xref: /openbmc/linux/drivers/dma/stm32-mdma.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /*
2  *
3  * Copyright (C) STMicroelectronics SA 2017
4  * Author(s): M'boumba Cedric Madianga <cedric.madianga@gmail.com>
5  *            Pierre-Yves Mordret <pierre-yves.mordret@st.com>
6  *
7  * License terms: GPL V2.0.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License version 2 as published by
11  * the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16  * details.
17  *
18  * Driver for STM32 MDMA controller
19  *
20  * Inspired by stm32-dma.c and dma-jz4780.c
21  *
22  */
23 
24 #include <linux/clk.h>
25 #include <linux/delay.h>
26 #include <linux/dmaengine.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmapool.h>
29 #include <linux/err.h>
30 #include <linux/init.h>
31 #include <linux/iopoll.h>
32 #include <linux/jiffies.h>
33 #include <linux/list.h>
34 #include <linux/log2.h>
35 #include <linux/module.h>
36 #include <linux/of.h>
37 #include <linux/of_device.h>
38 #include <linux/of_dma.h>
39 #include <linux/platform_device.h>
40 #include <linux/reset.h>
41 #include <linux/slab.h>
42 
43 #include "virt-dma.h"
44 
45 /*  MDMA Generic getter/setter */
46 #define STM32_MDMA_SHIFT(n)		(ffs(n) - 1)
47 #define STM32_MDMA_SET(n, mask)		(((n) << STM32_MDMA_SHIFT(mask)) & \
48 					 (mask))
49 #define STM32_MDMA_GET(n, mask)		(((n) & (mask)) >> \
50 					 STM32_MDMA_SHIFT(mask))
51 
52 #define STM32_MDMA_GISR0		0x0000 /* MDMA Int Status Reg 1 */
53 #define STM32_MDMA_GISR1		0x0004 /* MDMA Int Status Reg 2 */
54 
55 /* MDMA Channel x interrupt/status register */
56 #define STM32_MDMA_CISR(x)		(0x40 + 0x40 * (x)) /* x = 0..62 */
57 #define STM32_MDMA_CISR_CRQA		BIT(16)
58 #define STM32_MDMA_CISR_TCIF		BIT(4)
59 #define STM32_MDMA_CISR_BTIF		BIT(3)
60 #define STM32_MDMA_CISR_BRTIF		BIT(2)
61 #define STM32_MDMA_CISR_CTCIF		BIT(1)
62 #define STM32_MDMA_CISR_TEIF		BIT(0)
63 
64 /* MDMA Channel x interrupt flag clear register */
65 #define STM32_MDMA_CIFCR(x)		(0x44 + 0x40 * (x))
66 #define STM32_MDMA_CIFCR_CLTCIF		BIT(4)
67 #define STM32_MDMA_CIFCR_CBTIF		BIT(3)
68 #define STM32_MDMA_CIFCR_CBRTIF		BIT(2)
69 #define STM32_MDMA_CIFCR_CCTCIF		BIT(1)
70 #define STM32_MDMA_CIFCR_CTEIF		BIT(0)
71 #define STM32_MDMA_CIFCR_CLEAR_ALL	(STM32_MDMA_CIFCR_CLTCIF \
72 					| STM32_MDMA_CIFCR_CBTIF \
73 					| STM32_MDMA_CIFCR_CBRTIF \
74 					| STM32_MDMA_CIFCR_CCTCIF \
75 					| STM32_MDMA_CIFCR_CTEIF)
76 
77 /* MDMA Channel x error status register */
78 #define STM32_MDMA_CESR(x)		(0x48 + 0x40 * (x))
79 #define STM32_MDMA_CESR_BSE		BIT(11)
80 #define STM32_MDMA_CESR_ASR		BIT(10)
81 #define STM32_MDMA_CESR_TEMD		BIT(9)
82 #define STM32_MDMA_CESR_TELD		BIT(8)
83 #define STM32_MDMA_CESR_TED		BIT(7)
84 #define STM32_MDMA_CESR_TEA_MASK	GENMASK(6, 0)
85 
86 /* MDMA Channel x control register */
87 #define STM32_MDMA_CCR(x)		(0x4C + 0x40 * (x))
88 #define STM32_MDMA_CCR_SWRQ		BIT(16)
89 #define STM32_MDMA_CCR_WEX		BIT(14)
90 #define STM32_MDMA_CCR_HEX		BIT(13)
91 #define STM32_MDMA_CCR_BEX		BIT(12)
92 #define STM32_MDMA_CCR_PL_MASK		GENMASK(7, 6)
93 #define STM32_MDMA_CCR_PL(n)		STM32_MDMA_SET(n, \
94 						       STM32_MDMA_CCR_PL_MASK)
95 #define STM32_MDMA_CCR_TCIE		BIT(5)
96 #define STM32_MDMA_CCR_BTIE		BIT(4)
97 #define STM32_MDMA_CCR_BRTIE		BIT(3)
98 #define STM32_MDMA_CCR_CTCIE		BIT(2)
99 #define STM32_MDMA_CCR_TEIE		BIT(1)
100 #define STM32_MDMA_CCR_EN		BIT(0)
101 #define STM32_MDMA_CCR_IRQ_MASK		(STM32_MDMA_CCR_TCIE \
102 					| STM32_MDMA_CCR_BTIE \
103 					| STM32_MDMA_CCR_BRTIE \
104 					| STM32_MDMA_CCR_CTCIE \
105 					| STM32_MDMA_CCR_TEIE)
106 
107 /* MDMA Channel x transfer configuration register */
108 #define STM32_MDMA_CTCR(x)		(0x50 + 0x40 * (x))
109 #define STM32_MDMA_CTCR_BWM		BIT(31)
110 #define STM32_MDMA_CTCR_SWRM		BIT(30)
111 #define STM32_MDMA_CTCR_TRGM_MSK	GENMASK(29, 28)
112 #define STM32_MDMA_CTCR_TRGM(n)		STM32_MDMA_SET((n), \
113 						       STM32_MDMA_CTCR_TRGM_MSK)
114 #define STM32_MDMA_CTCR_TRGM_GET(n)	STM32_MDMA_GET((n), \
115 						       STM32_MDMA_CTCR_TRGM_MSK)
116 #define STM32_MDMA_CTCR_PAM_MASK	GENMASK(27, 26)
117 #define STM32_MDMA_CTCR_PAM(n)		STM32_MDMA_SET(n, \
118 						       STM32_MDMA_CTCR_PAM_MASK)
119 #define STM32_MDMA_CTCR_PKE		BIT(25)
120 #define STM32_MDMA_CTCR_TLEN_MSK	GENMASK(24, 18)
121 #define STM32_MDMA_CTCR_TLEN(n)		STM32_MDMA_SET((n), \
122 						       STM32_MDMA_CTCR_TLEN_MSK)
123 #define STM32_MDMA_CTCR_TLEN_GET(n)	STM32_MDMA_GET((n), \
124 						       STM32_MDMA_CTCR_TLEN_MSK)
125 #define STM32_MDMA_CTCR_LEN2_MSK	GENMASK(25, 18)
126 #define STM32_MDMA_CTCR_LEN2(n)		STM32_MDMA_SET((n), \
127 						       STM32_MDMA_CTCR_LEN2_MSK)
128 #define STM32_MDMA_CTCR_LEN2_GET(n)	STM32_MDMA_GET((n), \
129 						       STM32_MDMA_CTCR_LEN2_MSK)
130 #define STM32_MDMA_CTCR_DBURST_MASK	GENMASK(17, 15)
131 #define STM32_MDMA_CTCR_DBURST(n)	STM32_MDMA_SET(n, \
132 						    STM32_MDMA_CTCR_DBURST_MASK)
133 #define STM32_MDMA_CTCR_SBURST_MASK	GENMASK(14, 12)
134 #define STM32_MDMA_CTCR_SBURST(n)	STM32_MDMA_SET(n, \
135 						    STM32_MDMA_CTCR_SBURST_MASK)
136 #define STM32_MDMA_CTCR_DINCOS_MASK	GENMASK(11, 10)
137 #define STM32_MDMA_CTCR_DINCOS(n)	STM32_MDMA_SET((n), \
138 						    STM32_MDMA_CTCR_DINCOS_MASK)
139 #define STM32_MDMA_CTCR_SINCOS_MASK	GENMASK(9, 8)
140 #define STM32_MDMA_CTCR_SINCOS(n)	STM32_MDMA_SET((n), \
141 						    STM32_MDMA_CTCR_SINCOS_MASK)
142 #define STM32_MDMA_CTCR_DSIZE_MASK	GENMASK(7, 6)
143 #define STM32_MDMA_CTCR_DSIZE(n)	STM32_MDMA_SET(n, \
144 						     STM32_MDMA_CTCR_DSIZE_MASK)
145 #define STM32_MDMA_CTCR_SSIZE_MASK	GENMASK(5, 4)
146 #define STM32_MDMA_CTCR_SSIZE(n)	STM32_MDMA_SET(n, \
147 						     STM32_MDMA_CTCR_SSIZE_MASK)
148 #define STM32_MDMA_CTCR_DINC_MASK	GENMASK(3, 2)
149 #define STM32_MDMA_CTCR_DINC(n)		STM32_MDMA_SET((n), \
150 						      STM32_MDMA_CTCR_DINC_MASK)
151 #define STM32_MDMA_CTCR_SINC_MASK	GENMASK(1, 0)
152 #define STM32_MDMA_CTCR_SINC(n)		STM32_MDMA_SET((n), \
153 						      STM32_MDMA_CTCR_SINC_MASK)
154 #define STM32_MDMA_CTCR_CFG_MASK	(STM32_MDMA_CTCR_SINC_MASK \
155 					| STM32_MDMA_CTCR_DINC_MASK \
156 					| STM32_MDMA_CTCR_SINCOS_MASK \
157 					| STM32_MDMA_CTCR_DINCOS_MASK \
158 					| STM32_MDMA_CTCR_LEN2_MSK \
159 					| STM32_MDMA_CTCR_TRGM_MSK)
160 
161 /* MDMA Channel x block number of data register */
162 #define STM32_MDMA_CBNDTR(x)		(0x54 + 0x40 * (x))
163 #define STM32_MDMA_CBNDTR_BRC_MK	GENMASK(31, 20)
164 #define STM32_MDMA_CBNDTR_BRC(n)	STM32_MDMA_SET(n, \
165 						       STM32_MDMA_CBNDTR_BRC_MK)
166 #define STM32_MDMA_CBNDTR_BRC_GET(n)	STM32_MDMA_GET((n), \
167 						       STM32_MDMA_CBNDTR_BRC_MK)
168 
169 #define STM32_MDMA_CBNDTR_BRDUM		BIT(19)
170 #define STM32_MDMA_CBNDTR_BRSUM		BIT(18)
171 #define STM32_MDMA_CBNDTR_BNDT_MASK	GENMASK(16, 0)
172 #define STM32_MDMA_CBNDTR_BNDT(n)	STM32_MDMA_SET(n, \
173 						    STM32_MDMA_CBNDTR_BNDT_MASK)
174 
175 /* MDMA Channel x source address register */
176 #define STM32_MDMA_CSAR(x)		(0x58 + 0x40 * (x))
177 
178 /* MDMA Channel x destination address register */
179 #define STM32_MDMA_CDAR(x)		(0x5C + 0x40 * (x))
180 
181 /* MDMA Channel x block repeat address update register */
182 #define STM32_MDMA_CBRUR(x)		(0x60 + 0x40 * (x))
183 #define STM32_MDMA_CBRUR_DUV_MASK	GENMASK(31, 16)
184 #define STM32_MDMA_CBRUR_DUV(n)		STM32_MDMA_SET(n, \
185 						      STM32_MDMA_CBRUR_DUV_MASK)
186 #define STM32_MDMA_CBRUR_SUV_MASK	GENMASK(15, 0)
187 #define STM32_MDMA_CBRUR_SUV(n)		STM32_MDMA_SET(n, \
188 						      STM32_MDMA_CBRUR_SUV_MASK)
189 
190 /* MDMA Channel x link address register */
191 #define STM32_MDMA_CLAR(x)		(0x64 + 0x40 * (x))
192 
193 /* MDMA Channel x trigger and bus selection register */
194 #define STM32_MDMA_CTBR(x)		(0x68 + 0x40 * (x))
195 #define STM32_MDMA_CTBR_DBUS		BIT(17)
196 #define STM32_MDMA_CTBR_SBUS		BIT(16)
197 #define STM32_MDMA_CTBR_TSEL_MASK	GENMASK(7, 0)
198 #define STM32_MDMA_CTBR_TSEL(n)		STM32_MDMA_SET(n, \
199 						      STM32_MDMA_CTBR_TSEL_MASK)
200 
201 /* MDMA Channel x mask address register */
202 #define STM32_MDMA_CMAR(x)		(0x70 + 0x40 * (x))
203 
204 /* MDMA Channel x mask data register */
205 #define STM32_MDMA_CMDR(x)		(0x74 + 0x40 * (x))
206 
207 #define STM32_MDMA_MAX_BUF_LEN		128
208 #define STM32_MDMA_MAX_BLOCK_LEN	65536
209 #define STM32_MDMA_MAX_CHANNELS		63
210 #define STM32_MDMA_MAX_REQUESTS		256
211 #define STM32_MDMA_MAX_BURST		128
212 #define STM32_MDMA_VERY_HIGH_PRIORITY	0x11
213 
214 enum stm32_mdma_trigger_mode {
215 	STM32_MDMA_BUFFER,
216 	STM32_MDMA_BLOCK,
217 	STM32_MDMA_BLOCK_REP,
218 	STM32_MDMA_LINKED_LIST,
219 };
220 
221 enum stm32_mdma_width {
222 	STM32_MDMA_BYTE,
223 	STM32_MDMA_HALF_WORD,
224 	STM32_MDMA_WORD,
225 	STM32_MDMA_DOUBLE_WORD,
226 };
227 
228 enum stm32_mdma_inc_mode {
229 	STM32_MDMA_FIXED = 0,
230 	STM32_MDMA_INC = 2,
231 	STM32_MDMA_DEC = 3,
232 };
233 
234 struct stm32_mdma_chan_config {
235 	u32 request;
236 	u32 priority_level;
237 	u32 transfer_config;
238 	u32 mask_addr;
239 	u32 mask_data;
240 };
241 
242 struct stm32_mdma_hwdesc {
243 	u32 ctcr;
244 	u32 cbndtr;
245 	u32 csar;
246 	u32 cdar;
247 	u32 cbrur;
248 	u32 clar;
249 	u32 ctbr;
250 	u32 dummy;
251 	u32 cmar;
252 	u32 cmdr;
253 } __aligned(64);
254 
255 struct stm32_mdma_desc_node {
256 	struct stm32_mdma_hwdesc *hwdesc;
257 	dma_addr_t hwdesc_phys;
258 };
259 
260 struct stm32_mdma_desc {
261 	struct virt_dma_desc vdesc;
262 	u32 ccr;
263 	bool cyclic;
264 	u32 count;
265 	struct stm32_mdma_desc_node node[];
266 };
267 
268 struct stm32_mdma_chan {
269 	struct virt_dma_chan vchan;
270 	struct dma_pool *desc_pool;
271 	u32 id;
272 	struct stm32_mdma_desc *desc;
273 	u32 curr_hwdesc;
274 	struct dma_slave_config dma_config;
275 	struct stm32_mdma_chan_config chan_config;
276 	bool busy;
277 	u32 mem_burst;
278 	u32 mem_width;
279 };
280 
281 struct stm32_mdma_device {
282 	struct dma_device ddev;
283 	void __iomem *base;
284 	struct clk *clk;
285 	int irq;
286 	struct reset_control *rst;
287 	u32 nr_channels;
288 	u32 nr_requests;
289 	u32 nr_ahb_addr_masks;
290 	struct stm32_mdma_chan chan[STM32_MDMA_MAX_CHANNELS];
291 	u32 ahb_addr_masks[];
292 };
293 
294 static struct stm32_mdma_device *stm32_mdma_get_dev(
295 	struct stm32_mdma_chan *chan)
296 {
297 	return container_of(chan->vchan.chan.device, struct stm32_mdma_device,
298 			    ddev);
299 }
300 
301 static struct stm32_mdma_chan *to_stm32_mdma_chan(struct dma_chan *c)
302 {
303 	return container_of(c, struct stm32_mdma_chan, vchan.chan);
304 }
305 
306 static struct stm32_mdma_desc *to_stm32_mdma_desc(struct virt_dma_desc *vdesc)
307 {
308 	return container_of(vdesc, struct stm32_mdma_desc, vdesc);
309 }
310 
311 static struct device *chan2dev(struct stm32_mdma_chan *chan)
312 {
313 	return &chan->vchan.chan.dev->device;
314 }
315 
316 static struct device *mdma2dev(struct stm32_mdma_device *mdma_dev)
317 {
318 	return mdma_dev->ddev.dev;
319 }
320 
321 static u32 stm32_mdma_read(struct stm32_mdma_device *dmadev, u32 reg)
322 {
323 	return readl_relaxed(dmadev->base + reg);
324 }
325 
326 static void stm32_mdma_write(struct stm32_mdma_device *dmadev, u32 reg, u32 val)
327 {
328 	writel_relaxed(val, dmadev->base + reg);
329 }
330 
331 static void stm32_mdma_set_bits(struct stm32_mdma_device *dmadev, u32 reg,
332 				u32 mask)
333 {
334 	void __iomem *addr = dmadev->base + reg;
335 
336 	writel_relaxed(readl_relaxed(addr) | mask, addr);
337 }
338 
339 static void stm32_mdma_clr_bits(struct stm32_mdma_device *dmadev, u32 reg,
340 				u32 mask)
341 {
342 	void __iomem *addr = dmadev->base + reg;
343 
344 	writel_relaxed(readl_relaxed(addr) & ~mask, addr);
345 }
346 
347 static struct stm32_mdma_desc *stm32_mdma_alloc_desc(
348 		struct stm32_mdma_chan *chan, u32 count)
349 {
350 	struct stm32_mdma_desc *desc;
351 	int i;
352 
353 	desc = kzalloc(offsetof(typeof(*desc), node[count]), GFP_NOWAIT);
354 	if (!desc)
355 		return NULL;
356 
357 	for (i = 0; i < count; i++) {
358 		desc->node[i].hwdesc =
359 			dma_pool_alloc(chan->desc_pool, GFP_NOWAIT,
360 				       &desc->node[i].hwdesc_phys);
361 		if (!desc->node[i].hwdesc)
362 			goto err;
363 	}
364 
365 	desc->count = count;
366 
367 	return desc;
368 
369 err:
370 	dev_err(chan2dev(chan), "Failed to allocate descriptor\n");
371 	while (--i >= 0)
372 		dma_pool_free(chan->desc_pool, desc->node[i].hwdesc,
373 			      desc->node[i].hwdesc_phys);
374 	kfree(desc);
375 	return NULL;
376 }
377 
378 static void stm32_mdma_desc_free(struct virt_dma_desc *vdesc)
379 {
380 	struct stm32_mdma_desc *desc = to_stm32_mdma_desc(vdesc);
381 	struct stm32_mdma_chan *chan = to_stm32_mdma_chan(vdesc->tx.chan);
382 	int i;
383 
384 	for (i = 0; i < desc->count; i++)
385 		dma_pool_free(chan->desc_pool, desc->node[i].hwdesc,
386 			      desc->node[i].hwdesc_phys);
387 	kfree(desc);
388 }
389 
390 static int stm32_mdma_get_width(struct stm32_mdma_chan *chan,
391 				enum dma_slave_buswidth width)
392 {
393 	switch (width) {
394 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
395 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
396 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
397 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
398 		return ffs(width) - 1;
399 	default:
400 		dev_err(chan2dev(chan), "Dma bus width %i not supported\n",
401 			width);
402 		return -EINVAL;
403 	}
404 }
405 
406 static enum dma_slave_buswidth stm32_mdma_get_max_width(dma_addr_t addr,
407 							u32 buf_len, u32 tlen)
408 {
409 	enum dma_slave_buswidth max_width = DMA_SLAVE_BUSWIDTH_8_BYTES;
410 
411 	for (max_width = DMA_SLAVE_BUSWIDTH_8_BYTES;
412 	     max_width > DMA_SLAVE_BUSWIDTH_1_BYTE;
413 	     max_width >>= 1) {
414 		/*
415 		 * Address and buffer length both have to be aligned on
416 		 * bus width
417 		 */
418 		if ((((buf_len | addr) & (max_width - 1)) == 0) &&
419 		    tlen >= max_width)
420 			break;
421 	}
422 
423 	return max_width;
424 }
425 
426 static u32 stm32_mdma_get_best_burst(u32 buf_len, u32 tlen, u32 max_burst,
427 				     enum dma_slave_buswidth width)
428 {
429 	u32 best_burst;
430 
431 	best_burst = min((u32)1 << __ffs(tlen | buf_len),
432 			 max_burst * width) / width;
433 
434 	return (best_burst > 0) ? best_burst : 1;
435 }
436 
437 static int stm32_mdma_disable_chan(struct stm32_mdma_chan *chan)
438 {
439 	struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
440 	u32 ccr, cisr, id, reg;
441 	int ret;
442 
443 	id = chan->id;
444 	reg = STM32_MDMA_CCR(id);
445 
446 	/* Disable interrupts */
447 	stm32_mdma_clr_bits(dmadev, reg, STM32_MDMA_CCR_IRQ_MASK);
448 
449 	ccr = stm32_mdma_read(dmadev, reg);
450 	if (ccr & STM32_MDMA_CCR_EN) {
451 		stm32_mdma_clr_bits(dmadev, reg, STM32_MDMA_CCR_EN);
452 
453 		/* Ensure that any ongoing transfer has been completed */
454 		ret = readl_relaxed_poll_timeout_atomic(
455 				dmadev->base + STM32_MDMA_CISR(id), cisr,
456 				(cisr & STM32_MDMA_CISR_CTCIF), 10, 1000);
457 		if (ret) {
458 			dev_err(chan2dev(chan), "%s: timeout!\n", __func__);
459 			return -EBUSY;
460 		}
461 	}
462 
463 	return 0;
464 }
465 
466 static void stm32_mdma_stop(struct stm32_mdma_chan *chan)
467 {
468 	struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
469 	u32 status;
470 	int ret;
471 
472 	/* Disable DMA */
473 	ret = stm32_mdma_disable_chan(chan);
474 	if (ret < 0)
475 		return;
476 
477 	/* Clear interrupt status if it is there */
478 	status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(chan->id));
479 	if (status) {
480 		dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
481 			__func__, status);
482 		stm32_mdma_set_bits(dmadev, STM32_MDMA_CIFCR(chan->id), status);
483 	}
484 
485 	chan->busy = false;
486 }
487 
488 static void stm32_mdma_set_bus(struct stm32_mdma_device *dmadev, u32 *ctbr,
489 			       u32 ctbr_mask, u32 src_addr)
490 {
491 	u32 mask;
492 	int i;
493 
494 	/* Check if memory device is on AHB or AXI */
495 	*ctbr &= ~ctbr_mask;
496 	mask = src_addr & 0xF0000000;
497 	for (i = 0; i < dmadev->nr_ahb_addr_masks; i++) {
498 		if (mask == dmadev->ahb_addr_masks[i]) {
499 			*ctbr |= ctbr_mask;
500 			break;
501 		}
502 	}
503 }
504 
505 static int stm32_mdma_set_xfer_param(struct stm32_mdma_chan *chan,
506 				     enum dma_transfer_direction direction,
507 				     u32 *mdma_ccr, u32 *mdma_ctcr,
508 				     u32 *mdma_ctbr, dma_addr_t addr,
509 				     u32 buf_len)
510 {
511 	struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
512 	struct stm32_mdma_chan_config *chan_config = &chan->chan_config;
513 	enum dma_slave_buswidth src_addr_width, dst_addr_width;
514 	phys_addr_t src_addr, dst_addr;
515 	int src_bus_width, dst_bus_width;
516 	u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
517 	u32 ccr, ctcr, ctbr, tlen;
518 
519 	src_addr_width = chan->dma_config.src_addr_width;
520 	dst_addr_width = chan->dma_config.dst_addr_width;
521 	src_maxburst = chan->dma_config.src_maxburst;
522 	dst_maxburst = chan->dma_config.dst_maxburst;
523 
524 	ccr = stm32_mdma_read(dmadev, STM32_MDMA_CCR(chan->id));
525 	ctcr = stm32_mdma_read(dmadev, STM32_MDMA_CTCR(chan->id));
526 	ctbr = stm32_mdma_read(dmadev, STM32_MDMA_CTBR(chan->id));
527 
528 	/* Enable HW request mode */
529 	ctcr &= ~STM32_MDMA_CTCR_SWRM;
530 
531 	/* Set DINC, SINC, DINCOS, SINCOS, TRGM and TLEN retrieve from DT */
532 	ctcr &= ~STM32_MDMA_CTCR_CFG_MASK;
533 	ctcr |= chan_config->transfer_config & STM32_MDMA_CTCR_CFG_MASK;
534 
535 	/*
536 	 * For buffer transfer length (TLEN) we have to set
537 	 * the number of bytes - 1 in CTCR register
538 	 */
539 	tlen = STM32_MDMA_CTCR_LEN2_GET(ctcr);
540 	ctcr &= ~STM32_MDMA_CTCR_LEN2_MSK;
541 	ctcr |= STM32_MDMA_CTCR_TLEN((tlen - 1));
542 
543 	/* Disable Pack Enable */
544 	ctcr &= ~STM32_MDMA_CTCR_PKE;
545 
546 	/* Check burst size constraints */
547 	if (src_maxburst * src_addr_width > STM32_MDMA_MAX_BURST ||
548 	    dst_maxburst * dst_addr_width > STM32_MDMA_MAX_BURST) {
549 		dev_err(chan2dev(chan),
550 			"burst size * bus width higher than %d bytes\n",
551 			STM32_MDMA_MAX_BURST);
552 		return -EINVAL;
553 	}
554 
555 	if ((!is_power_of_2(src_maxburst) && src_maxburst > 0) ||
556 	    (!is_power_of_2(dst_maxburst) && dst_maxburst > 0)) {
557 		dev_err(chan2dev(chan), "burst size must be a power of 2\n");
558 		return -EINVAL;
559 	}
560 
561 	/*
562 	 * Configure channel control:
563 	 * - Clear SW request as in this case this is a HW one
564 	 * - Clear WEX, HEX and BEX bits
565 	 * - Set priority level
566 	 */
567 	ccr &= ~(STM32_MDMA_CCR_SWRQ | STM32_MDMA_CCR_WEX | STM32_MDMA_CCR_HEX |
568 		 STM32_MDMA_CCR_BEX | STM32_MDMA_CCR_PL_MASK);
569 	ccr |= STM32_MDMA_CCR_PL(chan_config->priority_level);
570 
571 	/* Configure Trigger selection */
572 	ctbr &= ~STM32_MDMA_CTBR_TSEL_MASK;
573 	ctbr |= STM32_MDMA_CTBR_TSEL(chan_config->request);
574 
575 	switch (direction) {
576 	case DMA_MEM_TO_DEV:
577 		dst_addr = chan->dma_config.dst_addr;
578 
579 		/* Set device data size */
580 		dst_bus_width = stm32_mdma_get_width(chan, dst_addr_width);
581 		if (dst_bus_width < 0)
582 			return dst_bus_width;
583 		ctcr &= ~STM32_MDMA_CTCR_DSIZE_MASK;
584 		ctcr |= STM32_MDMA_CTCR_DSIZE(dst_bus_width);
585 
586 		/* Set device burst value */
587 		dst_best_burst = stm32_mdma_get_best_burst(buf_len, tlen,
588 							   dst_maxburst,
589 							   dst_addr_width);
590 		chan->mem_burst = dst_best_burst;
591 		ctcr &= ~STM32_MDMA_CTCR_DBURST_MASK;
592 		ctcr |= STM32_MDMA_CTCR_DBURST((ilog2(dst_best_burst)));
593 
594 		/* Set memory data size */
595 		src_addr_width = stm32_mdma_get_max_width(addr, buf_len, tlen);
596 		chan->mem_width = src_addr_width;
597 		src_bus_width = stm32_mdma_get_width(chan, src_addr_width);
598 		if (src_bus_width < 0)
599 			return src_bus_width;
600 		ctcr &= ~STM32_MDMA_CTCR_SSIZE_MASK |
601 			STM32_MDMA_CTCR_SINCOS_MASK;
602 		ctcr |= STM32_MDMA_CTCR_SSIZE(src_bus_width) |
603 			STM32_MDMA_CTCR_SINCOS(src_bus_width);
604 
605 		/* Set memory burst value */
606 		src_maxburst = STM32_MDMA_MAX_BUF_LEN / src_addr_width;
607 		src_best_burst = stm32_mdma_get_best_burst(buf_len, tlen,
608 							   src_maxburst,
609 							   src_addr_width);
610 		chan->mem_burst = src_best_burst;
611 		ctcr &= ~STM32_MDMA_CTCR_SBURST_MASK;
612 		ctcr |= STM32_MDMA_CTCR_SBURST((ilog2(src_best_burst)));
613 
614 		/* Select bus */
615 		stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS,
616 				   dst_addr);
617 
618 		if (dst_bus_width != src_bus_width)
619 			ctcr |= STM32_MDMA_CTCR_PKE;
620 
621 		/* Set destination address */
622 		stm32_mdma_write(dmadev, STM32_MDMA_CDAR(chan->id), dst_addr);
623 		break;
624 
625 	case DMA_DEV_TO_MEM:
626 		src_addr = chan->dma_config.src_addr;
627 
628 		/* Set device data size */
629 		src_bus_width = stm32_mdma_get_width(chan, src_addr_width);
630 		if (src_bus_width < 0)
631 			return src_bus_width;
632 		ctcr &= ~STM32_MDMA_CTCR_SSIZE_MASK;
633 		ctcr |= STM32_MDMA_CTCR_SSIZE(src_bus_width);
634 
635 		/* Set device burst value */
636 		src_best_burst = stm32_mdma_get_best_burst(buf_len, tlen,
637 							   src_maxburst,
638 							   src_addr_width);
639 		ctcr &= ~STM32_MDMA_CTCR_SBURST_MASK;
640 		ctcr |= STM32_MDMA_CTCR_SBURST((ilog2(src_best_burst)));
641 
642 		/* Set memory data size */
643 		dst_addr_width = stm32_mdma_get_max_width(addr, buf_len, tlen);
644 		chan->mem_width = dst_addr_width;
645 		dst_bus_width = stm32_mdma_get_width(chan, dst_addr_width);
646 		if (dst_bus_width < 0)
647 			return dst_bus_width;
648 		ctcr &= ~(STM32_MDMA_CTCR_DSIZE_MASK |
649 			STM32_MDMA_CTCR_DINCOS_MASK);
650 		ctcr |= STM32_MDMA_CTCR_DSIZE(dst_bus_width) |
651 			STM32_MDMA_CTCR_DINCOS(dst_bus_width);
652 
653 		/* Set memory burst value */
654 		dst_maxburst = STM32_MDMA_MAX_BUF_LEN / dst_addr_width;
655 		dst_best_burst = stm32_mdma_get_best_burst(buf_len, tlen,
656 							   dst_maxburst,
657 							   dst_addr_width);
658 		ctcr &= ~STM32_MDMA_CTCR_DBURST_MASK;
659 		ctcr |= STM32_MDMA_CTCR_DBURST((ilog2(dst_best_burst)));
660 
661 		/* Select bus */
662 		stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS,
663 				   src_addr);
664 
665 		if (dst_bus_width != src_bus_width)
666 			ctcr |= STM32_MDMA_CTCR_PKE;
667 
668 		/* Set source address */
669 		stm32_mdma_write(dmadev, STM32_MDMA_CSAR(chan->id), src_addr);
670 		break;
671 
672 	default:
673 		dev_err(chan2dev(chan), "Dma direction is not supported\n");
674 		return -EINVAL;
675 	}
676 
677 	*mdma_ccr = ccr;
678 	*mdma_ctcr = ctcr;
679 	*mdma_ctbr = ctbr;
680 
681 	return 0;
682 }
683 
684 static void stm32_mdma_dump_hwdesc(struct stm32_mdma_chan *chan,
685 				   struct stm32_mdma_desc_node *node)
686 {
687 	dev_dbg(chan2dev(chan), "hwdesc:  %pad\n", &node->hwdesc_phys);
688 	dev_dbg(chan2dev(chan), "CTCR:    0x%08x\n", node->hwdesc->ctcr);
689 	dev_dbg(chan2dev(chan), "CBNDTR:  0x%08x\n", node->hwdesc->cbndtr);
690 	dev_dbg(chan2dev(chan), "CSAR:    0x%08x\n", node->hwdesc->csar);
691 	dev_dbg(chan2dev(chan), "CDAR:    0x%08x\n", node->hwdesc->cdar);
692 	dev_dbg(chan2dev(chan), "CBRUR:   0x%08x\n", node->hwdesc->cbrur);
693 	dev_dbg(chan2dev(chan), "CLAR:    0x%08x\n", node->hwdesc->clar);
694 	dev_dbg(chan2dev(chan), "CTBR:    0x%08x\n", node->hwdesc->ctbr);
695 	dev_dbg(chan2dev(chan), "CMAR:    0x%08x\n", node->hwdesc->cmar);
696 	dev_dbg(chan2dev(chan), "CMDR:    0x%08x\n\n", node->hwdesc->cmdr);
697 }
698 
699 static void stm32_mdma_setup_hwdesc(struct stm32_mdma_chan *chan,
700 				    struct stm32_mdma_desc *desc,
701 				    enum dma_transfer_direction dir, u32 count,
702 				    dma_addr_t src_addr, dma_addr_t dst_addr,
703 				    u32 len, u32 ctcr, u32 ctbr, bool is_last,
704 				    bool is_first, bool is_cyclic)
705 {
706 	struct stm32_mdma_chan_config *config = &chan->chan_config;
707 	struct stm32_mdma_hwdesc *hwdesc;
708 	u32 next = count + 1;
709 
710 	hwdesc = desc->node[count].hwdesc;
711 	hwdesc->ctcr = ctcr;
712 	hwdesc->cbndtr &= ~(STM32_MDMA_CBNDTR_BRC_MK |
713 			STM32_MDMA_CBNDTR_BRDUM |
714 			STM32_MDMA_CBNDTR_BRSUM |
715 			STM32_MDMA_CBNDTR_BNDT_MASK);
716 	hwdesc->cbndtr |= STM32_MDMA_CBNDTR_BNDT(len);
717 	hwdesc->csar = src_addr;
718 	hwdesc->cdar = dst_addr;
719 	hwdesc->cbrur = 0;
720 	hwdesc->ctbr = ctbr;
721 	hwdesc->cmar = config->mask_addr;
722 	hwdesc->cmdr = config->mask_data;
723 
724 	if (is_last) {
725 		if (is_cyclic)
726 			hwdesc->clar = desc->node[0].hwdesc_phys;
727 		else
728 			hwdesc->clar = 0;
729 	} else {
730 		hwdesc->clar = desc->node[next].hwdesc_phys;
731 	}
732 
733 	stm32_mdma_dump_hwdesc(chan, &desc->node[count]);
734 }
735 
736 static int stm32_mdma_setup_xfer(struct stm32_mdma_chan *chan,
737 				 struct stm32_mdma_desc *desc,
738 				 struct scatterlist *sgl, u32 sg_len,
739 				 enum dma_transfer_direction direction)
740 {
741 	struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
742 	struct dma_slave_config *dma_config = &chan->dma_config;
743 	struct scatterlist *sg;
744 	dma_addr_t src_addr, dst_addr;
745 	u32 ccr, ctcr, ctbr;
746 	int i, ret = 0;
747 
748 	for_each_sg(sgl, sg, sg_len, i) {
749 		if (sg_dma_len(sg) > STM32_MDMA_MAX_BLOCK_LEN) {
750 			dev_err(chan2dev(chan), "Invalid block len\n");
751 			return -EINVAL;
752 		}
753 
754 		if (direction == DMA_MEM_TO_DEV) {
755 			src_addr = sg_dma_address(sg);
756 			dst_addr = dma_config->dst_addr;
757 			ret = stm32_mdma_set_xfer_param(chan, direction, &ccr,
758 							&ctcr, &ctbr, src_addr,
759 							sg_dma_len(sg));
760 			stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS,
761 					   src_addr);
762 		} else {
763 			src_addr = dma_config->src_addr;
764 			dst_addr = sg_dma_address(sg);
765 			ret = stm32_mdma_set_xfer_param(chan, direction, &ccr,
766 							&ctcr, &ctbr, dst_addr,
767 							sg_dma_len(sg));
768 			stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS,
769 					   dst_addr);
770 		}
771 
772 		if (ret < 0)
773 			return ret;
774 
775 		stm32_mdma_setup_hwdesc(chan, desc, direction, i, src_addr,
776 					dst_addr, sg_dma_len(sg), ctcr, ctbr,
777 					i == sg_len - 1, i == 0, false);
778 	}
779 
780 	/* Enable interrupts */
781 	ccr &= ~STM32_MDMA_CCR_IRQ_MASK;
782 	ccr |= STM32_MDMA_CCR_TEIE | STM32_MDMA_CCR_CTCIE;
783 	if (sg_len > 1)
784 		ccr |= STM32_MDMA_CCR_BTIE;
785 	desc->ccr = ccr;
786 
787 	return 0;
788 }
789 
790 static struct dma_async_tx_descriptor *
791 stm32_mdma_prep_slave_sg(struct dma_chan *c, struct scatterlist *sgl,
792 			 u32 sg_len, enum dma_transfer_direction direction,
793 			 unsigned long flags, void *context)
794 {
795 	struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
796 	struct stm32_mdma_desc *desc;
797 	int i, ret;
798 
799 	/*
800 	 * Once DMA is in setup cyclic mode the channel we cannot assign this
801 	 * channel anymore. The DMA channel needs to be aborted or terminated
802 	 * for allowing another request.
803 	 */
804 	if (chan->desc && chan->desc->cyclic) {
805 		dev_err(chan2dev(chan),
806 			"Request not allowed when dma in cyclic mode\n");
807 		return NULL;
808 	}
809 
810 	desc = stm32_mdma_alloc_desc(chan, sg_len);
811 	if (!desc)
812 		return NULL;
813 
814 	ret = stm32_mdma_setup_xfer(chan, desc, sgl, sg_len, direction);
815 	if (ret < 0)
816 		goto xfer_setup_err;
817 
818 	desc->cyclic = false;
819 
820 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
821 
822 xfer_setup_err:
823 	for (i = 0; i < desc->count; i++)
824 		dma_pool_free(chan->desc_pool, desc->node[i].hwdesc,
825 			      desc->node[i].hwdesc_phys);
826 	kfree(desc);
827 	return NULL;
828 }
829 
830 static struct dma_async_tx_descriptor *
831 stm32_mdma_prep_dma_cyclic(struct dma_chan *c, dma_addr_t buf_addr,
832 			   size_t buf_len, size_t period_len,
833 			   enum dma_transfer_direction direction,
834 			   unsigned long flags)
835 {
836 	struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
837 	struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
838 	struct dma_slave_config *dma_config = &chan->dma_config;
839 	struct stm32_mdma_desc *desc;
840 	dma_addr_t src_addr, dst_addr;
841 	u32 ccr, ctcr, ctbr, count;
842 	int i, ret;
843 
844 	/*
845 	 * Once DMA is in setup cyclic mode the channel we cannot assign this
846 	 * channel anymore. The DMA channel needs to be aborted or terminated
847 	 * for allowing another request.
848 	 */
849 	if (chan->desc && chan->desc->cyclic) {
850 		dev_err(chan2dev(chan),
851 			"Request not allowed when dma in cyclic mode\n");
852 		return NULL;
853 	}
854 
855 	if (!buf_len || !period_len || period_len > STM32_MDMA_MAX_BLOCK_LEN) {
856 		dev_err(chan2dev(chan), "Invalid buffer/period len\n");
857 		return NULL;
858 	}
859 
860 	if (buf_len % period_len) {
861 		dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
862 		return NULL;
863 	}
864 
865 	count = buf_len / period_len;
866 
867 	desc = stm32_mdma_alloc_desc(chan, count);
868 	if (!desc)
869 		return NULL;
870 
871 	/* Select bus */
872 	if (direction == DMA_MEM_TO_DEV) {
873 		src_addr = buf_addr;
874 		ret = stm32_mdma_set_xfer_param(chan, direction, &ccr, &ctcr,
875 						&ctbr, src_addr, period_len);
876 		stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS,
877 				   src_addr);
878 	} else {
879 		dst_addr = buf_addr;
880 		ret = stm32_mdma_set_xfer_param(chan, direction, &ccr, &ctcr,
881 						&ctbr, dst_addr, period_len);
882 		stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS,
883 				   dst_addr);
884 	}
885 
886 	if (ret < 0)
887 		goto xfer_setup_err;
888 
889 	/* Enable interrupts */
890 	ccr &= ~STM32_MDMA_CCR_IRQ_MASK;
891 	ccr |= STM32_MDMA_CCR_TEIE | STM32_MDMA_CCR_CTCIE | STM32_MDMA_CCR_BTIE;
892 	desc->ccr = ccr;
893 
894 	/* Configure hwdesc list */
895 	for (i = 0; i < count; i++) {
896 		if (direction == DMA_MEM_TO_DEV) {
897 			src_addr = buf_addr + i * period_len;
898 			dst_addr = dma_config->dst_addr;
899 		} else {
900 			src_addr = dma_config->src_addr;
901 			dst_addr = buf_addr + i * period_len;
902 		}
903 
904 		stm32_mdma_setup_hwdesc(chan, desc, direction, i, src_addr,
905 					dst_addr, period_len, ctcr, ctbr,
906 					i == count - 1, i == 0, true);
907 	}
908 
909 	desc->cyclic = true;
910 
911 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
912 
913 xfer_setup_err:
914 	for (i = 0; i < desc->count; i++)
915 		dma_pool_free(chan->desc_pool, desc->node[i].hwdesc,
916 			      desc->node[i].hwdesc_phys);
917 	kfree(desc);
918 	return NULL;
919 }
920 
921 static struct dma_async_tx_descriptor *
922 stm32_mdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest, dma_addr_t src,
923 			   size_t len, unsigned long flags)
924 {
925 	struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
926 	struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
927 	enum dma_slave_buswidth max_width;
928 	struct stm32_mdma_desc *desc;
929 	struct stm32_mdma_hwdesc *hwdesc;
930 	u32 ccr, ctcr, ctbr, cbndtr, count, max_burst, mdma_burst;
931 	u32 best_burst, tlen;
932 	size_t xfer_count, offset;
933 	int src_bus_width, dst_bus_width;
934 	int i;
935 
936 	/*
937 	 * Once DMA is in setup cyclic mode the channel we cannot assign this
938 	 * channel anymore. The DMA channel needs to be aborted or terminated
939 	 * to allow another request
940 	 */
941 	if (chan->desc && chan->desc->cyclic) {
942 		dev_err(chan2dev(chan),
943 			"Request not allowed when dma in cyclic mode\n");
944 		return NULL;
945 	}
946 
947 	count = DIV_ROUND_UP(len, STM32_MDMA_MAX_BLOCK_LEN);
948 	desc = stm32_mdma_alloc_desc(chan, count);
949 	if (!desc)
950 		return NULL;
951 
952 	ccr = stm32_mdma_read(dmadev, STM32_MDMA_CCR(chan->id));
953 	ctcr = stm32_mdma_read(dmadev, STM32_MDMA_CTCR(chan->id));
954 	ctbr = stm32_mdma_read(dmadev, STM32_MDMA_CTBR(chan->id));
955 	cbndtr = stm32_mdma_read(dmadev, STM32_MDMA_CBNDTR(chan->id));
956 
957 	/* Enable sw req, some interrupts and clear other bits */
958 	ccr &= ~(STM32_MDMA_CCR_WEX | STM32_MDMA_CCR_HEX |
959 		 STM32_MDMA_CCR_BEX | STM32_MDMA_CCR_PL_MASK |
960 		 STM32_MDMA_CCR_IRQ_MASK);
961 	ccr |= STM32_MDMA_CCR_TEIE;
962 
963 	/* Enable SW request mode, dest/src inc and clear other bits */
964 	ctcr &= ~(STM32_MDMA_CTCR_BWM | STM32_MDMA_CTCR_TRGM_MSK |
965 		  STM32_MDMA_CTCR_PAM_MASK | STM32_MDMA_CTCR_PKE |
966 		  STM32_MDMA_CTCR_TLEN_MSK | STM32_MDMA_CTCR_DBURST_MASK |
967 		  STM32_MDMA_CTCR_SBURST_MASK | STM32_MDMA_CTCR_DINCOS_MASK |
968 		  STM32_MDMA_CTCR_SINCOS_MASK | STM32_MDMA_CTCR_DSIZE_MASK |
969 		  STM32_MDMA_CTCR_SSIZE_MASK | STM32_MDMA_CTCR_DINC_MASK |
970 		  STM32_MDMA_CTCR_SINC_MASK);
971 	ctcr |= STM32_MDMA_CTCR_SWRM | STM32_MDMA_CTCR_SINC(STM32_MDMA_INC) |
972 		STM32_MDMA_CTCR_DINC(STM32_MDMA_INC);
973 
974 	/* Reset HW request */
975 	ctbr &= ~STM32_MDMA_CTBR_TSEL_MASK;
976 
977 	/* Select bus */
978 	stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS, src);
979 	stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS, dest);
980 
981 	/* Clear CBNDTR registers */
982 	cbndtr &= ~(STM32_MDMA_CBNDTR_BRC_MK | STM32_MDMA_CBNDTR_BRDUM |
983 			STM32_MDMA_CBNDTR_BRSUM | STM32_MDMA_CBNDTR_BNDT_MASK);
984 
985 	if (len <= STM32_MDMA_MAX_BLOCK_LEN) {
986 		cbndtr |= STM32_MDMA_CBNDTR_BNDT(len);
987 		if (len <= STM32_MDMA_MAX_BUF_LEN) {
988 			/* Setup a buffer transfer */
989 			ccr |= STM32_MDMA_CCR_TCIE | STM32_MDMA_CCR_CTCIE;
990 			ctcr |= STM32_MDMA_CTCR_TRGM(STM32_MDMA_BUFFER);
991 		} else {
992 			/* Setup a block transfer */
993 			ccr |= STM32_MDMA_CCR_BTIE | STM32_MDMA_CCR_CTCIE;
994 			ctcr |= STM32_MDMA_CTCR_TRGM(STM32_MDMA_BLOCK);
995 		}
996 
997 		tlen = STM32_MDMA_MAX_BUF_LEN;
998 		ctcr |= STM32_MDMA_CTCR_TLEN((tlen - 1));
999 
1000 		/* Set source best burst size */
1001 		max_width = stm32_mdma_get_max_width(src, len, tlen);
1002 		src_bus_width = stm32_mdma_get_width(chan, max_width);
1003 
1004 		max_burst = tlen / max_width;
1005 		best_burst = stm32_mdma_get_best_burst(len, tlen, max_burst,
1006 						       max_width);
1007 		mdma_burst = ilog2(best_burst);
1008 
1009 		ctcr |= STM32_MDMA_CTCR_SBURST(mdma_burst) |
1010 			STM32_MDMA_CTCR_SSIZE(src_bus_width) |
1011 			STM32_MDMA_CTCR_SINCOS(src_bus_width);
1012 
1013 		/* Set destination best burst size */
1014 		max_width = stm32_mdma_get_max_width(dest, len, tlen);
1015 		dst_bus_width = stm32_mdma_get_width(chan, max_width);
1016 
1017 		max_burst = tlen / max_width;
1018 		best_burst = stm32_mdma_get_best_burst(len, tlen, max_burst,
1019 						       max_width);
1020 		mdma_burst = ilog2(best_burst);
1021 
1022 		ctcr |= STM32_MDMA_CTCR_DBURST(mdma_burst) |
1023 			STM32_MDMA_CTCR_DSIZE(dst_bus_width) |
1024 			STM32_MDMA_CTCR_DINCOS(dst_bus_width);
1025 
1026 		if (dst_bus_width != src_bus_width)
1027 			ctcr |= STM32_MDMA_CTCR_PKE;
1028 
1029 		/* Prepare hardware descriptor */
1030 		hwdesc = desc->node[0].hwdesc;
1031 		hwdesc->ctcr = ctcr;
1032 		hwdesc->cbndtr = cbndtr;
1033 		hwdesc->csar = src;
1034 		hwdesc->cdar = dest;
1035 		hwdesc->cbrur = 0;
1036 		hwdesc->clar = 0;
1037 		hwdesc->ctbr = ctbr;
1038 		hwdesc->cmar = 0;
1039 		hwdesc->cmdr = 0;
1040 
1041 		stm32_mdma_dump_hwdesc(chan, &desc->node[0]);
1042 	} else {
1043 		/* Setup a LLI transfer */
1044 		ctcr |= STM32_MDMA_CTCR_TRGM(STM32_MDMA_LINKED_LIST) |
1045 			STM32_MDMA_CTCR_TLEN((STM32_MDMA_MAX_BUF_LEN - 1));
1046 		ccr |= STM32_MDMA_CCR_BTIE | STM32_MDMA_CCR_CTCIE;
1047 		tlen = STM32_MDMA_MAX_BUF_LEN;
1048 
1049 		for (i = 0, offset = 0; offset < len;
1050 		     i++, offset += xfer_count) {
1051 			xfer_count = min_t(size_t, len - offset,
1052 					   STM32_MDMA_MAX_BLOCK_LEN);
1053 
1054 			/* Set source best burst size */
1055 			max_width = stm32_mdma_get_max_width(src, len, tlen);
1056 			src_bus_width = stm32_mdma_get_width(chan, max_width);
1057 
1058 			max_burst = tlen / max_width;
1059 			best_burst = stm32_mdma_get_best_burst(len, tlen,
1060 							       max_burst,
1061 							       max_width);
1062 			mdma_burst = ilog2(best_burst);
1063 
1064 			ctcr |= STM32_MDMA_CTCR_SBURST(mdma_burst) |
1065 				STM32_MDMA_CTCR_SSIZE(src_bus_width) |
1066 				STM32_MDMA_CTCR_SINCOS(src_bus_width);
1067 
1068 			/* Set destination best burst size */
1069 			max_width = stm32_mdma_get_max_width(dest, len, tlen);
1070 			dst_bus_width = stm32_mdma_get_width(chan, max_width);
1071 
1072 			max_burst = tlen / max_width;
1073 			best_burst = stm32_mdma_get_best_burst(len, tlen,
1074 							       max_burst,
1075 							       max_width);
1076 			mdma_burst = ilog2(best_burst);
1077 
1078 			ctcr |= STM32_MDMA_CTCR_DBURST(mdma_burst) |
1079 				STM32_MDMA_CTCR_DSIZE(dst_bus_width) |
1080 				STM32_MDMA_CTCR_DINCOS(dst_bus_width);
1081 
1082 			if (dst_bus_width != src_bus_width)
1083 				ctcr |= STM32_MDMA_CTCR_PKE;
1084 
1085 			/* Prepare hardware descriptor */
1086 			stm32_mdma_setup_hwdesc(chan, desc, DMA_MEM_TO_MEM, i,
1087 						src + offset, dest + offset,
1088 						xfer_count, ctcr, ctbr,
1089 						i == count - 1, i == 0, false);
1090 		}
1091 	}
1092 
1093 	desc->ccr = ccr;
1094 
1095 	desc->cyclic = false;
1096 
1097 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1098 }
1099 
1100 static void stm32_mdma_dump_reg(struct stm32_mdma_chan *chan)
1101 {
1102 	struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
1103 
1104 	dev_dbg(chan2dev(chan), "CCR:     0x%08x\n",
1105 		stm32_mdma_read(dmadev, STM32_MDMA_CCR(chan->id)));
1106 	dev_dbg(chan2dev(chan), "CTCR:    0x%08x\n",
1107 		stm32_mdma_read(dmadev, STM32_MDMA_CTCR(chan->id)));
1108 	dev_dbg(chan2dev(chan), "CBNDTR:  0x%08x\n",
1109 		stm32_mdma_read(dmadev, STM32_MDMA_CBNDTR(chan->id)));
1110 	dev_dbg(chan2dev(chan), "CSAR:    0x%08x\n",
1111 		stm32_mdma_read(dmadev, STM32_MDMA_CSAR(chan->id)));
1112 	dev_dbg(chan2dev(chan), "CDAR:    0x%08x\n",
1113 		stm32_mdma_read(dmadev, STM32_MDMA_CDAR(chan->id)));
1114 	dev_dbg(chan2dev(chan), "CBRUR:   0x%08x\n",
1115 		stm32_mdma_read(dmadev, STM32_MDMA_CBRUR(chan->id)));
1116 	dev_dbg(chan2dev(chan), "CLAR:    0x%08x\n",
1117 		stm32_mdma_read(dmadev, STM32_MDMA_CLAR(chan->id)));
1118 	dev_dbg(chan2dev(chan), "CTBR:    0x%08x\n",
1119 		stm32_mdma_read(dmadev, STM32_MDMA_CTBR(chan->id)));
1120 	dev_dbg(chan2dev(chan), "CMAR:    0x%08x\n",
1121 		stm32_mdma_read(dmadev, STM32_MDMA_CMAR(chan->id)));
1122 	dev_dbg(chan2dev(chan), "CMDR:    0x%08x\n",
1123 		stm32_mdma_read(dmadev, STM32_MDMA_CMDR(chan->id)));
1124 }
1125 
1126 static void stm32_mdma_start_transfer(struct stm32_mdma_chan *chan)
1127 {
1128 	struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
1129 	struct virt_dma_desc *vdesc;
1130 	struct stm32_mdma_hwdesc *hwdesc;
1131 	u32 id = chan->id;
1132 	u32 status, reg;
1133 
1134 	vdesc = vchan_next_desc(&chan->vchan);
1135 	if (!vdesc) {
1136 		chan->desc = NULL;
1137 		return;
1138 	}
1139 
1140 	chan->desc = to_stm32_mdma_desc(vdesc);
1141 	hwdesc = chan->desc->node[0].hwdesc;
1142 	chan->curr_hwdesc = 0;
1143 
1144 	stm32_mdma_write(dmadev, STM32_MDMA_CCR(id), chan->desc->ccr);
1145 	stm32_mdma_write(dmadev, STM32_MDMA_CTCR(id), hwdesc->ctcr);
1146 	stm32_mdma_write(dmadev, STM32_MDMA_CBNDTR(id), hwdesc->cbndtr);
1147 	stm32_mdma_write(dmadev, STM32_MDMA_CSAR(id), hwdesc->csar);
1148 	stm32_mdma_write(dmadev, STM32_MDMA_CDAR(id), hwdesc->cdar);
1149 	stm32_mdma_write(dmadev, STM32_MDMA_CBRUR(id), hwdesc->cbrur);
1150 	stm32_mdma_write(dmadev, STM32_MDMA_CLAR(id), hwdesc->clar);
1151 	stm32_mdma_write(dmadev, STM32_MDMA_CTBR(id), hwdesc->ctbr);
1152 	stm32_mdma_write(dmadev, STM32_MDMA_CMAR(id), hwdesc->cmar);
1153 	stm32_mdma_write(dmadev, STM32_MDMA_CMDR(id), hwdesc->cmdr);
1154 
1155 	/* Clear interrupt status if it is there */
1156 	status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(id));
1157 	if (status)
1158 		stm32_mdma_set_bits(dmadev, STM32_MDMA_CIFCR(id), status);
1159 
1160 	stm32_mdma_dump_reg(chan);
1161 
1162 	/* Start DMA */
1163 	stm32_mdma_set_bits(dmadev, STM32_MDMA_CCR(id), STM32_MDMA_CCR_EN);
1164 
1165 	/* Set SW request in case of MEM2MEM transfer */
1166 	if (hwdesc->ctcr & STM32_MDMA_CTCR_SWRM) {
1167 		reg = STM32_MDMA_CCR(id);
1168 		stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CCR_SWRQ);
1169 	}
1170 
1171 	chan->busy = true;
1172 
1173 	dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
1174 }
1175 
1176 static void stm32_mdma_issue_pending(struct dma_chan *c)
1177 {
1178 	struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
1179 	unsigned long flags;
1180 
1181 	spin_lock_irqsave(&chan->vchan.lock, flags);
1182 
1183 	if (!vchan_issue_pending(&chan->vchan))
1184 		goto end;
1185 
1186 	dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
1187 
1188 	if (!chan->desc && !chan->busy)
1189 		stm32_mdma_start_transfer(chan);
1190 
1191 end:
1192 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
1193 }
1194 
1195 static int stm32_mdma_pause(struct dma_chan *c)
1196 {
1197 	struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
1198 	unsigned long flags;
1199 	int ret;
1200 
1201 	spin_lock_irqsave(&chan->vchan.lock, flags);
1202 	ret = stm32_mdma_disable_chan(chan);
1203 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
1204 
1205 	if (!ret)
1206 		dev_dbg(chan2dev(chan), "vchan %pK: pause\n", &chan->vchan);
1207 
1208 	return ret;
1209 }
1210 
1211 static int stm32_mdma_resume(struct dma_chan *c)
1212 {
1213 	struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
1214 	struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
1215 	struct stm32_mdma_hwdesc *hwdesc;
1216 	unsigned long flags;
1217 	u32 status, reg;
1218 
1219 	hwdesc = chan->desc->node[chan->curr_hwdesc].hwdesc;
1220 
1221 	spin_lock_irqsave(&chan->vchan.lock, flags);
1222 
1223 	/* Re-configure control register */
1224 	stm32_mdma_write(dmadev, STM32_MDMA_CCR(chan->id), chan->desc->ccr);
1225 
1226 	/* Clear interrupt status if it is there */
1227 	status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(chan->id));
1228 	if (status)
1229 		stm32_mdma_set_bits(dmadev, STM32_MDMA_CIFCR(chan->id), status);
1230 
1231 	stm32_mdma_dump_reg(chan);
1232 
1233 	/* Re-start DMA */
1234 	reg = STM32_MDMA_CCR(chan->id);
1235 	stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CCR_EN);
1236 
1237 	/* Set SW request in case of MEM2MEM transfer */
1238 	if (hwdesc->ctcr & STM32_MDMA_CTCR_SWRM)
1239 		stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CCR_SWRQ);
1240 
1241 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
1242 
1243 	dev_dbg(chan2dev(chan), "vchan %pK: resume\n", &chan->vchan);
1244 
1245 	return 0;
1246 }
1247 
1248 static int stm32_mdma_terminate_all(struct dma_chan *c)
1249 {
1250 	struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
1251 	unsigned long flags;
1252 	LIST_HEAD(head);
1253 
1254 	spin_lock_irqsave(&chan->vchan.lock, flags);
1255 	if (chan->busy) {
1256 		stm32_mdma_stop(chan);
1257 		chan->desc = NULL;
1258 	}
1259 	vchan_get_all_descriptors(&chan->vchan, &head);
1260 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
1261 
1262 	vchan_dma_desc_free_list(&chan->vchan, &head);
1263 
1264 	return 0;
1265 }
1266 
1267 static void stm32_mdma_synchronize(struct dma_chan *c)
1268 {
1269 	struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
1270 
1271 	vchan_synchronize(&chan->vchan);
1272 }
1273 
1274 static int stm32_mdma_slave_config(struct dma_chan *c,
1275 				   struct dma_slave_config *config)
1276 {
1277 	struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
1278 
1279 	memcpy(&chan->dma_config, config, sizeof(*config));
1280 
1281 	return 0;
1282 }
1283 
1284 static size_t stm32_mdma_desc_residue(struct stm32_mdma_chan *chan,
1285 				      struct stm32_mdma_desc *desc,
1286 				      u32 curr_hwdesc)
1287 {
1288 	struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
1289 	struct stm32_mdma_hwdesc *hwdesc = desc->node[0].hwdesc;
1290 	u32 cbndtr, residue, modulo, burst_size;
1291 	int i;
1292 
1293 	residue = 0;
1294 	for (i = curr_hwdesc + 1; i < desc->count; i++) {
1295 		hwdesc = desc->node[i].hwdesc;
1296 		residue += STM32_MDMA_CBNDTR_BNDT(hwdesc->cbndtr);
1297 	}
1298 	cbndtr = stm32_mdma_read(dmadev, STM32_MDMA_CBNDTR(chan->id));
1299 	residue += cbndtr & STM32_MDMA_CBNDTR_BNDT_MASK;
1300 
1301 	if (!chan->mem_burst)
1302 		return residue;
1303 
1304 	burst_size = chan->mem_burst * chan->mem_width;
1305 	modulo = residue % burst_size;
1306 	if (modulo)
1307 		residue = residue - modulo + burst_size;
1308 
1309 	return residue;
1310 }
1311 
1312 static enum dma_status stm32_mdma_tx_status(struct dma_chan *c,
1313 					    dma_cookie_t cookie,
1314 					    struct dma_tx_state *state)
1315 {
1316 	struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
1317 	struct virt_dma_desc *vdesc;
1318 	enum dma_status status;
1319 	unsigned long flags;
1320 	u32 residue = 0;
1321 
1322 	status = dma_cookie_status(c, cookie, state);
1323 	if ((status == DMA_COMPLETE) || (!state))
1324 		return status;
1325 
1326 	spin_lock_irqsave(&chan->vchan.lock, flags);
1327 
1328 	vdesc = vchan_find_desc(&chan->vchan, cookie);
1329 	if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1330 		residue = stm32_mdma_desc_residue(chan, chan->desc,
1331 						  chan->curr_hwdesc);
1332 	else if (vdesc)
1333 		residue = stm32_mdma_desc_residue(chan,
1334 						  to_stm32_mdma_desc(vdesc), 0);
1335 	dma_set_residue(state, residue);
1336 
1337 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
1338 
1339 	return status;
1340 }
1341 
1342 static void stm32_mdma_xfer_end(struct stm32_mdma_chan *chan)
1343 {
1344 	list_del(&chan->desc->vdesc.node);
1345 	vchan_cookie_complete(&chan->desc->vdesc);
1346 	chan->desc = NULL;
1347 	chan->busy = false;
1348 
1349 	/* Start the next transfer if this driver has a next desc */
1350 	stm32_mdma_start_transfer(chan);
1351 }
1352 
1353 static irqreturn_t stm32_mdma_irq_handler(int irq, void *devid)
1354 {
1355 	struct stm32_mdma_device *dmadev = devid;
1356 	struct stm32_mdma_chan *chan = devid;
1357 	u32 reg, id, ien, status, flag;
1358 
1359 	/* Find out which channel generates the interrupt */
1360 	status = readl_relaxed(dmadev->base + STM32_MDMA_GISR0);
1361 	if (status) {
1362 		id = __ffs(status);
1363 	} else {
1364 		status = readl_relaxed(dmadev->base + STM32_MDMA_GISR1);
1365 		if (!status) {
1366 			dev_dbg(mdma2dev(dmadev), "spurious it\n");
1367 			return IRQ_NONE;
1368 		}
1369 		id = __ffs(status);
1370 		/*
1371 		 * As GISR0 provides status for channel id from 0 to 31,
1372 		 * so GISR1 provides status for channel id from 32 to 62
1373 		 */
1374 		id += 32;
1375 	}
1376 
1377 	chan = &dmadev->chan[id];
1378 	if (!chan) {
1379 		dev_err(chan2dev(chan), "MDMA channel not initialized\n");
1380 		goto exit;
1381 	}
1382 
1383 	/* Handle interrupt for the channel */
1384 	spin_lock(&chan->vchan.lock);
1385 	status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(chan->id));
1386 	ien = stm32_mdma_read(dmadev, STM32_MDMA_CCR(chan->id));
1387 	ien &= STM32_MDMA_CCR_IRQ_MASK;
1388 	ien >>= 1;
1389 
1390 	if (!(status & ien)) {
1391 		spin_unlock(&chan->vchan.lock);
1392 		dev_dbg(chan2dev(chan),
1393 			"spurious it (status=0x%04x, ien=0x%04x)\n",
1394 			status, ien);
1395 		return IRQ_NONE;
1396 	}
1397 
1398 	flag = __ffs(status & ien);
1399 	reg = STM32_MDMA_CIFCR(chan->id);
1400 
1401 	switch (1 << flag) {
1402 	case STM32_MDMA_CISR_TEIF:
1403 		id = chan->id;
1404 		status = readl_relaxed(dmadev->base + STM32_MDMA_CESR(id));
1405 		dev_err(chan2dev(chan), "Transfer Err: stat=0x%08x\n", status);
1406 		stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CTEIF);
1407 		break;
1408 
1409 	case STM32_MDMA_CISR_CTCIF:
1410 		stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CCTCIF);
1411 		stm32_mdma_xfer_end(chan);
1412 		break;
1413 
1414 	case STM32_MDMA_CISR_BRTIF:
1415 		stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CBRTIF);
1416 		break;
1417 
1418 	case STM32_MDMA_CISR_BTIF:
1419 		stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CBTIF);
1420 		chan->curr_hwdesc++;
1421 		if (chan->desc && chan->desc->cyclic) {
1422 			if (chan->curr_hwdesc == chan->desc->count)
1423 				chan->curr_hwdesc = 0;
1424 			vchan_cyclic_callback(&chan->desc->vdesc);
1425 		}
1426 		break;
1427 
1428 	case STM32_MDMA_CISR_TCIF:
1429 		stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CLTCIF);
1430 		break;
1431 
1432 	default:
1433 		dev_err(chan2dev(chan), "it %d unhandled (status=0x%04x)\n",
1434 			1 << flag, status);
1435 	}
1436 
1437 	spin_unlock(&chan->vchan.lock);
1438 
1439 exit:
1440 	return IRQ_HANDLED;
1441 }
1442 
1443 static int stm32_mdma_alloc_chan_resources(struct dma_chan *c)
1444 {
1445 	struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
1446 	struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
1447 	int ret;
1448 
1449 	chan->desc_pool = dmam_pool_create(dev_name(&c->dev->device),
1450 					   c->device->dev,
1451 					   sizeof(struct stm32_mdma_hwdesc),
1452 					  __alignof__(struct stm32_mdma_hwdesc),
1453 					   0);
1454 	if (!chan->desc_pool) {
1455 		dev_err(chan2dev(chan), "failed to allocate descriptor pool\n");
1456 		return -ENOMEM;
1457 	}
1458 
1459 	ret = clk_prepare_enable(dmadev->clk);
1460 	if (ret < 0) {
1461 		dev_err(chan2dev(chan), "clk_prepare_enable failed: %d\n", ret);
1462 		return ret;
1463 	}
1464 
1465 	ret = stm32_mdma_disable_chan(chan);
1466 	if (ret < 0)
1467 		clk_disable_unprepare(dmadev->clk);
1468 
1469 	return ret;
1470 }
1471 
1472 static void stm32_mdma_free_chan_resources(struct dma_chan *c)
1473 {
1474 	struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
1475 	struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
1476 	unsigned long flags;
1477 
1478 	dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1479 
1480 	if (chan->busy) {
1481 		spin_lock_irqsave(&chan->vchan.lock, flags);
1482 		stm32_mdma_stop(chan);
1483 		chan->desc = NULL;
1484 		spin_unlock_irqrestore(&chan->vchan.lock, flags);
1485 	}
1486 
1487 	clk_disable_unprepare(dmadev->clk);
1488 	vchan_free_chan_resources(to_virt_chan(c));
1489 	dmam_pool_destroy(chan->desc_pool);
1490 	chan->desc_pool = NULL;
1491 }
1492 
1493 static struct dma_chan *stm32_mdma_of_xlate(struct of_phandle_args *dma_spec,
1494 					    struct of_dma *ofdma)
1495 {
1496 	struct stm32_mdma_device *dmadev = ofdma->of_dma_data;
1497 	struct stm32_mdma_chan *chan;
1498 	struct dma_chan *c;
1499 	struct stm32_mdma_chan_config config;
1500 
1501 	if (dma_spec->args_count < 5) {
1502 		dev_err(mdma2dev(dmadev), "Bad number of args\n");
1503 		return NULL;
1504 	}
1505 
1506 	config.request = dma_spec->args[0];
1507 	config.priority_level = dma_spec->args[1];
1508 	config.transfer_config = dma_spec->args[2];
1509 	config.mask_addr = dma_spec->args[3];
1510 	config.mask_data = dma_spec->args[4];
1511 
1512 	if (config.request >= dmadev->nr_requests) {
1513 		dev_err(mdma2dev(dmadev), "Bad request line\n");
1514 		return NULL;
1515 	}
1516 
1517 	if (config.priority_level > STM32_MDMA_VERY_HIGH_PRIORITY) {
1518 		dev_err(mdma2dev(dmadev), "Priority level not supported\n");
1519 		return NULL;
1520 	}
1521 
1522 	c = dma_get_any_slave_channel(&dmadev->ddev);
1523 	if (!c) {
1524 		dev_err(mdma2dev(dmadev), "No more channels available\n");
1525 		return NULL;
1526 	}
1527 
1528 	chan = to_stm32_mdma_chan(c);
1529 	chan->chan_config = config;
1530 
1531 	return c;
1532 }
1533 
1534 static const struct of_device_id stm32_mdma_of_match[] = {
1535 	{ .compatible = "st,stm32h7-mdma", },
1536 	{ /* sentinel */ },
1537 };
1538 MODULE_DEVICE_TABLE(of, stm32_mdma_of_match);
1539 
1540 static int stm32_mdma_probe(struct platform_device *pdev)
1541 {
1542 	struct stm32_mdma_chan *chan;
1543 	struct stm32_mdma_device *dmadev;
1544 	struct dma_device *dd;
1545 	struct device_node *of_node;
1546 	struct resource *res;
1547 	u32 nr_channels, nr_requests;
1548 	int i, count, ret;
1549 
1550 	of_node = pdev->dev.of_node;
1551 	if (!of_node)
1552 		return -ENODEV;
1553 
1554 	ret = device_property_read_u32(&pdev->dev, "dma-channels",
1555 				       &nr_channels);
1556 	if (ret) {
1557 		nr_channels = STM32_MDMA_MAX_CHANNELS;
1558 		dev_warn(&pdev->dev, "MDMA defaulting on %i channels\n",
1559 			 nr_channels);
1560 	}
1561 
1562 	ret = device_property_read_u32(&pdev->dev, "dma-requests",
1563 				       &nr_requests);
1564 	if (ret) {
1565 		nr_requests = STM32_MDMA_MAX_REQUESTS;
1566 		dev_warn(&pdev->dev, "MDMA defaulting on %i request lines\n",
1567 			 nr_requests);
1568 	}
1569 
1570 	count = device_property_read_u32_array(&pdev->dev, "st,ahb-addr-masks",
1571 					       NULL, 0);
1572 	if (count < 0)
1573 		count = 0;
1574 
1575 	dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev) + sizeof(u32) * count,
1576 			      GFP_KERNEL);
1577 	if (!dmadev)
1578 		return -ENOMEM;
1579 
1580 	dmadev->nr_channels = nr_channels;
1581 	dmadev->nr_requests = nr_requests;
1582 	device_property_read_u32_array(&pdev->dev, "st,ahb-addr-masks",
1583 				       dmadev->ahb_addr_masks,
1584 				       count);
1585 	dmadev->nr_ahb_addr_masks = count;
1586 
1587 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1588 	dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1589 	if (IS_ERR(dmadev->base))
1590 		return PTR_ERR(dmadev->base);
1591 
1592 	dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1593 	if (IS_ERR(dmadev->clk)) {
1594 		ret = PTR_ERR(dmadev->clk);
1595 		if (ret == -EPROBE_DEFER)
1596 			dev_info(&pdev->dev, "Missing controller clock\n");
1597 		return ret;
1598 	}
1599 
1600 	dmadev->rst = devm_reset_control_get(&pdev->dev, NULL);
1601 	if (!IS_ERR(dmadev->rst)) {
1602 		reset_control_assert(dmadev->rst);
1603 		udelay(2);
1604 		reset_control_deassert(dmadev->rst);
1605 	}
1606 
1607 	dd = &dmadev->ddev;
1608 	dma_cap_set(DMA_SLAVE, dd->cap_mask);
1609 	dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1610 	dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1611 	dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1612 	dd->device_alloc_chan_resources = stm32_mdma_alloc_chan_resources;
1613 	dd->device_free_chan_resources = stm32_mdma_free_chan_resources;
1614 	dd->device_tx_status = stm32_mdma_tx_status;
1615 	dd->device_issue_pending = stm32_mdma_issue_pending;
1616 	dd->device_prep_slave_sg = stm32_mdma_prep_slave_sg;
1617 	dd->device_prep_dma_cyclic = stm32_mdma_prep_dma_cyclic;
1618 	dd->device_prep_dma_memcpy = stm32_mdma_prep_dma_memcpy;
1619 	dd->device_config = stm32_mdma_slave_config;
1620 	dd->device_pause = stm32_mdma_pause;
1621 	dd->device_resume = stm32_mdma_resume;
1622 	dd->device_terminate_all = stm32_mdma_terminate_all;
1623 	dd->device_synchronize = stm32_mdma_synchronize;
1624 	dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1625 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1626 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1627 		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1628 	dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1629 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1630 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1631 		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1632 	dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV) |
1633 		BIT(DMA_MEM_TO_MEM);
1634 	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1635 	dd->max_burst = STM32_MDMA_MAX_BURST;
1636 	dd->dev = &pdev->dev;
1637 	INIT_LIST_HEAD(&dd->channels);
1638 
1639 	for (i = 0; i < dmadev->nr_channels; i++) {
1640 		chan = &dmadev->chan[i];
1641 		chan->id = i;
1642 		chan->vchan.desc_free = stm32_mdma_desc_free;
1643 		vchan_init(&chan->vchan, dd);
1644 	}
1645 
1646 	dmadev->irq = platform_get_irq(pdev, 0);
1647 	if (dmadev->irq < 0) {
1648 		dev_err(&pdev->dev, "failed to get IRQ\n");
1649 		return dmadev->irq;
1650 	}
1651 
1652 	ret = devm_request_irq(&pdev->dev, dmadev->irq, stm32_mdma_irq_handler,
1653 			       0, dev_name(&pdev->dev), dmadev);
1654 	if (ret) {
1655 		dev_err(&pdev->dev, "failed to request IRQ\n");
1656 		return ret;
1657 	}
1658 
1659 	ret = dma_async_device_register(dd);
1660 	if (ret)
1661 		return ret;
1662 
1663 	ret = of_dma_controller_register(of_node, stm32_mdma_of_xlate, dmadev);
1664 	if (ret < 0) {
1665 		dev_err(&pdev->dev,
1666 			"STM32 MDMA DMA OF registration failed %d\n", ret);
1667 		goto err_unregister;
1668 	}
1669 
1670 	platform_set_drvdata(pdev, dmadev);
1671 
1672 	dev_info(&pdev->dev, "STM32 MDMA driver registered\n");
1673 
1674 	return 0;
1675 
1676 err_unregister:
1677 	dma_async_device_unregister(dd);
1678 
1679 	return ret;
1680 }
1681 
1682 static struct platform_driver stm32_mdma_driver = {
1683 	.probe = stm32_mdma_probe,
1684 	.driver = {
1685 		.name = "stm32-mdma",
1686 		.of_match_table = stm32_mdma_of_match,
1687 	},
1688 };
1689 
1690 static int __init stm32_mdma_init(void)
1691 {
1692 	return platform_driver_register(&stm32_mdma_driver);
1693 }
1694 
1695 subsys_initcall(stm32_mdma_init);
1696 
1697 MODULE_DESCRIPTION("Driver for STM32 MDMA controller");
1698 MODULE_AUTHOR("M'boumba Cedric Madianga <cedric.madianga@gmail.com>");
1699 MODULE_AUTHOR("Pierre-Yves Mordret <pierre-yves.mordret@st.com>");
1700 MODULE_LICENSE("GPL v2");
1701