xref: /openbmc/linux/drivers/dma/stm32-dma.c (revision fcbd8037f7df694aa7bfb7ce82c0c7f5e53e7b7b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for STM32 DMA controller
4  *
5  * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6  *
7  * Copyright (C) M'boumba Cedric Madianga 2015
8  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9  *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/jiffies.h>
19 #include <linux/list.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_dma.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/reset.h>
27 #include <linux/sched.h>
28 #include <linux/slab.h>
29 
30 #include "virt-dma.h"
31 
32 #define STM32_DMA_LISR			0x0000 /* DMA Low Int Status Reg */
33 #define STM32_DMA_HISR			0x0004 /* DMA High Int Status Reg */
34 #define STM32_DMA_LIFCR			0x0008 /* DMA Low Int Flag Clear Reg */
35 #define STM32_DMA_HIFCR			0x000c /* DMA High Int Flag Clear Reg */
36 #define STM32_DMA_TCI			BIT(5) /* Transfer Complete Interrupt */
37 #define STM32_DMA_HTI			BIT(4) /* Half Transfer Interrupt */
38 #define STM32_DMA_TEI			BIT(3) /* Transfer Error Interrupt */
39 #define STM32_DMA_DMEI			BIT(2) /* Direct Mode Error Interrupt */
40 #define STM32_DMA_FEI			BIT(0) /* FIFO Error Interrupt */
41 #define STM32_DMA_MASKI			(STM32_DMA_TCI \
42 					 | STM32_DMA_TEI \
43 					 | STM32_DMA_DMEI \
44 					 | STM32_DMA_FEI)
45 
46 /* DMA Stream x Configuration Register */
47 #define STM32_DMA_SCR(x)		(0x0010 + 0x18 * (x)) /* x = 0..7 */
48 #define STM32_DMA_SCR_REQ(n)		((n & 0x7) << 25)
49 #define STM32_DMA_SCR_MBURST_MASK	GENMASK(24, 23)
50 #define STM32_DMA_SCR_MBURST(n)	        ((n & 0x3) << 23)
51 #define STM32_DMA_SCR_PBURST_MASK	GENMASK(22, 21)
52 #define STM32_DMA_SCR_PBURST(n)	        ((n & 0x3) << 21)
53 #define STM32_DMA_SCR_PL_MASK		GENMASK(17, 16)
54 #define STM32_DMA_SCR_PL(n)		((n & 0x3) << 16)
55 #define STM32_DMA_SCR_MSIZE_MASK	GENMASK(14, 13)
56 #define STM32_DMA_SCR_MSIZE(n)		((n & 0x3) << 13)
57 #define STM32_DMA_SCR_PSIZE_MASK	GENMASK(12, 11)
58 #define STM32_DMA_SCR_PSIZE(n)		((n & 0x3) << 11)
59 #define STM32_DMA_SCR_PSIZE_GET(n)	((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
60 #define STM32_DMA_SCR_DIR_MASK		GENMASK(7, 6)
61 #define STM32_DMA_SCR_DIR(n)		((n & 0x3) << 6)
62 #define STM32_DMA_SCR_CT		BIT(19) /* Target in double buffer */
63 #define STM32_DMA_SCR_DBM		BIT(18) /* Double Buffer Mode */
64 #define STM32_DMA_SCR_PINCOS		BIT(15) /* Peripheral inc offset size */
65 #define STM32_DMA_SCR_MINC		BIT(10) /* Memory increment mode */
66 #define STM32_DMA_SCR_PINC		BIT(9) /* Peripheral increment mode */
67 #define STM32_DMA_SCR_CIRC		BIT(8) /* Circular mode */
68 #define STM32_DMA_SCR_PFCTRL		BIT(5) /* Peripheral Flow Controller */
69 #define STM32_DMA_SCR_TCIE		BIT(4) /* Transfer Complete Int Enable
70 						*/
71 #define STM32_DMA_SCR_TEIE		BIT(2) /* Transfer Error Int Enable */
72 #define STM32_DMA_SCR_DMEIE		BIT(1) /* Direct Mode Err Int Enable */
73 #define STM32_DMA_SCR_EN		BIT(0) /* Stream Enable */
74 #define STM32_DMA_SCR_CFG_MASK		(STM32_DMA_SCR_PINC \
75 					| STM32_DMA_SCR_MINC \
76 					| STM32_DMA_SCR_PINCOS \
77 					| STM32_DMA_SCR_PL_MASK)
78 #define STM32_DMA_SCR_IRQ_MASK		(STM32_DMA_SCR_TCIE \
79 					| STM32_DMA_SCR_TEIE \
80 					| STM32_DMA_SCR_DMEIE)
81 
82 /* DMA Stream x number of data register */
83 #define STM32_DMA_SNDTR(x)		(0x0014 + 0x18 * (x))
84 
85 /* DMA stream peripheral address register */
86 #define STM32_DMA_SPAR(x)		(0x0018 + 0x18 * (x))
87 
88 /* DMA stream x memory 0 address register */
89 #define STM32_DMA_SM0AR(x)		(0x001c + 0x18 * (x))
90 
91 /* DMA stream x memory 1 address register */
92 #define STM32_DMA_SM1AR(x)		(0x0020 + 0x18 * (x))
93 
94 /* DMA stream x FIFO control register */
95 #define STM32_DMA_SFCR(x)		(0x0024 + 0x18 * (x))
96 #define STM32_DMA_SFCR_FTH_MASK		GENMASK(1, 0)
97 #define STM32_DMA_SFCR_FTH(n)		(n & STM32_DMA_SFCR_FTH_MASK)
98 #define STM32_DMA_SFCR_FEIE		BIT(7) /* FIFO error interrupt enable */
99 #define STM32_DMA_SFCR_DMDIS		BIT(2) /* Direct mode disable */
100 #define STM32_DMA_SFCR_MASK		(STM32_DMA_SFCR_FEIE \
101 					| STM32_DMA_SFCR_DMDIS)
102 
103 /* DMA direction */
104 #define STM32_DMA_DEV_TO_MEM		0x00
105 #define	STM32_DMA_MEM_TO_DEV		0x01
106 #define	STM32_DMA_MEM_TO_MEM		0x02
107 
108 /* DMA priority level */
109 #define STM32_DMA_PRIORITY_LOW		0x00
110 #define STM32_DMA_PRIORITY_MEDIUM	0x01
111 #define STM32_DMA_PRIORITY_HIGH		0x02
112 #define STM32_DMA_PRIORITY_VERY_HIGH	0x03
113 
114 /* DMA FIFO threshold selection */
115 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL		0x00
116 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL		0x01
117 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL		0x02
118 #define STM32_DMA_FIFO_THRESHOLD_FULL			0x03
119 
120 #define STM32_DMA_MAX_DATA_ITEMS	0xffff
121 /*
122  * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
123  * gather at boundary. Thus it's safer to round down this value on FIFO
124  * size (16 Bytes)
125  */
126 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS	\
127 	ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
128 #define STM32_DMA_MAX_CHANNELS		0x08
129 #define STM32_DMA_MAX_REQUEST_ID	0x08
130 #define STM32_DMA_MAX_DATA_PARAM	0x03
131 #define STM32_DMA_FIFO_SIZE		16	/* FIFO is 16 bytes */
132 #define STM32_DMA_MIN_BURST		4
133 #define STM32_DMA_MAX_BURST		16
134 
135 /* DMA Features */
136 #define STM32_DMA_THRESHOLD_FTR_MASK	GENMASK(1, 0)
137 #define STM32_DMA_THRESHOLD_FTR_GET(n)	((n) & STM32_DMA_THRESHOLD_FTR_MASK)
138 
139 enum stm32_dma_width {
140 	STM32_DMA_BYTE,
141 	STM32_DMA_HALF_WORD,
142 	STM32_DMA_WORD,
143 };
144 
145 enum stm32_dma_burst_size {
146 	STM32_DMA_BURST_SINGLE,
147 	STM32_DMA_BURST_INCR4,
148 	STM32_DMA_BURST_INCR8,
149 	STM32_DMA_BURST_INCR16,
150 };
151 
152 /**
153  * struct stm32_dma_cfg - STM32 DMA custom configuration
154  * @channel_id: channel ID
155  * @request_line: DMA request
156  * @stream_config: 32bit mask specifying the DMA channel configuration
157  * @features: 32bit mask specifying the DMA Feature list
158  */
159 struct stm32_dma_cfg {
160 	u32 channel_id;
161 	u32 request_line;
162 	u32 stream_config;
163 	u32 features;
164 };
165 
166 struct stm32_dma_chan_reg {
167 	u32 dma_lisr;
168 	u32 dma_hisr;
169 	u32 dma_lifcr;
170 	u32 dma_hifcr;
171 	u32 dma_scr;
172 	u32 dma_sndtr;
173 	u32 dma_spar;
174 	u32 dma_sm0ar;
175 	u32 dma_sm1ar;
176 	u32 dma_sfcr;
177 };
178 
179 struct stm32_dma_sg_req {
180 	u32 len;
181 	struct stm32_dma_chan_reg chan_reg;
182 };
183 
184 struct stm32_dma_desc {
185 	struct virt_dma_desc vdesc;
186 	bool cyclic;
187 	u32 num_sgs;
188 	struct stm32_dma_sg_req sg_req[];
189 };
190 
191 struct stm32_dma_chan {
192 	struct virt_dma_chan vchan;
193 	bool config_init;
194 	bool busy;
195 	u32 id;
196 	u32 irq;
197 	struct stm32_dma_desc *desc;
198 	u32 next_sg;
199 	struct dma_slave_config	dma_sconfig;
200 	struct stm32_dma_chan_reg chan_reg;
201 	u32 threshold;
202 	u32 mem_burst;
203 	u32 mem_width;
204 };
205 
206 struct stm32_dma_device {
207 	struct dma_device ddev;
208 	void __iomem *base;
209 	struct clk *clk;
210 	struct reset_control *rst;
211 	bool mem2mem;
212 	struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
213 };
214 
215 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
216 {
217 	return container_of(chan->vchan.chan.device, struct stm32_dma_device,
218 			    ddev);
219 }
220 
221 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
222 {
223 	return container_of(c, struct stm32_dma_chan, vchan.chan);
224 }
225 
226 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
227 {
228 	return container_of(vdesc, struct stm32_dma_desc, vdesc);
229 }
230 
231 static struct device *chan2dev(struct stm32_dma_chan *chan)
232 {
233 	return &chan->vchan.chan.dev->device;
234 }
235 
236 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
237 {
238 	return readl_relaxed(dmadev->base + reg);
239 }
240 
241 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
242 {
243 	writel_relaxed(val, dmadev->base + reg);
244 }
245 
246 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
247 			       enum dma_slave_buswidth width)
248 {
249 	switch (width) {
250 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
251 		return STM32_DMA_BYTE;
252 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
253 		return STM32_DMA_HALF_WORD;
254 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
255 		return STM32_DMA_WORD;
256 	default:
257 		dev_err(chan2dev(chan), "Dma bus width not supported\n");
258 		return -EINVAL;
259 	}
260 }
261 
262 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
263 						       u32 threshold)
264 {
265 	enum dma_slave_buswidth max_width;
266 
267 	if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
268 		max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
269 	else
270 		max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
271 
272 	while ((buf_len < max_width  || buf_len % max_width) &&
273 	       max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
274 		max_width = max_width >> 1;
275 
276 	return max_width;
277 }
278 
279 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
280 						enum dma_slave_buswidth width)
281 {
282 	u32 remaining;
283 
284 	if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
285 		if (burst != 0) {
286 			/*
287 			 * If number of beats fit in several whole bursts
288 			 * this configuration is allowed.
289 			 */
290 			remaining = ((STM32_DMA_FIFO_SIZE / width) *
291 				     (threshold + 1) / 4) % burst;
292 
293 			if (remaining == 0)
294 				return true;
295 		} else {
296 			return true;
297 		}
298 	}
299 
300 	return false;
301 }
302 
303 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
304 {
305 	/*
306 	 * Buffer or period length has to be aligned on FIFO depth.
307 	 * Otherwise bytes may be stuck within FIFO at buffer or period
308 	 * length.
309 	 */
310 	return ((buf_len % ((threshold + 1) * 4)) == 0);
311 }
312 
313 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
314 				    enum dma_slave_buswidth width)
315 {
316 	u32 best_burst = max_burst;
317 
318 	if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
319 		return 0;
320 
321 	while ((buf_len < best_burst * width && best_burst > 1) ||
322 	       !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
323 						    width)) {
324 		if (best_burst > STM32_DMA_MIN_BURST)
325 			best_burst = best_burst >> 1;
326 		else
327 			best_burst = 0;
328 	}
329 
330 	return best_burst;
331 }
332 
333 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
334 {
335 	switch (maxburst) {
336 	case 0:
337 	case 1:
338 		return STM32_DMA_BURST_SINGLE;
339 	case 4:
340 		return STM32_DMA_BURST_INCR4;
341 	case 8:
342 		return STM32_DMA_BURST_INCR8;
343 	case 16:
344 		return STM32_DMA_BURST_INCR16;
345 	default:
346 		dev_err(chan2dev(chan), "Dma burst size not supported\n");
347 		return -EINVAL;
348 	}
349 }
350 
351 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
352 				      u32 src_burst, u32 dst_burst)
353 {
354 	chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
355 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
356 
357 	if (!src_burst && !dst_burst) {
358 		/* Using direct mode */
359 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
360 	} else {
361 		/* Using FIFO mode */
362 		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
363 	}
364 }
365 
366 static int stm32_dma_slave_config(struct dma_chan *c,
367 				  struct dma_slave_config *config)
368 {
369 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
370 
371 	memcpy(&chan->dma_sconfig, config, sizeof(*config));
372 
373 	chan->config_init = true;
374 
375 	return 0;
376 }
377 
378 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
379 {
380 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
381 	u32 flags, dma_isr;
382 
383 	/*
384 	 * Read "flags" from DMA_xISR register corresponding to the selected
385 	 * DMA channel at the correct bit offset inside that register.
386 	 *
387 	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
388 	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
389 	 */
390 
391 	if (chan->id & 4)
392 		dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
393 	else
394 		dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
395 
396 	flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
397 
398 	return flags & STM32_DMA_MASKI;
399 }
400 
401 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
402 {
403 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
404 	u32 dma_ifcr;
405 
406 	/*
407 	 * Write "flags" to the DMA_xIFCR register corresponding to the selected
408 	 * DMA channel at the correct bit offset inside that register.
409 	 *
410 	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
411 	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
412 	 */
413 	flags &= STM32_DMA_MASKI;
414 	dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
415 
416 	if (chan->id & 4)
417 		stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
418 	else
419 		stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
420 }
421 
422 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
423 {
424 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
425 	unsigned long timeout = jiffies + msecs_to_jiffies(5000);
426 	u32 dma_scr, id;
427 
428 	id = chan->id;
429 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
430 
431 	if (dma_scr & STM32_DMA_SCR_EN) {
432 		dma_scr &= ~STM32_DMA_SCR_EN;
433 		stm32_dma_write(dmadev, STM32_DMA_SCR(id), dma_scr);
434 
435 		do {
436 			dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
437 			dma_scr &= STM32_DMA_SCR_EN;
438 			if (!dma_scr)
439 				break;
440 
441 			if (time_after_eq(jiffies, timeout)) {
442 				dev_err(chan2dev(chan), "%s: timeout!\n",
443 					__func__);
444 				return -EBUSY;
445 			}
446 			cond_resched();
447 		} while (1);
448 	}
449 
450 	return 0;
451 }
452 
453 static void stm32_dma_stop(struct stm32_dma_chan *chan)
454 {
455 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
456 	u32 dma_scr, dma_sfcr, status;
457 	int ret;
458 
459 	/* Disable interrupts */
460 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
461 	dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
462 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
463 	dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
464 	dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
465 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
466 
467 	/* Disable DMA */
468 	ret = stm32_dma_disable_chan(chan);
469 	if (ret < 0)
470 		return;
471 
472 	/* Clear interrupt status if it is there */
473 	status = stm32_dma_irq_status(chan);
474 	if (status) {
475 		dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
476 			__func__, status);
477 		stm32_dma_irq_clear(chan, status);
478 	}
479 
480 	chan->busy = false;
481 }
482 
483 static int stm32_dma_terminate_all(struct dma_chan *c)
484 {
485 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
486 	unsigned long flags;
487 	LIST_HEAD(head);
488 
489 	spin_lock_irqsave(&chan->vchan.lock, flags);
490 
491 	if (chan->busy) {
492 		stm32_dma_stop(chan);
493 		chan->desc = NULL;
494 	}
495 
496 	vchan_get_all_descriptors(&chan->vchan, &head);
497 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
498 	vchan_dma_desc_free_list(&chan->vchan, &head);
499 
500 	return 0;
501 }
502 
503 static void stm32_dma_synchronize(struct dma_chan *c)
504 {
505 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
506 
507 	vchan_synchronize(&chan->vchan);
508 }
509 
510 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
511 {
512 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
513 	u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
514 	u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
515 	u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
516 	u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
517 	u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
518 	u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
519 
520 	dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
521 	dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
522 	dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
523 	dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
524 	dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
525 	dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
526 }
527 
528 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
529 
530 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
531 {
532 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
533 	struct virt_dma_desc *vdesc;
534 	struct stm32_dma_sg_req *sg_req;
535 	struct stm32_dma_chan_reg *reg;
536 	u32 status;
537 	int ret;
538 
539 	ret = stm32_dma_disable_chan(chan);
540 	if (ret < 0)
541 		return;
542 
543 	if (!chan->desc) {
544 		vdesc = vchan_next_desc(&chan->vchan);
545 		if (!vdesc)
546 			return;
547 
548 		chan->desc = to_stm32_dma_desc(vdesc);
549 		chan->next_sg = 0;
550 	}
551 
552 	if (chan->next_sg == chan->desc->num_sgs)
553 		chan->next_sg = 0;
554 
555 	sg_req = &chan->desc->sg_req[chan->next_sg];
556 	reg = &sg_req->chan_reg;
557 
558 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
559 	stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
560 	stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
561 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
562 	stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
563 	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
564 
565 	chan->next_sg++;
566 
567 	/* Clear interrupt status if it is there */
568 	status = stm32_dma_irq_status(chan);
569 	if (status)
570 		stm32_dma_irq_clear(chan, status);
571 
572 	if (chan->desc->cyclic)
573 		stm32_dma_configure_next_sg(chan);
574 
575 	stm32_dma_dump_reg(chan);
576 
577 	/* Start DMA */
578 	reg->dma_scr |= STM32_DMA_SCR_EN;
579 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
580 
581 	chan->busy = true;
582 
583 	dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
584 }
585 
586 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
587 {
588 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
589 	struct stm32_dma_sg_req *sg_req;
590 	u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
591 
592 	id = chan->id;
593 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
594 
595 	if (dma_scr & STM32_DMA_SCR_DBM) {
596 		if (chan->next_sg == chan->desc->num_sgs)
597 			chan->next_sg = 0;
598 
599 		sg_req = &chan->desc->sg_req[chan->next_sg];
600 
601 		if (dma_scr & STM32_DMA_SCR_CT) {
602 			dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
603 			stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
604 			dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
605 				stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
606 		} else {
607 			dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
608 			stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
609 			dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
610 				stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
611 		}
612 	}
613 }
614 
615 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
616 {
617 	if (chan->desc) {
618 		if (chan->desc->cyclic) {
619 			vchan_cyclic_callback(&chan->desc->vdesc);
620 			chan->next_sg++;
621 			stm32_dma_configure_next_sg(chan);
622 		} else {
623 			chan->busy = false;
624 			if (chan->next_sg == chan->desc->num_sgs) {
625 				list_del(&chan->desc->vdesc.node);
626 				vchan_cookie_complete(&chan->desc->vdesc);
627 				chan->desc = NULL;
628 			}
629 			stm32_dma_start_transfer(chan);
630 		}
631 	}
632 }
633 
634 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
635 {
636 	struct stm32_dma_chan *chan = devid;
637 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
638 	u32 status, scr, sfcr;
639 
640 	spin_lock(&chan->vchan.lock);
641 
642 	status = stm32_dma_irq_status(chan);
643 	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
644 	sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
645 
646 	if (status & STM32_DMA_TCI) {
647 		stm32_dma_irq_clear(chan, STM32_DMA_TCI);
648 		if (scr & STM32_DMA_SCR_TCIE)
649 			stm32_dma_handle_chan_done(chan);
650 		status &= ~STM32_DMA_TCI;
651 	}
652 	if (status & STM32_DMA_HTI) {
653 		stm32_dma_irq_clear(chan, STM32_DMA_HTI);
654 		status &= ~STM32_DMA_HTI;
655 	}
656 	if (status & STM32_DMA_FEI) {
657 		stm32_dma_irq_clear(chan, STM32_DMA_FEI);
658 		status &= ~STM32_DMA_FEI;
659 		if (sfcr & STM32_DMA_SFCR_FEIE) {
660 			if (!(scr & STM32_DMA_SCR_EN))
661 				dev_err(chan2dev(chan), "FIFO Error\n");
662 			else
663 				dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
664 		}
665 	}
666 	if (status) {
667 		stm32_dma_irq_clear(chan, status);
668 		dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
669 		if (!(scr & STM32_DMA_SCR_EN))
670 			dev_err(chan2dev(chan), "chan disabled by HW\n");
671 	}
672 
673 	spin_unlock(&chan->vchan.lock);
674 
675 	return IRQ_HANDLED;
676 }
677 
678 static void stm32_dma_issue_pending(struct dma_chan *c)
679 {
680 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
681 	unsigned long flags;
682 
683 	spin_lock_irqsave(&chan->vchan.lock, flags);
684 	if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
685 		dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
686 		stm32_dma_start_transfer(chan);
687 
688 	}
689 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
690 }
691 
692 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
693 				    enum dma_transfer_direction direction,
694 				    enum dma_slave_buswidth *buswidth,
695 				    u32 buf_len)
696 {
697 	enum dma_slave_buswidth src_addr_width, dst_addr_width;
698 	int src_bus_width, dst_bus_width;
699 	int src_burst_size, dst_burst_size;
700 	u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
701 	u32 dma_scr, threshold;
702 
703 	src_addr_width = chan->dma_sconfig.src_addr_width;
704 	dst_addr_width = chan->dma_sconfig.dst_addr_width;
705 	src_maxburst = chan->dma_sconfig.src_maxburst;
706 	dst_maxburst = chan->dma_sconfig.dst_maxburst;
707 	threshold = chan->threshold;
708 
709 	switch (direction) {
710 	case DMA_MEM_TO_DEV:
711 		/* Set device data size */
712 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
713 		if (dst_bus_width < 0)
714 			return dst_bus_width;
715 
716 		/* Set device burst size */
717 		dst_best_burst = stm32_dma_get_best_burst(buf_len,
718 							  dst_maxburst,
719 							  threshold,
720 							  dst_addr_width);
721 
722 		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
723 		if (dst_burst_size < 0)
724 			return dst_burst_size;
725 
726 		/* Set memory data size */
727 		src_addr_width = stm32_dma_get_max_width(buf_len, threshold);
728 		chan->mem_width = src_addr_width;
729 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
730 		if (src_bus_width < 0)
731 			return src_bus_width;
732 
733 		/* Set memory burst size */
734 		src_maxburst = STM32_DMA_MAX_BURST;
735 		src_best_burst = stm32_dma_get_best_burst(buf_len,
736 							  src_maxburst,
737 							  threshold,
738 							  src_addr_width);
739 		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
740 		if (src_burst_size < 0)
741 			return src_burst_size;
742 
743 		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
744 			STM32_DMA_SCR_PSIZE(dst_bus_width) |
745 			STM32_DMA_SCR_MSIZE(src_bus_width) |
746 			STM32_DMA_SCR_PBURST(dst_burst_size) |
747 			STM32_DMA_SCR_MBURST(src_burst_size);
748 
749 		/* Set FIFO threshold */
750 		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
751 		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
752 
753 		/* Set peripheral address */
754 		chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
755 		*buswidth = dst_addr_width;
756 		break;
757 
758 	case DMA_DEV_TO_MEM:
759 		/* Set device data size */
760 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
761 		if (src_bus_width < 0)
762 			return src_bus_width;
763 
764 		/* Set device burst size */
765 		src_best_burst = stm32_dma_get_best_burst(buf_len,
766 							  src_maxburst,
767 							  threshold,
768 							  src_addr_width);
769 		chan->mem_burst = src_best_burst;
770 		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
771 		if (src_burst_size < 0)
772 			return src_burst_size;
773 
774 		/* Set memory data size */
775 		dst_addr_width = stm32_dma_get_max_width(buf_len, threshold);
776 		chan->mem_width = dst_addr_width;
777 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
778 		if (dst_bus_width < 0)
779 			return dst_bus_width;
780 
781 		/* Set memory burst size */
782 		dst_maxburst = STM32_DMA_MAX_BURST;
783 		dst_best_burst = stm32_dma_get_best_burst(buf_len,
784 							  dst_maxburst,
785 							  threshold,
786 							  dst_addr_width);
787 		chan->mem_burst = dst_best_burst;
788 		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
789 		if (dst_burst_size < 0)
790 			return dst_burst_size;
791 
792 		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
793 			STM32_DMA_SCR_PSIZE(src_bus_width) |
794 			STM32_DMA_SCR_MSIZE(dst_bus_width) |
795 			STM32_DMA_SCR_PBURST(src_burst_size) |
796 			STM32_DMA_SCR_MBURST(dst_burst_size);
797 
798 		/* Set FIFO threshold */
799 		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
800 		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
801 
802 		/* Set peripheral address */
803 		chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
804 		*buswidth = chan->dma_sconfig.src_addr_width;
805 		break;
806 
807 	default:
808 		dev_err(chan2dev(chan), "Dma direction is not supported\n");
809 		return -EINVAL;
810 	}
811 
812 	stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
813 
814 	/* Set DMA control register */
815 	chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
816 			STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
817 			STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
818 	chan->chan_reg.dma_scr |= dma_scr;
819 
820 	return 0;
821 }
822 
823 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
824 {
825 	memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
826 }
827 
828 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
829 	struct dma_chan *c, struct scatterlist *sgl,
830 	u32 sg_len, enum dma_transfer_direction direction,
831 	unsigned long flags, void *context)
832 {
833 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
834 	struct stm32_dma_desc *desc;
835 	struct scatterlist *sg;
836 	enum dma_slave_buswidth buswidth;
837 	u32 nb_data_items;
838 	int i, ret;
839 
840 	if (!chan->config_init) {
841 		dev_err(chan2dev(chan), "dma channel is not configured\n");
842 		return NULL;
843 	}
844 
845 	if (sg_len < 1) {
846 		dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
847 		return NULL;
848 	}
849 
850 	desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
851 	if (!desc)
852 		return NULL;
853 
854 	/* Set peripheral flow controller */
855 	if (chan->dma_sconfig.device_fc)
856 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
857 	else
858 		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
859 
860 	for_each_sg(sgl, sg, sg_len, i) {
861 		ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
862 					       sg_dma_len(sg));
863 		if (ret < 0)
864 			goto err;
865 
866 		desc->sg_req[i].len = sg_dma_len(sg);
867 
868 		nb_data_items = desc->sg_req[i].len / buswidth;
869 		if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
870 			dev_err(chan2dev(chan), "nb items not supported\n");
871 			goto err;
872 		}
873 
874 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
875 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
876 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
877 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
878 		desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
879 		desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
880 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
881 	}
882 
883 	desc->num_sgs = sg_len;
884 	desc->cyclic = false;
885 
886 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
887 
888 err:
889 	kfree(desc);
890 	return NULL;
891 }
892 
893 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
894 	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
895 	size_t period_len, enum dma_transfer_direction direction,
896 	unsigned long flags)
897 {
898 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
899 	struct stm32_dma_desc *desc;
900 	enum dma_slave_buswidth buswidth;
901 	u32 num_periods, nb_data_items;
902 	int i, ret;
903 
904 	if (!buf_len || !period_len) {
905 		dev_err(chan2dev(chan), "Invalid buffer/period len\n");
906 		return NULL;
907 	}
908 
909 	if (!chan->config_init) {
910 		dev_err(chan2dev(chan), "dma channel is not configured\n");
911 		return NULL;
912 	}
913 
914 	if (buf_len % period_len) {
915 		dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
916 		return NULL;
917 	}
918 
919 	/*
920 	 * We allow to take more number of requests till DMA is
921 	 * not started. The driver will loop over all requests.
922 	 * Once DMA is started then new requests can be queued only after
923 	 * terminating the DMA.
924 	 */
925 	if (chan->busy) {
926 		dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
927 		return NULL;
928 	}
929 
930 	ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len);
931 	if (ret < 0)
932 		return NULL;
933 
934 	nb_data_items = period_len / buswidth;
935 	if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
936 		dev_err(chan2dev(chan), "number of items not supported\n");
937 		return NULL;
938 	}
939 
940 	/*  Enable Circular mode or double buffer mode */
941 	if (buf_len == period_len)
942 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
943 	else
944 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
945 
946 	/* Clear periph ctrl if client set it */
947 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
948 
949 	num_periods = buf_len / period_len;
950 
951 	desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
952 	if (!desc)
953 		return NULL;
954 
955 	for (i = 0; i < num_periods; i++) {
956 		desc->sg_req[i].len = period_len;
957 
958 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
959 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
960 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
961 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
962 		desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
963 		desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
964 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
965 		buf_addr += period_len;
966 	}
967 
968 	desc->num_sgs = num_periods;
969 	desc->cyclic = true;
970 
971 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
972 }
973 
974 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
975 	struct dma_chan *c, dma_addr_t dest,
976 	dma_addr_t src, size_t len, unsigned long flags)
977 {
978 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
979 	enum dma_slave_buswidth max_width;
980 	struct stm32_dma_desc *desc;
981 	size_t xfer_count, offset;
982 	u32 num_sgs, best_burst, dma_burst, threshold;
983 	int i;
984 
985 	num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
986 	desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
987 	if (!desc)
988 		return NULL;
989 
990 	threshold = chan->threshold;
991 
992 	for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
993 		xfer_count = min_t(size_t, len - offset,
994 				   STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
995 
996 		/* Compute best burst size */
997 		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
998 		best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
999 						      threshold, max_width);
1000 		dma_burst = stm32_dma_get_burst(chan, best_burst);
1001 
1002 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1003 		desc->sg_req[i].chan_reg.dma_scr =
1004 			STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1005 			STM32_DMA_SCR_PBURST(dma_burst) |
1006 			STM32_DMA_SCR_MBURST(dma_burst) |
1007 			STM32_DMA_SCR_MINC |
1008 			STM32_DMA_SCR_PINC |
1009 			STM32_DMA_SCR_TCIE |
1010 			STM32_DMA_SCR_TEIE;
1011 		desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1012 		desc->sg_req[i].chan_reg.dma_sfcr |=
1013 			STM32_DMA_SFCR_FTH(threshold);
1014 		desc->sg_req[i].chan_reg.dma_spar = src + offset;
1015 		desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1016 		desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1017 		desc->sg_req[i].len = xfer_count;
1018 	}
1019 
1020 	desc->num_sgs = num_sgs;
1021 	desc->cyclic = false;
1022 
1023 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1024 }
1025 
1026 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1027 {
1028 	u32 dma_scr, width, ndtr;
1029 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1030 
1031 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1032 	width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1033 	ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1034 
1035 	return ndtr << width;
1036 }
1037 
1038 /**
1039  * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1040  * @chan: dma channel
1041  *
1042  * This function called when IRQ are disable, checks that the hardware has not
1043  * switched on the next transfer in double buffer mode. The test is done by
1044  * comparing the next_sg memory address with the hardware related register
1045  * (based on CT bit value).
1046  *
1047  * Returns true if expected current transfer is still running or double
1048  * buffer mode is not activated.
1049  */
1050 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1051 {
1052 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1053 	struct stm32_dma_sg_req *sg_req;
1054 	u32 dma_scr, dma_smar, id;
1055 
1056 	id = chan->id;
1057 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1058 
1059 	if (!(dma_scr & STM32_DMA_SCR_DBM))
1060 		return true;
1061 
1062 	sg_req = &chan->desc->sg_req[chan->next_sg];
1063 
1064 	if (dma_scr & STM32_DMA_SCR_CT) {
1065 		dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1066 		return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1067 	}
1068 
1069 	dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1070 
1071 	return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1072 }
1073 
1074 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1075 				     struct stm32_dma_desc *desc,
1076 				     u32 next_sg)
1077 {
1078 	u32 modulo, burst_size;
1079 	u32 residue;
1080 	u32 n_sg = next_sg;
1081 	struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1082 	int i;
1083 
1084 	/*
1085 	 * Calculate the residue means compute the descriptors
1086 	 * information:
1087 	 * - the sg_req currently transferred
1088 	 * - the Hardware remaining position in this sg (NDTR bits field).
1089 	 *
1090 	 * A race condition may occur if DMA is running in cyclic or double
1091 	 * buffer mode, since the DMA register are automatically reloaded at end
1092 	 * of period transfer. The hardware may have switched to the next
1093 	 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1094 	 * read.
1095 	 * In this case the SxNDTR reg could (or not) correspond to the new
1096 	 * transfer position, and not the expected one.
1097 	 * The strategy implemented in the stm32 driver is to:
1098 	 *  - read the SxNDTR register
1099 	 *  - crosscheck that hardware is still in current transfer.
1100 	 * In case of switch, we can assume that the DMA is at the beginning of
1101 	 * the next transfer. So we approximate the residue in consequence, by
1102 	 * pointing on the beginning of next transfer.
1103 	 *
1104 	 * This race condition doesn't apply for none cyclic mode, as double
1105 	 * buffer is not used. In such situation registers are updated by the
1106 	 * software.
1107 	 */
1108 
1109 	residue = stm32_dma_get_remaining_bytes(chan);
1110 
1111 	if (!stm32_dma_is_current_sg(chan)) {
1112 		n_sg++;
1113 		if (n_sg == chan->desc->num_sgs)
1114 			n_sg = 0;
1115 		residue = sg_req->len;
1116 	}
1117 
1118 	/*
1119 	 * In cyclic mode, for the last period, residue = remaining bytes
1120 	 * from NDTR,
1121 	 * else for all other periods in cyclic mode, and in sg mode,
1122 	 * residue = remaining bytes from NDTR + remaining
1123 	 * periods/sg to be transferred
1124 	 */
1125 	if (!chan->desc->cyclic || n_sg != 0)
1126 		for (i = n_sg; i < desc->num_sgs; i++)
1127 			residue += desc->sg_req[i].len;
1128 
1129 	if (!chan->mem_burst)
1130 		return residue;
1131 
1132 	burst_size = chan->mem_burst * chan->mem_width;
1133 	modulo = residue % burst_size;
1134 	if (modulo)
1135 		residue = residue - modulo + burst_size;
1136 
1137 	return residue;
1138 }
1139 
1140 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1141 					   dma_cookie_t cookie,
1142 					   struct dma_tx_state *state)
1143 {
1144 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1145 	struct virt_dma_desc *vdesc;
1146 	enum dma_status status;
1147 	unsigned long flags;
1148 	u32 residue = 0;
1149 
1150 	status = dma_cookie_status(c, cookie, state);
1151 	if (status == DMA_COMPLETE || !state)
1152 		return status;
1153 
1154 	spin_lock_irqsave(&chan->vchan.lock, flags);
1155 	vdesc = vchan_find_desc(&chan->vchan, cookie);
1156 	if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1157 		residue = stm32_dma_desc_residue(chan, chan->desc,
1158 						 chan->next_sg);
1159 	else if (vdesc)
1160 		residue = stm32_dma_desc_residue(chan,
1161 						 to_stm32_dma_desc(vdesc), 0);
1162 	dma_set_residue(state, residue);
1163 
1164 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
1165 
1166 	return status;
1167 }
1168 
1169 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1170 {
1171 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1172 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1173 	int ret;
1174 
1175 	chan->config_init = false;
1176 
1177 	ret = pm_runtime_get_sync(dmadev->ddev.dev);
1178 	if (ret < 0)
1179 		return ret;
1180 
1181 	ret = stm32_dma_disable_chan(chan);
1182 	if (ret < 0)
1183 		pm_runtime_put(dmadev->ddev.dev);
1184 
1185 	return ret;
1186 }
1187 
1188 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1189 {
1190 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1191 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1192 	unsigned long flags;
1193 
1194 	dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1195 
1196 	if (chan->busy) {
1197 		spin_lock_irqsave(&chan->vchan.lock, flags);
1198 		stm32_dma_stop(chan);
1199 		chan->desc = NULL;
1200 		spin_unlock_irqrestore(&chan->vchan.lock, flags);
1201 	}
1202 
1203 	pm_runtime_put(dmadev->ddev.dev);
1204 
1205 	vchan_free_chan_resources(to_virt_chan(c));
1206 }
1207 
1208 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1209 {
1210 	kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1211 }
1212 
1213 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1214 				 struct stm32_dma_cfg *cfg)
1215 {
1216 	stm32_dma_clear_reg(&chan->chan_reg);
1217 
1218 	chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1219 	chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1220 
1221 	/* Enable Interrupts  */
1222 	chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1223 
1224 	chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1225 }
1226 
1227 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1228 					   struct of_dma *ofdma)
1229 {
1230 	struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1231 	struct device *dev = dmadev->ddev.dev;
1232 	struct stm32_dma_cfg cfg;
1233 	struct stm32_dma_chan *chan;
1234 	struct dma_chan *c;
1235 
1236 	if (dma_spec->args_count < 4) {
1237 		dev_err(dev, "Bad number of cells\n");
1238 		return NULL;
1239 	}
1240 
1241 	cfg.channel_id = dma_spec->args[0];
1242 	cfg.request_line = dma_spec->args[1];
1243 	cfg.stream_config = dma_spec->args[2];
1244 	cfg.features = dma_spec->args[3];
1245 
1246 	if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1247 	    cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1248 		dev_err(dev, "Bad channel and/or request id\n");
1249 		return NULL;
1250 	}
1251 
1252 	chan = &dmadev->chan[cfg.channel_id];
1253 
1254 	c = dma_get_slave_channel(&chan->vchan.chan);
1255 	if (!c) {
1256 		dev_err(dev, "No more channels available\n");
1257 		return NULL;
1258 	}
1259 
1260 	stm32_dma_set_config(chan, &cfg);
1261 
1262 	return c;
1263 }
1264 
1265 static const struct of_device_id stm32_dma_of_match[] = {
1266 	{ .compatible = "st,stm32-dma", },
1267 	{ /* sentinel */ },
1268 };
1269 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1270 
1271 static int stm32_dma_probe(struct platform_device *pdev)
1272 {
1273 	struct stm32_dma_chan *chan;
1274 	struct stm32_dma_device *dmadev;
1275 	struct dma_device *dd;
1276 	const struct of_device_id *match;
1277 	struct resource *res;
1278 	int i, ret;
1279 
1280 	match = of_match_device(stm32_dma_of_match, &pdev->dev);
1281 	if (!match) {
1282 		dev_err(&pdev->dev, "Error: No device match found\n");
1283 		return -ENODEV;
1284 	}
1285 
1286 	dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1287 	if (!dmadev)
1288 		return -ENOMEM;
1289 
1290 	dd = &dmadev->ddev;
1291 
1292 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1293 	dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1294 	if (IS_ERR(dmadev->base))
1295 		return PTR_ERR(dmadev->base);
1296 
1297 	dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1298 	if (IS_ERR(dmadev->clk)) {
1299 		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1300 		return PTR_ERR(dmadev->clk);
1301 	}
1302 
1303 	ret = clk_prepare_enable(dmadev->clk);
1304 	if (ret < 0) {
1305 		dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1306 		return ret;
1307 	}
1308 
1309 	dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1310 						"st,mem2mem");
1311 
1312 	dmadev->rst = devm_reset_control_get(&pdev->dev, NULL);
1313 	if (!IS_ERR(dmadev->rst)) {
1314 		reset_control_assert(dmadev->rst);
1315 		udelay(2);
1316 		reset_control_deassert(dmadev->rst);
1317 	}
1318 
1319 	dma_cap_set(DMA_SLAVE, dd->cap_mask);
1320 	dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1321 	dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1322 	dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1323 	dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1324 	dd->device_tx_status = stm32_dma_tx_status;
1325 	dd->device_issue_pending = stm32_dma_issue_pending;
1326 	dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1327 	dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1328 	dd->device_config = stm32_dma_slave_config;
1329 	dd->device_terminate_all = stm32_dma_terminate_all;
1330 	dd->device_synchronize = stm32_dma_synchronize;
1331 	dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1332 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1333 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1334 	dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1335 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1336 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1337 	dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1338 	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1339 	dd->max_burst = STM32_DMA_MAX_BURST;
1340 	dd->dev = &pdev->dev;
1341 	INIT_LIST_HEAD(&dd->channels);
1342 
1343 	if (dmadev->mem2mem) {
1344 		dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1345 		dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1346 		dd->directions |= BIT(DMA_MEM_TO_MEM);
1347 	}
1348 
1349 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1350 		chan = &dmadev->chan[i];
1351 		chan->id = i;
1352 		chan->vchan.desc_free = stm32_dma_desc_free;
1353 		vchan_init(&chan->vchan, dd);
1354 	}
1355 
1356 	ret = dma_async_device_register(dd);
1357 	if (ret)
1358 		goto clk_free;
1359 
1360 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1361 		chan = &dmadev->chan[i];
1362 		ret = platform_get_irq(pdev, i);
1363 		if (ret < 0)
1364 			goto err_unregister;
1365 		chan->irq = ret;
1366 
1367 		ret = devm_request_irq(&pdev->dev, chan->irq,
1368 				       stm32_dma_chan_irq, 0,
1369 				       dev_name(chan2dev(chan)), chan);
1370 		if (ret) {
1371 			dev_err(&pdev->dev,
1372 				"request_irq failed with err %d channel %d\n",
1373 				ret, i);
1374 			goto err_unregister;
1375 		}
1376 	}
1377 
1378 	ret = of_dma_controller_register(pdev->dev.of_node,
1379 					 stm32_dma_of_xlate, dmadev);
1380 	if (ret < 0) {
1381 		dev_err(&pdev->dev,
1382 			"STM32 DMA DMA OF registration failed %d\n", ret);
1383 		goto err_unregister;
1384 	}
1385 
1386 	platform_set_drvdata(pdev, dmadev);
1387 
1388 	pm_runtime_set_active(&pdev->dev);
1389 	pm_runtime_enable(&pdev->dev);
1390 	pm_runtime_get_noresume(&pdev->dev);
1391 	pm_runtime_put(&pdev->dev);
1392 
1393 	dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1394 
1395 	return 0;
1396 
1397 err_unregister:
1398 	dma_async_device_unregister(dd);
1399 clk_free:
1400 	clk_disable_unprepare(dmadev->clk);
1401 
1402 	return ret;
1403 }
1404 
1405 #ifdef CONFIG_PM
1406 static int stm32_dma_runtime_suspend(struct device *dev)
1407 {
1408 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1409 
1410 	clk_disable_unprepare(dmadev->clk);
1411 
1412 	return 0;
1413 }
1414 
1415 static int stm32_dma_runtime_resume(struct device *dev)
1416 {
1417 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1418 	int ret;
1419 
1420 	ret = clk_prepare_enable(dmadev->clk);
1421 	if (ret) {
1422 		dev_err(dev, "failed to prepare_enable clock\n");
1423 		return ret;
1424 	}
1425 
1426 	return 0;
1427 }
1428 #endif
1429 
1430 static const struct dev_pm_ops stm32_dma_pm_ops = {
1431 	SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1432 			   stm32_dma_runtime_resume, NULL)
1433 };
1434 
1435 static struct platform_driver stm32_dma_driver = {
1436 	.driver = {
1437 		.name = "stm32-dma",
1438 		.of_match_table = stm32_dma_of_match,
1439 		.pm = &stm32_dma_pm_ops,
1440 	},
1441 };
1442 
1443 static int __init stm32_dma_init(void)
1444 {
1445 	return platform_driver_probe(&stm32_dma_driver, stm32_dma_probe);
1446 }
1447 subsys_initcall(stm32_dma_init);
1448