xref: /openbmc/linux/drivers/dma/sun4i-dma.c (revision cfbb9be8)
1 /*
2  * Copyright (C) 2014 Emilio López
3  * Emilio López <emilio@elopez.com.ar>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  */
10 
11 #include <linux/bitmap.h>
12 #include <linux/bitops.h>
13 #include <linux/clk.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dmapool.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/of_dma.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
22 
23 #include "virt-dma.h"
24 
25 /** Common macros to normal and dedicated DMA registers **/
26 
27 #define SUN4I_DMA_CFG_LOADING			BIT(31)
28 #define SUN4I_DMA_CFG_DST_DATA_WIDTH(width)	((width) << 25)
29 #define SUN4I_DMA_CFG_DST_BURST_LENGTH(len)	((len) << 23)
30 #define SUN4I_DMA_CFG_DST_ADDR_MODE(mode)	((mode) << 21)
31 #define SUN4I_DMA_CFG_DST_DRQ_TYPE(type)	((type) << 16)
32 #define SUN4I_DMA_CFG_SRC_DATA_WIDTH(width)	((width) << 9)
33 #define SUN4I_DMA_CFG_SRC_BURST_LENGTH(len)	((len) << 7)
34 #define SUN4I_DMA_CFG_SRC_ADDR_MODE(mode)	((mode) << 5)
35 #define SUN4I_DMA_CFG_SRC_DRQ_TYPE(type)	(type)
36 
37 /** Normal DMA register values **/
38 
39 /* Normal DMA source/destination data request type values */
40 #define SUN4I_NDMA_DRQ_TYPE_SDRAM		0x16
41 #define SUN4I_NDMA_DRQ_TYPE_LIMIT		(0x1F + 1)
42 
43 /** Normal DMA register layout **/
44 
45 /* Dedicated DMA source/destination address mode values */
46 #define SUN4I_NDMA_ADDR_MODE_LINEAR		0
47 #define SUN4I_NDMA_ADDR_MODE_IO			1
48 
49 /* Normal DMA configuration register layout */
50 #define SUN4I_NDMA_CFG_CONT_MODE		BIT(30)
51 #define SUN4I_NDMA_CFG_WAIT_STATE(n)		((n) << 27)
52 #define SUN4I_NDMA_CFG_DST_NON_SECURE		BIT(22)
53 #define SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN	BIT(15)
54 #define SUN4I_NDMA_CFG_SRC_NON_SECURE		BIT(6)
55 
56 /** Dedicated DMA register values **/
57 
58 /* Dedicated DMA source/destination address mode values */
59 #define SUN4I_DDMA_ADDR_MODE_LINEAR		0
60 #define SUN4I_DDMA_ADDR_MODE_IO			1
61 #define SUN4I_DDMA_ADDR_MODE_HORIZONTAL_PAGE	2
62 #define SUN4I_DDMA_ADDR_MODE_VERTICAL_PAGE	3
63 
64 /* Dedicated DMA source/destination data request type values */
65 #define SUN4I_DDMA_DRQ_TYPE_SDRAM		0x1
66 #define SUN4I_DDMA_DRQ_TYPE_LIMIT		(0x1F + 1)
67 
68 /** Dedicated DMA register layout **/
69 
70 /* Dedicated DMA configuration register layout */
71 #define SUN4I_DDMA_CFG_BUSY			BIT(30)
72 #define SUN4I_DDMA_CFG_CONT_MODE		BIT(29)
73 #define SUN4I_DDMA_CFG_DST_NON_SECURE		BIT(28)
74 #define SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN	BIT(15)
75 #define SUN4I_DDMA_CFG_SRC_NON_SECURE		BIT(12)
76 
77 /* Dedicated DMA parameter register layout */
78 #define SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(n)	(((n) - 1) << 24)
79 #define SUN4I_DDMA_PARA_DST_WAIT_CYCLES(n)	(((n) - 1) << 16)
80 #define SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(n)	(((n) - 1) << 8)
81 #define SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(n)	(((n) - 1) << 0)
82 
83 /** DMA register offsets **/
84 
85 /* General register offsets */
86 #define SUN4I_DMA_IRQ_ENABLE_REG		0x0
87 #define SUN4I_DMA_IRQ_PENDING_STATUS_REG	0x4
88 
89 /* Normal DMA register offsets */
90 #define SUN4I_NDMA_CHANNEL_REG_BASE(n)		(0x100 + (n) * 0x20)
91 #define SUN4I_NDMA_CFG_REG			0x0
92 #define SUN4I_NDMA_SRC_ADDR_REG			0x4
93 #define SUN4I_NDMA_DST_ADDR_REG		0x8
94 #define SUN4I_NDMA_BYTE_COUNT_REG		0xC
95 
96 /* Dedicated DMA register offsets */
97 #define SUN4I_DDMA_CHANNEL_REG_BASE(n)		(0x300 + (n) * 0x20)
98 #define SUN4I_DDMA_CFG_REG			0x0
99 #define SUN4I_DDMA_SRC_ADDR_REG			0x4
100 #define SUN4I_DDMA_DST_ADDR_REG		0x8
101 #define SUN4I_DDMA_BYTE_COUNT_REG		0xC
102 #define SUN4I_DDMA_PARA_REG			0x18
103 
104 /** DMA Driver **/
105 
106 /*
107  * Normal DMA has 8 channels, and Dedicated DMA has another 8, so
108  * that's 16 channels. As for endpoints, there's 29 and 21
109  * respectively. Given that the Normal DMA endpoints (other than
110  * SDRAM) can be used as tx/rx, we need 78 vchans in total
111  */
112 #define SUN4I_NDMA_NR_MAX_CHANNELS	8
113 #define SUN4I_DDMA_NR_MAX_CHANNELS	8
114 #define SUN4I_DMA_NR_MAX_CHANNELS					\
115 	(SUN4I_NDMA_NR_MAX_CHANNELS + SUN4I_DDMA_NR_MAX_CHANNELS)
116 #define SUN4I_NDMA_NR_MAX_VCHANS	(29 * 2 - 1)
117 #define SUN4I_DDMA_NR_MAX_VCHANS	21
118 #define SUN4I_DMA_NR_MAX_VCHANS						\
119 	(SUN4I_NDMA_NR_MAX_VCHANS + SUN4I_DDMA_NR_MAX_VCHANS)
120 
121 /* This set of SUN4I_DDMA timing parameters were found experimentally while
122  * working with the SPI driver and seem to make it behave correctly */
123 #define SUN4I_DDMA_MAGIC_SPI_PARAMETERS \
124 	(SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(1) |			\
125 	 SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(1) |				\
126 	 SUN4I_DDMA_PARA_DST_WAIT_CYCLES(2) |				\
127 	 SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(2))
128 
129 struct sun4i_dma_pchan {
130 	/* Register base of channel */
131 	void __iomem			*base;
132 	/* vchan currently being serviced */
133 	struct sun4i_dma_vchan		*vchan;
134 	/* Is this a dedicated pchan? */
135 	int				is_dedicated;
136 };
137 
138 struct sun4i_dma_vchan {
139 	struct virt_dma_chan		vc;
140 	struct dma_slave_config		cfg;
141 	struct sun4i_dma_pchan		*pchan;
142 	struct sun4i_dma_promise	*processing;
143 	struct sun4i_dma_contract	*contract;
144 	u8				endpoint;
145 	int				is_dedicated;
146 };
147 
148 struct sun4i_dma_promise {
149 	u32				cfg;
150 	u32				para;
151 	dma_addr_t			src;
152 	dma_addr_t			dst;
153 	size_t				len;
154 	struct list_head		list;
155 };
156 
157 /* A contract is a set of promises */
158 struct sun4i_dma_contract {
159 	struct virt_dma_desc		vd;
160 	struct list_head		demands;
161 	struct list_head		completed_demands;
162 	int				is_cyclic;
163 };
164 
165 struct sun4i_dma_dev {
166 	DECLARE_BITMAP(pchans_used, SUN4I_DMA_NR_MAX_CHANNELS);
167 	struct dma_device		slave;
168 	struct sun4i_dma_pchan		*pchans;
169 	struct sun4i_dma_vchan		*vchans;
170 	void __iomem			*base;
171 	struct clk			*clk;
172 	int				irq;
173 	spinlock_t			lock;
174 };
175 
176 static struct sun4i_dma_dev *to_sun4i_dma_dev(struct dma_device *dev)
177 {
178 	return container_of(dev, struct sun4i_dma_dev, slave);
179 }
180 
181 static struct sun4i_dma_vchan *to_sun4i_dma_vchan(struct dma_chan *chan)
182 {
183 	return container_of(chan, struct sun4i_dma_vchan, vc.chan);
184 }
185 
186 static struct sun4i_dma_contract *to_sun4i_dma_contract(struct virt_dma_desc *vd)
187 {
188 	return container_of(vd, struct sun4i_dma_contract, vd);
189 }
190 
191 static struct device *chan2dev(struct dma_chan *chan)
192 {
193 	return &chan->dev->device;
194 }
195 
196 static int convert_burst(u32 maxburst)
197 {
198 	if (maxburst > 8)
199 		return -EINVAL;
200 
201 	/* 1 -> 0, 4 -> 1, 8 -> 2 */
202 	return (maxburst >> 2);
203 }
204 
205 static int convert_buswidth(enum dma_slave_buswidth addr_width)
206 {
207 	if (addr_width > DMA_SLAVE_BUSWIDTH_4_BYTES)
208 		return -EINVAL;
209 
210 	/* 8 (1 byte) -> 0, 16 (2 bytes) -> 1, 32 (4 bytes) -> 2 */
211 	return (addr_width >> 1);
212 }
213 
214 static void sun4i_dma_free_chan_resources(struct dma_chan *chan)
215 {
216 	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
217 
218 	vchan_free_chan_resources(&vchan->vc);
219 }
220 
221 static struct sun4i_dma_pchan *find_and_use_pchan(struct sun4i_dma_dev *priv,
222 						  struct sun4i_dma_vchan *vchan)
223 {
224 	struct sun4i_dma_pchan *pchan = NULL, *pchans = priv->pchans;
225 	unsigned long flags;
226 	int i, max;
227 
228 	/*
229 	 * pchans 0-SUN4I_NDMA_NR_MAX_CHANNELS are normal, and
230 	 * SUN4I_NDMA_NR_MAX_CHANNELS+ are dedicated ones
231 	 */
232 	if (vchan->is_dedicated) {
233 		i = SUN4I_NDMA_NR_MAX_CHANNELS;
234 		max = SUN4I_DMA_NR_MAX_CHANNELS;
235 	} else {
236 		i = 0;
237 		max = SUN4I_NDMA_NR_MAX_CHANNELS;
238 	}
239 
240 	spin_lock_irqsave(&priv->lock, flags);
241 	for_each_clear_bit_from(i, priv->pchans_used, max) {
242 		pchan = &pchans[i];
243 		pchan->vchan = vchan;
244 		set_bit(i, priv->pchans_used);
245 		break;
246 	}
247 	spin_unlock_irqrestore(&priv->lock, flags);
248 
249 	return pchan;
250 }
251 
252 static void release_pchan(struct sun4i_dma_dev *priv,
253 			  struct sun4i_dma_pchan *pchan)
254 {
255 	unsigned long flags;
256 	int nr = pchan - priv->pchans;
257 
258 	spin_lock_irqsave(&priv->lock, flags);
259 
260 	pchan->vchan = NULL;
261 	clear_bit(nr, priv->pchans_used);
262 
263 	spin_unlock_irqrestore(&priv->lock, flags);
264 }
265 
266 static void configure_pchan(struct sun4i_dma_pchan *pchan,
267 			    struct sun4i_dma_promise *d)
268 {
269 	/*
270 	 * Configure addresses and misc parameters depending on type
271 	 * SUN4I_DDMA has an extra field with timing parameters
272 	 */
273 	if (pchan->is_dedicated) {
274 		writel_relaxed(d->src, pchan->base + SUN4I_DDMA_SRC_ADDR_REG);
275 		writel_relaxed(d->dst, pchan->base + SUN4I_DDMA_DST_ADDR_REG);
276 		writel_relaxed(d->len, pchan->base + SUN4I_DDMA_BYTE_COUNT_REG);
277 		writel_relaxed(d->para, pchan->base + SUN4I_DDMA_PARA_REG);
278 		writel_relaxed(d->cfg, pchan->base + SUN4I_DDMA_CFG_REG);
279 	} else {
280 		writel_relaxed(d->src, pchan->base + SUN4I_NDMA_SRC_ADDR_REG);
281 		writel_relaxed(d->dst, pchan->base + SUN4I_NDMA_DST_ADDR_REG);
282 		writel_relaxed(d->len, pchan->base + SUN4I_NDMA_BYTE_COUNT_REG);
283 		writel_relaxed(d->cfg, pchan->base + SUN4I_NDMA_CFG_REG);
284 	}
285 }
286 
287 static void set_pchan_interrupt(struct sun4i_dma_dev *priv,
288 				struct sun4i_dma_pchan *pchan,
289 				int half, int end)
290 {
291 	u32 reg;
292 	int pchan_number = pchan - priv->pchans;
293 	unsigned long flags;
294 
295 	spin_lock_irqsave(&priv->lock, flags);
296 
297 	reg = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
298 
299 	if (half)
300 		reg |= BIT(pchan_number * 2);
301 	else
302 		reg &= ~BIT(pchan_number * 2);
303 
304 	if (end)
305 		reg |= BIT(pchan_number * 2 + 1);
306 	else
307 		reg &= ~BIT(pchan_number * 2 + 1);
308 
309 	writel_relaxed(reg, priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
310 
311 	spin_unlock_irqrestore(&priv->lock, flags);
312 }
313 
314 /**
315  * Execute pending operations on a vchan
316  *
317  * When given a vchan, this function will try to acquire a suitable
318  * pchan and, if successful, will configure it to fulfill a promise
319  * from the next pending contract.
320  *
321  * This function must be called with &vchan->vc.lock held.
322  */
323 static int __execute_vchan_pending(struct sun4i_dma_dev *priv,
324 				   struct sun4i_dma_vchan *vchan)
325 {
326 	struct sun4i_dma_promise *promise = NULL;
327 	struct sun4i_dma_contract *contract = NULL;
328 	struct sun4i_dma_pchan *pchan;
329 	struct virt_dma_desc *vd;
330 	int ret;
331 
332 	lockdep_assert_held(&vchan->vc.lock);
333 
334 	/* We need a pchan to do anything, so secure one if available */
335 	pchan = find_and_use_pchan(priv, vchan);
336 	if (!pchan)
337 		return -EBUSY;
338 
339 	/*
340 	 * Channel endpoints must not be repeated, so if this vchan
341 	 * has already submitted some work, we can't do anything else
342 	 */
343 	if (vchan->processing) {
344 		dev_dbg(chan2dev(&vchan->vc.chan),
345 			"processing something to this endpoint already\n");
346 		ret = -EBUSY;
347 		goto release_pchan;
348 	}
349 
350 	do {
351 		/* Figure out which contract we're working with today */
352 		vd = vchan_next_desc(&vchan->vc);
353 		if (!vd) {
354 			dev_dbg(chan2dev(&vchan->vc.chan),
355 				"No pending contract found");
356 			ret = 0;
357 			goto release_pchan;
358 		}
359 
360 		contract = to_sun4i_dma_contract(vd);
361 		if (list_empty(&contract->demands)) {
362 			/* The contract has been completed so mark it as such */
363 			list_del(&contract->vd.node);
364 			vchan_cookie_complete(&contract->vd);
365 			dev_dbg(chan2dev(&vchan->vc.chan),
366 				"Empty contract found and marked complete");
367 		}
368 	} while (list_empty(&contract->demands));
369 
370 	/* Now find out what we need to do */
371 	promise = list_first_entry(&contract->demands,
372 				   struct sun4i_dma_promise, list);
373 	vchan->processing = promise;
374 
375 	/* ... and make it reality */
376 	if (promise) {
377 		vchan->contract = contract;
378 		vchan->pchan = pchan;
379 		set_pchan_interrupt(priv, pchan, contract->is_cyclic, 1);
380 		configure_pchan(pchan, promise);
381 	}
382 
383 	return 0;
384 
385 release_pchan:
386 	release_pchan(priv, pchan);
387 	return ret;
388 }
389 
390 static int sanitize_config(struct dma_slave_config *sconfig,
391 			   enum dma_transfer_direction direction)
392 {
393 	switch (direction) {
394 	case DMA_MEM_TO_DEV:
395 		if ((sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) ||
396 		    !sconfig->dst_maxburst)
397 			return -EINVAL;
398 
399 		if (sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
400 			sconfig->src_addr_width = sconfig->dst_addr_width;
401 
402 		if (!sconfig->src_maxburst)
403 			sconfig->src_maxburst = sconfig->dst_maxburst;
404 
405 		break;
406 
407 	case DMA_DEV_TO_MEM:
408 		if ((sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) ||
409 		    !sconfig->src_maxburst)
410 			return -EINVAL;
411 
412 		if (sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
413 			sconfig->dst_addr_width = sconfig->src_addr_width;
414 
415 		if (!sconfig->dst_maxburst)
416 			sconfig->dst_maxburst = sconfig->src_maxburst;
417 
418 		break;
419 	default:
420 		return 0;
421 	}
422 
423 	return 0;
424 }
425 
426 /**
427  * Generate a promise, to be used in a normal DMA contract.
428  *
429  * A NDMA promise contains all the information required to program the
430  * normal part of the DMA Engine and get data copied. A non-executed
431  * promise will live in the demands list on a contract. Once it has been
432  * completed, it will be moved to the completed demands list for later freeing.
433  * All linked promises will be freed when the corresponding contract is freed
434  */
435 static struct sun4i_dma_promise *
436 generate_ndma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
437 		      size_t len, struct dma_slave_config *sconfig,
438 		      enum dma_transfer_direction direction)
439 {
440 	struct sun4i_dma_promise *promise;
441 	int ret;
442 
443 	ret = sanitize_config(sconfig, direction);
444 	if (ret)
445 		return NULL;
446 
447 	promise = kzalloc(sizeof(*promise), GFP_NOWAIT);
448 	if (!promise)
449 		return NULL;
450 
451 	promise->src = src;
452 	promise->dst = dest;
453 	promise->len = len;
454 	promise->cfg = SUN4I_DMA_CFG_LOADING |
455 		SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN;
456 
457 	dev_dbg(chan2dev(chan),
458 		"src burst %d, dst burst %d, src buswidth %d, dst buswidth %d",
459 		sconfig->src_maxburst, sconfig->dst_maxburst,
460 		sconfig->src_addr_width, sconfig->dst_addr_width);
461 
462 	/* Source burst */
463 	ret = convert_burst(sconfig->src_maxburst);
464 	if (ret < 0)
465 		goto fail;
466 	promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret);
467 
468 	/* Destination burst */
469 	ret = convert_burst(sconfig->dst_maxburst);
470 	if (ret < 0)
471 		goto fail;
472 	promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret);
473 
474 	/* Source bus width */
475 	ret = convert_buswidth(sconfig->src_addr_width);
476 	if (ret < 0)
477 		goto fail;
478 	promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret);
479 
480 	/* Destination bus width */
481 	ret = convert_buswidth(sconfig->dst_addr_width);
482 	if (ret < 0)
483 		goto fail;
484 	promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret);
485 
486 	return promise;
487 
488 fail:
489 	kfree(promise);
490 	return NULL;
491 }
492 
493 /**
494  * Generate a promise, to be used in a dedicated DMA contract.
495  *
496  * A DDMA promise contains all the information required to program the
497  * Dedicated part of the DMA Engine and get data copied. A non-executed
498  * promise will live in the demands list on a contract. Once it has been
499  * completed, it will be moved to the completed demands list for later freeing.
500  * All linked promises will be freed when the corresponding contract is freed
501  */
502 static struct sun4i_dma_promise *
503 generate_ddma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
504 		      size_t len, struct dma_slave_config *sconfig)
505 {
506 	struct sun4i_dma_promise *promise;
507 	int ret;
508 
509 	promise = kzalloc(sizeof(*promise), GFP_NOWAIT);
510 	if (!promise)
511 		return NULL;
512 
513 	promise->src = src;
514 	promise->dst = dest;
515 	promise->len = len;
516 	promise->cfg = SUN4I_DMA_CFG_LOADING |
517 		SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN;
518 
519 	/* Source burst */
520 	ret = convert_burst(sconfig->src_maxburst);
521 	if (ret < 0)
522 		goto fail;
523 	promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret);
524 
525 	/* Destination burst */
526 	ret = convert_burst(sconfig->dst_maxburst);
527 	if (ret < 0)
528 		goto fail;
529 	promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret);
530 
531 	/* Source bus width */
532 	ret = convert_buswidth(sconfig->src_addr_width);
533 	if (ret < 0)
534 		goto fail;
535 	promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret);
536 
537 	/* Destination bus width */
538 	ret = convert_buswidth(sconfig->dst_addr_width);
539 	if (ret < 0)
540 		goto fail;
541 	promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret);
542 
543 	return promise;
544 
545 fail:
546 	kfree(promise);
547 	return NULL;
548 }
549 
550 /**
551  * Generate a contract
552  *
553  * Contracts function as DMA descriptors. As our hardware does not support
554  * linked lists, we need to implement SG via software. We use a contract
555  * to hold all the pieces of the request and process them serially one
556  * after another. Each piece is represented as a promise.
557  */
558 static struct sun4i_dma_contract *generate_dma_contract(void)
559 {
560 	struct sun4i_dma_contract *contract;
561 
562 	contract = kzalloc(sizeof(*contract), GFP_NOWAIT);
563 	if (!contract)
564 		return NULL;
565 
566 	INIT_LIST_HEAD(&contract->demands);
567 	INIT_LIST_HEAD(&contract->completed_demands);
568 
569 	return contract;
570 }
571 
572 /**
573  * Get next promise on a cyclic transfer
574  *
575  * Cyclic contracts contain a series of promises which are executed on a
576  * loop. This function returns the next promise from a cyclic contract,
577  * so it can be programmed into the hardware.
578  */
579 static struct sun4i_dma_promise *
580 get_next_cyclic_promise(struct sun4i_dma_contract *contract)
581 {
582 	struct sun4i_dma_promise *promise;
583 
584 	promise = list_first_entry_or_null(&contract->demands,
585 					   struct sun4i_dma_promise, list);
586 	if (!promise) {
587 		list_splice_init(&contract->completed_demands,
588 				 &contract->demands);
589 		promise = list_first_entry(&contract->demands,
590 					   struct sun4i_dma_promise, list);
591 	}
592 
593 	return promise;
594 }
595 
596 /**
597  * Free a contract and all its associated promises
598  */
599 static void sun4i_dma_free_contract(struct virt_dma_desc *vd)
600 {
601 	struct sun4i_dma_contract *contract = to_sun4i_dma_contract(vd);
602 	struct sun4i_dma_promise *promise, *tmp;
603 
604 	/* Free all the demands and completed demands */
605 	list_for_each_entry_safe(promise, tmp, &contract->demands, list)
606 		kfree(promise);
607 
608 	list_for_each_entry_safe(promise, tmp, &contract->completed_demands, list)
609 		kfree(promise);
610 
611 	kfree(contract);
612 }
613 
614 static struct dma_async_tx_descriptor *
615 sun4i_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
616 			  dma_addr_t src, size_t len, unsigned long flags)
617 {
618 	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
619 	struct dma_slave_config *sconfig = &vchan->cfg;
620 	struct sun4i_dma_promise *promise;
621 	struct sun4i_dma_contract *contract;
622 
623 	contract = generate_dma_contract();
624 	if (!contract)
625 		return NULL;
626 
627 	/*
628 	 * We can only do the copy to bus aligned addresses, so
629 	 * choose the best one so we get decent performance. We also
630 	 * maximize the burst size for this same reason.
631 	 */
632 	sconfig->src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
633 	sconfig->dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
634 	sconfig->src_maxburst = 8;
635 	sconfig->dst_maxburst = 8;
636 
637 	if (vchan->is_dedicated)
638 		promise = generate_ddma_promise(chan, src, dest, len, sconfig);
639 	else
640 		promise = generate_ndma_promise(chan, src, dest, len, sconfig,
641 						DMA_MEM_TO_MEM);
642 
643 	if (!promise) {
644 		kfree(contract);
645 		return NULL;
646 	}
647 
648 	/* Configure memcpy mode */
649 	if (vchan->is_dedicated) {
650 		promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM) |
651 				SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM);
652 	} else {
653 		promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM) |
654 				SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM);
655 	}
656 
657 	/* Fill the contract with our only promise */
658 	list_add_tail(&promise->list, &contract->demands);
659 
660 	/* And add it to the vchan */
661 	return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
662 }
663 
664 static struct dma_async_tx_descriptor *
665 sun4i_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf, size_t len,
666 			  size_t period_len, enum dma_transfer_direction dir,
667 			  unsigned long flags)
668 {
669 	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
670 	struct dma_slave_config *sconfig = &vchan->cfg;
671 	struct sun4i_dma_promise *promise;
672 	struct sun4i_dma_contract *contract;
673 	dma_addr_t src, dest;
674 	u32 endpoints;
675 	int nr_periods, offset, plength, i;
676 
677 	if (!is_slave_direction(dir)) {
678 		dev_err(chan2dev(chan), "Invalid DMA direction\n");
679 		return NULL;
680 	}
681 
682 	if (vchan->is_dedicated) {
683 		/*
684 		 * As we are using this just for audio data, we need to use
685 		 * normal DMA. There is nothing stopping us from supporting
686 		 * dedicated DMA here as well, so if a client comes up and
687 		 * requires it, it will be simple to implement it.
688 		 */
689 		dev_err(chan2dev(chan),
690 			"Cyclic transfers are only supported on Normal DMA\n");
691 		return NULL;
692 	}
693 
694 	contract = generate_dma_contract();
695 	if (!contract)
696 		return NULL;
697 
698 	contract->is_cyclic = 1;
699 
700 	/* Figure out the endpoints and the address we need */
701 	if (dir == DMA_MEM_TO_DEV) {
702 		src = buf;
703 		dest = sconfig->dst_addr;
704 		endpoints = SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM) |
705 			    SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) |
706 			    SUN4I_DMA_CFG_DST_ADDR_MODE(SUN4I_NDMA_ADDR_MODE_IO);
707 	} else {
708 		src = sconfig->src_addr;
709 		dest = buf;
710 		endpoints = SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) |
711 			    SUN4I_DMA_CFG_SRC_ADDR_MODE(SUN4I_NDMA_ADDR_MODE_IO) |
712 			    SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM);
713 	}
714 
715 	/*
716 	 * We will be using half done interrupts to make two periods
717 	 * out of a promise, so we need to program the DMA engine less
718 	 * often
719 	 */
720 
721 	/*
722 	 * The engine can interrupt on half-transfer, so we can use
723 	 * this feature to program the engine half as often as if we
724 	 * didn't use it (keep in mind the hardware doesn't support
725 	 * linked lists).
726 	 *
727 	 * Say you have a set of periods (| marks the start/end, I for
728 	 * interrupt, P for programming the engine to do a new
729 	 * transfer), the easy but slow way would be to do
730 	 *
731 	 *  |---|---|---|---| (periods / promises)
732 	 *  P  I,P I,P I,P  I
733 	 *
734 	 * Using half transfer interrupts you can do
735 	 *
736 	 *  |-------|-------| (promises as configured on hw)
737 	 *  |---|---|---|---| (periods)
738 	 *  P   I  I,P  I   I
739 	 *
740 	 * Which requires half the engine programming for the same
741 	 * functionality.
742 	 */
743 	nr_periods = DIV_ROUND_UP(len / period_len, 2);
744 	for (i = 0; i < nr_periods; i++) {
745 		/* Calculate the offset in the buffer and the length needed */
746 		offset = i * period_len * 2;
747 		plength = min((len - offset), (period_len * 2));
748 		if (dir == DMA_MEM_TO_DEV)
749 			src = buf + offset;
750 		else
751 			dest = buf + offset;
752 
753 		/* Make the promise */
754 		promise = generate_ndma_promise(chan, src, dest,
755 						plength, sconfig, dir);
756 		if (!promise) {
757 			/* TODO: should we free everything? */
758 			return NULL;
759 		}
760 		promise->cfg |= endpoints;
761 
762 		/* Then add it to the contract */
763 		list_add_tail(&promise->list, &contract->demands);
764 	}
765 
766 	/* And add it to the vchan */
767 	return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
768 }
769 
770 static struct dma_async_tx_descriptor *
771 sun4i_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
772 			unsigned int sg_len, enum dma_transfer_direction dir,
773 			unsigned long flags, void *context)
774 {
775 	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
776 	struct dma_slave_config *sconfig = &vchan->cfg;
777 	struct sun4i_dma_promise *promise;
778 	struct sun4i_dma_contract *contract;
779 	u8 ram_type, io_mode, linear_mode;
780 	struct scatterlist *sg;
781 	dma_addr_t srcaddr, dstaddr;
782 	u32 endpoints, para;
783 	int i;
784 
785 	if (!sgl)
786 		return NULL;
787 
788 	if (!is_slave_direction(dir)) {
789 		dev_err(chan2dev(chan), "Invalid DMA direction\n");
790 		return NULL;
791 	}
792 
793 	contract = generate_dma_contract();
794 	if (!contract)
795 		return NULL;
796 
797 	if (vchan->is_dedicated) {
798 		io_mode = SUN4I_DDMA_ADDR_MODE_IO;
799 		linear_mode = SUN4I_DDMA_ADDR_MODE_LINEAR;
800 		ram_type = SUN4I_DDMA_DRQ_TYPE_SDRAM;
801 	} else {
802 		io_mode = SUN4I_NDMA_ADDR_MODE_IO;
803 		linear_mode = SUN4I_NDMA_ADDR_MODE_LINEAR;
804 		ram_type = SUN4I_NDMA_DRQ_TYPE_SDRAM;
805 	}
806 
807 	if (dir == DMA_MEM_TO_DEV)
808 		endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) |
809 			    SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode) |
810 			    SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type) |
811 			    SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode);
812 	else
813 		endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type) |
814 			    SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode) |
815 			    SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) |
816 			    SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode);
817 
818 	for_each_sg(sgl, sg, sg_len, i) {
819 		/* Figure out addresses */
820 		if (dir == DMA_MEM_TO_DEV) {
821 			srcaddr = sg_dma_address(sg);
822 			dstaddr = sconfig->dst_addr;
823 		} else {
824 			srcaddr = sconfig->src_addr;
825 			dstaddr = sg_dma_address(sg);
826 		}
827 
828 		/*
829 		 * These are the magic DMA engine timings that keep SPI going.
830 		 * I haven't seen any interface on DMAEngine to configure
831 		 * timings, and so far they seem to work for everything we
832 		 * support, so I've kept them here. I don't know if other
833 		 * devices need different timings because, as usual, we only
834 		 * have the "para" bitfield meanings, but no comment on what
835 		 * the values should be when doing a certain operation :|
836 		 */
837 		para = SUN4I_DDMA_MAGIC_SPI_PARAMETERS;
838 
839 		/* And make a suitable promise */
840 		if (vchan->is_dedicated)
841 			promise = generate_ddma_promise(chan, srcaddr, dstaddr,
842 							sg_dma_len(sg),
843 							sconfig);
844 		else
845 			promise = generate_ndma_promise(chan, srcaddr, dstaddr,
846 							sg_dma_len(sg),
847 							sconfig, dir);
848 
849 		if (!promise)
850 			return NULL; /* TODO: should we free everything? */
851 
852 		promise->cfg |= endpoints;
853 		promise->para = para;
854 
855 		/* Then add it to the contract */
856 		list_add_tail(&promise->list, &contract->demands);
857 	}
858 
859 	/*
860 	 * Once we've got all the promises ready, add the contract
861 	 * to the pending list on the vchan
862 	 */
863 	return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
864 }
865 
866 static int sun4i_dma_terminate_all(struct dma_chan *chan)
867 {
868 	struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
869 	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
870 	struct sun4i_dma_pchan *pchan = vchan->pchan;
871 	LIST_HEAD(head);
872 	unsigned long flags;
873 
874 	spin_lock_irqsave(&vchan->vc.lock, flags);
875 	vchan_get_all_descriptors(&vchan->vc, &head);
876 	spin_unlock_irqrestore(&vchan->vc.lock, flags);
877 
878 	/*
879 	 * Clearing the configuration register will halt the pchan. Interrupts
880 	 * may still trigger, so don't forget to disable them.
881 	 */
882 	if (pchan) {
883 		if (pchan->is_dedicated)
884 			writel(0, pchan->base + SUN4I_DDMA_CFG_REG);
885 		else
886 			writel(0, pchan->base + SUN4I_NDMA_CFG_REG);
887 		set_pchan_interrupt(priv, pchan, 0, 0);
888 		release_pchan(priv, pchan);
889 	}
890 
891 	spin_lock_irqsave(&vchan->vc.lock, flags);
892 	vchan_dma_desc_free_list(&vchan->vc, &head);
893 	/* Clear these so the vchan is usable again */
894 	vchan->processing = NULL;
895 	vchan->pchan = NULL;
896 	spin_unlock_irqrestore(&vchan->vc.lock, flags);
897 
898 	return 0;
899 }
900 
901 static int sun4i_dma_config(struct dma_chan *chan,
902 			    struct dma_slave_config *config)
903 {
904 	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
905 
906 	memcpy(&vchan->cfg, config, sizeof(*config));
907 
908 	return 0;
909 }
910 
911 static struct dma_chan *sun4i_dma_of_xlate(struct of_phandle_args *dma_spec,
912 					   struct of_dma *ofdma)
913 {
914 	struct sun4i_dma_dev *priv = ofdma->of_dma_data;
915 	struct sun4i_dma_vchan *vchan;
916 	struct dma_chan *chan;
917 	u8 is_dedicated = dma_spec->args[0];
918 	u8 endpoint = dma_spec->args[1];
919 
920 	/* Check if type is Normal or Dedicated */
921 	if (is_dedicated != 0 && is_dedicated != 1)
922 		return NULL;
923 
924 	/* Make sure the endpoint looks sane */
925 	if ((is_dedicated && endpoint >= SUN4I_DDMA_DRQ_TYPE_LIMIT) ||
926 	    (!is_dedicated && endpoint >= SUN4I_NDMA_DRQ_TYPE_LIMIT))
927 		return NULL;
928 
929 	chan = dma_get_any_slave_channel(&priv->slave);
930 	if (!chan)
931 		return NULL;
932 
933 	/* Assign the endpoint to the vchan */
934 	vchan = to_sun4i_dma_vchan(chan);
935 	vchan->is_dedicated = is_dedicated;
936 	vchan->endpoint = endpoint;
937 
938 	return chan;
939 }
940 
941 static enum dma_status sun4i_dma_tx_status(struct dma_chan *chan,
942 					   dma_cookie_t cookie,
943 					   struct dma_tx_state *state)
944 {
945 	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
946 	struct sun4i_dma_pchan *pchan = vchan->pchan;
947 	struct sun4i_dma_contract *contract;
948 	struct sun4i_dma_promise *promise;
949 	struct virt_dma_desc *vd;
950 	unsigned long flags;
951 	enum dma_status ret;
952 	size_t bytes = 0;
953 
954 	ret = dma_cookie_status(chan, cookie, state);
955 	if (!state || (ret == DMA_COMPLETE))
956 		return ret;
957 
958 	spin_lock_irqsave(&vchan->vc.lock, flags);
959 	vd = vchan_find_desc(&vchan->vc, cookie);
960 	if (!vd)
961 		goto exit;
962 	contract = to_sun4i_dma_contract(vd);
963 
964 	list_for_each_entry(promise, &contract->demands, list)
965 		bytes += promise->len;
966 
967 	/*
968 	 * The hardware is configured to return the remaining byte
969 	 * quantity. If possible, replace the first listed element's
970 	 * full size with the actual remaining amount
971 	 */
972 	promise = list_first_entry_or_null(&contract->demands,
973 					   struct sun4i_dma_promise, list);
974 	if (promise && pchan) {
975 		bytes -= promise->len;
976 		if (pchan->is_dedicated)
977 			bytes += readl(pchan->base + SUN4I_DDMA_BYTE_COUNT_REG);
978 		else
979 			bytes += readl(pchan->base + SUN4I_NDMA_BYTE_COUNT_REG);
980 	}
981 
982 exit:
983 
984 	dma_set_residue(state, bytes);
985 	spin_unlock_irqrestore(&vchan->vc.lock, flags);
986 
987 	return ret;
988 }
989 
990 static void sun4i_dma_issue_pending(struct dma_chan *chan)
991 {
992 	struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
993 	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
994 	unsigned long flags;
995 
996 	spin_lock_irqsave(&vchan->vc.lock, flags);
997 
998 	/*
999 	 * If there are pending transactions for this vchan, push one of
1000 	 * them into the engine to get the ball rolling.
1001 	 */
1002 	if (vchan_issue_pending(&vchan->vc))
1003 		__execute_vchan_pending(priv, vchan);
1004 
1005 	spin_unlock_irqrestore(&vchan->vc.lock, flags);
1006 }
1007 
1008 static irqreturn_t sun4i_dma_interrupt(int irq, void *dev_id)
1009 {
1010 	struct sun4i_dma_dev *priv = dev_id;
1011 	struct sun4i_dma_pchan *pchans = priv->pchans, *pchan;
1012 	struct sun4i_dma_vchan *vchan;
1013 	struct sun4i_dma_contract *contract;
1014 	struct sun4i_dma_promise *promise;
1015 	unsigned long pendirq, irqs, disableirqs;
1016 	int bit, i, free_room, allow_mitigation = 1;
1017 
1018 	pendirq = readl_relaxed(priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1019 
1020 handle_pending:
1021 
1022 	disableirqs = 0;
1023 	free_room = 0;
1024 
1025 	for_each_set_bit(bit, &pendirq, 32) {
1026 		pchan = &pchans[bit >> 1];
1027 		vchan = pchan->vchan;
1028 		if (!vchan) /* a terminated channel may still interrupt */
1029 			continue;
1030 		contract = vchan->contract;
1031 
1032 		/*
1033 		 * Disable the IRQ and free the pchan if it's an end
1034 		 * interrupt (odd bit)
1035 		 */
1036 		if (bit & 1) {
1037 			spin_lock(&vchan->vc.lock);
1038 
1039 			/*
1040 			 * Move the promise into the completed list now that
1041 			 * we're done with it
1042 			 */
1043 			list_del(&vchan->processing->list);
1044 			list_add_tail(&vchan->processing->list,
1045 				      &contract->completed_demands);
1046 
1047 			/*
1048 			 * Cyclic DMA transfers are special:
1049 			 * - There's always something we can dispatch
1050 			 * - We need to run the callback
1051 			 * - Latency is very important, as this is used by audio
1052 			 * We therefore just cycle through the list and dispatch
1053 			 * whatever we have here, reusing the pchan. There's
1054 			 * no need to run the thread after this.
1055 			 *
1056 			 * For non-cyclic transfers we need to look around,
1057 			 * so we can program some more work, or notify the
1058 			 * client that their transfers have been completed.
1059 			 */
1060 			if (contract->is_cyclic) {
1061 				promise = get_next_cyclic_promise(contract);
1062 				vchan->processing = promise;
1063 				configure_pchan(pchan, promise);
1064 				vchan_cyclic_callback(&contract->vd);
1065 			} else {
1066 				vchan->processing = NULL;
1067 				vchan->pchan = NULL;
1068 
1069 				free_room = 1;
1070 				disableirqs |= BIT(bit);
1071 				release_pchan(priv, pchan);
1072 			}
1073 
1074 			spin_unlock(&vchan->vc.lock);
1075 		} else {
1076 			/* Half done interrupt */
1077 			if (contract->is_cyclic)
1078 				vchan_cyclic_callback(&contract->vd);
1079 			else
1080 				disableirqs |= BIT(bit);
1081 		}
1082 	}
1083 
1084 	/* Disable the IRQs for events we handled */
1085 	spin_lock(&priv->lock);
1086 	irqs = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1087 	writel_relaxed(irqs & ~disableirqs,
1088 		       priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1089 	spin_unlock(&priv->lock);
1090 
1091 	/* Writing 1 to the pending field will clear the pending interrupt */
1092 	writel_relaxed(pendirq, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1093 
1094 	/*
1095 	 * If a pchan was freed, we may be able to schedule something else,
1096 	 * so have a look around
1097 	 */
1098 	if (free_room) {
1099 		for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) {
1100 			vchan = &priv->vchans[i];
1101 			spin_lock(&vchan->vc.lock);
1102 			__execute_vchan_pending(priv, vchan);
1103 			spin_unlock(&vchan->vc.lock);
1104 		}
1105 	}
1106 
1107 	/*
1108 	 * Handle newer interrupts if some showed up, but only do it once
1109 	 * to avoid a too long a loop
1110 	 */
1111 	if (allow_mitigation) {
1112 		pendirq = readl_relaxed(priv->base +
1113 					SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1114 		if (pendirq) {
1115 			allow_mitigation = 0;
1116 			goto handle_pending;
1117 		}
1118 	}
1119 
1120 	return IRQ_HANDLED;
1121 }
1122 
1123 static int sun4i_dma_probe(struct platform_device *pdev)
1124 {
1125 	struct sun4i_dma_dev *priv;
1126 	struct resource *res;
1127 	int i, j, ret;
1128 
1129 	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
1130 	if (!priv)
1131 		return -ENOMEM;
1132 
1133 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1134 	priv->base = devm_ioremap_resource(&pdev->dev, res);
1135 	if (IS_ERR(priv->base))
1136 		return PTR_ERR(priv->base);
1137 
1138 	priv->irq = platform_get_irq(pdev, 0);
1139 	if (priv->irq < 0) {
1140 		dev_err(&pdev->dev, "Cannot claim IRQ\n");
1141 		return priv->irq;
1142 	}
1143 
1144 	priv->clk = devm_clk_get(&pdev->dev, NULL);
1145 	if (IS_ERR(priv->clk)) {
1146 		dev_err(&pdev->dev, "No clock specified\n");
1147 		return PTR_ERR(priv->clk);
1148 	}
1149 
1150 	platform_set_drvdata(pdev, priv);
1151 	spin_lock_init(&priv->lock);
1152 
1153 	dma_cap_zero(priv->slave.cap_mask);
1154 	dma_cap_set(DMA_PRIVATE, priv->slave.cap_mask);
1155 	dma_cap_set(DMA_MEMCPY, priv->slave.cap_mask);
1156 	dma_cap_set(DMA_CYCLIC, priv->slave.cap_mask);
1157 	dma_cap_set(DMA_SLAVE, priv->slave.cap_mask);
1158 
1159 	INIT_LIST_HEAD(&priv->slave.channels);
1160 	priv->slave.device_free_chan_resources	= sun4i_dma_free_chan_resources;
1161 	priv->slave.device_tx_status		= sun4i_dma_tx_status;
1162 	priv->slave.device_issue_pending	= sun4i_dma_issue_pending;
1163 	priv->slave.device_prep_slave_sg	= sun4i_dma_prep_slave_sg;
1164 	priv->slave.device_prep_dma_memcpy	= sun4i_dma_prep_dma_memcpy;
1165 	priv->slave.device_prep_dma_cyclic	= sun4i_dma_prep_dma_cyclic;
1166 	priv->slave.device_config		= sun4i_dma_config;
1167 	priv->slave.device_terminate_all	= sun4i_dma_terminate_all;
1168 	priv->slave.copy_align			= 2;
1169 	priv->slave.src_addr_widths		= BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1170 						  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1171 						  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1172 	priv->slave.dst_addr_widths		= BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1173 						  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1174 						  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1175 	priv->slave.directions			= BIT(DMA_DEV_TO_MEM) |
1176 						  BIT(DMA_MEM_TO_DEV);
1177 	priv->slave.residue_granularity		= DMA_RESIDUE_GRANULARITY_BURST;
1178 
1179 	priv->slave.dev = &pdev->dev;
1180 
1181 	priv->pchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_CHANNELS,
1182 				    sizeof(struct sun4i_dma_pchan), GFP_KERNEL);
1183 	priv->vchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_VCHANS,
1184 				    sizeof(struct sun4i_dma_vchan), GFP_KERNEL);
1185 	if (!priv->vchans || !priv->pchans)
1186 		return -ENOMEM;
1187 
1188 	/*
1189 	 * [0..SUN4I_NDMA_NR_MAX_CHANNELS) are normal pchans, and
1190 	 * [SUN4I_NDMA_NR_MAX_CHANNELS..SUN4I_DMA_NR_MAX_CHANNELS) are
1191 	 * dedicated ones
1192 	 */
1193 	for (i = 0; i < SUN4I_NDMA_NR_MAX_CHANNELS; i++)
1194 		priv->pchans[i].base = priv->base +
1195 			SUN4I_NDMA_CHANNEL_REG_BASE(i);
1196 
1197 	for (j = 0; i < SUN4I_DMA_NR_MAX_CHANNELS; i++, j++) {
1198 		priv->pchans[i].base = priv->base +
1199 			SUN4I_DDMA_CHANNEL_REG_BASE(j);
1200 		priv->pchans[i].is_dedicated = 1;
1201 	}
1202 
1203 	for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) {
1204 		struct sun4i_dma_vchan *vchan = &priv->vchans[i];
1205 
1206 		spin_lock_init(&vchan->vc.lock);
1207 		vchan->vc.desc_free = sun4i_dma_free_contract;
1208 		vchan_init(&vchan->vc, &priv->slave);
1209 	}
1210 
1211 	ret = clk_prepare_enable(priv->clk);
1212 	if (ret) {
1213 		dev_err(&pdev->dev, "Couldn't enable the clock\n");
1214 		return ret;
1215 	}
1216 
1217 	/*
1218 	 * Make sure the IRQs are all disabled and accounted for. The bootloader
1219 	 * likes to leave these dirty
1220 	 */
1221 	writel(0, priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1222 	writel(0xFFFFFFFF, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1223 
1224 	ret = devm_request_irq(&pdev->dev, priv->irq, sun4i_dma_interrupt,
1225 			       0, dev_name(&pdev->dev), priv);
1226 	if (ret) {
1227 		dev_err(&pdev->dev, "Cannot request IRQ\n");
1228 		goto err_clk_disable;
1229 	}
1230 
1231 	ret = dma_async_device_register(&priv->slave);
1232 	if (ret) {
1233 		dev_warn(&pdev->dev, "Failed to register DMA engine device\n");
1234 		goto err_clk_disable;
1235 	}
1236 
1237 	ret = of_dma_controller_register(pdev->dev.of_node, sun4i_dma_of_xlate,
1238 					 priv);
1239 	if (ret) {
1240 		dev_err(&pdev->dev, "of_dma_controller_register failed\n");
1241 		goto err_dma_unregister;
1242 	}
1243 
1244 	dev_dbg(&pdev->dev, "Successfully probed SUN4I_DMA\n");
1245 
1246 	return 0;
1247 
1248 err_dma_unregister:
1249 	dma_async_device_unregister(&priv->slave);
1250 err_clk_disable:
1251 	clk_disable_unprepare(priv->clk);
1252 	return ret;
1253 }
1254 
1255 static int sun4i_dma_remove(struct platform_device *pdev)
1256 {
1257 	struct sun4i_dma_dev *priv = platform_get_drvdata(pdev);
1258 
1259 	/* Disable IRQ so no more work is scheduled */
1260 	disable_irq(priv->irq);
1261 
1262 	of_dma_controller_free(pdev->dev.of_node);
1263 	dma_async_device_unregister(&priv->slave);
1264 
1265 	clk_disable_unprepare(priv->clk);
1266 
1267 	return 0;
1268 }
1269 
1270 static const struct of_device_id sun4i_dma_match[] = {
1271 	{ .compatible = "allwinner,sun4i-a10-dma" },
1272 	{ /* sentinel */ },
1273 };
1274 MODULE_DEVICE_TABLE(of, sun4i_dma_match);
1275 
1276 static struct platform_driver sun4i_dma_driver = {
1277 	.probe	= sun4i_dma_probe,
1278 	.remove	= sun4i_dma_remove,
1279 	.driver	= {
1280 		.name		= "sun4i-dma",
1281 		.of_match_table	= sun4i_dma_match,
1282 	},
1283 };
1284 
1285 module_platform_driver(sun4i_dma_driver);
1286 
1287 MODULE_DESCRIPTION("Allwinner A10 Dedicated DMA Controller Driver");
1288 MODULE_AUTHOR("Emilio López <emilio@elopez.com.ar>");
1289 MODULE_LICENSE("GPL");
1290