMA_CFG_DST_NON_SECURE BIT(28) 74 #define SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15) 75 #define SUN4I_DDMA_CFG_SRC_NON_SECURE BIT(12) 76 77 /* Dedicated DMA parameter register layout */ 78 #define SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(n) (((n) - 1) << 24) 79 #define SUN4I_DDMA_PARA_DST_WAIT_CYCLES(n) (((n) - 1) << 16) 80 #define SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(n) (((n) - 1) << 8) 81 #define SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(n) (((n) - 1) << 0) 82 83 /** DMA register offsets **/ 84 85 /* General register offsets */ 86 #define SUN4I_DMA_IRQ_ENABLE_REG 0x0 87 #define SUN4I_DMA_IRQ_PENDING_STATUS_REG 0x4 88 89 /* Normal DMA register offsets */ 90 #define SUN4I_NDMA_CHANNEL_REG_BASE(n) (0x100 + (n) * 0x20) 91 #define SUN4I_NDMA_CFG_REG 0x0 92 #define SUN4I_NDMA_SRC_ADDR_REG 0x4 93 #define SUN4I_NDMA_DST_ADDR_REG 0x8 94 #define SUN4I_NDMA_BYTE_COUNT_REG 0xC 95 96 /* Dedicated DMA register offsets */ 97 #define SUN4I_DDMA_CHANNEL_REG_BASE(n) (0x300 + (n) * 0x20) 98 #define SUN4I_DDMA_CFG_REG 0x0 99 #define SUN4I_DDMA_SRC_ADDR_REG 0x4 100 #define SUN4I_DDMA_DST_ADDR_REG 0x8 101 #define SUN4I_DDMA_BYTE_COUNT_REG 0xC 102 #define SUN4I_DDMA_PARA_REG 0x18 103 104 /** DMA Driver **/ 105 106 /* 107 * Normal DMA has 8 channels, and Dedicated DMA has another 8, so 108 * that's 16 channels. As for endpoints, there's 29 and 21 109 * respectively. Given that the Normal DMA endpoints (other than 110 * SDRAM) can be used as tx/rx, we need 78 vchans in total 111 */ 112 #define SUN4I_NDMA_NR_MAX_CHANNELS 8 113 #define SUN4I_DDMA_NR_MAX_CHANNELS 8 114 #define SUN4I_DMA_NR_MAX_CHANNELS \ 115 (SUN4I_NDMA_NR_MAX_CHANNELS + SUN4I_DDMA_NR_MAX_CHANNELS) 116 #define SUN4I_NDMA_NR_MAX_VCHANS (29 * 2 - 1) 117 #define SUN4I_DDMA_NR_MAX_VCHANS 21 118 #define SUN4I_DMA_NR_MAX_VCHANS \ 119 (SUN4I_NDMA_NR_MAX_VCHANS + SUN4I_DDMA_NR_MAX_VCHANS) 120 121 /* This set of SUN4I_DDMA timing parameters were found experimentally while 122 * working with the SPI driver and seem to make it behave correctly */ 123 #define SUN4I_DDMA_MAGIC_SPI_PARAMETERS \ 124 (SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(1) | \ 125 SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(1) | \ 126 SUN4I_DDMA_PARA_DST_WAIT_CYCLES(2) | \ 127 SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(2)) 128 129 struct sun4i_dma_pchan { 130 /* Register base of channel */ 131 void __iomem *base; 132 /* vchan currently being serviced */ 133 struct sun4i_dma_vchan *vchan; 134 /* Is this a dedicated pchan? */ 135 int is_dedicated; 136 }; 137 138 struct sun4i_dma_vchan { 139 struct virt_dma_chan vc; 140 struct dma_slave_config cfg; 141 struct sun4i_dma_pchan *pchan; 142 struct sun4i_dma_promise *processing; 143 struct sun4i_dma_contract *contract; 144 u8 endpoint; 145 int is_dedicated; 146 }; 147 148 struct sun4i_dma_promise { 149 u32 cfg; 150 u32 para; 151 dma_addr_t src; 152 dma_addr_t dst; 153 size_t len; 154 struct list_head list; 155 }; 156 157 /* A contract is a set of promises */ 158 struct sun4i_dma_contract { 159 struct virt_dma_desc vd; 160 struct list_head demands; 161 struct list_head completed_demands; 162 int is_cyclic; 163 }; 164 165 struct sun4i_dma_dev { 166 DECLARE_BITMAP(pchans_used, SUN4I_DMA_NR_MAX_CHANNELS); 167 struct dma_device slave; 168 struct sun4i_dma_pchan *pchans; 169 struct sun4i_dma_vchan *vchans; 170 void __iomem *base; 171 struct clk *clk; 172 int irq; 173 spinlock_t lock; 174 }; 175 176 static struct sun4i_dma_dev *to_sun4i_dma_dev(struct dma_device *dev) 177 { 178 return container_of(dev, struct sun4i_dma_dev, slave); 179 } 180 181 static struct sun4i_dma_vchan *to_sun4i_dma_vchan(struct dma_chan *chan) 182 { 183 return container_of(chan, struct sun4i_dma_vchan, vc.chan); 184 } 185 186 static struct sun4i_dma_contract *to_sun4i_dma_contract(struct virt_dma_desc *vd) 187 { 188 return container_of(vd, struct sun4i_dma_contract, vd); 189 } 190 191 static struct device *chan2dev(struct dma_chan *chan) 192 { 193 return &chan->dev->device; 194 } 195 196 static int convert_burst(u32 maxburst) 197 { 198 if (maxburst > 8) 199 return -EINVAL; 200 201 /* 1 -> 0, 4 -> 1, 8 -> 2 */ 202 return (maxburst >> 2); 203 } 204 205 static int convert_buswidth(enum dma_slave_buswidth addr_width) 206 { 207 if (addr_width > DMA_SLAVE_BUSWIDTH_4_BYTES) 208 return -EINVAL; 209 210 /* 8 (1 byte) -> 0, 16 (2 bytes) -> 1, 32 (4 bytes) -> 2 */ 211 return (addr_width >> 1); 212 } 213 214 static void sun4i_dma_free_chan_resources(struct dma_chan *chan) 215 { 216 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); 217 218 vchan_free_chan_resources(&vchan->vc); 219 } 220 221 static struct sun4i_dma_pchan *find_and_use_pchan(struct sun4i_dma_dev *priv, 222 struct sun4i_dma_vchan *vchan) 223 { 224 struct sun4i_dma_pchan *pchan = NULL, *pchans = priv->pchans; 225 unsigned long flags; 226 int i, max; 227 228 /* 229 * pchans 0-SUN4I_NDMA_NR_MAX_CHANNELS are normal, and 230 * SUN4I_NDMA_NR_MAX_CHANNELS+ are dedicated ones 231 */ 232 if (vchan->is_dedicated) { 233 i = SUN4I_NDMA_NR_MAX_CHANNELS; 234 max = SUN4I_DMA_NR_MAX_CHANNELS; 235 } else { 236 i = 0; 237 max = SUN4I_NDMA_NR_MAX_CHANNELS; 238 } 239 240 spin_lock_irqsave(&priv->lock, flags); 241 for_each_clear_bit_from(i, &priv->pchans_used, max) { 242 pchan = &pchans[i]; 243 pchan->vchan = vchan; 244 set_bit(i, priv->pchans_used); 245 break; 246 } 247 spin_unlock_irqrestore(&priv->lock, flags); 248 249 return pchan; 250 } 251 252 static void release_pchan(struct sun4i_dma_dev *priv, 253 struct sun4i_dma_pchan *pchan) 254 { 255 unsigned long flags; 256 int nr = pchan - priv->pchans; 257 258 spin_lock_irqsave(&priv->lock, flags); 259 260 pchan->vchan = NULL; 261 clear_bit(nr, priv->pchans_used); 262 263 spin_unlock_irqrestore(&priv->lock, flags); 264 } 265 266 static void configure_pchan(struct sun4i_dma_pchan *pchan, 267 struct sun4i_dma_promise *d) 268 { 269 /* 270 * Configure addresses and misc parameters depending on type 271 * SUN4I_DDMA has an extra field with timing parameters 272 */ 273 if (pchan->is_dedicated) { 274 writel_relaxed(d->src, pchan->base + SUN4I_DDMA_SRC_ADDR_REG); 275 writel_relaxed(d->dst, pchan->base + SUN4I_DDMA_DST_ADDR_REG); 276 writel_relaxed(d->len, pchan->base + SUN4I_DDMA_BYTE_COUNT_REG); 277 writel_relaxed(d->para, pchan->base + SUN4I_DDMA_PARA_REG); 278 writel_relaxed(d->cfg, pchan->base + SUN4I_DDMA_CFG_REG); 279 } else { 280 writel_relaxed(d->src, pchan->base + SUN4I_NDMA_SRC_ADDR_REG); 281 writel_relaxed(d->dst, pchan->base + SUN4I_NDMA_DST_ADDR_REG); 282 writel_relaxed(d->len, pchan->base + SUN4I_NDMA_BYTE_COUNT_REG); 283 writel_relaxed(d->cfg, pchan->base + SUN4I_NDMA_CFG_REG); 284 } 285 } 286 287 static void set_pchan_interrupt(struct sun4i_dma_dev *priv, 288 struct sun4i_dma_pchan *pchan, 289 int half, int end) 290 { 291 u32 reg; 292 int pchan_number = pchan - priv->pchans; 293 unsigned long flags; 294 295 spin_lock_irqsave(&priv->lock, flags); 296 297 reg = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG); 298 299 if (half) 300 reg |= BIT(pchan_number * 2); 301 else 302 reg &= ~BIT(pchan_number * 2); 303 304 if (end) 305 reg |= BIT(pchan_number * 2 + 1); 306 else 307 reg &= ~BIT(pchan_number * 2 + 1); 308 309 writel_relaxed(reg, priv->base + SUN4I_DMA_IRQ_ENABLE_REG); 310 311 spin_unlock_irqrestore(&priv->lock, flags); 312 } 313 314 /** 315 * Execute pending operations on a vchan 316 * 317 * When given a vchan, this function will try to acquire a suitable 318 * pchan and, if successful, will configure it to fulfill a promise 319 * from the next pending contract. 320 * 321 * This function must be called with &vchan->vc.lock held. 322 */ 323 static int __execute_vchan_pending(struct sun4i_dma_dev *priv, 324 struct sun4i_dma_vchan *vchan) 325 { 326 struct sun4i_dma_promise *promise = NULL; 327 struct sun4i_dma_contract *contract = NULL; 328 struct sun4i_dma_pchan *pchan; 329 struct virt_dma_desc *vd; 330 int ret; 331 332 lockdep_assert_held(&vchan->vc.lock); 333 334 /* We need a pchan to do anything, so secure one if available */ 335 pchan = find_and_use_pchan(priv, vchan); 336 if (!pchan) 337 return -EBUSY; 338 339 /* 340 * Channel endpoints must not be repeated, so if this vchan 341 * has already submitted some work, we can't do anything else 342 */ 343 if (vchan->processing) { 344 dev_dbg(chan2dev(&vchan->vc.chan), 345 "processing something to this endpoint already\n"); 346 ret = -EBUSY; 347 goto release_pchan; 348 } 349 350 do { 351 /* Figure out which contract we're working with today */ 352 vd = vchan_next_desc(&vchan->vc); 353 if (!vd) { 354 dev_dbg(chan2dev(&vchan->vc.chan), 355 "No pending contract found"); 356 ret = 0; 357 goto release_pchan; 358 } 359 360 contract = to_sun4i_dma_contract(vd); 361 if (list_empty(&contract->demands)) { 362 /* The contract has been completed so mark it as such */ 363 list_del(&contract->vd.node); 364 vchan_cookie_complete(&contract->vd); 365 dev_dbg(chan2dev(&vchan->vc.chan), 366 "Empty contract found and marked complete"); 367 } 368 } while (list_empty(&contract->demands)); 369 370 /* Now find out what we need to do */ 371 promise = list_first_entry(&contract->demands, 372 struct sun4i_dma_promise, list); 373 vchan->processing = promise; 374 375 /* ... and make it reality */ 376 if (promise) { 377 vchan->contract = contract; 378 vchan->pchan = pchan; 379 set_pchan_interrupt(priv, pchan, contract->is_cyclic, 1); 380 configure_pchan(pchan, promise); 381 } 382 383 return 0; 384 385 release_pchan: 386 release_pchan(priv, pchan); 387 return ret; 388 } 389 390 static int sanitize_config(struct dma_slave_config *sconfig, 391 enum dma_transfer_direction direction) 392 { 393 switch (direction) { 394 case DMA_MEM_TO_DEV: 395 if ((sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) || 396 !sconfig->dst_maxburst) 397 return -EINVAL; 398 399 if (sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) 400 sconfig->src_addr_width = sconfig->dst_addr_width; 401 402 if (!sconfig->src_maxburst) 403 sconfig->src_maxburst = sconfig->dst_maxburst; 404 405 break; 406 407 case DMA_DEV_TO_MEM: 408 if ((sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) || 409 !sconfig->src_maxburst) 410 return -EINVAL; 411 412 if (sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) 413 sconfig->dst_addr_width = sconfig->src_addr_width; 414 415 if (!sconfig->dst_maxburst) 416 sconfig->dst_maxburst = sconfig->src_maxburst; 417 418 break; 419 default: 420 return 0; 421 } 422 423 return 0; 424 } 425 426 /** 427 * Generate a promise, to be used in a normal DMA contract. 428 * 429 * A NDMA promise contains all the information required to program the 430 * normal part of the DMA Engine and get data copied. A non-executed 431 * promise will live in the demands list on a contract. Once it has been 432 * completed, it will be moved to the completed demands list for later freeing. 433 * All linked promises will be freed when the corresponding contract is freed 434 */ 435 static struct sun4i_dma_promise * 436 generate_ndma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest, 437 size_t len, struct dma_slave_config *sconfig, 438 enum dma_transfer_direction direction) 439 { 440 struct sun4i_dma_promise *promise; 441 int ret; 442 443 ret = sanitize_config(sconfig, direction); 444 if (ret) 445 return NULL; 446 447 promise = kzalloc(sizeof(*promise), GFP_NOWAIT); 448 if (!promise) 449 return NULL; 450 451 promise->src = src; 452 promise->dst = dest; 453 promise->len = len; 454 promise->cfg = SUN4I_DMA_CFG_LOADING | 455 SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN; 456 457 dev_dbg(chan2dev(chan), 458 "src burst %d, dst burst %d, src buswidth %d, dst buswidth %d", 459 sconfig->src_maxburst, sconfig->dst_maxburst, 460 sconfig->src_addr_width, sconfig->dst_addr_width); 461 462 /* Source burst */ 463 ret = convert_burst(sconfig->src_maxburst); 464 if (IS_ERR_VALUE(ret)) 465 goto fail; 466 promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret); 467 468 /* Destination burst */ 469 ret = convert_burst(sconfig->dst_maxburst); 470 if (IS_ERR_VALUE(ret)) 471 goto fail; 472 promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret); 473 474 /* Source bus width */ 475 ret = convert_buswidth(sconfig->src_addr_width); 476 if (IS_ERR_VALUE(ret)) 477 goto fail; 478 promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret); 479 480 /* Destination bus width */ 481 ret = convert_buswidth(sconfig->dst_addr_width); 482 if (IS_ERR_VALUE(ret)) 483 goto fail; 484 promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret); 485 486 return promise; 487 488 fail: 489 kfree(promise); 490 return NULL; 491 } 492 493 /** 494 * Generate a promise, to be used in a dedicated DMA contract. 495 * 496 * A DDMA promise contains all the information required to program the 497 * Dedicated part of the DMA Engine and get data copied. A non-executed 498 * promise will live in the demands list on a contract. Once it has been 499 * completed, it will be moved to the completed demands list for later freeing. 500 * All linked promises will be freed when the corresponding contract is freed 501 */ 502 static struct sun4i_dma_promise * 503 generate_ddma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest, 504 size_t len, struct dma_slave_config *sconfig) 505 { 506 struct sun4i_dma_promise *promise; 507 int ret; 508 509 promise = kzalloc(sizeof(*promise), GFP_NOWAIT); 510 if (!promise) 511 return NULL; 512 513 promise->src = src; 514 promise->dst = dest; 515 promise->len = len; 516 promise->cfg = SUN4I_DMA_CFG_LOADING | 517 SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN; 518 519 /* Source burst */ 520 ret = convert_burst(sconfig->src_maxburst); 521 if (IS_ERR_VALUE(ret)) 522 goto fail; 523 promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret); 524 525 /* Destination burst */ 526 ret = convert_burst(sconfig->dst_maxburst); 527 if (IS_ERR_VALUE(ret)) 528 goto fail; 529 promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret); 530 531 /* Source bus width */ 532 ret = convert_buswidth(sconfig->src_addr_width); 533 if (IS_ERR_VALUE(ret)) 534 goto fail; 535 promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret); 536 537 /* Destination bus width */ 538 ret = convert_buswidth(sconfig->dst_addr_width); 539 if (IS_ERR_VALUE(ret)) 540 goto fail; 541 promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret); 542 543 return promise; 544 545 fail: 546 kfree(promise); 547 return NULL; 548 } 549 550 /** 551 * Generate a contract 552 * 553 * Contracts function as DMA descriptors. As our hardware does not support 554 * linked lists, we need to implement SG via software. We use a contract 555 * to hold all the pieces of the request and process them serially one 556 * after another. Each piece is represented as a promise. 557 */ 558 static struct sun4i_dma_contract *generate_dma_contract(void) 559 { 560 struct sun4i_dma_contract *contract; 561 562 contract = kzalloc(sizeof(*contract), GFP_NOWAIT); 563 if (!contract) 564 return NULL; 565 566 INIT_LIST_HEAD(&contract->demands); 567 INIT_LIST_HEAD(&contract->completed_demands); 568 569 return contract; 570 } 571 572 /** 573 * Get next promise on a cyclic transfer 574 * 575 * Cyclic contracts contain a series of promises which are executed on a 576 * loop. This function returns the next promise from a cyclic contract, 577 * so it can be programmed into the hardware. 578 */ 579 static struct sun4i_dma_promise * 580 get_next_cyclic_promise(struct sun4i_dma_contract *contract) 581 { 582 struct sun4i_dma_promise *promise; 583 584 promise = list_first_entry_or_null(&contract->demands, 585 struct sun4i_dma_promise, list); 586 if (!promise) { 587 list_splice_init(&contract->completed_demands, 588 &contract->demands); 589 promise = list_first_entry(&contract->demands, 590 struct sun4i_dma_promise, list); 591 } 592 593 return promise; 594 } 595 596 /** 597 * Free a contract and all its associated promises 598 */ 599 static void sun4i_dma_free_contract(struct virt_dma_desc *vd) 600 { 601 struct sun4i_dma_contract *contract = to_sun4i_dma_contract(vd); 602 struct sun4i_dma_promise *promise; 603 604 /* Free all the demands and completed demands */ 605 list_for_each_entry(promise, &contract->demands, list) 606 kfree(promise); 607 608 list_for_each_entry(promise, &contract->completed_demands, list) 609 kfree(promise); 610 611 kfree(contract); 612 } 613 614 static struct dma_async_tx_descriptor * 615 sun4i_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, 616 dma_addr_t src, size_t len, unsigned long flags) 617 { 618 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); 619 struct dma_slave_config *sconfig = &vchan->cfg; 620 struct sun4i_dma_promise *promise; 621 struct sun4i_dma_contract *contract; 622 623 contract = generate_dma_contract(); 624 if (!contract) 625 return NULL; 626 627 /* 628 * We can only do the copy to bus aligned addresses, so 629 * choose the best one so we get decent performance. We also 630 * maximize the burst size for this same reason. 631 */ 632 sconfig->src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 633 sconfig->dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 634 sconfig->src_maxburst = 8; 635 sconfig->dst_maxburst = 8; 636 637 if (vchan->is_dedicated) 638 promise = generate_ddma_promise(chan, src, dest, len, sconfig); 639 else 640 promise = generate_ndma_promise(chan, src, dest, len, sconfig, 641 DMA_MEM_TO_MEM); 642 643 if (!promise) { 644 kfree(contract); 645 return NULL; 646 } 647 648 /* Configure memcpy mode */ 649 if (vchan->is_dedicated) { 650 promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM) | 651 SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM); 652 } else { 653 promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM) | 654 SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM); 655 } 656 657 /* Fill the contract with our only promise */ 658 list_add_tail(&promise->list, &contract->demands); 659 660 /* And add it to the vchan */ 661 return vchan_tx_prep(&vchan->vc, &contract->vd, flags); 662 } 663 664 static struct dma_async_tx_descriptor * 665 sun4i_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf, size_t len, 666 size_t period_len, enum dma_transfer_direction dir, 667 unsigned long flags) 668 { 669 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); 670 struct dma_slave_config *sconfig = &vchan->cfg; 671 struct sun4i_dma_promise *promise; 672 struct sun4i_dma_contract *contract; 673 dma_addr_t src, dest; 674 u32 endpoints; 675 int nr_periods, offset, plength, i; 676 677 if (!is_slave_direction(dir)) { 678 dev_err(chan2dev(chan), "Invalid DMA direction\n"); 679 return NULL; 680 } 681 682 if (vchan->is_dedicated) { 683 /* 684 * As we are using this just for audio data, we need to use 685 * normal DMA. There is nothing stopping us from supporting 686 * dedicated DMA here as well, so if a client comes up and 687 * requires it, it will be simple to implement it. 688 */ 689 dev_err(chan2dev(chan), 690 "Cyclic transfers are only supported on Normal DMA\n"); 691 return NULL; 692 } 693 694 contract = generate_dma_contract(); 695 if (!contract) 696 return NULL; 697 698 contract->is_cyclic = 1; 699 700 /* Figure out the endpoints and the address we need */ 701 if (dir == DMA_MEM_TO_DEV) { 702 src = buf; 703 dest = sconfig->dst_addr; 704 endpoints = SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM) | 705 SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) | 706 SUN4I_DMA_CFG_DST_ADDR_MODE(SUN4I_NDMA_ADDR_MODE_IO); 707 } else { 708 src = sconfig->src_addr; 709 dest = buf; 710 endpoints = SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) | 711 SUN4I_DMA_CFG_SRC_ADDR_MODE(SUN4I_NDMA_ADDR_MODE_IO) | 712 SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM); 713 } 714 715 /* 716 * We will be using half done interrupts to make two periods 717 * out of a promise, so we need to program the DMA engine less 718 * often 719 */ 720 721 /* 722 * The engine can interrupt on half-transfer, so we can use 723 * this feature to program the engine half as often as if we 724 * didn't use it (keep in mind the hardware doesn't support 725 * linked lists). 726 * 727 * Say you have a set of periods (| marks the start/end, I for 728 * interrupt, P for programming the engine to do a new 729 * transfer), the easy but slow way would be to do 730 * 731 * |---|---|---|---| (periods / promises) 732 * P I,P I,P I,P I 733 * 734 * Using half transfer interrupts you can do 735 * 736 * |-------|-------| (promises as configured on hw) 737 * |---|---|---|---| (periods) 738 * P I I,P I I 739 * 740 * Which requires half the engine programming for the same 741 * functionality. 742 */ 743 nr_periods = DIV_ROUND_UP(len / period_len, 2); 744 for (i = 0; i < nr_periods; i++) { 745 /* Calculate the offset in the buffer and the length needed */ 746 offset = i * period_len * 2; 747 plength = min((len - offset), (period_len * 2)); 748 if (dir == DMA_MEM_TO_DEV) 749 src = buf + offset; 750 else 751 dest = buf + offset; 752 753 /* Make the promise */ 754 promise = generate_ndma_promise(chan, src, dest, 755 plength, sconfig, dir); 756 if (!promise) { 757 /* TODO: should we free everything? */ 758 return NULL; 759 } 760 promise->cfg |= endpoints; 761 762 /* Then add it to the contract */ 763 list_add_tail(&promise->list, &contract->demands); 764 } 765 766 /* And add it to the vchan */ 767 return vchan_tx_prep(&vchan->vc, &contract->vd, flags); 768 } 769 770 static struct dma_async_tx_descriptor * 771 sun4i_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 772 unsigned int sg_len, enum dma_transfer_direction dir, 773 unsigned long flags, void *context) 774 { 775 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); 776 struct dma_slave_config *sconfig = &vchan->cfg; 777 struct sun4i_dma_promise *promise; 778 struct sun4i_dma_contract *contract; 779 u8 ram_type, io_mode, linear_mode; 780 struct scatterlist *sg; 781 dma_addr_t srcaddr, dstaddr; 782 u32 endpoints, para; 783 int i; 784 785 if (!sgl) 786 return NULL; 787 788 if (!is_slave_direction(dir)) { 789 dev_err(chan2dev(chan), "Invalid DMA direction\n"); 790 return NULL; 791 } 792 793 contract = generate_dma_contract(); 794 if (!contract) 795 return NULL; 796 797 if (vchan->is_dedicated) { 798 io_mode = SUN4I_DDMA_ADDR_MODE_IO; 799 linear_mode = SUN4I_DDMA_ADDR_MODE_LINEAR; 800 ram_type = SUN4I_DDMA_DRQ_TYPE_SDRAM; 801 } else { 802 io_mode = SUN4I_NDMA_ADDR_MODE_IO; 803 linear_mode = SUN4I_NDMA_ADDR_MODE_LINEAR; 804 ram_type = SUN4I_NDMA_DRQ_TYPE_SDRAM; 805 } 806 807 if (dir == DMA_MEM_TO_DEV) 808 endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) | 809 SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode) | 810 SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type) | 811 SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode); 812 else 813 endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type) | 814 SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode) | 815 SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) | 816 SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode); 817 818 for_each_sg(sgl, sg, sg_len, i) { 819 /* Figure out addresses */ 820 if (dir == DMA_MEM_TO_DEV) { 821 srcaddr = sg_dma_address(sg); 822 dstaddr = sconfig->dst_addr; 823 } else { 824 srcaddr = sconfig->src_addr; 825 dstaddr = sg_dma_address(sg); 826 } 827 828 /* 829 * These are the magic DMA engine timings that keep SPI going. 830 * I haven't seen any interface on DMAEngine to configure 831 * timings, and so far they seem to work for everything we 832 * support, so I've kept them here. I don't know if other 833 * devices need different timings because, as usual, we only 834 * have the "para" bitfield meanings, but no comment on what 835 * the values should be when doing a certain operation :| 836 */ 837 para = SUN4I_DDMA_MAGIC_SPI_PARAMETERS; 838 839 /* And make a suitable promise */ 840 if (vchan->is_dedicated) 841 promise = generate_ddma_promise(chan, srcaddr, dstaddr, 842 sg_dma_len(sg), 843 sconfig); 844 else 845 promise = generate_ndma_promise(chan, srcaddr, dstaddr, 846 sg_dma_len(sg), 847 sconfig, dir); 848 849 if (!promise) 850 return NULL; /* TODO: should we free everything? */ 851 852 promise->cfg |= endpoints; 853 promise->para = para; 854 855 /* Then add it to the contract */ 856 list_add_tail(&promise->list, &contract->demands); 857 } 858 859 /* 860 * Once we've got all the promises ready, add the contract 861 * to the pending list on the vchan 862 */ 863 return vchan_tx_prep(&vchan->vc, &contract->vd, flags); 864 } 865 866 static int sun4i_dma_terminate_all(struct dma_chan *chan) 867 { 868 struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device); 869 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); 870 struct sun4i_dma_pchan *pchan = vchan->pchan; 871 LIST_HEAD(head); 872 unsigned long flags; 873 874 spin_lock_irqsave(&vchan->vc.lock, flags); 875 vchan_get_all_descriptors(&vchan->vc, &head); 876 spin_unlock_irqrestore(&vchan->vc.lock, flags); 877 878 /* 879 * Clearing the configuration register will halt the pchan. Interrupts 880 * may still trigger, so don't forget to disable them. 881 */ 882 if (pchan) { 883 if (pchan->is_dedicated) 884 writel(0, pchan->base + SUN4I_DDMA_CFG_REG); 885 else 886 writel(0, pchan->base + SUN4I_NDMA_CFG_REG); 887 set_pchan_interrupt(priv, pchan, 0, 0); 888 release_pchan(priv, pchan); 889 } 890 891 spin_lock_irqsave(&vchan->vc.lock, flags); 892 vchan_dma_desc_free_list(&vchan->vc, &head); 893 /* Clear these so the vchan is usable again */ 894 vchan->processing = NULL; 895 vchan->pchan = NULL; 896 spin_unlock_irqrestore(&vchan->vc.lock, flags); 897 898 return 0; 899 } 900 901 static int sun4i_dma_config(struct dma_chan *chan, 902 struct dma_slave_config *config) 903 { 904 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); 905 906 memcpy(&vchan->cfg, config, sizeof(*config)); 907 908 return 0; 909 } 910 911 static struct dma_chan *sun4i_dma_of_xlate(struct of_phandle_args *dma_spec, 912 struct of_dma *ofdma) 913 { 914 struct sun4i_dma_dev *priv = ofdma->of_dma_data; 915 struct sun4i_dma_vchan *vchan; 916 struct dma_chan *chan; 917 u8 is_dedicated = dma_spec->args[0]; 918 u8 endpoint = dma_spec->args[1]; 919 920 /* Check if type is Normal or Dedicated */ 921 if (is_dedicated != 0 && is_dedicated != 1) 922 return NULL; 923 924 /* Make sure the endpoint looks sane */ 925 if ((is_dedicated && endpoint >= SUN4I_DDMA_DRQ_TYPE_LIMIT) || 926 (!is_dedicated && endpoint >= SUN4I_NDMA_DRQ_TYPE_LIMIT)) 927 return NULL; 928 929 chan = dma_get_any_slave_channel(&priv->slave); 930 if (!chan) 931 return NULL; 932 933 /* Assign the endpoint to the vchan */ 934 vchan = to_sun4i_dma_vchan(chan); 935 vchan->is_dedicated = is_dedicated; 936 vchan->endpoint = endpoint; 937 938 return chan; 939 } 940 941 static enum dma_status sun4i_dma_tx_status(struct dma_chan *chan, 942 dma_cookie_t cookie, 943 struct dma_tx_state *state) 944 { 945 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); 946 struct sun4i_dma_pchan *pchan = vchan->pchan; 947 struct sun4i_dma_contract *contract; 948 struct sun4i_dma_promise *promise; 949 struct virt_dma_desc *vd; 950 unsigned long flags; 951 enum dma_status ret; 952 size_t bytes = 0; 953 954 ret = dma_cookie_status(chan, cookie, state); 955 if (!state || (ret == DMA_COMPLETE)) 956 return ret; 957 958 spin_lock_irqsave(&vchan->vc.lock, flags); 959 vd = vchan_find_desc(&vchan->vc, cookie); 960 if (!vd) 961 goto exit; 962 contract = to_sun4i_dma_contract(vd); 963 964 list_for_each_entry(promise, &contract->demands, list) 965 bytes += promise->len; 966 967 /* 968 * The hardware is configured to return the remaining byte 969 * quantity. If possible, replace the first listed element's 970 * full size with the actual remaining amount 971 */ 972 promise = list_first_entry_or_null(&contract->demands, 973 struct sun4i_dma_promise, list); 974 if (promise && pchan) { 975 bytes -= promise->len; 976 if (pchan->is_dedicated) 977 bytes += readl(pchan->base + SUN4I_DDMA_BYTE_COUNT_REG); 978 else 979 bytes += readl(pchan->base + SUN4I_NDMA_BYTE_COUNT_REG); 980 } 981 982 exit: 983 984 dma_set_residue(state, bytes); 985 spin_unlock_irqrestore(&vchan->vc.lock, flags); 986 987 return ret; 988 } 989 990 static void sun4i_dma_issue_pending(struct dma_chan *chan) 991 { 992 struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device); 993 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); 994 unsigned long flags; 995 996 spin_lock_irqsave(&vchan->vc.lock, flags); 997 998 /* 999 * If there are pending transactions for this vchan, push one of 1000 * them into the engine to get the ball rolling. 1001 */ 1002 if (vchan_issue_pending(&vchan->vc)) 1003 __execute_vchan_pending(priv, vchan); 1004 1005 spin_unlock_irqrestore(&vchan->vc.lock, flags); 1006 } 1007 1008 static irqreturn_t sun4i_dma_interrupt(int irq, void *dev_id) 1009 { 1010 struct sun4i_dma_dev *priv = dev_id; 1011 struct sun4i_dma_pchan *pchans = priv->pchans, *pchan; 1012 struct sun4i_dma_vchan *vchan; 1013 struct sun4i_dma_contract *contract; 1014 struct sun4i_dma_promise *promise; 1015 unsigned long pendirq, irqs, disableirqs; 1016 int bit, i, free_room, allow_mitigation = 1; 1017 1018 pendirq = readl_relaxed(priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG); 1019 1020 handle_pending: 1021 1022 disableirqs = 0; 1023 free_room = 0; 1024 1025 for_each_set_bit(bit, &pendirq, 32) { 1026 pchan = &pchans[bit >> 1]; 1027 vchan = pchan->vchan; 1028 if (!vchan) /* a terminated channel may still interrupt */ 1029 continue; 1030 contract = vchan->contract; 1031 1032 /* 1033 * Disable the IRQ and free the pchan if it's an end 1034 * interrupt (odd bit) 1035 */ 1036 if (bit & 1) { 1037 spin_lock(&vchan->vc.lock); 1038 1039 /* 1040 * Move the promise into the completed list now that 1041 * we're done with it 1042 */ 1043 list_del(&vchan->processing->list); 1044 list_add_tail(&vchan->processing->list, 1045 &contract->completed_demands); 1046 1047 /* 1048 * Cyclic DMA transfers are special: 1049 * - There's always something we can dispatch 1050 * - We need to run the callback 1051 * - Latency is very important, as this is used by audio 1052 * We therefore just cycle through the list and dispatch 1053 * whatever we have here, reusing the pchan. There's 1054 * no need to run the thread after this. 1055 * 1056 * For non-cyclic transfers we need to look around, 1057 * so we can program some more work, or notify the 1058 * client that their transfers have been completed. 1059 */ 1060 if (contract->is_cyclic) { 1061 promise = get_next_cyclic_promise(contract); 1062 vchan->processing = promise; 1063 configure_pchan(pchan, promise); 1064 vchan_cyclic_callback(&contract->vd); 1065 } else { 1066 vchan->processing = NULL; 1067 vchan->pchan = NULL; 1068 1069 free_room = 1; 1070 disableirqs |= BIT(bit); 1071 release_pchan(priv, pchan); 1072 } 1073 1074 spin_unlock(&vchan->vc.lock); 1075 } else { 1076 /* Half done interrupt */ 1077 if (contract->is_cyclic) 1078 vchan_cyclic_callback(&contract->vd); 1079 else 1080 disableirqs |= BIT(bit); 1081 } 1082 } 1083 1084 /* Disable the IRQs for events we handled */ 1085 spin_lock(&priv->lock); 1086 irqs = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG); 1087 writel_relaxed(irqs & ~disableirqs, 1088 priv->base + SUN4I_DMA_IRQ_ENABLE_REG); 1089 spin_unlock(&priv->lock); 1090 1091 /* Writing 1 to the pending field will clear the pending interrupt */ 1092 writel_relaxed(pendirq, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG); 1093 1094 /* 1095 * If a pchan was freed, we may be able to schedule something else, 1096 * so have a look around 1097 */ 1098 if (free_room) { 1099 for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) { 1100 vchan = &priv->vchans[i]; 1101 spin_lock(&vchan->vc.lock); 1102 __execute_vchan_pending(priv, vchan); 1103 spin_unlock(&vchan->vc.lock); 1104 } 1105 } 1106 1107 /* 1108 * Handle newer interrupts if some showed up, but only do it once 1109 * to avoid a too long a loop 1110 */ 1111 if (allow_mitigation) { 1112 pendirq = readl_relaxed(priv->base + 1113 SUN4I_DMA_IRQ_PENDING_STATUS_REG); 1114 if (pendirq) { 1115 allow_mitigation = 0; 1116 goto handle_pending; 1117 } 1118 } 1119 1120 return IRQ_HANDLED; 1121 } 1122 1123 static int sun4i_dma_probe(struct platform_device *pdev) 1124 { 1125 struct sun4i_dma_dev *priv; 1126 struct resource *res; 1127 int i, j, ret; 1128 1129 priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); 1130 if (!priv) 1131 return -ENOMEM; 1132 1133 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1134 priv->base = devm_ioremap_resource(&pdev->dev, res); 1135 if (IS_ERR(priv->base)) 1136 return PTR_ERR(priv->base); 1137 1138 priv->irq = platform_get_irq(pdev, 0); 1139 if (priv->irq < 0) { 1140 dev_err(&pdev->dev, "Cannot claim IRQ\n"); 1141 return priv->irq; 1142 } 1143 1144 priv->clk = devm_clk_get(&pdev->dev, NULL); 1145 if (IS_ERR(priv->clk)) { 1146 dev_err(&pdev->dev, "No clock specified\n"); 1147 return PTR_ERR(priv->clk); 1148 } 1149 1150 platform_set_drvdata(pdev, priv); 1151 spin_lock_init(&priv->lock); 1152 1153 dma_cap_zero(priv->slave.cap_mask); 1154 dma_cap_set(DMA_PRIVATE, priv->slave.cap_mask); 1155 dma_cap_set(DMA_MEMCPY, priv->slave.cap_mask); 1156 dma_cap_set(DMA_CYCLIC, priv->slave.cap_mask); 1157 dma_cap_set(DMA_SLAVE, priv->slave.cap_mask); 1158 1159 INIT_LIST_HEAD(&priv->slave.channels); 1160 priv->slave.device_free_chan_resources = sun4i_dma_free_chan_resources; 1161 priv->slave.device_tx_status = sun4i_dma_tx_status; 1162 priv->slave.device_issue_pending = sun4i_dma_issue_pending; 1163 priv->slave.device_prep_slave_sg = sun4i_dma_prep_slave_sg; 1164 priv->slave.device_prep_dma_memcpy = sun4i_dma_prep_dma_memcpy; 1165 priv->slave.device_prep_dma_cyclic = sun4i_dma_prep_dma_cyclic; 1166 priv->slave.device_config = sun4i_dma_config; 1167 priv->slave.device_terminate_all = sun4i_dma_terminate_all; 1168 priv->slave.copy_align = 2; 1169 priv->slave.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | 1170 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | 1171 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); 1172 priv->slave.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | 1173 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | 1174 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); 1175 priv->slave.directions = BIT(DMA_DEV_TO_MEM) | 1176 BIT(DMA_MEM_TO_DEV); 1177 priv->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1178 1179 priv->slave.dev = &pdev->dev; 1180 1181 priv->pchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_CHANNELS, 1182 sizeof(struct sun4i_dma_pchan), GFP_KERNEL); 1183 priv->vchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_VCHANS, 1184 sizeof(struct sun4i_dma_vchan), GFP_KERNEL); 1185 if (!priv->vchans || !priv->pchans) 1186 return -ENOMEM; 1187 1188 /* 1189 * [0..SUN4I_NDMA_NR_MAX_CHANNELS) are normal pchans, and 1190 * [SUN4I_NDMA_NR_MAX_CHANNELS..SUN4I_DMA_NR_MAX_CHANNELS) are 1191 * dedicated ones 1192 */ 1193 for (i = 0; i < SUN4I_NDMA_NR_MAX_CHANNELS; i++) 1194 priv->pchans[i].base = priv->base + 1195 SUN4I_NDMA_CHANNEL_REG_BASE(i); 1196 1197 for (j = 0; i < SUN4I_DMA_NR_MAX_CHANNELS; i++, j++) { 1198 priv->pchans[i].base = priv->base + 1199 SUN4I_DDMA_CHANNEL_REG_BASE(j); 1200 priv->pchans[i].is_dedicated = 1; 1201 } 1202 1203 for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) { 1204 struct sun4i_dma_vchan *vchan = &priv->vchans[i]; 1205 1206 spin_lock_init(&vchan->vc.lock); 1207 vchan->vc.desc_free = sun4i_dma_free_contract; 1208 vchan_init(&vchan->vc, &priv->slave); 1209 } 1210 1211 ret = clk_prepare_enable(priv->clk); 1212 if (ret) { 1213 dev_err(&pdev->dev, "Couldn't enable the clock\n"); 1214 return ret; 1215 } 1216 1217 /* 1218 * Make sure the IRQs are all disabled and accounted for. The bootloader 1219 * likes to leave these dirty 1220 */ 1221 writel(0, priv->base + SUN4I_DMA_IRQ_ENABLE_REG); 1222 writel(0xFFFFFFFF, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG); 1223 1224 ret = devm_request_irq(&pdev->dev, priv->irq, sun4i_dma_interrupt, 1225 0, dev_name(&pdev->dev), priv); 1226 if (ret) { 1227 dev_err(&pdev->dev, "Cannot request IRQ\n"); 1228 goto err_clk_disable; 1229 } 1230 1231 ret = dma_async_device_register(&priv->slave); 1232 if (ret) { 1233 dev_warn(&pdev->dev, "Failed to register DMA engine device\n"); 1234 goto err_clk_disable; 1235 } 1236 1237 ret = of_dma_controller_register(pdev->dev.of_node, sun4i_dma_of_xlate, 1238 priv); 1239 if (ret) { 1240 dev_err(&pdev->dev, "of_dma_controller_register failed\n"); 1241 goto err_dma_unregister; 1242 } 1243 1244 dev_dbg(&pdev->dev, "Successfully probed SUN4I_DMA\n"); 1245 1246 return 0; 1247 1248 err_dma_unregister: 1249 dma_async_device_unregister(&priv->slave); 1250 err_clk_disable: 1251 clk_disable_unprepare(priv->clk); 1252 return ret; 1253 } 1254 1255 static int sun4i_dma_remove(struct platform_device *pdev) 1256 { 1257 struct sun4i_dma_dev *priv = platform_get_drvdata(pdev); 1258 1259 /* Disable IRQ so no more work is scheduled */ 1260 disable_irq(priv->irq); 1261 1262 of_dma_controller_free(pdev->dev.of_node); 1263 dma_async_device_unregister(&priv->slave); 1264 1265 clk_disable_unprepare(priv->clk); 1266 1267 return 0; 1268 } 1269 1270 static const struct of_device_id sun4i_dma_match[] = { 1271 { .compatible = "allwinner,sun4i-a10-dma" }, 1272 { /* sentinel */ }, 1273 }; 1274 1275 static struct platform_driver sun4i_dma_driver = { 1276 .probe = sun4i_dma_probe, 1277 .remove = sun4i_dma_remove, 1278 .driver = { 1279 .name = "sun4i-dma", 1280 .of_match_table = sun4i_dma_match, 1281 }, 1282 }; 1283 1284 module_platform_driver(sun4i_dma_driver); 1285 1286 MODULE_DESCRIPTION("Allwinner A10 Dedicated DMA Controller Driver"); 1287 MODULE_AUTHOR("Emilio López <emilio@elopez.com.ar>"); 1288 MODULE_LICENSE("GPL"); 1289