xref: /openbmc/linux/drivers/dma/stm32-dma.c (revision e6b58555558a1ea653e415fc45308964087f9053)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for STM32 DMA controller
4  *
5  * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6  *
7  * Copyright (C) M'boumba Cedric Madianga 2015
8  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9  *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 
31 #include "virt-dma.h"
32 
33 #define STM32_DMA_LISR			0x0000 /* DMA Low Int Status Reg */
34 #define STM32_DMA_HISR			0x0004 /* DMA High Int Status Reg */
35 #define STM32_DMA_LIFCR			0x0008 /* DMA Low Int Flag Clear Reg */
36 #define STM32_DMA_HIFCR			0x000c /* DMA High Int Flag Clear Reg */
37 #define STM32_DMA_TCI			BIT(5) /* Transfer Complete Interrupt */
38 #define STM32_DMA_HTI			BIT(4) /* Half Transfer Interrupt */
39 #define STM32_DMA_TEI			BIT(3) /* Transfer Error Interrupt */
40 #define STM32_DMA_DMEI			BIT(2) /* Direct Mode Error Interrupt */
41 #define STM32_DMA_FEI			BIT(0) /* FIFO Error Interrupt */
42 #define STM32_DMA_MASKI			(STM32_DMA_TCI \
43 					 | STM32_DMA_TEI \
44 					 | STM32_DMA_DMEI \
45 					 | STM32_DMA_FEI)
46 
47 /* DMA Stream x Configuration Register */
48 #define STM32_DMA_SCR(x)		(0x0010 + 0x18 * (x)) /* x = 0..7 */
49 #define STM32_DMA_SCR_REQ(n)		((n & 0x7) << 25)
50 #define STM32_DMA_SCR_MBURST_MASK	GENMASK(24, 23)
51 #define STM32_DMA_SCR_MBURST(n)	        ((n & 0x3) << 23)
52 #define STM32_DMA_SCR_PBURST_MASK	GENMASK(22, 21)
53 #define STM32_DMA_SCR_PBURST(n)	        ((n & 0x3) << 21)
54 #define STM32_DMA_SCR_PL_MASK		GENMASK(17, 16)
55 #define STM32_DMA_SCR_PL(n)		((n & 0x3) << 16)
56 #define STM32_DMA_SCR_MSIZE_MASK	GENMASK(14, 13)
57 #define STM32_DMA_SCR_MSIZE(n)		((n & 0x3) << 13)
58 #define STM32_DMA_SCR_PSIZE_MASK	GENMASK(12, 11)
59 #define STM32_DMA_SCR_PSIZE(n)		((n & 0x3) << 11)
60 #define STM32_DMA_SCR_PSIZE_GET(n)	((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
61 #define STM32_DMA_SCR_DIR_MASK		GENMASK(7, 6)
62 #define STM32_DMA_SCR_DIR(n)		((n & 0x3) << 6)
63 #define STM32_DMA_SCR_TRBUFF		BIT(20) /* Bufferable transfer for USART/UART */
64 #define STM32_DMA_SCR_CT		BIT(19) /* Target in double buffer */
65 #define STM32_DMA_SCR_DBM		BIT(18) /* Double Buffer Mode */
66 #define STM32_DMA_SCR_PINCOS		BIT(15) /* Peripheral inc offset size */
67 #define STM32_DMA_SCR_MINC		BIT(10) /* Memory increment mode */
68 #define STM32_DMA_SCR_PINC		BIT(9) /* Peripheral increment mode */
69 #define STM32_DMA_SCR_CIRC		BIT(8) /* Circular mode */
70 #define STM32_DMA_SCR_PFCTRL		BIT(5) /* Peripheral Flow Controller */
71 #define STM32_DMA_SCR_TCIE		BIT(4) /* Transfer Complete Int Enable
72 						*/
73 #define STM32_DMA_SCR_TEIE		BIT(2) /* Transfer Error Int Enable */
74 #define STM32_DMA_SCR_DMEIE		BIT(1) /* Direct Mode Err Int Enable */
75 #define STM32_DMA_SCR_EN		BIT(0) /* Stream Enable */
76 #define STM32_DMA_SCR_CFG_MASK		(STM32_DMA_SCR_PINC \
77 					| STM32_DMA_SCR_MINC \
78 					| STM32_DMA_SCR_PINCOS \
79 					| STM32_DMA_SCR_PL_MASK)
80 #define STM32_DMA_SCR_IRQ_MASK		(STM32_DMA_SCR_TCIE \
81 					| STM32_DMA_SCR_TEIE \
82 					| STM32_DMA_SCR_DMEIE)
83 
84 /* DMA Stream x number of data register */
85 #define STM32_DMA_SNDTR(x)		(0x0014 + 0x18 * (x))
86 
87 /* DMA stream peripheral address register */
88 #define STM32_DMA_SPAR(x)		(0x0018 + 0x18 * (x))
89 
90 /* DMA stream x memory 0 address register */
91 #define STM32_DMA_SM0AR(x)		(0x001c + 0x18 * (x))
92 
93 /* DMA stream x memory 1 address register */
94 #define STM32_DMA_SM1AR(x)		(0x0020 + 0x18 * (x))
95 
96 /* DMA stream x FIFO control register */
97 #define STM32_DMA_SFCR(x)		(0x0024 + 0x18 * (x))
98 #define STM32_DMA_SFCR_FTH_MASK		GENMASK(1, 0)
99 #define STM32_DMA_SFCR_FTH(n)		(n & STM32_DMA_SFCR_FTH_MASK)
100 #define STM32_DMA_SFCR_FEIE		BIT(7) /* FIFO error interrupt enable */
101 #define STM32_DMA_SFCR_DMDIS		BIT(2) /* Direct mode disable */
102 #define STM32_DMA_SFCR_MASK		(STM32_DMA_SFCR_FEIE \
103 					| STM32_DMA_SFCR_DMDIS)
104 
105 /* DMA direction */
106 #define STM32_DMA_DEV_TO_MEM		0x00
107 #define	STM32_DMA_MEM_TO_DEV		0x01
108 #define	STM32_DMA_MEM_TO_MEM		0x02
109 
110 /* DMA priority level */
111 #define STM32_DMA_PRIORITY_LOW		0x00
112 #define STM32_DMA_PRIORITY_MEDIUM	0x01
113 #define STM32_DMA_PRIORITY_HIGH		0x02
114 #define STM32_DMA_PRIORITY_VERY_HIGH	0x03
115 
116 /* DMA FIFO threshold selection */
117 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL		0x00
118 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL		0x01
119 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL		0x02
120 #define STM32_DMA_FIFO_THRESHOLD_FULL			0x03
121 #define STM32_DMA_FIFO_THRESHOLD_NONE			0x04
122 
123 #define STM32_DMA_MAX_DATA_ITEMS	0xffff
124 /*
125  * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
126  * gather at boundary. Thus it's safer to round down this value on FIFO
127  * size (16 Bytes)
128  */
129 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS	\
130 	ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
131 #define STM32_DMA_MAX_CHANNELS		0x08
132 #define STM32_DMA_MAX_REQUEST_ID	0x08
133 #define STM32_DMA_MAX_DATA_PARAM	0x03
134 #define STM32_DMA_FIFO_SIZE		16	/* FIFO is 16 bytes */
135 #define STM32_DMA_MIN_BURST		4
136 #define STM32_DMA_MAX_BURST		16
137 
138 /* DMA Features */
139 #define STM32_DMA_THRESHOLD_FTR_MASK	GENMASK(1, 0)
140 #define STM32_DMA_THRESHOLD_FTR_GET(n)	((n) & STM32_DMA_THRESHOLD_FTR_MASK)
141 #define STM32_DMA_DIRECT_MODE_MASK	BIT(2)
142 #define STM32_DMA_DIRECT_MODE_GET(n)	(((n) & STM32_DMA_DIRECT_MODE_MASK) >> 2)
143 #define STM32_DMA_ALT_ACK_MODE_MASK	BIT(4)
144 #define STM32_DMA_ALT_ACK_MODE_GET(n)	(((n) & STM32_DMA_ALT_ACK_MODE_MASK) >> 4)
145 
146 enum stm32_dma_width {
147 	STM32_DMA_BYTE,
148 	STM32_DMA_HALF_WORD,
149 	STM32_DMA_WORD,
150 };
151 
152 enum stm32_dma_burst_size {
153 	STM32_DMA_BURST_SINGLE,
154 	STM32_DMA_BURST_INCR4,
155 	STM32_DMA_BURST_INCR8,
156 	STM32_DMA_BURST_INCR16,
157 };
158 
159 /**
160  * struct stm32_dma_cfg - STM32 DMA custom configuration
161  * @channel_id: channel ID
162  * @request_line: DMA request
163  * @stream_config: 32bit mask specifying the DMA channel configuration
164  * @features: 32bit mask specifying the DMA Feature list
165  */
166 struct stm32_dma_cfg {
167 	u32 channel_id;
168 	u32 request_line;
169 	u32 stream_config;
170 	u32 features;
171 };
172 
173 struct stm32_dma_chan_reg {
174 	u32 dma_lisr;
175 	u32 dma_hisr;
176 	u32 dma_lifcr;
177 	u32 dma_hifcr;
178 	u32 dma_scr;
179 	u32 dma_sndtr;
180 	u32 dma_spar;
181 	u32 dma_sm0ar;
182 	u32 dma_sm1ar;
183 	u32 dma_sfcr;
184 };
185 
186 struct stm32_dma_sg_req {
187 	u32 len;
188 	struct stm32_dma_chan_reg chan_reg;
189 };
190 
191 struct stm32_dma_desc {
192 	struct virt_dma_desc vdesc;
193 	bool cyclic;
194 	u32 num_sgs;
195 	struct stm32_dma_sg_req sg_req[];
196 };
197 
198 struct stm32_dma_chan {
199 	struct virt_dma_chan vchan;
200 	bool config_init;
201 	bool busy;
202 	u32 id;
203 	u32 irq;
204 	struct stm32_dma_desc *desc;
205 	u32 next_sg;
206 	struct dma_slave_config	dma_sconfig;
207 	struct stm32_dma_chan_reg chan_reg;
208 	u32 threshold;
209 	u32 mem_burst;
210 	u32 mem_width;
211 };
212 
213 struct stm32_dma_device {
214 	struct dma_device ddev;
215 	void __iomem *base;
216 	struct clk *clk;
217 	bool mem2mem;
218 	struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
219 };
220 
221 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
222 {
223 	return container_of(chan->vchan.chan.device, struct stm32_dma_device,
224 			    ddev);
225 }
226 
227 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
228 {
229 	return container_of(c, struct stm32_dma_chan, vchan.chan);
230 }
231 
232 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
233 {
234 	return container_of(vdesc, struct stm32_dma_desc, vdesc);
235 }
236 
237 static struct device *chan2dev(struct stm32_dma_chan *chan)
238 {
239 	return &chan->vchan.chan.dev->device;
240 }
241 
242 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
243 {
244 	return readl_relaxed(dmadev->base + reg);
245 }
246 
247 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
248 {
249 	writel_relaxed(val, dmadev->base + reg);
250 }
251 
252 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
253 			       enum dma_slave_buswidth width)
254 {
255 	switch (width) {
256 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
257 		return STM32_DMA_BYTE;
258 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
259 		return STM32_DMA_HALF_WORD;
260 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
261 		return STM32_DMA_WORD;
262 	default:
263 		dev_err(chan2dev(chan), "Dma bus width not supported\n");
264 		return -EINVAL;
265 	}
266 }
267 
268 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
269 						       dma_addr_t buf_addr,
270 						       u32 threshold)
271 {
272 	enum dma_slave_buswidth max_width;
273 
274 	if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
275 		max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
276 	else
277 		max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
278 
279 	while ((buf_len < max_width  || buf_len % max_width) &&
280 	       max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
281 		max_width = max_width >> 1;
282 
283 	if (buf_addr & (max_width - 1))
284 		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
285 
286 	return max_width;
287 }
288 
289 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
290 						enum dma_slave_buswidth width)
291 {
292 	u32 remaining;
293 
294 	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
295 		return false;
296 
297 	if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
298 		if (burst != 0) {
299 			/*
300 			 * If number of beats fit in several whole bursts
301 			 * this configuration is allowed.
302 			 */
303 			remaining = ((STM32_DMA_FIFO_SIZE / width) *
304 				     (threshold + 1) / 4) % burst;
305 
306 			if (remaining == 0)
307 				return true;
308 		} else {
309 			return true;
310 		}
311 	}
312 
313 	return false;
314 }
315 
316 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
317 {
318 	/* If FIFO direct mode, burst is not possible */
319 	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
320 		return false;
321 
322 	/*
323 	 * Buffer or period length has to be aligned on FIFO depth.
324 	 * Otherwise bytes may be stuck within FIFO at buffer or period
325 	 * length.
326 	 */
327 	return ((buf_len % ((threshold + 1) * 4)) == 0);
328 }
329 
330 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
331 				    enum dma_slave_buswidth width)
332 {
333 	u32 best_burst = max_burst;
334 
335 	if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
336 		return 0;
337 
338 	while ((buf_len < best_burst * width && best_burst > 1) ||
339 	       !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
340 						    width)) {
341 		if (best_burst > STM32_DMA_MIN_BURST)
342 			best_burst = best_burst >> 1;
343 		else
344 			best_burst = 0;
345 	}
346 
347 	return best_burst;
348 }
349 
350 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
351 {
352 	switch (maxburst) {
353 	case 0:
354 	case 1:
355 		return STM32_DMA_BURST_SINGLE;
356 	case 4:
357 		return STM32_DMA_BURST_INCR4;
358 	case 8:
359 		return STM32_DMA_BURST_INCR8;
360 	case 16:
361 		return STM32_DMA_BURST_INCR16;
362 	default:
363 		dev_err(chan2dev(chan), "Dma burst size not supported\n");
364 		return -EINVAL;
365 	}
366 }
367 
368 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
369 				      u32 src_burst, u32 dst_burst)
370 {
371 	chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
372 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
373 
374 	if (!src_burst && !dst_burst) {
375 		/* Using direct mode */
376 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
377 	} else {
378 		/* Using FIFO mode */
379 		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
380 	}
381 }
382 
383 static int stm32_dma_slave_config(struct dma_chan *c,
384 				  struct dma_slave_config *config)
385 {
386 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
387 
388 	memcpy(&chan->dma_sconfig, config, sizeof(*config));
389 
390 	chan->config_init = true;
391 
392 	return 0;
393 }
394 
395 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
396 {
397 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
398 	u32 flags, dma_isr;
399 
400 	/*
401 	 * Read "flags" from DMA_xISR register corresponding to the selected
402 	 * DMA channel at the correct bit offset inside that register.
403 	 *
404 	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
405 	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
406 	 */
407 
408 	if (chan->id & 4)
409 		dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
410 	else
411 		dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
412 
413 	flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
414 
415 	return flags & STM32_DMA_MASKI;
416 }
417 
418 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
419 {
420 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
421 	u32 dma_ifcr;
422 
423 	/*
424 	 * Write "flags" to the DMA_xIFCR register corresponding to the selected
425 	 * DMA channel at the correct bit offset inside that register.
426 	 *
427 	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
428 	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
429 	 */
430 	flags &= STM32_DMA_MASKI;
431 	dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
432 
433 	if (chan->id & 4)
434 		stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
435 	else
436 		stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
437 }
438 
439 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
440 {
441 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
442 	u32 dma_scr, id, reg;
443 
444 	id = chan->id;
445 	reg = STM32_DMA_SCR(id);
446 	dma_scr = stm32_dma_read(dmadev, reg);
447 
448 	if (dma_scr & STM32_DMA_SCR_EN) {
449 		dma_scr &= ~STM32_DMA_SCR_EN;
450 		stm32_dma_write(dmadev, reg, dma_scr);
451 
452 		return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
453 					dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
454 					10, 1000000);
455 	}
456 
457 	return 0;
458 }
459 
460 static void stm32_dma_stop(struct stm32_dma_chan *chan)
461 {
462 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
463 	u32 dma_scr, dma_sfcr, status;
464 	int ret;
465 
466 	/* Disable interrupts */
467 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
468 	dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
469 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
470 	dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
471 	dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
472 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
473 
474 	/* Disable DMA */
475 	ret = stm32_dma_disable_chan(chan);
476 	if (ret < 0)
477 		return;
478 
479 	/* Clear interrupt status if it is there */
480 	status = stm32_dma_irq_status(chan);
481 	if (status) {
482 		dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
483 			__func__, status);
484 		stm32_dma_irq_clear(chan, status);
485 	}
486 
487 	chan->busy = false;
488 }
489 
490 static int stm32_dma_terminate_all(struct dma_chan *c)
491 {
492 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
493 	unsigned long flags;
494 	LIST_HEAD(head);
495 
496 	spin_lock_irqsave(&chan->vchan.lock, flags);
497 
498 	if (chan->desc) {
499 		dma_cookie_complete(&chan->desc->vdesc.tx);
500 		vchan_terminate_vdesc(&chan->desc->vdesc);
501 		if (chan->busy)
502 			stm32_dma_stop(chan);
503 		chan->desc = NULL;
504 	}
505 
506 	vchan_get_all_descriptors(&chan->vchan, &head);
507 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
508 	vchan_dma_desc_free_list(&chan->vchan, &head);
509 
510 	return 0;
511 }
512 
513 static void stm32_dma_synchronize(struct dma_chan *c)
514 {
515 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
516 
517 	vchan_synchronize(&chan->vchan);
518 }
519 
520 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
521 {
522 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
523 	u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
524 	u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
525 	u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
526 	u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
527 	u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
528 	u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
529 
530 	dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
531 	dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
532 	dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
533 	dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
534 	dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
535 	dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
536 }
537 
538 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
539 
540 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
541 {
542 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
543 	struct virt_dma_desc *vdesc;
544 	struct stm32_dma_sg_req *sg_req;
545 	struct stm32_dma_chan_reg *reg;
546 	u32 status;
547 	int ret;
548 
549 	ret = stm32_dma_disable_chan(chan);
550 	if (ret < 0)
551 		return;
552 
553 	if (!chan->desc) {
554 		vdesc = vchan_next_desc(&chan->vchan);
555 		if (!vdesc)
556 			return;
557 
558 		list_del(&vdesc->node);
559 
560 		chan->desc = to_stm32_dma_desc(vdesc);
561 		chan->next_sg = 0;
562 	}
563 
564 	if (chan->next_sg == chan->desc->num_sgs)
565 		chan->next_sg = 0;
566 
567 	sg_req = &chan->desc->sg_req[chan->next_sg];
568 	reg = &sg_req->chan_reg;
569 
570 	reg->dma_scr &= ~STM32_DMA_SCR_EN;
571 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
572 	stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
573 	stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
574 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
575 	stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
576 	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
577 
578 	chan->next_sg++;
579 
580 	/* Clear interrupt status if it is there */
581 	status = stm32_dma_irq_status(chan);
582 	if (status)
583 		stm32_dma_irq_clear(chan, status);
584 
585 	if (chan->desc->cyclic)
586 		stm32_dma_configure_next_sg(chan);
587 
588 	stm32_dma_dump_reg(chan);
589 
590 	/* Start DMA */
591 	reg->dma_scr |= STM32_DMA_SCR_EN;
592 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
593 
594 	chan->busy = true;
595 
596 	dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
597 }
598 
599 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
600 {
601 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
602 	struct stm32_dma_sg_req *sg_req;
603 	u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
604 
605 	id = chan->id;
606 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
607 
608 	if (dma_scr & STM32_DMA_SCR_DBM) {
609 		if (chan->next_sg == chan->desc->num_sgs)
610 			chan->next_sg = 0;
611 
612 		sg_req = &chan->desc->sg_req[chan->next_sg];
613 
614 		if (dma_scr & STM32_DMA_SCR_CT) {
615 			dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
616 			stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
617 			dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
618 				stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
619 		} else {
620 			dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
621 			stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
622 			dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
623 				stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
624 		}
625 	}
626 }
627 
628 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
629 {
630 	if (chan->desc) {
631 		if (chan->desc->cyclic) {
632 			vchan_cyclic_callback(&chan->desc->vdesc);
633 			chan->next_sg++;
634 			stm32_dma_configure_next_sg(chan);
635 		} else {
636 			chan->busy = false;
637 			if (chan->next_sg == chan->desc->num_sgs) {
638 				vchan_cookie_complete(&chan->desc->vdesc);
639 				chan->desc = NULL;
640 			}
641 			stm32_dma_start_transfer(chan);
642 		}
643 	}
644 }
645 
646 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
647 {
648 	struct stm32_dma_chan *chan = devid;
649 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
650 	u32 status, scr, sfcr;
651 
652 	spin_lock(&chan->vchan.lock);
653 
654 	status = stm32_dma_irq_status(chan);
655 	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
656 	sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
657 
658 	if (status & STM32_DMA_FEI) {
659 		stm32_dma_irq_clear(chan, STM32_DMA_FEI);
660 		status &= ~STM32_DMA_FEI;
661 		if (sfcr & STM32_DMA_SFCR_FEIE) {
662 			if (!(scr & STM32_DMA_SCR_EN) &&
663 			    !(status & STM32_DMA_TCI))
664 				dev_err(chan2dev(chan), "FIFO Error\n");
665 			else
666 				dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
667 		}
668 	}
669 	if (status & STM32_DMA_DMEI) {
670 		stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
671 		status &= ~STM32_DMA_DMEI;
672 		if (sfcr & STM32_DMA_SCR_DMEIE)
673 			dev_dbg(chan2dev(chan), "Direct mode overrun\n");
674 	}
675 
676 	if (status & STM32_DMA_TCI) {
677 		stm32_dma_irq_clear(chan, STM32_DMA_TCI);
678 		if (scr & STM32_DMA_SCR_TCIE)
679 			stm32_dma_handle_chan_done(chan);
680 		status &= ~STM32_DMA_TCI;
681 	}
682 
683 	if (status & STM32_DMA_HTI) {
684 		stm32_dma_irq_clear(chan, STM32_DMA_HTI);
685 		status &= ~STM32_DMA_HTI;
686 	}
687 
688 	if (status) {
689 		stm32_dma_irq_clear(chan, status);
690 		dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
691 		if (!(scr & STM32_DMA_SCR_EN))
692 			dev_err(chan2dev(chan), "chan disabled by HW\n");
693 	}
694 
695 	spin_unlock(&chan->vchan.lock);
696 
697 	return IRQ_HANDLED;
698 }
699 
700 static void stm32_dma_issue_pending(struct dma_chan *c)
701 {
702 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
703 	unsigned long flags;
704 
705 	spin_lock_irqsave(&chan->vchan.lock, flags);
706 	if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
707 		dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
708 		stm32_dma_start_transfer(chan);
709 
710 	}
711 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
712 }
713 
714 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
715 				    enum dma_transfer_direction direction,
716 				    enum dma_slave_buswidth *buswidth,
717 				    u32 buf_len, dma_addr_t buf_addr)
718 {
719 	enum dma_slave_buswidth src_addr_width, dst_addr_width;
720 	int src_bus_width, dst_bus_width;
721 	int src_burst_size, dst_burst_size;
722 	u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
723 	u32 dma_scr, fifoth;
724 
725 	src_addr_width = chan->dma_sconfig.src_addr_width;
726 	dst_addr_width = chan->dma_sconfig.dst_addr_width;
727 	src_maxburst = chan->dma_sconfig.src_maxburst;
728 	dst_maxburst = chan->dma_sconfig.dst_maxburst;
729 	fifoth = chan->threshold;
730 
731 	switch (direction) {
732 	case DMA_MEM_TO_DEV:
733 		/* Set device data size */
734 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
735 		if (dst_bus_width < 0)
736 			return dst_bus_width;
737 
738 		/* Set device burst size */
739 		dst_best_burst = stm32_dma_get_best_burst(buf_len,
740 							  dst_maxburst,
741 							  fifoth,
742 							  dst_addr_width);
743 
744 		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
745 		if (dst_burst_size < 0)
746 			return dst_burst_size;
747 
748 		/* Set memory data size */
749 		src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
750 							 fifoth);
751 		chan->mem_width = src_addr_width;
752 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
753 		if (src_bus_width < 0)
754 			return src_bus_width;
755 
756 		/*
757 		 * Set memory burst size - burst not possible if address is not aligned on
758 		 * the address boundary equal to the size of the transfer
759 		 */
760 		if (buf_addr & (buf_len - 1))
761 			src_maxburst = 1;
762 		else
763 			src_maxburst = STM32_DMA_MAX_BURST;
764 		src_best_burst = stm32_dma_get_best_burst(buf_len,
765 							  src_maxburst,
766 							  fifoth,
767 							  src_addr_width);
768 		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
769 		if (src_burst_size < 0)
770 			return src_burst_size;
771 
772 		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
773 			STM32_DMA_SCR_PSIZE(dst_bus_width) |
774 			STM32_DMA_SCR_MSIZE(src_bus_width) |
775 			STM32_DMA_SCR_PBURST(dst_burst_size) |
776 			STM32_DMA_SCR_MBURST(src_burst_size);
777 
778 		/* Set FIFO threshold */
779 		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
780 		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
781 			chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
782 
783 		/* Set peripheral address */
784 		chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
785 		*buswidth = dst_addr_width;
786 		break;
787 
788 	case DMA_DEV_TO_MEM:
789 		/* Set device data size */
790 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
791 		if (src_bus_width < 0)
792 			return src_bus_width;
793 
794 		/* Set device burst size */
795 		src_best_burst = stm32_dma_get_best_burst(buf_len,
796 							  src_maxburst,
797 							  fifoth,
798 							  src_addr_width);
799 		chan->mem_burst = src_best_burst;
800 		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
801 		if (src_burst_size < 0)
802 			return src_burst_size;
803 
804 		/* Set memory data size */
805 		dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
806 							 fifoth);
807 		chan->mem_width = dst_addr_width;
808 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
809 		if (dst_bus_width < 0)
810 			return dst_bus_width;
811 
812 		/*
813 		 * Set memory burst size - burst not possible if address is not aligned on
814 		 * the address boundary equal to the size of the transfer
815 		 */
816 		if (buf_addr & (buf_len - 1))
817 			dst_maxburst = 1;
818 		else
819 			dst_maxburst = STM32_DMA_MAX_BURST;
820 		dst_best_burst = stm32_dma_get_best_burst(buf_len,
821 							  dst_maxburst,
822 							  fifoth,
823 							  dst_addr_width);
824 		chan->mem_burst = dst_best_burst;
825 		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
826 		if (dst_burst_size < 0)
827 			return dst_burst_size;
828 
829 		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
830 			STM32_DMA_SCR_PSIZE(src_bus_width) |
831 			STM32_DMA_SCR_MSIZE(dst_bus_width) |
832 			STM32_DMA_SCR_PBURST(src_burst_size) |
833 			STM32_DMA_SCR_MBURST(dst_burst_size);
834 
835 		/* Set FIFO threshold */
836 		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
837 		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
838 			chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
839 
840 		/* Set peripheral address */
841 		chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
842 		*buswidth = chan->dma_sconfig.src_addr_width;
843 		break;
844 
845 	default:
846 		dev_err(chan2dev(chan), "Dma direction is not supported\n");
847 		return -EINVAL;
848 	}
849 
850 	stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
851 
852 	/* Set DMA control register */
853 	chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
854 			STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
855 			STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
856 	chan->chan_reg.dma_scr |= dma_scr;
857 
858 	return 0;
859 }
860 
861 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
862 {
863 	memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
864 }
865 
866 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
867 	struct dma_chan *c, struct scatterlist *sgl,
868 	u32 sg_len, enum dma_transfer_direction direction,
869 	unsigned long flags, void *context)
870 {
871 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
872 	struct stm32_dma_desc *desc;
873 	struct scatterlist *sg;
874 	enum dma_slave_buswidth buswidth;
875 	u32 nb_data_items;
876 	int i, ret;
877 
878 	if (!chan->config_init) {
879 		dev_err(chan2dev(chan), "dma channel is not configured\n");
880 		return NULL;
881 	}
882 
883 	if (sg_len < 1) {
884 		dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
885 		return NULL;
886 	}
887 
888 	desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
889 	if (!desc)
890 		return NULL;
891 
892 	/* Set peripheral flow controller */
893 	if (chan->dma_sconfig.device_fc)
894 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
895 	else
896 		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
897 
898 	for_each_sg(sgl, sg, sg_len, i) {
899 		ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
900 					       sg_dma_len(sg),
901 					       sg_dma_address(sg));
902 		if (ret < 0)
903 			goto err;
904 
905 		desc->sg_req[i].len = sg_dma_len(sg);
906 
907 		nb_data_items = desc->sg_req[i].len / buswidth;
908 		if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
909 			dev_err(chan2dev(chan), "nb items not supported\n");
910 			goto err;
911 		}
912 
913 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
914 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
915 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
916 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
917 		desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
918 		desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
919 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
920 	}
921 
922 	desc->num_sgs = sg_len;
923 	desc->cyclic = false;
924 
925 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
926 
927 err:
928 	kfree(desc);
929 	return NULL;
930 }
931 
932 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
933 	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
934 	size_t period_len, enum dma_transfer_direction direction,
935 	unsigned long flags)
936 {
937 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
938 	struct stm32_dma_desc *desc;
939 	enum dma_slave_buswidth buswidth;
940 	u32 num_periods, nb_data_items;
941 	int i, ret;
942 
943 	if (!buf_len || !period_len) {
944 		dev_err(chan2dev(chan), "Invalid buffer/period len\n");
945 		return NULL;
946 	}
947 
948 	if (!chan->config_init) {
949 		dev_err(chan2dev(chan), "dma channel is not configured\n");
950 		return NULL;
951 	}
952 
953 	if (buf_len % period_len) {
954 		dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
955 		return NULL;
956 	}
957 
958 	/*
959 	 * We allow to take more number of requests till DMA is
960 	 * not started. The driver will loop over all requests.
961 	 * Once DMA is started then new requests can be queued only after
962 	 * terminating the DMA.
963 	 */
964 	if (chan->busy) {
965 		dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
966 		return NULL;
967 	}
968 
969 	ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
970 				       buf_addr);
971 	if (ret < 0)
972 		return NULL;
973 
974 	nb_data_items = period_len / buswidth;
975 	if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
976 		dev_err(chan2dev(chan), "number of items not supported\n");
977 		return NULL;
978 	}
979 
980 	/*  Enable Circular mode or double buffer mode */
981 	if (buf_len == period_len)
982 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
983 	else
984 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
985 
986 	/* Clear periph ctrl if client set it */
987 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
988 
989 	num_periods = buf_len / period_len;
990 
991 	desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
992 	if (!desc)
993 		return NULL;
994 
995 	for (i = 0; i < num_periods; i++) {
996 		desc->sg_req[i].len = period_len;
997 
998 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
999 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
1000 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1001 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1002 		desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
1003 		desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
1004 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1005 		buf_addr += period_len;
1006 	}
1007 
1008 	desc->num_sgs = num_periods;
1009 	desc->cyclic = true;
1010 
1011 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1012 }
1013 
1014 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1015 	struct dma_chan *c, dma_addr_t dest,
1016 	dma_addr_t src, size_t len, unsigned long flags)
1017 {
1018 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1019 	enum dma_slave_buswidth max_width;
1020 	struct stm32_dma_desc *desc;
1021 	size_t xfer_count, offset;
1022 	u32 num_sgs, best_burst, dma_burst, threshold;
1023 	int i;
1024 
1025 	num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1026 	desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1027 	if (!desc)
1028 		return NULL;
1029 
1030 	threshold = chan->threshold;
1031 
1032 	for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1033 		xfer_count = min_t(size_t, len - offset,
1034 				   STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1035 
1036 		/* Compute best burst size */
1037 		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1038 		best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1039 						      threshold, max_width);
1040 		dma_burst = stm32_dma_get_burst(chan, best_burst);
1041 
1042 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1043 		desc->sg_req[i].chan_reg.dma_scr =
1044 			STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1045 			STM32_DMA_SCR_PBURST(dma_burst) |
1046 			STM32_DMA_SCR_MBURST(dma_burst) |
1047 			STM32_DMA_SCR_MINC |
1048 			STM32_DMA_SCR_PINC |
1049 			STM32_DMA_SCR_TCIE |
1050 			STM32_DMA_SCR_TEIE;
1051 		desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1052 		desc->sg_req[i].chan_reg.dma_sfcr |=
1053 			STM32_DMA_SFCR_FTH(threshold);
1054 		desc->sg_req[i].chan_reg.dma_spar = src + offset;
1055 		desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1056 		desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1057 		desc->sg_req[i].len = xfer_count;
1058 	}
1059 
1060 	desc->num_sgs = num_sgs;
1061 	desc->cyclic = false;
1062 
1063 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1064 }
1065 
1066 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1067 {
1068 	u32 dma_scr, width, ndtr;
1069 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1070 
1071 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1072 	width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1073 	ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1074 
1075 	return ndtr << width;
1076 }
1077 
1078 /**
1079  * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1080  * @chan: dma channel
1081  *
1082  * This function called when IRQ are disable, checks that the hardware has not
1083  * switched on the next transfer in double buffer mode. The test is done by
1084  * comparing the next_sg memory address with the hardware related register
1085  * (based on CT bit value).
1086  *
1087  * Returns true if expected current transfer is still running or double
1088  * buffer mode is not activated.
1089  */
1090 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1091 {
1092 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1093 	struct stm32_dma_sg_req *sg_req;
1094 	u32 dma_scr, dma_smar, id;
1095 
1096 	id = chan->id;
1097 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1098 
1099 	if (!(dma_scr & STM32_DMA_SCR_DBM))
1100 		return true;
1101 
1102 	sg_req = &chan->desc->sg_req[chan->next_sg];
1103 
1104 	if (dma_scr & STM32_DMA_SCR_CT) {
1105 		dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1106 		return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1107 	}
1108 
1109 	dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1110 
1111 	return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1112 }
1113 
1114 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1115 				     struct stm32_dma_desc *desc,
1116 				     u32 next_sg)
1117 {
1118 	u32 modulo, burst_size;
1119 	u32 residue;
1120 	u32 n_sg = next_sg;
1121 	struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1122 	int i;
1123 
1124 	/*
1125 	 * Calculate the residue means compute the descriptors
1126 	 * information:
1127 	 * - the sg_req currently transferred
1128 	 * - the Hardware remaining position in this sg (NDTR bits field).
1129 	 *
1130 	 * A race condition may occur if DMA is running in cyclic or double
1131 	 * buffer mode, since the DMA register are automatically reloaded at end
1132 	 * of period transfer. The hardware may have switched to the next
1133 	 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1134 	 * read.
1135 	 * In this case the SxNDTR reg could (or not) correspond to the new
1136 	 * transfer position, and not the expected one.
1137 	 * The strategy implemented in the stm32 driver is to:
1138 	 *  - read the SxNDTR register
1139 	 *  - crosscheck that hardware is still in current transfer.
1140 	 * In case of switch, we can assume that the DMA is at the beginning of
1141 	 * the next transfer. So we approximate the residue in consequence, by
1142 	 * pointing on the beginning of next transfer.
1143 	 *
1144 	 * This race condition doesn't apply for none cyclic mode, as double
1145 	 * buffer is not used. In such situation registers are updated by the
1146 	 * software.
1147 	 */
1148 
1149 	residue = stm32_dma_get_remaining_bytes(chan);
1150 
1151 	if (!stm32_dma_is_current_sg(chan)) {
1152 		n_sg++;
1153 		if (n_sg == chan->desc->num_sgs)
1154 			n_sg = 0;
1155 		residue = sg_req->len;
1156 	}
1157 
1158 	/*
1159 	 * In cyclic mode, for the last period, residue = remaining bytes
1160 	 * from NDTR,
1161 	 * else for all other periods in cyclic mode, and in sg mode,
1162 	 * residue = remaining bytes from NDTR + remaining
1163 	 * periods/sg to be transferred
1164 	 */
1165 	if (!chan->desc->cyclic || n_sg != 0)
1166 		for (i = n_sg; i < desc->num_sgs; i++)
1167 			residue += desc->sg_req[i].len;
1168 
1169 	if (!chan->mem_burst)
1170 		return residue;
1171 
1172 	burst_size = chan->mem_burst * chan->mem_width;
1173 	modulo = residue % burst_size;
1174 	if (modulo)
1175 		residue = residue - modulo + burst_size;
1176 
1177 	return residue;
1178 }
1179 
1180 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1181 					   dma_cookie_t cookie,
1182 					   struct dma_tx_state *state)
1183 {
1184 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1185 	struct virt_dma_desc *vdesc;
1186 	enum dma_status status;
1187 	unsigned long flags;
1188 	u32 residue = 0;
1189 
1190 	status = dma_cookie_status(c, cookie, state);
1191 	if (status == DMA_COMPLETE || !state)
1192 		return status;
1193 
1194 	spin_lock_irqsave(&chan->vchan.lock, flags);
1195 	vdesc = vchan_find_desc(&chan->vchan, cookie);
1196 	if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1197 		residue = stm32_dma_desc_residue(chan, chan->desc,
1198 						 chan->next_sg);
1199 	else if (vdesc)
1200 		residue = stm32_dma_desc_residue(chan,
1201 						 to_stm32_dma_desc(vdesc), 0);
1202 	dma_set_residue(state, residue);
1203 
1204 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
1205 
1206 	return status;
1207 }
1208 
1209 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1210 {
1211 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1212 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1213 	int ret;
1214 
1215 	chan->config_init = false;
1216 
1217 	ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1218 	if (ret < 0)
1219 		return ret;
1220 
1221 	ret = stm32_dma_disable_chan(chan);
1222 	if (ret < 0)
1223 		pm_runtime_put(dmadev->ddev.dev);
1224 
1225 	return ret;
1226 }
1227 
1228 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1229 {
1230 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1231 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1232 	unsigned long flags;
1233 
1234 	dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1235 
1236 	if (chan->busy) {
1237 		spin_lock_irqsave(&chan->vchan.lock, flags);
1238 		stm32_dma_stop(chan);
1239 		chan->desc = NULL;
1240 		spin_unlock_irqrestore(&chan->vchan.lock, flags);
1241 	}
1242 
1243 	pm_runtime_put(dmadev->ddev.dev);
1244 
1245 	vchan_free_chan_resources(to_virt_chan(c));
1246 	stm32_dma_clear_reg(&chan->chan_reg);
1247 	chan->threshold = 0;
1248 }
1249 
1250 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1251 {
1252 	kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1253 }
1254 
1255 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1256 				 struct stm32_dma_cfg *cfg)
1257 {
1258 	stm32_dma_clear_reg(&chan->chan_reg);
1259 
1260 	chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1261 	chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1262 
1263 	/* Enable Interrupts  */
1264 	chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1265 
1266 	chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1267 	if (STM32_DMA_DIRECT_MODE_GET(cfg->features))
1268 		chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1269 	if (STM32_DMA_ALT_ACK_MODE_GET(cfg->features))
1270 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF;
1271 }
1272 
1273 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1274 					   struct of_dma *ofdma)
1275 {
1276 	struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1277 	struct device *dev = dmadev->ddev.dev;
1278 	struct stm32_dma_cfg cfg;
1279 	struct stm32_dma_chan *chan;
1280 	struct dma_chan *c;
1281 
1282 	if (dma_spec->args_count < 4) {
1283 		dev_err(dev, "Bad number of cells\n");
1284 		return NULL;
1285 	}
1286 
1287 	cfg.channel_id = dma_spec->args[0];
1288 	cfg.request_line = dma_spec->args[1];
1289 	cfg.stream_config = dma_spec->args[2];
1290 	cfg.features = dma_spec->args[3];
1291 
1292 	if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1293 	    cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1294 		dev_err(dev, "Bad channel and/or request id\n");
1295 		return NULL;
1296 	}
1297 
1298 	chan = &dmadev->chan[cfg.channel_id];
1299 
1300 	c = dma_get_slave_channel(&chan->vchan.chan);
1301 	if (!c) {
1302 		dev_err(dev, "No more channels available\n");
1303 		return NULL;
1304 	}
1305 
1306 	stm32_dma_set_config(chan, &cfg);
1307 
1308 	return c;
1309 }
1310 
1311 static const struct of_device_id stm32_dma_of_match[] = {
1312 	{ .compatible = "st,stm32-dma", },
1313 	{ /* sentinel */ },
1314 };
1315 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1316 
1317 static int stm32_dma_probe(struct platform_device *pdev)
1318 {
1319 	struct stm32_dma_chan *chan;
1320 	struct stm32_dma_device *dmadev;
1321 	struct dma_device *dd;
1322 	const struct of_device_id *match;
1323 	struct resource *res;
1324 	struct reset_control *rst;
1325 	int i, ret;
1326 
1327 	match = of_match_device(stm32_dma_of_match, &pdev->dev);
1328 	if (!match) {
1329 		dev_err(&pdev->dev, "Error: No device match found\n");
1330 		return -ENODEV;
1331 	}
1332 
1333 	dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1334 	if (!dmadev)
1335 		return -ENOMEM;
1336 
1337 	dd = &dmadev->ddev;
1338 
1339 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1340 	dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1341 	if (IS_ERR(dmadev->base))
1342 		return PTR_ERR(dmadev->base);
1343 
1344 	dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1345 	if (IS_ERR(dmadev->clk))
1346 		return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1347 
1348 	ret = clk_prepare_enable(dmadev->clk);
1349 	if (ret < 0) {
1350 		dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1351 		return ret;
1352 	}
1353 
1354 	dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1355 						"st,mem2mem");
1356 
1357 	rst = devm_reset_control_get(&pdev->dev, NULL);
1358 	if (IS_ERR(rst)) {
1359 		ret = PTR_ERR(rst);
1360 		if (ret == -EPROBE_DEFER)
1361 			goto clk_free;
1362 	} else {
1363 		reset_control_assert(rst);
1364 		udelay(2);
1365 		reset_control_deassert(rst);
1366 	}
1367 
1368 	dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1369 
1370 	dma_cap_set(DMA_SLAVE, dd->cap_mask);
1371 	dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1372 	dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1373 	dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1374 	dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1375 	dd->device_tx_status = stm32_dma_tx_status;
1376 	dd->device_issue_pending = stm32_dma_issue_pending;
1377 	dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1378 	dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1379 	dd->device_config = stm32_dma_slave_config;
1380 	dd->device_terminate_all = stm32_dma_terminate_all;
1381 	dd->device_synchronize = stm32_dma_synchronize;
1382 	dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1383 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1384 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1385 	dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1386 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1387 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1388 	dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1389 	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1390 	dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1391 	dd->max_burst = STM32_DMA_MAX_BURST;
1392 	dd->descriptor_reuse = true;
1393 	dd->dev = &pdev->dev;
1394 	INIT_LIST_HEAD(&dd->channels);
1395 
1396 	if (dmadev->mem2mem) {
1397 		dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1398 		dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1399 		dd->directions |= BIT(DMA_MEM_TO_MEM);
1400 	}
1401 
1402 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1403 		chan = &dmadev->chan[i];
1404 		chan->id = i;
1405 		chan->vchan.desc_free = stm32_dma_desc_free;
1406 		vchan_init(&chan->vchan, dd);
1407 	}
1408 
1409 	ret = dma_async_device_register(dd);
1410 	if (ret)
1411 		goto clk_free;
1412 
1413 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1414 		chan = &dmadev->chan[i];
1415 		ret = platform_get_irq(pdev, i);
1416 		if (ret < 0)
1417 			goto err_unregister;
1418 		chan->irq = ret;
1419 
1420 		ret = devm_request_irq(&pdev->dev, chan->irq,
1421 				       stm32_dma_chan_irq, 0,
1422 				       dev_name(chan2dev(chan)), chan);
1423 		if (ret) {
1424 			dev_err(&pdev->dev,
1425 				"request_irq failed with err %d channel %d\n",
1426 				ret, i);
1427 			goto err_unregister;
1428 		}
1429 	}
1430 
1431 	ret = of_dma_controller_register(pdev->dev.of_node,
1432 					 stm32_dma_of_xlate, dmadev);
1433 	if (ret < 0) {
1434 		dev_err(&pdev->dev,
1435 			"STM32 DMA DMA OF registration failed %d\n", ret);
1436 		goto err_unregister;
1437 	}
1438 
1439 	platform_set_drvdata(pdev, dmadev);
1440 
1441 	pm_runtime_set_active(&pdev->dev);
1442 	pm_runtime_enable(&pdev->dev);
1443 	pm_runtime_get_noresume(&pdev->dev);
1444 	pm_runtime_put(&pdev->dev);
1445 
1446 	dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1447 
1448 	return 0;
1449 
1450 err_unregister:
1451 	dma_async_device_unregister(dd);
1452 clk_free:
1453 	clk_disable_unprepare(dmadev->clk);
1454 
1455 	return ret;
1456 }
1457 
1458 #ifdef CONFIG_PM
1459 static int stm32_dma_runtime_suspend(struct device *dev)
1460 {
1461 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1462 
1463 	clk_disable_unprepare(dmadev->clk);
1464 
1465 	return 0;
1466 }
1467 
1468 static int stm32_dma_runtime_resume(struct device *dev)
1469 {
1470 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1471 	int ret;
1472 
1473 	ret = clk_prepare_enable(dmadev->clk);
1474 	if (ret) {
1475 		dev_err(dev, "failed to prepare_enable clock\n");
1476 		return ret;
1477 	}
1478 
1479 	return 0;
1480 }
1481 #endif
1482 
1483 #ifdef CONFIG_PM_SLEEP
1484 static int stm32_dma_suspend(struct device *dev)
1485 {
1486 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1487 	int id, ret, scr;
1488 
1489 	ret = pm_runtime_resume_and_get(dev);
1490 	if (ret < 0)
1491 		return ret;
1492 
1493 	for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1494 		scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1495 		if (scr & STM32_DMA_SCR_EN) {
1496 			dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1497 			return -EBUSY;
1498 		}
1499 	}
1500 
1501 	pm_runtime_put_sync(dev);
1502 
1503 	pm_runtime_force_suspend(dev);
1504 
1505 	return 0;
1506 }
1507 
1508 static int stm32_dma_resume(struct device *dev)
1509 {
1510 	return pm_runtime_force_resume(dev);
1511 }
1512 #endif
1513 
1514 static const struct dev_pm_ops stm32_dma_pm_ops = {
1515 	SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_suspend, stm32_dma_resume)
1516 	SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1517 			   stm32_dma_runtime_resume, NULL)
1518 };
1519 
1520 static struct platform_driver stm32_dma_driver = {
1521 	.driver = {
1522 		.name = "stm32-dma",
1523 		.of_match_table = stm32_dma_of_match,
1524 		.pm = &stm32_dma_pm_ops,
1525 	},
1526 	.probe = stm32_dma_probe,
1527 };
1528 
1529 static int __init stm32_dma_init(void)
1530 {
1531 	return platform_driver_register(&stm32_dma_driver);
1532 }
1533 subsys_initcall(stm32_dma_init);
1534