xref: /openbmc/linux/drivers/dma/stm32-dma.c (revision e330fb14)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for STM32 DMA controller
4  *
5  * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6  *
7  * Copyright (C) M'boumba Cedric Madianga 2015
8  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9  *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 
31 #include "virt-dma.h"
32 
33 #define STM32_DMA_LISR			0x0000 /* DMA Low Int Status Reg */
34 #define STM32_DMA_HISR			0x0004 /* DMA High Int Status Reg */
35 #define STM32_DMA_LIFCR			0x0008 /* DMA Low Int Flag Clear Reg */
36 #define STM32_DMA_HIFCR			0x000c /* DMA High Int Flag Clear Reg */
37 #define STM32_DMA_TCI			BIT(5) /* Transfer Complete Interrupt */
38 #define STM32_DMA_HTI			BIT(4) /* Half Transfer Interrupt */
39 #define STM32_DMA_TEI			BIT(3) /* Transfer Error Interrupt */
40 #define STM32_DMA_DMEI			BIT(2) /* Direct Mode Error Interrupt */
41 #define STM32_DMA_FEI			BIT(0) /* FIFO Error Interrupt */
42 #define STM32_DMA_MASKI			(STM32_DMA_TCI \
43 					 | STM32_DMA_TEI \
44 					 | STM32_DMA_DMEI \
45 					 | STM32_DMA_FEI)
46 
47 /* DMA Stream x Configuration Register */
48 #define STM32_DMA_SCR(x)		(0x0010 + 0x18 * (x)) /* x = 0..7 */
49 #define STM32_DMA_SCR_REQ(n)		((n & 0x7) << 25)
50 #define STM32_DMA_SCR_MBURST_MASK	GENMASK(24, 23)
51 #define STM32_DMA_SCR_MBURST(n)	        ((n & 0x3) << 23)
52 #define STM32_DMA_SCR_PBURST_MASK	GENMASK(22, 21)
53 #define STM32_DMA_SCR_PBURST(n)	        ((n & 0x3) << 21)
54 #define STM32_DMA_SCR_PL_MASK		GENMASK(17, 16)
55 #define STM32_DMA_SCR_PL(n)		((n & 0x3) << 16)
56 #define STM32_DMA_SCR_MSIZE_MASK	GENMASK(14, 13)
57 #define STM32_DMA_SCR_MSIZE(n)		((n & 0x3) << 13)
58 #define STM32_DMA_SCR_PSIZE_MASK	GENMASK(12, 11)
59 #define STM32_DMA_SCR_PSIZE(n)		((n & 0x3) << 11)
60 #define STM32_DMA_SCR_PSIZE_GET(n)	((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
61 #define STM32_DMA_SCR_DIR_MASK		GENMASK(7, 6)
62 #define STM32_DMA_SCR_DIR(n)		((n & 0x3) << 6)
63 #define STM32_DMA_SCR_TRBUFF		BIT(20) /* Bufferable transfer for USART/UART */
64 #define STM32_DMA_SCR_CT		BIT(19) /* Target in double buffer */
65 #define STM32_DMA_SCR_DBM		BIT(18) /* Double Buffer Mode */
66 #define STM32_DMA_SCR_PINCOS		BIT(15) /* Peripheral inc offset size */
67 #define STM32_DMA_SCR_MINC		BIT(10) /* Memory increment mode */
68 #define STM32_DMA_SCR_PINC		BIT(9) /* Peripheral increment mode */
69 #define STM32_DMA_SCR_CIRC		BIT(8) /* Circular mode */
70 #define STM32_DMA_SCR_PFCTRL		BIT(5) /* Peripheral Flow Controller */
71 #define STM32_DMA_SCR_TCIE		BIT(4) /* Transfer Complete Int Enable
72 						*/
73 #define STM32_DMA_SCR_TEIE		BIT(2) /* Transfer Error Int Enable */
74 #define STM32_DMA_SCR_DMEIE		BIT(1) /* Direct Mode Err Int Enable */
75 #define STM32_DMA_SCR_EN		BIT(0) /* Stream Enable */
76 #define STM32_DMA_SCR_CFG_MASK		(STM32_DMA_SCR_PINC \
77 					| STM32_DMA_SCR_MINC \
78 					| STM32_DMA_SCR_PINCOS \
79 					| STM32_DMA_SCR_PL_MASK)
80 #define STM32_DMA_SCR_IRQ_MASK		(STM32_DMA_SCR_TCIE \
81 					| STM32_DMA_SCR_TEIE \
82 					| STM32_DMA_SCR_DMEIE)
83 
84 /* DMA Stream x number of data register */
85 #define STM32_DMA_SNDTR(x)		(0x0014 + 0x18 * (x))
86 
87 /* DMA stream peripheral address register */
88 #define STM32_DMA_SPAR(x)		(0x0018 + 0x18 * (x))
89 
90 /* DMA stream x memory 0 address register */
91 #define STM32_DMA_SM0AR(x)		(0x001c + 0x18 * (x))
92 
93 /* DMA stream x memory 1 address register */
94 #define STM32_DMA_SM1AR(x)		(0x0020 + 0x18 * (x))
95 
96 /* DMA stream x FIFO control register */
97 #define STM32_DMA_SFCR(x)		(0x0024 + 0x18 * (x))
98 #define STM32_DMA_SFCR_FTH_MASK		GENMASK(1, 0)
99 #define STM32_DMA_SFCR_FTH(n)		(n & STM32_DMA_SFCR_FTH_MASK)
100 #define STM32_DMA_SFCR_FEIE		BIT(7) /* FIFO error interrupt enable */
101 #define STM32_DMA_SFCR_DMDIS		BIT(2) /* Direct mode disable */
102 #define STM32_DMA_SFCR_MASK		(STM32_DMA_SFCR_FEIE \
103 					| STM32_DMA_SFCR_DMDIS)
104 
105 /* DMA direction */
106 #define STM32_DMA_DEV_TO_MEM		0x00
107 #define	STM32_DMA_MEM_TO_DEV		0x01
108 #define	STM32_DMA_MEM_TO_MEM		0x02
109 
110 /* DMA priority level */
111 #define STM32_DMA_PRIORITY_LOW		0x00
112 #define STM32_DMA_PRIORITY_MEDIUM	0x01
113 #define STM32_DMA_PRIORITY_HIGH		0x02
114 #define STM32_DMA_PRIORITY_VERY_HIGH	0x03
115 
116 /* DMA FIFO threshold selection */
117 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL		0x00
118 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL		0x01
119 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL		0x02
120 #define STM32_DMA_FIFO_THRESHOLD_FULL			0x03
121 #define STM32_DMA_FIFO_THRESHOLD_NONE			0x04
122 
123 #define STM32_DMA_MAX_DATA_ITEMS	0xffff
124 /*
125  * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
126  * gather at boundary. Thus it's safer to round down this value on FIFO
127  * size (16 Bytes)
128  */
129 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS	\
130 	ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
131 #define STM32_DMA_MAX_CHANNELS		0x08
132 #define STM32_DMA_MAX_REQUEST_ID	0x08
133 #define STM32_DMA_MAX_DATA_PARAM	0x03
134 #define STM32_DMA_FIFO_SIZE		16	/* FIFO is 16 bytes */
135 #define STM32_DMA_MIN_BURST		4
136 #define STM32_DMA_MAX_BURST		16
137 
138 /* DMA Features */
139 #define STM32_DMA_THRESHOLD_FTR_MASK	GENMASK(1, 0)
140 #define STM32_DMA_THRESHOLD_FTR_GET(n)	((n) & STM32_DMA_THRESHOLD_FTR_MASK)
141 #define STM32_DMA_DIRECT_MODE_MASK	BIT(2)
142 #define STM32_DMA_DIRECT_MODE_GET(n)	(((n) & STM32_DMA_DIRECT_MODE_MASK) >> 2)
143 #define STM32_DMA_ALT_ACK_MODE_MASK	BIT(4)
144 #define STM32_DMA_ALT_ACK_MODE_GET(n)	(((n) & STM32_DMA_ALT_ACK_MODE_MASK) >> 4)
145 
146 enum stm32_dma_width {
147 	STM32_DMA_BYTE,
148 	STM32_DMA_HALF_WORD,
149 	STM32_DMA_WORD,
150 };
151 
152 enum stm32_dma_burst_size {
153 	STM32_DMA_BURST_SINGLE,
154 	STM32_DMA_BURST_INCR4,
155 	STM32_DMA_BURST_INCR8,
156 	STM32_DMA_BURST_INCR16,
157 };
158 
159 /**
160  * struct stm32_dma_cfg - STM32 DMA custom configuration
161  * @channel_id: channel ID
162  * @request_line: DMA request
163  * @stream_config: 32bit mask specifying the DMA channel configuration
164  * @features: 32bit mask specifying the DMA Feature list
165  */
166 struct stm32_dma_cfg {
167 	u32 channel_id;
168 	u32 request_line;
169 	u32 stream_config;
170 	u32 features;
171 };
172 
173 struct stm32_dma_chan_reg {
174 	u32 dma_lisr;
175 	u32 dma_hisr;
176 	u32 dma_lifcr;
177 	u32 dma_hifcr;
178 	u32 dma_scr;
179 	u32 dma_sndtr;
180 	u32 dma_spar;
181 	u32 dma_sm0ar;
182 	u32 dma_sm1ar;
183 	u32 dma_sfcr;
184 };
185 
186 struct stm32_dma_sg_req {
187 	u32 len;
188 	struct stm32_dma_chan_reg chan_reg;
189 };
190 
191 struct stm32_dma_desc {
192 	struct virt_dma_desc vdesc;
193 	bool cyclic;
194 	u32 num_sgs;
195 	struct stm32_dma_sg_req sg_req[];
196 };
197 
198 struct stm32_dma_chan {
199 	struct virt_dma_chan vchan;
200 	bool config_init;
201 	bool busy;
202 	u32 id;
203 	u32 irq;
204 	struct stm32_dma_desc *desc;
205 	u32 next_sg;
206 	struct dma_slave_config	dma_sconfig;
207 	struct stm32_dma_chan_reg chan_reg;
208 	u32 threshold;
209 	u32 mem_burst;
210 	u32 mem_width;
211 };
212 
213 struct stm32_dma_device {
214 	struct dma_device ddev;
215 	void __iomem *base;
216 	struct clk *clk;
217 	bool mem2mem;
218 	struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
219 };
220 
221 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
222 {
223 	return container_of(chan->vchan.chan.device, struct stm32_dma_device,
224 			    ddev);
225 }
226 
227 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
228 {
229 	return container_of(c, struct stm32_dma_chan, vchan.chan);
230 }
231 
232 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
233 {
234 	return container_of(vdesc, struct stm32_dma_desc, vdesc);
235 }
236 
237 static struct device *chan2dev(struct stm32_dma_chan *chan)
238 {
239 	return &chan->vchan.chan.dev->device;
240 }
241 
242 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
243 {
244 	return readl_relaxed(dmadev->base + reg);
245 }
246 
247 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
248 {
249 	writel_relaxed(val, dmadev->base + reg);
250 }
251 
252 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
253 			       enum dma_slave_buswidth width)
254 {
255 	switch (width) {
256 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
257 		return STM32_DMA_BYTE;
258 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
259 		return STM32_DMA_HALF_WORD;
260 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
261 		return STM32_DMA_WORD;
262 	default:
263 		dev_err(chan2dev(chan), "Dma bus width not supported\n");
264 		return -EINVAL;
265 	}
266 }
267 
268 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
269 						       dma_addr_t buf_addr,
270 						       u32 threshold)
271 {
272 	enum dma_slave_buswidth max_width;
273 	u64 addr = buf_addr;
274 
275 	if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
276 		max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
277 	else
278 		max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
279 
280 	while ((buf_len < max_width  || buf_len % max_width) &&
281 	       max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
282 		max_width = max_width >> 1;
283 
284 	if (do_div(addr, max_width))
285 		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
286 
287 	return max_width;
288 }
289 
290 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
291 						enum dma_slave_buswidth width)
292 {
293 	u32 remaining;
294 
295 	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
296 		return false;
297 
298 	if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
299 		if (burst != 0) {
300 			/*
301 			 * If number of beats fit in several whole bursts
302 			 * this configuration is allowed.
303 			 */
304 			remaining = ((STM32_DMA_FIFO_SIZE / width) *
305 				     (threshold + 1) / 4) % burst;
306 
307 			if (remaining == 0)
308 				return true;
309 		} else {
310 			return true;
311 		}
312 	}
313 
314 	return false;
315 }
316 
317 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
318 {
319 	/* If FIFO direct mode, burst is not possible */
320 	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
321 		return false;
322 
323 	/*
324 	 * Buffer or period length has to be aligned on FIFO depth.
325 	 * Otherwise bytes may be stuck within FIFO at buffer or period
326 	 * length.
327 	 */
328 	return ((buf_len % ((threshold + 1) * 4)) == 0);
329 }
330 
331 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
332 				    enum dma_slave_buswidth width)
333 {
334 	u32 best_burst = max_burst;
335 
336 	if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
337 		return 0;
338 
339 	while ((buf_len < best_burst * width && best_burst > 1) ||
340 	       !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
341 						    width)) {
342 		if (best_burst > STM32_DMA_MIN_BURST)
343 			best_burst = best_burst >> 1;
344 		else
345 			best_burst = 0;
346 	}
347 
348 	return best_burst;
349 }
350 
351 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
352 {
353 	switch (maxburst) {
354 	case 0:
355 	case 1:
356 		return STM32_DMA_BURST_SINGLE;
357 	case 4:
358 		return STM32_DMA_BURST_INCR4;
359 	case 8:
360 		return STM32_DMA_BURST_INCR8;
361 	case 16:
362 		return STM32_DMA_BURST_INCR16;
363 	default:
364 		dev_err(chan2dev(chan), "Dma burst size not supported\n");
365 		return -EINVAL;
366 	}
367 }
368 
369 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
370 				      u32 src_burst, u32 dst_burst)
371 {
372 	chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
373 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
374 
375 	if (!src_burst && !dst_burst) {
376 		/* Using direct mode */
377 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
378 	} else {
379 		/* Using FIFO mode */
380 		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
381 	}
382 }
383 
384 static int stm32_dma_slave_config(struct dma_chan *c,
385 				  struct dma_slave_config *config)
386 {
387 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
388 
389 	memcpy(&chan->dma_sconfig, config, sizeof(*config));
390 
391 	chan->config_init = true;
392 
393 	return 0;
394 }
395 
396 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
397 {
398 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
399 	u32 flags, dma_isr;
400 
401 	/*
402 	 * Read "flags" from DMA_xISR register corresponding to the selected
403 	 * DMA channel at the correct bit offset inside that register.
404 	 *
405 	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
406 	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
407 	 */
408 
409 	if (chan->id & 4)
410 		dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
411 	else
412 		dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
413 
414 	flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
415 
416 	return flags & STM32_DMA_MASKI;
417 }
418 
419 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
420 {
421 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
422 	u32 dma_ifcr;
423 
424 	/*
425 	 * Write "flags" to the DMA_xIFCR register corresponding to the selected
426 	 * DMA channel at the correct bit offset inside that register.
427 	 *
428 	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
429 	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
430 	 */
431 	flags &= STM32_DMA_MASKI;
432 	dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
433 
434 	if (chan->id & 4)
435 		stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
436 	else
437 		stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
438 }
439 
440 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
441 {
442 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
443 	u32 dma_scr, id, reg;
444 
445 	id = chan->id;
446 	reg = STM32_DMA_SCR(id);
447 	dma_scr = stm32_dma_read(dmadev, reg);
448 
449 	if (dma_scr & STM32_DMA_SCR_EN) {
450 		dma_scr &= ~STM32_DMA_SCR_EN;
451 		stm32_dma_write(dmadev, reg, dma_scr);
452 
453 		return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
454 					dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
455 					10, 1000000);
456 	}
457 
458 	return 0;
459 }
460 
461 static void stm32_dma_stop(struct stm32_dma_chan *chan)
462 {
463 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
464 	u32 dma_scr, dma_sfcr, status;
465 	int ret;
466 
467 	/* Disable interrupts */
468 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
469 	dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
470 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
471 	dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
472 	dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
473 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
474 
475 	/* Disable DMA */
476 	ret = stm32_dma_disable_chan(chan);
477 	if (ret < 0)
478 		return;
479 
480 	/* Clear interrupt status if it is there */
481 	status = stm32_dma_irq_status(chan);
482 	if (status) {
483 		dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
484 			__func__, status);
485 		stm32_dma_irq_clear(chan, status);
486 	}
487 
488 	chan->busy = false;
489 }
490 
491 static int stm32_dma_terminate_all(struct dma_chan *c)
492 {
493 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
494 	unsigned long flags;
495 	LIST_HEAD(head);
496 
497 	spin_lock_irqsave(&chan->vchan.lock, flags);
498 
499 	if (chan->desc) {
500 		vchan_terminate_vdesc(&chan->desc->vdesc);
501 		if (chan->busy)
502 			stm32_dma_stop(chan);
503 		chan->desc = NULL;
504 	}
505 
506 	vchan_get_all_descriptors(&chan->vchan, &head);
507 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
508 	vchan_dma_desc_free_list(&chan->vchan, &head);
509 
510 	return 0;
511 }
512 
513 static void stm32_dma_synchronize(struct dma_chan *c)
514 {
515 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
516 
517 	vchan_synchronize(&chan->vchan);
518 }
519 
520 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
521 {
522 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
523 	u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
524 	u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
525 	u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
526 	u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
527 	u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
528 	u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
529 
530 	dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
531 	dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
532 	dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
533 	dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
534 	dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
535 	dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
536 }
537 
538 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
539 
540 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
541 {
542 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
543 	struct virt_dma_desc *vdesc;
544 	struct stm32_dma_sg_req *sg_req;
545 	struct stm32_dma_chan_reg *reg;
546 	u32 status;
547 	int ret;
548 
549 	ret = stm32_dma_disable_chan(chan);
550 	if (ret < 0)
551 		return;
552 
553 	if (!chan->desc) {
554 		vdesc = vchan_next_desc(&chan->vchan);
555 		if (!vdesc)
556 			return;
557 
558 		list_del(&vdesc->node);
559 
560 		chan->desc = to_stm32_dma_desc(vdesc);
561 		chan->next_sg = 0;
562 	}
563 
564 	if (chan->next_sg == chan->desc->num_sgs)
565 		chan->next_sg = 0;
566 
567 	sg_req = &chan->desc->sg_req[chan->next_sg];
568 	reg = &sg_req->chan_reg;
569 
570 	reg->dma_scr &= ~STM32_DMA_SCR_EN;
571 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
572 	stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
573 	stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
574 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
575 	stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
576 	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
577 
578 	chan->next_sg++;
579 
580 	/* Clear interrupt status if it is there */
581 	status = stm32_dma_irq_status(chan);
582 	if (status)
583 		stm32_dma_irq_clear(chan, status);
584 
585 	if (chan->desc->cyclic)
586 		stm32_dma_configure_next_sg(chan);
587 
588 	stm32_dma_dump_reg(chan);
589 
590 	/* Start DMA */
591 	reg->dma_scr |= STM32_DMA_SCR_EN;
592 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
593 
594 	chan->busy = true;
595 
596 	dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
597 }
598 
599 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
600 {
601 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
602 	struct stm32_dma_sg_req *sg_req;
603 	u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
604 
605 	id = chan->id;
606 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
607 
608 	if (dma_scr & STM32_DMA_SCR_DBM) {
609 		if (chan->next_sg == chan->desc->num_sgs)
610 			chan->next_sg = 0;
611 
612 		sg_req = &chan->desc->sg_req[chan->next_sg];
613 
614 		if (dma_scr & STM32_DMA_SCR_CT) {
615 			dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
616 			stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
617 			dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
618 				stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
619 		} else {
620 			dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
621 			stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
622 			dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
623 				stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
624 		}
625 	}
626 }
627 
628 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
629 {
630 	if (chan->desc) {
631 		if (chan->desc->cyclic) {
632 			vchan_cyclic_callback(&chan->desc->vdesc);
633 			chan->next_sg++;
634 			stm32_dma_configure_next_sg(chan);
635 		} else {
636 			chan->busy = false;
637 			if (chan->next_sg == chan->desc->num_sgs) {
638 				vchan_cookie_complete(&chan->desc->vdesc);
639 				chan->desc = NULL;
640 			}
641 			stm32_dma_start_transfer(chan);
642 		}
643 	}
644 }
645 
646 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
647 {
648 	struct stm32_dma_chan *chan = devid;
649 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
650 	u32 status, scr, sfcr;
651 
652 	spin_lock(&chan->vchan.lock);
653 
654 	status = stm32_dma_irq_status(chan);
655 	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
656 	sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
657 
658 	if (status & STM32_DMA_FEI) {
659 		stm32_dma_irq_clear(chan, STM32_DMA_FEI);
660 		status &= ~STM32_DMA_FEI;
661 		if (sfcr & STM32_DMA_SFCR_FEIE) {
662 			if (!(scr & STM32_DMA_SCR_EN) &&
663 			    !(status & STM32_DMA_TCI))
664 				dev_err(chan2dev(chan), "FIFO Error\n");
665 			else
666 				dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
667 		}
668 	}
669 	if (status & STM32_DMA_DMEI) {
670 		stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
671 		status &= ~STM32_DMA_DMEI;
672 		if (sfcr & STM32_DMA_SCR_DMEIE)
673 			dev_dbg(chan2dev(chan), "Direct mode overrun\n");
674 	}
675 
676 	if (status & STM32_DMA_TCI) {
677 		stm32_dma_irq_clear(chan, STM32_DMA_TCI);
678 		if (scr & STM32_DMA_SCR_TCIE)
679 			stm32_dma_handle_chan_done(chan);
680 		status &= ~STM32_DMA_TCI;
681 	}
682 
683 	if (status & STM32_DMA_HTI) {
684 		stm32_dma_irq_clear(chan, STM32_DMA_HTI);
685 		status &= ~STM32_DMA_HTI;
686 	}
687 
688 	if (status) {
689 		stm32_dma_irq_clear(chan, status);
690 		dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
691 		if (!(scr & STM32_DMA_SCR_EN))
692 			dev_err(chan2dev(chan), "chan disabled by HW\n");
693 	}
694 
695 	spin_unlock(&chan->vchan.lock);
696 
697 	return IRQ_HANDLED;
698 }
699 
700 static void stm32_dma_issue_pending(struct dma_chan *c)
701 {
702 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
703 	unsigned long flags;
704 
705 	spin_lock_irqsave(&chan->vchan.lock, flags);
706 	if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
707 		dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
708 		stm32_dma_start_transfer(chan);
709 
710 	}
711 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
712 }
713 
714 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
715 				    enum dma_transfer_direction direction,
716 				    enum dma_slave_buswidth *buswidth,
717 				    u32 buf_len, dma_addr_t buf_addr)
718 {
719 	enum dma_slave_buswidth src_addr_width, dst_addr_width;
720 	int src_bus_width, dst_bus_width;
721 	int src_burst_size, dst_burst_size;
722 	u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
723 	u32 dma_scr, fifoth;
724 
725 	src_addr_width = chan->dma_sconfig.src_addr_width;
726 	dst_addr_width = chan->dma_sconfig.dst_addr_width;
727 	src_maxburst = chan->dma_sconfig.src_maxburst;
728 	dst_maxburst = chan->dma_sconfig.dst_maxburst;
729 	fifoth = chan->threshold;
730 
731 	switch (direction) {
732 	case DMA_MEM_TO_DEV:
733 		/* Set device data size */
734 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
735 		if (dst_bus_width < 0)
736 			return dst_bus_width;
737 
738 		/* Set device burst size */
739 		dst_best_burst = stm32_dma_get_best_burst(buf_len,
740 							  dst_maxburst,
741 							  fifoth,
742 							  dst_addr_width);
743 
744 		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
745 		if (dst_burst_size < 0)
746 			return dst_burst_size;
747 
748 		/* Set memory data size */
749 		src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
750 							 fifoth);
751 		chan->mem_width = src_addr_width;
752 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
753 		if (src_bus_width < 0)
754 			return src_bus_width;
755 
756 		/* Set memory burst size */
757 		src_maxburst = STM32_DMA_MAX_BURST;
758 		src_best_burst = stm32_dma_get_best_burst(buf_len,
759 							  src_maxburst,
760 							  fifoth,
761 							  src_addr_width);
762 		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
763 		if (src_burst_size < 0)
764 			return src_burst_size;
765 
766 		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
767 			STM32_DMA_SCR_PSIZE(dst_bus_width) |
768 			STM32_DMA_SCR_MSIZE(src_bus_width) |
769 			STM32_DMA_SCR_PBURST(dst_burst_size) |
770 			STM32_DMA_SCR_MBURST(src_burst_size);
771 
772 		/* Set FIFO threshold */
773 		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
774 		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
775 			chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
776 
777 		/* Set peripheral address */
778 		chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
779 		*buswidth = dst_addr_width;
780 		break;
781 
782 	case DMA_DEV_TO_MEM:
783 		/* Set device data size */
784 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
785 		if (src_bus_width < 0)
786 			return src_bus_width;
787 
788 		/* Set device burst size */
789 		src_best_burst = stm32_dma_get_best_burst(buf_len,
790 							  src_maxburst,
791 							  fifoth,
792 							  src_addr_width);
793 		chan->mem_burst = src_best_burst;
794 		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
795 		if (src_burst_size < 0)
796 			return src_burst_size;
797 
798 		/* Set memory data size */
799 		dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
800 							 fifoth);
801 		chan->mem_width = dst_addr_width;
802 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
803 		if (dst_bus_width < 0)
804 			return dst_bus_width;
805 
806 		/* Set memory burst size */
807 		dst_maxburst = STM32_DMA_MAX_BURST;
808 		dst_best_burst = stm32_dma_get_best_burst(buf_len,
809 							  dst_maxburst,
810 							  fifoth,
811 							  dst_addr_width);
812 		chan->mem_burst = dst_best_burst;
813 		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
814 		if (dst_burst_size < 0)
815 			return dst_burst_size;
816 
817 		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
818 			STM32_DMA_SCR_PSIZE(src_bus_width) |
819 			STM32_DMA_SCR_MSIZE(dst_bus_width) |
820 			STM32_DMA_SCR_PBURST(src_burst_size) |
821 			STM32_DMA_SCR_MBURST(dst_burst_size);
822 
823 		/* Set FIFO threshold */
824 		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
825 		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
826 			chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
827 
828 		/* Set peripheral address */
829 		chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
830 		*buswidth = chan->dma_sconfig.src_addr_width;
831 		break;
832 
833 	default:
834 		dev_err(chan2dev(chan), "Dma direction is not supported\n");
835 		return -EINVAL;
836 	}
837 
838 	stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
839 
840 	/* Set DMA control register */
841 	chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
842 			STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
843 			STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
844 	chan->chan_reg.dma_scr |= dma_scr;
845 
846 	return 0;
847 }
848 
849 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
850 {
851 	memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
852 }
853 
854 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
855 	struct dma_chan *c, struct scatterlist *sgl,
856 	u32 sg_len, enum dma_transfer_direction direction,
857 	unsigned long flags, void *context)
858 {
859 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
860 	struct stm32_dma_desc *desc;
861 	struct scatterlist *sg;
862 	enum dma_slave_buswidth buswidth;
863 	u32 nb_data_items;
864 	int i, ret;
865 
866 	if (!chan->config_init) {
867 		dev_err(chan2dev(chan), "dma channel is not configured\n");
868 		return NULL;
869 	}
870 
871 	if (sg_len < 1) {
872 		dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
873 		return NULL;
874 	}
875 
876 	desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
877 	if (!desc)
878 		return NULL;
879 
880 	/* Set peripheral flow controller */
881 	if (chan->dma_sconfig.device_fc)
882 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
883 	else
884 		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
885 
886 	for_each_sg(sgl, sg, sg_len, i) {
887 		ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
888 					       sg_dma_len(sg),
889 					       sg_dma_address(sg));
890 		if (ret < 0)
891 			goto err;
892 
893 		desc->sg_req[i].len = sg_dma_len(sg);
894 
895 		nb_data_items = desc->sg_req[i].len / buswidth;
896 		if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
897 			dev_err(chan2dev(chan), "nb items not supported\n");
898 			goto err;
899 		}
900 
901 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
902 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
903 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
904 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
905 		desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
906 		desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
907 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
908 	}
909 
910 	desc->num_sgs = sg_len;
911 	desc->cyclic = false;
912 
913 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
914 
915 err:
916 	kfree(desc);
917 	return NULL;
918 }
919 
920 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
921 	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
922 	size_t period_len, enum dma_transfer_direction direction,
923 	unsigned long flags)
924 {
925 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
926 	struct stm32_dma_desc *desc;
927 	enum dma_slave_buswidth buswidth;
928 	u32 num_periods, nb_data_items;
929 	int i, ret;
930 
931 	if (!buf_len || !period_len) {
932 		dev_err(chan2dev(chan), "Invalid buffer/period len\n");
933 		return NULL;
934 	}
935 
936 	if (!chan->config_init) {
937 		dev_err(chan2dev(chan), "dma channel is not configured\n");
938 		return NULL;
939 	}
940 
941 	if (buf_len % period_len) {
942 		dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
943 		return NULL;
944 	}
945 
946 	/*
947 	 * We allow to take more number of requests till DMA is
948 	 * not started. The driver will loop over all requests.
949 	 * Once DMA is started then new requests can be queued only after
950 	 * terminating the DMA.
951 	 */
952 	if (chan->busy) {
953 		dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
954 		return NULL;
955 	}
956 
957 	ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
958 				       buf_addr);
959 	if (ret < 0)
960 		return NULL;
961 
962 	nb_data_items = period_len / buswidth;
963 	if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
964 		dev_err(chan2dev(chan), "number of items not supported\n");
965 		return NULL;
966 	}
967 
968 	/*  Enable Circular mode or double buffer mode */
969 	if (buf_len == period_len)
970 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
971 	else
972 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
973 
974 	/* Clear periph ctrl if client set it */
975 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
976 
977 	num_periods = buf_len / period_len;
978 
979 	desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
980 	if (!desc)
981 		return NULL;
982 
983 	for (i = 0; i < num_periods; i++) {
984 		desc->sg_req[i].len = period_len;
985 
986 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
987 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
988 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
989 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
990 		desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
991 		desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
992 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
993 		buf_addr += period_len;
994 	}
995 
996 	desc->num_sgs = num_periods;
997 	desc->cyclic = true;
998 
999 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1000 }
1001 
1002 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1003 	struct dma_chan *c, dma_addr_t dest,
1004 	dma_addr_t src, size_t len, unsigned long flags)
1005 {
1006 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1007 	enum dma_slave_buswidth max_width;
1008 	struct stm32_dma_desc *desc;
1009 	size_t xfer_count, offset;
1010 	u32 num_sgs, best_burst, dma_burst, threshold;
1011 	int i;
1012 
1013 	num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1014 	desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1015 	if (!desc)
1016 		return NULL;
1017 
1018 	threshold = chan->threshold;
1019 
1020 	for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1021 		xfer_count = min_t(size_t, len - offset,
1022 				   STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1023 
1024 		/* Compute best burst size */
1025 		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1026 		best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1027 						      threshold, max_width);
1028 		dma_burst = stm32_dma_get_burst(chan, best_burst);
1029 
1030 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1031 		desc->sg_req[i].chan_reg.dma_scr =
1032 			STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1033 			STM32_DMA_SCR_PBURST(dma_burst) |
1034 			STM32_DMA_SCR_MBURST(dma_burst) |
1035 			STM32_DMA_SCR_MINC |
1036 			STM32_DMA_SCR_PINC |
1037 			STM32_DMA_SCR_TCIE |
1038 			STM32_DMA_SCR_TEIE;
1039 		desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1040 		desc->sg_req[i].chan_reg.dma_sfcr |=
1041 			STM32_DMA_SFCR_FTH(threshold);
1042 		desc->sg_req[i].chan_reg.dma_spar = src + offset;
1043 		desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1044 		desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1045 		desc->sg_req[i].len = xfer_count;
1046 	}
1047 
1048 	desc->num_sgs = num_sgs;
1049 	desc->cyclic = false;
1050 
1051 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1052 }
1053 
1054 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1055 {
1056 	u32 dma_scr, width, ndtr;
1057 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1058 
1059 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1060 	width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1061 	ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1062 
1063 	return ndtr << width;
1064 }
1065 
1066 /**
1067  * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1068  * @chan: dma channel
1069  *
1070  * This function called when IRQ are disable, checks that the hardware has not
1071  * switched on the next transfer in double buffer mode. The test is done by
1072  * comparing the next_sg memory address with the hardware related register
1073  * (based on CT bit value).
1074  *
1075  * Returns true if expected current transfer is still running or double
1076  * buffer mode is not activated.
1077  */
1078 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1079 {
1080 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1081 	struct stm32_dma_sg_req *sg_req;
1082 	u32 dma_scr, dma_smar, id;
1083 
1084 	id = chan->id;
1085 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1086 
1087 	if (!(dma_scr & STM32_DMA_SCR_DBM))
1088 		return true;
1089 
1090 	sg_req = &chan->desc->sg_req[chan->next_sg];
1091 
1092 	if (dma_scr & STM32_DMA_SCR_CT) {
1093 		dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1094 		return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1095 	}
1096 
1097 	dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1098 
1099 	return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1100 }
1101 
1102 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1103 				     struct stm32_dma_desc *desc,
1104 				     u32 next_sg)
1105 {
1106 	u32 modulo, burst_size;
1107 	u32 residue;
1108 	u32 n_sg = next_sg;
1109 	struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1110 	int i;
1111 
1112 	/*
1113 	 * Calculate the residue means compute the descriptors
1114 	 * information:
1115 	 * - the sg_req currently transferred
1116 	 * - the Hardware remaining position in this sg (NDTR bits field).
1117 	 *
1118 	 * A race condition may occur if DMA is running in cyclic or double
1119 	 * buffer mode, since the DMA register are automatically reloaded at end
1120 	 * of period transfer. The hardware may have switched to the next
1121 	 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1122 	 * read.
1123 	 * In this case the SxNDTR reg could (or not) correspond to the new
1124 	 * transfer position, and not the expected one.
1125 	 * The strategy implemented in the stm32 driver is to:
1126 	 *  - read the SxNDTR register
1127 	 *  - crosscheck that hardware is still in current transfer.
1128 	 * In case of switch, we can assume that the DMA is at the beginning of
1129 	 * the next transfer. So we approximate the residue in consequence, by
1130 	 * pointing on the beginning of next transfer.
1131 	 *
1132 	 * This race condition doesn't apply for none cyclic mode, as double
1133 	 * buffer is not used. In such situation registers are updated by the
1134 	 * software.
1135 	 */
1136 
1137 	residue = stm32_dma_get_remaining_bytes(chan);
1138 
1139 	if (!stm32_dma_is_current_sg(chan)) {
1140 		n_sg++;
1141 		if (n_sg == chan->desc->num_sgs)
1142 			n_sg = 0;
1143 		residue = sg_req->len;
1144 	}
1145 
1146 	/*
1147 	 * In cyclic mode, for the last period, residue = remaining bytes
1148 	 * from NDTR,
1149 	 * else for all other periods in cyclic mode, and in sg mode,
1150 	 * residue = remaining bytes from NDTR + remaining
1151 	 * periods/sg to be transferred
1152 	 */
1153 	if (!chan->desc->cyclic || n_sg != 0)
1154 		for (i = n_sg; i < desc->num_sgs; i++)
1155 			residue += desc->sg_req[i].len;
1156 
1157 	if (!chan->mem_burst)
1158 		return residue;
1159 
1160 	burst_size = chan->mem_burst * chan->mem_width;
1161 	modulo = residue % burst_size;
1162 	if (modulo)
1163 		residue = residue - modulo + burst_size;
1164 
1165 	return residue;
1166 }
1167 
1168 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1169 					   dma_cookie_t cookie,
1170 					   struct dma_tx_state *state)
1171 {
1172 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1173 	struct virt_dma_desc *vdesc;
1174 	enum dma_status status;
1175 	unsigned long flags;
1176 	u32 residue = 0;
1177 
1178 	status = dma_cookie_status(c, cookie, state);
1179 	if (status == DMA_COMPLETE || !state)
1180 		return status;
1181 
1182 	spin_lock_irqsave(&chan->vchan.lock, flags);
1183 	vdesc = vchan_find_desc(&chan->vchan, cookie);
1184 	if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1185 		residue = stm32_dma_desc_residue(chan, chan->desc,
1186 						 chan->next_sg);
1187 	else if (vdesc)
1188 		residue = stm32_dma_desc_residue(chan,
1189 						 to_stm32_dma_desc(vdesc), 0);
1190 	dma_set_residue(state, residue);
1191 
1192 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
1193 
1194 	return status;
1195 }
1196 
1197 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1198 {
1199 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1200 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1201 	int ret;
1202 
1203 	chan->config_init = false;
1204 
1205 	ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1206 	if (ret < 0)
1207 		return ret;
1208 
1209 	ret = stm32_dma_disable_chan(chan);
1210 	if (ret < 0)
1211 		pm_runtime_put(dmadev->ddev.dev);
1212 
1213 	return ret;
1214 }
1215 
1216 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1217 {
1218 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1219 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1220 	unsigned long flags;
1221 
1222 	dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1223 
1224 	if (chan->busy) {
1225 		spin_lock_irqsave(&chan->vchan.lock, flags);
1226 		stm32_dma_stop(chan);
1227 		chan->desc = NULL;
1228 		spin_unlock_irqrestore(&chan->vchan.lock, flags);
1229 	}
1230 
1231 	pm_runtime_put(dmadev->ddev.dev);
1232 
1233 	vchan_free_chan_resources(to_virt_chan(c));
1234 	stm32_dma_clear_reg(&chan->chan_reg);
1235 	chan->threshold = 0;
1236 }
1237 
1238 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1239 {
1240 	kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1241 }
1242 
1243 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1244 				 struct stm32_dma_cfg *cfg)
1245 {
1246 	stm32_dma_clear_reg(&chan->chan_reg);
1247 
1248 	chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1249 	chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1250 
1251 	/* Enable Interrupts  */
1252 	chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1253 
1254 	chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1255 	if (STM32_DMA_DIRECT_MODE_GET(cfg->features))
1256 		chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1257 	if (STM32_DMA_ALT_ACK_MODE_GET(cfg->features))
1258 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF;
1259 }
1260 
1261 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1262 					   struct of_dma *ofdma)
1263 {
1264 	struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1265 	struct device *dev = dmadev->ddev.dev;
1266 	struct stm32_dma_cfg cfg;
1267 	struct stm32_dma_chan *chan;
1268 	struct dma_chan *c;
1269 
1270 	if (dma_spec->args_count < 4) {
1271 		dev_err(dev, "Bad number of cells\n");
1272 		return NULL;
1273 	}
1274 
1275 	cfg.channel_id = dma_spec->args[0];
1276 	cfg.request_line = dma_spec->args[1];
1277 	cfg.stream_config = dma_spec->args[2];
1278 	cfg.features = dma_spec->args[3];
1279 
1280 	if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1281 	    cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1282 		dev_err(dev, "Bad channel and/or request id\n");
1283 		return NULL;
1284 	}
1285 
1286 	chan = &dmadev->chan[cfg.channel_id];
1287 
1288 	c = dma_get_slave_channel(&chan->vchan.chan);
1289 	if (!c) {
1290 		dev_err(dev, "No more channels available\n");
1291 		return NULL;
1292 	}
1293 
1294 	stm32_dma_set_config(chan, &cfg);
1295 
1296 	return c;
1297 }
1298 
1299 static const struct of_device_id stm32_dma_of_match[] = {
1300 	{ .compatible = "st,stm32-dma", },
1301 	{ /* sentinel */ },
1302 };
1303 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1304 
1305 static int stm32_dma_probe(struct platform_device *pdev)
1306 {
1307 	struct stm32_dma_chan *chan;
1308 	struct stm32_dma_device *dmadev;
1309 	struct dma_device *dd;
1310 	const struct of_device_id *match;
1311 	struct resource *res;
1312 	struct reset_control *rst;
1313 	int i, ret;
1314 
1315 	match = of_match_device(stm32_dma_of_match, &pdev->dev);
1316 	if (!match) {
1317 		dev_err(&pdev->dev, "Error: No device match found\n");
1318 		return -ENODEV;
1319 	}
1320 
1321 	dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1322 	if (!dmadev)
1323 		return -ENOMEM;
1324 
1325 	dd = &dmadev->ddev;
1326 
1327 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1328 	dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1329 	if (IS_ERR(dmadev->base))
1330 		return PTR_ERR(dmadev->base);
1331 
1332 	dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1333 	if (IS_ERR(dmadev->clk))
1334 		return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1335 
1336 	ret = clk_prepare_enable(dmadev->clk);
1337 	if (ret < 0) {
1338 		dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1339 		return ret;
1340 	}
1341 
1342 	dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1343 						"st,mem2mem");
1344 
1345 	rst = devm_reset_control_get(&pdev->dev, NULL);
1346 	if (IS_ERR(rst)) {
1347 		ret = PTR_ERR(rst);
1348 		if (ret == -EPROBE_DEFER)
1349 			goto clk_free;
1350 	} else {
1351 		reset_control_assert(rst);
1352 		udelay(2);
1353 		reset_control_deassert(rst);
1354 	}
1355 
1356 	dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1357 
1358 	dma_cap_set(DMA_SLAVE, dd->cap_mask);
1359 	dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1360 	dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1361 	dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1362 	dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1363 	dd->device_tx_status = stm32_dma_tx_status;
1364 	dd->device_issue_pending = stm32_dma_issue_pending;
1365 	dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1366 	dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1367 	dd->device_config = stm32_dma_slave_config;
1368 	dd->device_terminate_all = stm32_dma_terminate_all;
1369 	dd->device_synchronize = stm32_dma_synchronize;
1370 	dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1371 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1372 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1373 	dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1374 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1375 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1376 	dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1377 	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1378 	dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1379 	dd->max_burst = STM32_DMA_MAX_BURST;
1380 	dd->descriptor_reuse = true;
1381 	dd->dev = &pdev->dev;
1382 	INIT_LIST_HEAD(&dd->channels);
1383 
1384 	if (dmadev->mem2mem) {
1385 		dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1386 		dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1387 		dd->directions |= BIT(DMA_MEM_TO_MEM);
1388 	}
1389 
1390 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1391 		chan = &dmadev->chan[i];
1392 		chan->id = i;
1393 		chan->vchan.desc_free = stm32_dma_desc_free;
1394 		vchan_init(&chan->vchan, dd);
1395 	}
1396 
1397 	ret = dma_async_device_register(dd);
1398 	if (ret)
1399 		goto clk_free;
1400 
1401 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1402 		chan = &dmadev->chan[i];
1403 		ret = platform_get_irq(pdev, i);
1404 		if (ret < 0)
1405 			goto err_unregister;
1406 		chan->irq = ret;
1407 
1408 		ret = devm_request_irq(&pdev->dev, chan->irq,
1409 				       stm32_dma_chan_irq, 0,
1410 				       dev_name(chan2dev(chan)), chan);
1411 		if (ret) {
1412 			dev_err(&pdev->dev,
1413 				"request_irq failed with err %d channel %d\n",
1414 				ret, i);
1415 			goto err_unregister;
1416 		}
1417 	}
1418 
1419 	ret = of_dma_controller_register(pdev->dev.of_node,
1420 					 stm32_dma_of_xlate, dmadev);
1421 	if (ret < 0) {
1422 		dev_err(&pdev->dev,
1423 			"STM32 DMA DMA OF registration failed %d\n", ret);
1424 		goto err_unregister;
1425 	}
1426 
1427 	platform_set_drvdata(pdev, dmadev);
1428 
1429 	pm_runtime_set_active(&pdev->dev);
1430 	pm_runtime_enable(&pdev->dev);
1431 	pm_runtime_get_noresume(&pdev->dev);
1432 	pm_runtime_put(&pdev->dev);
1433 
1434 	dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1435 
1436 	return 0;
1437 
1438 err_unregister:
1439 	dma_async_device_unregister(dd);
1440 clk_free:
1441 	clk_disable_unprepare(dmadev->clk);
1442 
1443 	return ret;
1444 }
1445 
1446 #ifdef CONFIG_PM
1447 static int stm32_dma_runtime_suspend(struct device *dev)
1448 {
1449 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1450 
1451 	clk_disable_unprepare(dmadev->clk);
1452 
1453 	return 0;
1454 }
1455 
1456 static int stm32_dma_runtime_resume(struct device *dev)
1457 {
1458 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1459 	int ret;
1460 
1461 	ret = clk_prepare_enable(dmadev->clk);
1462 	if (ret) {
1463 		dev_err(dev, "failed to prepare_enable clock\n");
1464 		return ret;
1465 	}
1466 
1467 	return 0;
1468 }
1469 #endif
1470 
1471 #ifdef CONFIG_PM_SLEEP
1472 static int stm32_dma_suspend(struct device *dev)
1473 {
1474 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1475 	int id, ret, scr;
1476 
1477 	ret = pm_runtime_resume_and_get(dev);
1478 	if (ret < 0)
1479 		return ret;
1480 
1481 	for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1482 		scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1483 		if (scr & STM32_DMA_SCR_EN) {
1484 			dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1485 			return -EBUSY;
1486 		}
1487 	}
1488 
1489 	pm_runtime_put_sync(dev);
1490 
1491 	pm_runtime_force_suspend(dev);
1492 
1493 	return 0;
1494 }
1495 
1496 static int stm32_dma_resume(struct device *dev)
1497 {
1498 	return pm_runtime_force_resume(dev);
1499 }
1500 #endif
1501 
1502 static const struct dev_pm_ops stm32_dma_pm_ops = {
1503 	SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_suspend, stm32_dma_resume)
1504 	SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1505 			   stm32_dma_runtime_resume, NULL)
1506 };
1507 
1508 static struct platform_driver stm32_dma_driver = {
1509 	.driver = {
1510 		.name = "stm32-dma",
1511 		.of_match_table = stm32_dma_of_match,
1512 		.pm = &stm32_dma_pm_ops,
1513 	},
1514 	.probe = stm32_dma_probe,
1515 };
1516 
1517 static int __init stm32_dma_init(void)
1518 {
1519 	return platform_driver_register(&stm32_dma_driver);
1520 }
1521 subsys_initcall(stm32_dma_init);
1522