xref: /openbmc/linux/drivers/dma/stm32-dma.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  * Driver for STM32 DMA controller
3  *
4  * Inspired by dma-jz4740.c and tegra20-apb-dma.c
5  *
6  * Copyright (C) M'boumba Cedric Madianga 2015
7  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
8  *
9  * License terms:  GNU General Public License (GPL), version 2
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/jiffies.h>
19 #include <linux/list.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_dma.h>
24 #include <linux/platform_device.h>
25 #include <linux/reset.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 
29 #include "virt-dma.h"
30 
31 #define STM32_DMA_LISR			0x0000 /* DMA Low Int Status Reg */
32 #define STM32_DMA_HISR			0x0004 /* DMA High Int Status Reg */
33 #define STM32_DMA_LIFCR			0x0008 /* DMA Low Int Flag Clear Reg */
34 #define STM32_DMA_HIFCR			0x000c /* DMA High Int Flag Clear Reg */
35 #define STM32_DMA_TCI			BIT(5) /* Transfer Complete Interrupt */
36 #define STM32_DMA_TEI			BIT(3) /* Transfer Error Interrupt */
37 #define STM32_DMA_DMEI			BIT(2) /* Direct Mode Error Interrupt */
38 #define STM32_DMA_FEI			BIT(0) /* FIFO Error Interrupt */
39 
40 /* DMA Stream x Configuration Register */
41 #define STM32_DMA_SCR(x)		(0x0010 + 0x18 * (x)) /* x = 0..7 */
42 #define STM32_DMA_SCR_REQ(n)		((n & 0x7) << 25)
43 #define STM32_DMA_SCR_MBURST_MASK	GENMASK(24, 23)
44 #define STM32_DMA_SCR_MBURST(n)	        ((n & 0x3) << 23)
45 #define STM32_DMA_SCR_PBURST_MASK	GENMASK(22, 21)
46 #define STM32_DMA_SCR_PBURST(n)	        ((n & 0x3) << 21)
47 #define STM32_DMA_SCR_PL_MASK		GENMASK(17, 16)
48 #define STM32_DMA_SCR_PL(n)		((n & 0x3) << 16)
49 #define STM32_DMA_SCR_MSIZE_MASK	GENMASK(14, 13)
50 #define STM32_DMA_SCR_MSIZE(n)		((n & 0x3) << 13)
51 #define STM32_DMA_SCR_PSIZE_MASK	GENMASK(12, 11)
52 #define STM32_DMA_SCR_PSIZE(n)		((n & 0x3) << 11)
53 #define STM32_DMA_SCR_PSIZE_GET(n)	((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
54 #define STM32_DMA_SCR_DIR_MASK		GENMASK(7, 6)
55 #define STM32_DMA_SCR_DIR(n)		((n & 0x3) << 6)
56 #define STM32_DMA_SCR_CT		BIT(19) /* Target in double buffer */
57 #define STM32_DMA_SCR_DBM		BIT(18) /* Double Buffer Mode */
58 #define STM32_DMA_SCR_PINCOS		BIT(15) /* Peripheral inc offset size */
59 #define STM32_DMA_SCR_MINC		BIT(10) /* Memory increment mode */
60 #define STM32_DMA_SCR_PINC		BIT(9) /* Peripheral increment mode */
61 #define STM32_DMA_SCR_CIRC		BIT(8) /* Circular mode */
62 #define STM32_DMA_SCR_PFCTRL		BIT(5) /* Peripheral Flow Controller */
63 #define STM32_DMA_SCR_TCIE		BIT(4) /* Transfer Cplete Int Enable*/
64 #define STM32_DMA_SCR_TEIE		BIT(2) /* Transfer Error Int Enable */
65 #define STM32_DMA_SCR_DMEIE		BIT(1) /* Direct Mode Err Int Enable */
66 #define STM32_DMA_SCR_EN		BIT(0) /* Stream Enable */
67 #define STM32_DMA_SCR_CFG_MASK		(STM32_DMA_SCR_PINC \
68 					| STM32_DMA_SCR_MINC \
69 					| STM32_DMA_SCR_PINCOS \
70 					| STM32_DMA_SCR_PL_MASK)
71 #define STM32_DMA_SCR_IRQ_MASK		(STM32_DMA_SCR_TCIE \
72 					| STM32_DMA_SCR_TEIE \
73 					| STM32_DMA_SCR_DMEIE)
74 
75 /* DMA Stream x number of data register */
76 #define STM32_DMA_SNDTR(x)		(0x0014 + 0x18 * (x))
77 
78 /* DMA stream peripheral address register */
79 #define STM32_DMA_SPAR(x)		(0x0018 + 0x18 * (x))
80 
81 /* DMA stream x memory 0 address register */
82 #define STM32_DMA_SM0AR(x)		(0x001c + 0x18 * (x))
83 
84 /* DMA stream x memory 1 address register */
85 #define STM32_DMA_SM1AR(x)		(0x0020 + 0x18 * (x))
86 
87 /* DMA stream x FIFO control register */
88 #define STM32_DMA_SFCR(x)		(0x0024 + 0x18 * (x))
89 #define STM32_DMA_SFCR_FTH_MASK		GENMASK(1, 0)
90 #define STM32_DMA_SFCR_FTH(n)		(n & STM32_DMA_SFCR_FTH_MASK)
91 #define STM32_DMA_SFCR_FEIE		BIT(7) /* FIFO error interrupt enable */
92 #define STM32_DMA_SFCR_DMDIS		BIT(2) /* Direct mode disable */
93 #define STM32_DMA_SFCR_MASK		(STM32_DMA_SFCR_FEIE \
94 					| STM32_DMA_SFCR_DMDIS)
95 
96 /* DMA direction */
97 #define STM32_DMA_DEV_TO_MEM		0x00
98 #define	STM32_DMA_MEM_TO_DEV		0x01
99 #define	STM32_DMA_MEM_TO_MEM		0x02
100 
101 /* DMA priority level */
102 #define STM32_DMA_PRIORITY_LOW		0x00
103 #define STM32_DMA_PRIORITY_MEDIUM	0x01
104 #define STM32_DMA_PRIORITY_HIGH		0x02
105 #define STM32_DMA_PRIORITY_VERY_HIGH	0x03
106 
107 /* DMA FIFO threshold selection */
108 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL		0x00
109 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL		0x01
110 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL		0x02
111 #define STM32_DMA_FIFO_THRESHOLD_FULL			0x03
112 
113 #define STM32_DMA_MAX_DATA_ITEMS	0xffff
114 #define STM32_DMA_MAX_CHANNELS		0x08
115 #define STM32_DMA_MAX_REQUEST_ID	0x08
116 #define STM32_DMA_MAX_DATA_PARAM	0x03
117 
118 enum stm32_dma_width {
119 	STM32_DMA_BYTE,
120 	STM32_DMA_HALF_WORD,
121 	STM32_DMA_WORD,
122 };
123 
124 enum stm32_dma_burst_size {
125 	STM32_DMA_BURST_SINGLE,
126 	STM32_DMA_BURST_INCR4,
127 	STM32_DMA_BURST_INCR8,
128 	STM32_DMA_BURST_INCR16,
129 };
130 
131 struct stm32_dma_cfg {
132 	u32 channel_id;
133 	u32 request_line;
134 	u32 stream_config;
135 	u32 threshold;
136 };
137 
138 struct stm32_dma_chan_reg {
139 	u32 dma_lisr;
140 	u32 dma_hisr;
141 	u32 dma_lifcr;
142 	u32 dma_hifcr;
143 	u32 dma_scr;
144 	u32 dma_sndtr;
145 	u32 dma_spar;
146 	u32 dma_sm0ar;
147 	u32 dma_sm1ar;
148 	u32 dma_sfcr;
149 };
150 
151 struct stm32_dma_sg_req {
152 	u32 len;
153 	struct stm32_dma_chan_reg chan_reg;
154 };
155 
156 struct stm32_dma_desc {
157 	struct virt_dma_desc vdesc;
158 	bool cyclic;
159 	u32 num_sgs;
160 	struct stm32_dma_sg_req sg_req[];
161 };
162 
163 struct stm32_dma_chan {
164 	struct virt_dma_chan vchan;
165 	bool config_init;
166 	bool busy;
167 	u32 id;
168 	u32 irq;
169 	struct stm32_dma_desc *desc;
170 	u32 next_sg;
171 	struct dma_slave_config	dma_sconfig;
172 	struct stm32_dma_chan_reg chan_reg;
173 };
174 
175 struct stm32_dma_device {
176 	struct dma_device ddev;
177 	void __iomem *base;
178 	struct clk *clk;
179 	struct reset_control *rst;
180 	bool mem2mem;
181 	struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
182 };
183 
184 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
185 {
186 	return container_of(chan->vchan.chan.device, struct stm32_dma_device,
187 			    ddev);
188 }
189 
190 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
191 {
192 	return container_of(c, struct stm32_dma_chan, vchan.chan);
193 }
194 
195 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
196 {
197 	return container_of(vdesc, struct stm32_dma_desc, vdesc);
198 }
199 
200 static struct device *chan2dev(struct stm32_dma_chan *chan)
201 {
202 	return &chan->vchan.chan.dev->device;
203 }
204 
205 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
206 {
207 	return readl_relaxed(dmadev->base + reg);
208 }
209 
210 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
211 {
212 	writel_relaxed(val, dmadev->base + reg);
213 }
214 
215 static struct stm32_dma_desc *stm32_dma_alloc_desc(u32 num_sgs)
216 {
217 	return kzalloc(sizeof(struct stm32_dma_desc) +
218 		       sizeof(struct stm32_dma_sg_req) * num_sgs, GFP_NOWAIT);
219 }
220 
221 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
222 			       enum dma_slave_buswidth width)
223 {
224 	switch (width) {
225 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
226 		return STM32_DMA_BYTE;
227 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
228 		return STM32_DMA_HALF_WORD;
229 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
230 		return STM32_DMA_WORD;
231 	default:
232 		dev_err(chan2dev(chan), "Dma bus width not supported\n");
233 		return -EINVAL;
234 	}
235 }
236 
237 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
238 {
239 	switch (maxburst) {
240 	case 0:
241 	case 1:
242 		return STM32_DMA_BURST_SINGLE;
243 	case 4:
244 		return STM32_DMA_BURST_INCR4;
245 	case 8:
246 		return STM32_DMA_BURST_INCR8;
247 	case 16:
248 		return STM32_DMA_BURST_INCR16;
249 	default:
250 		dev_err(chan2dev(chan), "Dma burst size not supported\n");
251 		return -EINVAL;
252 	}
253 }
254 
255 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
256 				      u32 src_maxburst, u32 dst_maxburst)
257 {
258 	chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
259 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
260 
261 	if ((!src_maxburst) && (!dst_maxburst)) {
262 		/* Using direct mode */
263 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
264 	} else {
265 		/* Using FIFO mode */
266 		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
267 	}
268 }
269 
270 static int stm32_dma_slave_config(struct dma_chan *c,
271 				  struct dma_slave_config *config)
272 {
273 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
274 
275 	memcpy(&chan->dma_sconfig, config, sizeof(*config));
276 
277 	chan->config_init = true;
278 
279 	return 0;
280 }
281 
282 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
283 {
284 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
285 	u32 flags, dma_isr;
286 
287 	/*
288 	 * Read "flags" from DMA_xISR register corresponding to the selected
289 	 * DMA channel at the correct bit offset inside that register.
290 	 *
291 	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
292 	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
293 	 */
294 
295 	if (chan->id & 4)
296 		dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
297 	else
298 		dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
299 
300 	flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
301 
302 	return flags;
303 }
304 
305 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
306 {
307 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
308 	u32 dma_ifcr;
309 
310 	/*
311 	 * Write "flags" to the DMA_xIFCR register corresponding to the selected
312 	 * DMA channel at the correct bit offset inside that register.
313 	 *
314 	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
315 	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
316 	 */
317 	dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
318 
319 	if (chan->id & 4)
320 		stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
321 	else
322 		stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
323 }
324 
325 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
326 {
327 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
328 	unsigned long timeout = jiffies + msecs_to_jiffies(5000);
329 	u32 dma_scr, id;
330 
331 	id = chan->id;
332 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
333 
334 	if (dma_scr & STM32_DMA_SCR_EN) {
335 		dma_scr &= ~STM32_DMA_SCR_EN;
336 		stm32_dma_write(dmadev, STM32_DMA_SCR(id), dma_scr);
337 
338 		do {
339 			dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
340 			dma_scr &= STM32_DMA_SCR_EN;
341 			if (!dma_scr)
342 				break;
343 
344 			if (time_after_eq(jiffies, timeout)) {
345 				dev_err(chan2dev(chan), "%s: timeout!\n",
346 					__func__);
347 				return -EBUSY;
348 			}
349 			cond_resched();
350 		} while (1);
351 	}
352 
353 	return 0;
354 }
355 
356 static void stm32_dma_stop(struct stm32_dma_chan *chan)
357 {
358 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
359 	u32 dma_scr, dma_sfcr, status;
360 	int ret;
361 
362 	/* Disable interrupts */
363 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
364 	dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
365 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
366 	dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
367 	dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
368 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
369 
370 	/* Disable DMA */
371 	ret = stm32_dma_disable_chan(chan);
372 	if (ret < 0)
373 		return;
374 
375 	/* Clear interrupt status if it is there */
376 	status = stm32_dma_irq_status(chan);
377 	if (status) {
378 		dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
379 			__func__, status);
380 		stm32_dma_irq_clear(chan, status);
381 	}
382 
383 	chan->busy = false;
384 }
385 
386 static int stm32_dma_terminate_all(struct dma_chan *c)
387 {
388 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
389 	unsigned long flags;
390 	LIST_HEAD(head);
391 
392 	spin_lock_irqsave(&chan->vchan.lock, flags);
393 
394 	if (chan->busy) {
395 		stm32_dma_stop(chan);
396 		chan->desc = NULL;
397 	}
398 
399 	vchan_get_all_descriptors(&chan->vchan, &head);
400 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
401 	vchan_dma_desc_free_list(&chan->vchan, &head);
402 
403 	return 0;
404 }
405 
406 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
407 {
408 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
409 	u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
410 	u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
411 	u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
412 	u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
413 	u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
414 	u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
415 
416 	dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
417 	dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
418 	dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
419 	dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
420 	dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
421 	dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
422 }
423 
424 static int stm32_dma_start_transfer(struct stm32_dma_chan *chan)
425 {
426 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
427 	struct virt_dma_desc *vdesc;
428 	struct stm32_dma_sg_req *sg_req;
429 	struct stm32_dma_chan_reg *reg;
430 	u32 status;
431 	int ret;
432 
433 	ret = stm32_dma_disable_chan(chan);
434 	if (ret < 0)
435 		return ret;
436 
437 	if (!chan->desc) {
438 		vdesc = vchan_next_desc(&chan->vchan);
439 		if (!vdesc)
440 			return -EPERM;
441 
442 		chan->desc = to_stm32_dma_desc(vdesc);
443 		chan->next_sg = 0;
444 	}
445 
446 	if (chan->next_sg == chan->desc->num_sgs)
447 		chan->next_sg = 0;
448 
449 	sg_req = &chan->desc->sg_req[chan->next_sg];
450 	reg = &sg_req->chan_reg;
451 
452 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
453 	stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
454 	stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
455 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
456 	stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
457 	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
458 
459 	chan->next_sg++;
460 
461 	/* Clear interrupt status if it is there */
462 	status = stm32_dma_irq_status(chan);
463 	if (status)
464 		stm32_dma_irq_clear(chan, status);
465 
466 	stm32_dma_dump_reg(chan);
467 
468 	/* Start DMA */
469 	reg->dma_scr |= STM32_DMA_SCR_EN;
470 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
471 
472 	chan->busy = true;
473 
474 	return 0;
475 }
476 
477 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
478 {
479 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
480 	struct stm32_dma_sg_req *sg_req;
481 	u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
482 
483 	id = chan->id;
484 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
485 
486 	if (dma_scr & STM32_DMA_SCR_DBM) {
487 		if (chan->next_sg == chan->desc->num_sgs)
488 			chan->next_sg = 0;
489 
490 		sg_req = &chan->desc->sg_req[chan->next_sg];
491 
492 		if (dma_scr & STM32_DMA_SCR_CT) {
493 			dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
494 			stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
495 			dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
496 				stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
497 		} else {
498 			dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
499 			stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
500 			dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
501 				stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
502 		}
503 
504 		chan->next_sg++;
505 	}
506 }
507 
508 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
509 {
510 	if (chan->desc) {
511 		if (chan->desc->cyclic) {
512 			vchan_cyclic_callback(&chan->desc->vdesc);
513 			stm32_dma_configure_next_sg(chan);
514 		} else {
515 			chan->busy = false;
516 			if (chan->next_sg == chan->desc->num_sgs) {
517 				list_del(&chan->desc->vdesc.node);
518 				vchan_cookie_complete(&chan->desc->vdesc);
519 				chan->desc = NULL;
520 			}
521 			stm32_dma_start_transfer(chan);
522 		}
523 	}
524 }
525 
526 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
527 {
528 	struct stm32_dma_chan *chan = devid;
529 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
530 	u32 status, scr, sfcr;
531 
532 	spin_lock(&chan->vchan.lock);
533 
534 	status = stm32_dma_irq_status(chan);
535 	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
536 	sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
537 
538 	if ((status & STM32_DMA_TCI) && (scr & STM32_DMA_SCR_TCIE)) {
539 		stm32_dma_irq_clear(chan, STM32_DMA_TCI);
540 		stm32_dma_handle_chan_done(chan);
541 
542 	} else {
543 		stm32_dma_irq_clear(chan, status);
544 		dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
545 	}
546 
547 	spin_unlock(&chan->vchan.lock);
548 
549 	return IRQ_HANDLED;
550 }
551 
552 static void stm32_dma_issue_pending(struct dma_chan *c)
553 {
554 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
555 	unsigned long flags;
556 	int ret;
557 
558 	spin_lock_irqsave(&chan->vchan.lock, flags);
559 	if (!chan->busy) {
560 		if (vchan_issue_pending(&chan->vchan) && !chan->desc) {
561 			ret = stm32_dma_start_transfer(chan);
562 			if ((!ret) && (chan->desc->cyclic))
563 				stm32_dma_configure_next_sg(chan);
564 		}
565 	}
566 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
567 }
568 
569 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
570 				    enum dma_transfer_direction direction,
571 				    enum dma_slave_buswidth *buswidth)
572 {
573 	enum dma_slave_buswidth src_addr_width, dst_addr_width;
574 	int src_bus_width, dst_bus_width;
575 	int src_burst_size, dst_burst_size;
576 	u32 src_maxburst, dst_maxburst;
577 	dma_addr_t src_addr, dst_addr;
578 	u32 dma_scr = 0;
579 
580 	src_addr_width = chan->dma_sconfig.src_addr_width;
581 	dst_addr_width = chan->dma_sconfig.dst_addr_width;
582 	src_maxburst = chan->dma_sconfig.src_maxburst;
583 	dst_maxburst = chan->dma_sconfig.dst_maxburst;
584 	src_addr = chan->dma_sconfig.src_addr;
585 	dst_addr = chan->dma_sconfig.dst_addr;
586 
587 	switch (direction) {
588 	case DMA_MEM_TO_DEV:
589 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
590 		if (dst_bus_width < 0)
591 			return dst_bus_width;
592 
593 		dst_burst_size = stm32_dma_get_burst(chan, dst_maxburst);
594 		if (dst_burst_size < 0)
595 			return dst_burst_size;
596 
597 		if (!src_addr_width)
598 			src_addr_width = dst_addr_width;
599 
600 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
601 		if (src_bus_width < 0)
602 			return src_bus_width;
603 
604 		src_burst_size = stm32_dma_get_burst(chan, src_maxburst);
605 		if (src_burst_size < 0)
606 			return src_burst_size;
607 
608 		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
609 			STM32_DMA_SCR_PSIZE(dst_bus_width) |
610 			STM32_DMA_SCR_MSIZE(src_bus_width) |
611 			STM32_DMA_SCR_PBURST(dst_burst_size) |
612 			STM32_DMA_SCR_MBURST(src_burst_size);
613 
614 		chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
615 		*buswidth = dst_addr_width;
616 		break;
617 
618 	case DMA_DEV_TO_MEM:
619 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
620 		if (src_bus_width < 0)
621 			return src_bus_width;
622 
623 		src_burst_size = stm32_dma_get_burst(chan, src_maxburst);
624 		if (src_burst_size < 0)
625 			return src_burst_size;
626 
627 		if (!dst_addr_width)
628 			dst_addr_width = src_addr_width;
629 
630 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
631 		if (dst_bus_width < 0)
632 			return dst_bus_width;
633 
634 		dst_burst_size = stm32_dma_get_burst(chan, dst_maxburst);
635 		if (dst_burst_size < 0)
636 			return dst_burst_size;
637 
638 		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
639 			STM32_DMA_SCR_PSIZE(src_bus_width) |
640 			STM32_DMA_SCR_MSIZE(dst_bus_width) |
641 			STM32_DMA_SCR_PBURST(src_burst_size) |
642 			STM32_DMA_SCR_MBURST(dst_burst_size);
643 
644 		chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
645 		*buswidth = chan->dma_sconfig.src_addr_width;
646 		break;
647 
648 	default:
649 		dev_err(chan2dev(chan), "Dma direction is not supported\n");
650 		return -EINVAL;
651 	}
652 
653 	stm32_dma_set_fifo_config(chan, src_maxburst, dst_maxburst);
654 
655 	chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
656 			STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
657 			STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
658 	chan->chan_reg.dma_scr |= dma_scr;
659 
660 	return 0;
661 }
662 
663 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
664 {
665 	memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
666 }
667 
668 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
669 	struct dma_chan *c, struct scatterlist *sgl,
670 	u32 sg_len, enum dma_transfer_direction direction,
671 	unsigned long flags, void *context)
672 {
673 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
674 	struct stm32_dma_desc *desc;
675 	struct scatterlist *sg;
676 	enum dma_slave_buswidth buswidth;
677 	u32 nb_data_items;
678 	int i, ret;
679 
680 	if (!chan->config_init) {
681 		dev_err(chan2dev(chan), "dma channel is not configured\n");
682 		return NULL;
683 	}
684 
685 	if (sg_len < 1) {
686 		dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
687 		return NULL;
688 	}
689 
690 	desc = stm32_dma_alloc_desc(sg_len);
691 	if (!desc)
692 		return NULL;
693 
694 	ret = stm32_dma_set_xfer_param(chan, direction, &buswidth);
695 	if (ret < 0)
696 		goto err;
697 
698 	/* Set peripheral flow controller */
699 	if (chan->dma_sconfig.device_fc)
700 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
701 	else
702 		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
703 
704 	for_each_sg(sgl, sg, sg_len, i) {
705 		desc->sg_req[i].len = sg_dma_len(sg);
706 
707 		nb_data_items = desc->sg_req[i].len / buswidth;
708 		if (nb_data_items > STM32_DMA_MAX_DATA_ITEMS) {
709 			dev_err(chan2dev(chan), "nb items not supported\n");
710 			goto err;
711 		}
712 
713 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
714 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
715 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
716 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
717 		desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
718 		desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
719 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
720 	}
721 
722 	desc->num_sgs = sg_len;
723 	desc->cyclic = false;
724 
725 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
726 
727 err:
728 	kfree(desc);
729 	return NULL;
730 }
731 
732 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
733 	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
734 	size_t period_len, enum dma_transfer_direction direction,
735 	unsigned long flags)
736 {
737 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
738 	struct stm32_dma_desc *desc;
739 	enum dma_slave_buswidth buswidth;
740 	u32 num_periods, nb_data_items;
741 	int i, ret;
742 
743 	if (!buf_len || !period_len) {
744 		dev_err(chan2dev(chan), "Invalid buffer/period len\n");
745 		return NULL;
746 	}
747 
748 	if (!chan->config_init) {
749 		dev_err(chan2dev(chan), "dma channel is not configured\n");
750 		return NULL;
751 	}
752 
753 	if (buf_len % period_len) {
754 		dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
755 		return NULL;
756 	}
757 
758 	/*
759 	 * We allow to take more number of requests till DMA is
760 	 * not started. The driver will loop over all requests.
761 	 * Once DMA is started then new requests can be queued only after
762 	 * terminating the DMA.
763 	 */
764 	if (chan->busy) {
765 		dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
766 		return NULL;
767 	}
768 
769 	ret = stm32_dma_set_xfer_param(chan, direction, &buswidth);
770 	if (ret < 0)
771 		return NULL;
772 
773 	nb_data_items = period_len / buswidth;
774 	if (nb_data_items > STM32_DMA_MAX_DATA_ITEMS) {
775 		dev_err(chan2dev(chan), "number of items not supported\n");
776 		return NULL;
777 	}
778 
779 	/*  Enable Circular mode or double buffer mode */
780 	if (buf_len == period_len)
781 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
782 	else
783 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
784 
785 	/* Clear periph ctrl if client set it */
786 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
787 
788 	num_periods = buf_len / period_len;
789 
790 	desc = stm32_dma_alloc_desc(num_periods);
791 	if (!desc)
792 		return NULL;
793 
794 	for (i = 0; i < num_periods; i++) {
795 		desc->sg_req[i].len = period_len;
796 
797 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
798 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
799 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
800 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
801 		desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
802 		desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
803 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
804 		buf_addr += period_len;
805 	}
806 
807 	desc->num_sgs = num_periods;
808 	desc->cyclic = true;
809 
810 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
811 }
812 
813 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
814 	struct dma_chan *c, dma_addr_t dest,
815 	dma_addr_t src, size_t len, unsigned long flags)
816 {
817 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
818 	u32 num_sgs;
819 	struct stm32_dma_desc *desc;
820 	size_t xfer_count, offset;
821 	int i;
822 
823 	num_sgs = DIV_ROUND_UP(len, STM32_DMA_MAX_DATA_ITEMS);
824 	desc = stm32_dma_alloc_desc(num_sgs);
825 	if (!desc)
826 		return NULL;
827 
828 	for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
829 		xfer_count = min_t(size_t, len - offset,
830 				   STM32_DMA_MAX_DATA_ITEMS);
831 
832 		desc->sg_req[i].len = xfer_count;
833 
834 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
835 		desc->sg_req[i].chan_reg.dma_scr =
836 			STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
837 			STM32_DMA_SCR_MINC |
838 			STM32_DMA_SCR_PINC |
839 			STM32_DMA_SCR_TCIE |
840 			STM32_DMA_SCR_TEIE;
841 		desc->sg_req[i].chan_reg.dma_sfcr = STM32_DMA_SFCR_DMDIS |
842 			STM32_DMA_SFCR_FTH(STM32_DMA_FIFO_THRESHOLD_FULL) |
843 			STM32_DMA_SFCR_FEIE;
844 		desc->sg_req[i].chan_reg.dma_spar = src + offset;
845 		desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
846 		desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
847 	}
848 
849 	desc->num_sgs = num_sgs;
850 	desc->cyclic = false;
851 
852 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
853 }
854 
855 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
856 				     struct stm32_dma_desc *desc,
857 				     u32 next_sg)
858 {
859 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
860 	u32 dma_scr, width, residue, count;
861 	int i;
862 
863 	residue = 0;
864 
865 	for (i = next_sg; i < desc->num_sgs; i++)
866 		residue += desc->sg_req[i].len;
867 
868 	if (next_sg != 0) {
869 		dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
870 		width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
871 		count = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
872 
873 		residue += count << width;
874 	}
875 
876 	return residue;
877 }
878 
879 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
880 					   dma_cookie_t cookie,
881 					   struct dma_tx_state *state)
882 {
883 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
884 	struct virt_dma_desc *vdesc;
885 	enum dma_status status;
886 	unsigned long flags;
887 	u32 residue;
888 
889 	status = dma_cookie_status(c, cookie, state);
890 	if ((status == DMA_COMPLETE) || (!state))
891 		return status;
892 
893 	spin_lock_irqsave(&chan->vchan.lock, flags);
894 	vdesc = vchan_find_desc(&chan->vchan, cookie);
895 	if (cookie == chan->desc->vdesc.tx.cookie) {
896 		residue = stm32_dma_desc_residue(chan, chan->desc,
897 						 chan->next_sg);
898 	} else if (vdesc) {
899 		residue = stm32_dma_desc_residue(chan,
900 						 to_stm32_dma_desc(vdesc), 0);
901 	} else {
902 		residue = 0;
903 	}
904 
905 	dma_set_residue(state, residue);
906 
907 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
908 
909 	return status;
910 }
911 
912 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
913 {
914 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
915 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
916 	int ret;
917 
918 	chan->config_init = false;
919 	ret = clk_prepare_enable(dmadev->clk);
920 	if (ret < 0) {
921 		dev_err(chan2dev(chan), "clk_prepare_enable failed: %d\n", ret);
922 		return ret;
923 	}
924 
925 	ret = stm32_dma_disable_chan(chan);
926 	if (ret < 0)
927 		clk_disable_unprepare(dmadev->clk);
928 
929 	return ret;
930 }
931 
932 static void stm32_dma_free_chan_resources(struct dma_chan *c)
933 {
934 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
935 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
936 	unsigned long flags;
937 
938 	dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
939 
940 	if (chan->busy) {
941 		spin_lock_irqsave(&chan->vchan.lock, flags);
942 		stm32_dma_stop(chan);
943 		chan->desc = NULL;
944 		spin_unlock_irqrestore(&chan->vchan.lock, flags);
945 	}
946 
947 	clk_disable_unprepare(dmadev->clk);
948 
949 	vchan_free_chan_resources(to_virt_chan(c));
950 }
951 
952 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
953 {
954 	kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
955 }
956 
957 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
958 			  struct stm32_dma_cfg *cfg)
959 {
960 	stm32_dma_clear_reg(&chan->chan_reg);
961 
962 	chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
963 	chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
964 
965 	/* Enable Interrupts  */
966 	chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
967 
968 	chan->chan_reg.dma_sfcr = cfg->threshold & STM32_DMA_SFCR_FTH_MASK;
969 }
970 
971 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
972 					   struct of_dma *ofdma)
973 {
974 	struct stm32_dma_device *dmadev = ofdma->of_dma_data;
975 	struct stm32_dma_cfg cfg;
976 	struct stm32_dma_chan *chan;
977 	struct dma_chan *c;
978 
979 	if (dma_spec->args_count < 3)
980 		return NULL;
981 
982 	cfg.channel_id = dma_spec->args[0];
983 	cfg.request_line = dma_spec->args[1];
984 	cfg.stream_config = dma_spec->args[2];
985 	cfg.threshold = 0;
986 
987 	if ((cfg.channel_id >= STM32_DMA_MAX_CHANNELS) || (cfg.request_line >=
988 				STM32_DMA_MAX_REQUEST_ID))
989 		return NULL;
990 
991 	if (dma_spec->args_count > 3)
992 		cfg.threshold = dma_spec->args[3];
993 
994 	chan = &dmadev->chan[cfg.channel_id];
995 
996 	c = dma_get_slave_channel(&chan->vchan.chan);
997 	if (c)
998 		stm32_dma_set_config(chan, &cfg);
999 
1000 	return c;
1001 }
1002 
1003 static const struct of_device_id stm32_dma_of_match[] = {
1004 	{ .compatible = "st,stm32-dma", },
1005 	{ /* sentinel */ },
1006 };
1007 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1008 
1009 static int stm32_dma_probe(struct platform_device *pdev)
1010 {
1011 	struct stm32_dma_chan *chan;
1012 	struct stm32_dma_device *dmadev;
1013 	struct dma_device *dd;
1014 	const struct of_device_id *match;
1015 	struct resource *res;
1016 	int i, ret;
1017 
1018 	match = of_match_device(stm32_dma_of_match, &pdev->dev);
1019 	if (!match) {
1020 		dev_err(&pdev->dev, "Error: No device match found\n");
1021 		return -ENODEV;
1022 	}
1023 
1024 	dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1025 	if (!dmadev)
1026 		return -ENOMEM;
1027 
1028 	dd = &dmadev->ddev;
1029 
1030 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1031 	dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1032 	if (IS_ERR(dmadev->base))
1033 		return PTR_ERR(dmadev->base);
1034 
1035 	dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1036 	if (IS_ERR(dmadev->clk)) {
1037 		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1038 		return PTR_ERR(dmadev->clk);
1039 	}
1040 
1041 	dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1042 						"st,mem2mem");
1043 
1044 	dmadev->rst = devm_reset_control_get(&pdev->dev, NULL);
1045 	if (!IS_ERR(dmadev->rst)) {
1046 		reset_control_assert(dmadev->rst);
1047 		udelay(2);
1048 		reset_control_deassert(dmadev->rst);
1049 	}
1050 
1051 	dma_cap_set(DMA_SLAVE, dd->cap_mask);
1052 	dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1053 	dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1054 	dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1055 	dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1056 	dd->device_tx_status = stm32_dma_tx_status;
1057 	dd->device_issue_pending = stm32_dma_issue_pending;
1058 	dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1059 	dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1060 	dd->device_config = stm32_dma_slave_config;
1061 	dd->device_terminate_all = stm32_dma_terminate_all;
1062 	dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1063 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1064 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1065 	dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1066 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1067 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1068 	dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1069 	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1070 	dd->dev = &pdev->dev;
1071 	INIT_LIST_HEAD(&dd->channels);
1072 
1073 	if (dmadev->mem2mem) {
1074 		dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1075 		dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1076 		dd->directions |= BIT(DMA_MEM_TO_MEM);
1077 	}
1078 
1079 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1080 		chan = &dmadev->chan[i];
1081 		chan->id = i;
1082 		chan->vchan.desc_free = stm32_dma_desc_free;
1083 		vchan_init(&chan->vchan, dd);
1084 	}
1085 
1086 	ret = dma_async_device_register(dd);
1087 	if (ret)
1088 		return ret;
1089 
1090 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1091 		chan = &dmadev->chan[i];
1092 		res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1093 		if (!res) {
1094 			ret = -EINVAL;
1095 			dev_err(&pdev->dev, "No irq resource for chan %d\n", i);
1096 			goto err_unregister;
1097 		}
1098 		chan->irq = res->start;
1099 		ret = devm_request_irq(&pdev->dev, chan->irq,
1100 				       stm32_dma_chan_irq, 0,
1101 				       dev_name(chan2dev(chan)), chan);
1102 		if (ret) {
1103 			dev_err(&pdev->dev,
1104 				"request_irq failed with err %d channel %d\n",
1105 				ret, i);
1106 			goto err_unregister;
1107 		}
1108 	}
1109 
1110 	ret = of_dma_controller_register(pdev->dev.of_node,
1111 					 stm32_dma_of_xlate, dmadev);
1112 	if (ret < 0) {
1113 		dev_err(&pdev->dev,
1114 			"STM32 DMA DMA OF registration failed %d\n", ret);
1115 		goto err_unregister;
1116 	}
1117 
1118 	platform_set_drvdata(pdev, dmadev);
1119 
1120 	dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1121 
1122 	return 0;
1123 
1124 err_unregister:
1125 	dma_async_device_unregister(dd);
1126 
1127 	return ret;
1128 }
1129 
1130 static struct platform_driver stm32_dma_driver = {
1131 	.driver = {
1132 		.name = "stm32-dma",
1133 		.of_match_table = stm32_dma_of_match,
1134 	},
1135 };
1136 
1137 static int __init stm32_dma_init(void)
1138 {
1139 	return platform_driver_probe(&stm32_dma_driver, stm32_dma_probe);
1140 }
1141 subsys_initcall(stm32_dma_init);
1142