1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for STM32 DMA controller 4 * 5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c 6 * 7 * Copyright (C) M'boumba Cedric Madianga 2015 8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com> 9 * Pierre-Yves Mordret <pierre-yves.mordret@st.com> 10 */ 11 12 #include <linux/bitfield.h> 13 #include <linux/clk.h> 14 #include <linux/delay.h> 15 #include <linux/dmaengine.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/err.h> 18 #include <linux/init.h> 19 #include <linux/iopoll.h> 20 #include <linux/jiffies.h> 21 #include <linux/list.h> 22 #include <linux/module.h> 23 #include <linux/of.h> 24 #include <linux/of_device.h> 25 #include <linux/of_dma.h> 26 #include <linux/platform_device.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/reset.h> 29 #include <linux/sched.h> 30 #include <linux/slab.h> 31 32 #include "virt-dma.h" 33 34 #define STM32_DMA_LISR 0x0000 /* DMA Low Int Status Reg */ 35 #define STM32_DMA_HISR 0x0004 /* DMA High Int Status Reg */ 36 #define STM32_DMA_ISR(n) (((n) & 4) ? STM32_DMA_HISR : STM32_DMA_LISR) 37 #define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */ 38 #define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */ 39 #define STM32_DMA_IFCR(n) (((n) & 4) ? STM32_DMA_HIFCR : STM32_DMA_LIFCR) 40 #define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */ 41 #define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */ 42 #define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */ 43 #define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */ 44 #define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */ 45 #define STM32_DMA_MASKI (STM32_DMA_TCI \ 46 | STM32_DMA_TEI \ 47 | STM32_DMA_DMEI \ 48 | STM32_DMA_FEI) 49 /* 50 * If (chan->id % 4) is 2 or 3, left shift the mask by 16 bits; 51 * if (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits. 52 */ 53 #define STM32_DMA_FLAGS_SHIFT(n) ({ typeof(n) (_n) = (n); \ 54 (((_n) & 2) << 3) | (((_n) & 1) * 6); }) 55 56 /* DMA Stream x Configuration Register */ 57 #define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */ 58 #define STM32_DMA_SCR_REQ_MASK GENMASK(27, 25) 59 #define STM32_DMA_SCR_MBURST_MASK GENMASK(24, 23) 60 #define STM32_DMA_SCR_PBURST_MASK GENMASK(22, 21) 61 #define STM32_DMA_SCR_PL_MASK GENMASK(17, 16) 62 #define STM32_DMA_SCR_MSIZE_MASK GENMASK(14, 13) 63 #define STM32_DMA_SCR_PSIZE_MASK GENMASK(12, 11) 64 #define STM32_DMA_SCR_DIR_MASK GENMASK(7, 6) 65 #define STM32_DMA_SCR_TRBUFF BIT(20) /* Bufferable transfer for USART/UART */ 66 #define STM32_DMA_SCR_CT BIT(19) /* Target in double buffer */ 67 #define STM32_DMA_SCR_DBM BIT(18) /* Double Buffer Mode */ 68 #define STM32_DMA_SCR_PINCOS BIT(15) /* Peripheral inc offset size */ 69 #define STM32_DMA_SCR_MINC BIT(10) /* Memory increment mode */ 70 #define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */ 71 #define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */ 72 #define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */ 73 #define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable 74 */ 75 #define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */ 76 #define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */ 77 #define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */ 78 #define STM32_DMA_SCR_CFG_MASK (STM32_DMA_SCR_PINC \ 79 | STM32_DMA_SCR_MINC \ 80 | STM32_DMA_SCR_PINCOS \ 81 | STM32_DMA_SCR_PL_MASK) 82 #define STM32_DMA_SCR_IRQ_MASK (STM32_DMA_SCR_TCIE \ 83 | STM32_DMA_SCR_TEIE \ 84 | STM32_DMA_SCR_DMEIE) 85 86 /* DMA Stream x number of data register */ 87 #define STM32_DMA_SNDTR(x) (0x0014 + 0x18 * (x)) 88 89 /* DMA stream peripheral address register */ 90 #define STM32_DMA_SPAR(x) (0x0018 + 0x18 * (x)) 91 92 /* DMA stream x memory 0 address register */ 93 #define STM32_DMA_SM0AR(x) (0x001c + 0x18 * (x)) 94 95 /* DMA stream x memory 1 address register */ 96 #define STM32_DMA_SM1AR(x) (0x0020 + 0x18 * (x)) 97 98 /* DMA stream x FIFO control register */ 99 #define STM32_DMA_SFCR(x) (0x0024 + 0x18 * (x)) 100 #define STM32_DMA_SFCR_FTH_MASK GENMASK(1, 0) 101 #define STM32_DMA_SFCR_FEIE BIT(7) /* FIFO error interrupt enable */ 102 #define STM32_DMA_SFCR_DMDIS BIT(2) /* Direct mode disable */ 103 #define STM32_DMA_SFCR_MASK (STM32_DMA_SFCR_FEIE \ 104 | STM32_DMA_SFCR_DMDIS) 105 106 /* DMA direction */ 107 #define STM32_DMA_DEV_TO_MEM 0x00 108 #define STM32_DMA_MEM_TO_DEV 0x01 109 #define STM32_DMA_MEM_TO_MEM 0x02 110 111 /* DMA priority level */ 112 #define STM32_DMA_PRIORITY_LOW 0x00 113 #define STM32_DMA_PRIORITY_MEDIUM 0x01 114 #define STM32_DMA_PRIORITY_HIGH 0x02 115 #define STM32_DMA_PRIORITY_VERY_HIGH 0x03 116 117 /* DMA FIFO threshold selection */ 118 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL 0x00 119 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL 0x01 120 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL 0x02 121 #define STM32_DMA_FIFO_THRESHOLD_FULL 0x03 122 #define STM32_DMA_FIFO_THRESHOLD_NONE 0x04 123 124 #define STM32_DMA_MAX_DATA_ITEMS 0xffff 125 /* 126 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter 127 * gather at boundary. Thus it's safer to round down this value on FIFO 128 * size (16 Bytes) 129 */ 130 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \ 131 ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16) 132 #define STM32_DMA_MAX_CHANNELS 0x08 133 #define STM32_DMA_MAX_REQUEST_ID 0x08 134 #define STM32_DMA_MAX_DATA_PARAM 0x03 135 #define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */ 136 #define STM32_DMA_MIN_BURST 4 137 #define STM32_DMA_MAX_BURST 16 138 139 /* DMA Features */ 140 #define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0) 141 #define STM32_DMA_DIRECT_MODE_MASK BIT(2) 142 #define STM32_DMA_ALT_ACK_MODE_MASK BIT(4) 143 #define STM32_DMA_MDMA_STREAM_ID_MASK GENMASK(19, 16) 144 145 enum stm32_dma_width { 146 STM32_DMA_BYTE, 147 STM32_DMA_HALF_WORD, 148 STM32_DMA_WORD, 149 }; 150 151 enum stm32_dma_burst_size { 152 STM32_DMA_BURST_SINGLE, 153 STM32_DMA_BURST_INCR4, 154 STM32_DMA_BURST_INCR8, 155 STM32_DMA_BURST_INCR16, 156 }; 157 158 /** 159 * struct stm32_dma_cfg - STM32 DMA custom configuration 160 * @channel_id: channel ID 161 * @request_line: DMA request 162 * @stream_config: 32bit mask specifying the DMA channel configuration 163 * @features: 32bit mask specifying the DMA Feature list 164 */ 165 struct stm32_dma_cfg { 166 u32 channel_id; 167 u32 request_line; 168 u32 stream_config; 169 u32 features; 170 }; 171 172 struct stm32_dma_chan_reg { 173 u32 dma_lisr; 174 u32 dma_hisr; 175 u32 dma_lifcr; 176 u32 dma_hifcr; 177 u32 dma_scr; 178 u32 dma_sndtr; 179 u32 dma_spar; 180 u32 dma_sm0ar; 181 u32 dma_sm1ar; 182 u32 dma_sfcr; 183 }; 184 185 struct stm32_dma_sg_req { 186 u32 len; 187 struct stm32_dma_chan_reg chan_reg; 188 }; 189 190 struct stm32_dma_desc { 191 struct virt_dma_desc vdesc; 192 bool cyclic; 193 u32 num_sgs; 194 struct stm32_dma_sg_req sg_req[]; 195 }; 196 197 /** 198 * struct stm32_dma_mdma_config - STM32 DMA MDMA configuration 199 * @stream_id: DMA request to trigger STM32 MDMA transfer 200 * @ifcr: DMA interrupt flag clear register address, 201 * used by STM32 MDMA to clear DMA Transfer Complete flag 202 * @tcf: DMA Transfer Complete flag 203 */ 204 struct stm32_dma_mdma_config { 205 u32 stream_id; 206 u32 ifcr; 207 u32 tcf; 208 }; 209 210 struct stm32_dma_chan { 211 struct virt_dma_chan vchan; 212 bool config_init; 213 bool busy; 214 u32 id; 215 u32 irq; 216 struct stm32_dma_desc *desc; 217 u32 next_sg; 218 struct dma_slave_config dma_sconfig; 219 struct stm32_dma_chan_reg chan_reg; 220 u32 threshold; 221 u32 mem_burst; 222 u32 mem_width; 223 enum dma_status status; 224 bool trig_mdma; 225 struct stm32_dma_mdma_config mdma_config; 226 }; 227 228 struct stm32_dma_device { 229 struct dma_device ddev; 230 void __iomem *base; 231 struct clk *clk; 232 bool mem2mem; 233 struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS]; 234 }; 235 236 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan) 237 { 238 return container_of(chan->vchan.chan.device, struct stm32_dma_device, 239 ddev); 240 } 241 242 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c) 243 { 244 return container_of(c, struct stm32_dma_chan, vchan.chan); 245 } 246 247 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc) 248 { 249 return container_of(vdesc, struct stm32_dma_desc, vdesc); 250 } 251 252 static struct device *chan2dev(struct stm32_dma_chan *chan) 253 { 254 return &chan->vchan.chan.dev->device; 255 } 256 257 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg) 258 { 259 return readl_relaxed(dmadev->base + reg); 260 } 261 262 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val) 263 { 264 writel_relaxed(val, dmadev->base + reg); 265 } 266 267 static int stm32_dma_get_width(struct stm32_dma_chan *chan, 268 enum dma_slave_buswidth width) 269 { 270 switch (width) { 271 case DMA_SLAVE_BUSWIDTH_1_BYTE: 272 return STM32_DMA_BYTE; 273 case DMA_SLAVE_BUSWIDTH_2_BYTES: 274 return STM32_DMA_HALF_WORD; 275 case DMA_SLAVE_BUSWIDTH_4_BYTES: 276 return STM32_DMA_WORD; 277 default: 278 dev_err(chan2dev(chan), "Dma bus width not supported\n"); 279 return -EINVAL; 280 } 281 } 282 283 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len, 284 dma_addr_t buf_addr, 285 u32 threshold) 286 { 287 enum dma_slave_buswidth max_width; 288 289 if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL) 290 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 291 else 292 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 293 294 while ((buf_len < max_width || buf_len % max_width) && 295 max_width > DMA_SLAVE_BUSWIDTH_1_BYTE) 296 max_width = max_width >> 1; 297 298 if (buf_addr & (max_width - 1)) 299 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 300 301 return max_width; 302 } 303 304 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold, 305 enum dma_slave_buswidth width) 306 { 307 u32 remaining; 308 309 if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE) 310 return false; 311 312 if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) { 313 if (burst != 0) { 314 /* 315 * If number of beats fit in several whole bursts 316 * this configuration is allowed. 317 */ 318 remaining = ((STM32_DMA_FIFO_SIZE / width) * 319 (threshold + 1) / 4) % burst; 320 321 if (remaining == 0) 322 return true; 323 } else { 324 return true; 325 } 326 } 327 328 return false; 329 } 330 331 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold) 332 { 333 /* If FIFO direct mode, burst is not possible */ 334 if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE) 335 return false; 336 337 /* 338 * Buffer or period length has to be aligned on FIFO depth. 339 * Otherwise bytes may be stuck within FIFO at buffer or period 340 * length. 341 */ 342 return ((buf_len % ((threshold + 1) * 4)) == 0); 343 } 344 345 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold, 346 enum dma_slave_buswidth width) 347 { 348 u32 best_burst = max_burst; 349 350 if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold)) 351 return 0; 352 353 while ((buf_len < best_burst * width && best_burst > 1) || 354 !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold, 355 width)) { 356 if (best_burst > STM32_DMA_MIN_BURST) 357 best_burst = best_burst >> 1; 358 else 359 best_burst = 0; 360 } 361 362 return best_burst; 363 } 364 365 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst) 366 { 367 switch (maxburst) { 368 case 0: 369 case 1: 370 return STM32_DMA_BURST_SINGLE; 371 case 4: 372 return STM32_DMA_BURST_INCR4; 373 case 8: 374 return STM32_DMA_BURST_INCR8; 375 case 16: 376 return STM32_DMA_BURST_INCR16; 377 default: 378 dev_err(chan2dev(chan), "Dma burst size not supported\n"); 379 return -EINVAL; 380 } 381 } 382 383 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan, 384 u32 src_burst, u32 dst_burst) 385 { 386 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK; 387 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE; 388 389 if (!src_burst && !dst_burst) { 390 /* Using direct mode */ 391 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE; 392 } else { 393 /* Using FIFO mode */ 394 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK; 395 } 396 } 397 398 static int stm32_dma_slave_config(struct dma_chan *c, 399 struct dma_slave_config *config) 400 { 401 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 402 403 memcpy(&chan->dma_sconfig, config, sizeof(*config)); 404 405 /* Check if user is requesting DMA to trigger STM32 MDMA */ 406 if (config->peripheral_size) { 407 config->peripheral_config = &chan->mdma_config; 408 config->peripheral_size = sizeof(chan->mdma_config); 409 chan->trig_mdma = true; 410 } 411 412 chan->config_init = true; 413 414 return 0; 415 } 416 417 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan) 418 { 419 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 420 u32 flags, dma_isr; 421 422 /* 423 * Read "flags" from DMA_xISR register corresponding to the selected 424 * DMA channel at the correct bit offset inside that register. 425 */ 426 427 dma_isr = stm32_dma_read(dmadev, STM32_DMA_ISR(chan->id)); 428 flags = dma_isr >> STM32_DMA_FLAGS_SHIFT(chan->id); 429 430 return flags & STM32_DMA_MASKI; 431 } 432 433 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags) 434 { 435 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 436 u32 dma_ifcr; 437 438 /* 439 * Write "flags" to the DMA_xIFCR register corresponding to the selected 440 * DMA channel at the correct bit offset inside that register. 441 */ 442 flags &= STM32_DMA_MASKI; 443 dma_ifcr = flags << STM32_DMA_FLAGS_SHIFT(chan->id); 444 445 stm32_dma_write(dmadev, STM32_DMA_IFCR(chan->id), dma_ifcr); 446 } 447 448 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan) 449 { 450 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 451 u32 dma_scr, id, reg; 452 453 id = chan->id; 454 reg = STM32_DMA_SCR(id); 455 dma_scr = stm32_dma_read(dmadev, reg); 456 457 if (dma_scr & STM32_DMA_SCR_EN) { 458 dma_scr &= ~STM32_DMA_SCR_EN; 459 stm32_dma_write(dmadev, reg, dma_scr); 460 461 return readl_relaxed_poll_timeout_atomic(dmadev->base + reg, 462 dma_scr, !(dma_scr & STM32_DMA_SCR_EN), 463 10, 1000000); 464 } 465 466 return 0; 467 } 468 469 static void stm32_dma_stop(struct stm32_dma_chan *chan) 470 { 471 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 472 u32 dma_scr, dma_sfcr, status; 473 int ret; 474 475 /* Disable interrupts */ 476 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 477 dma_scr &= ~STM32_DMA_SCR_IRQ_MASK; 478 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr); 479 dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); 480 dma_sfcr &= ~STM32_DMA_SFCR_FEIE; 481 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr); 482 483 /* Disable DMA */ 484 ret = stm32_dma_disable_chan(chan); 485 if (ret < 0) 486 return; 487 488 /* Clear interrupt status if it is there */ 489 status = stm32_dma_irq_status(chan); 490 if (status) { 491 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n", 492 __func__, status); 493 stm32_dma_irq_clear(chan, status); 494 } 495 496 chan->busy = false; 497 chan->status = DMA_COMPLETE; 498 } 499 500 static int stm32_dma_terminate_all(struct dma_chan *c) 501 { 502 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 503 unsigned long flags; 504 LIST_HEAD(head); 505 506 spin_lock_irqsave(&chan->vchan.lock, flags); 507 508 if (chan->desc) { 509 dma_cookie_complete(&chan->desc->vdesc.tx); 510 vchan_terminate_vdesc(&chan->desc->vdesc); 511 if (chan->busy) 512 stm32_dma_stop(chan); 513 chan->desc = NULL; 514 } 515 516 vchan_get_all_descriptors(&chan->vchan, &head); 517 spin_unlock_irqrestore(&chan->vchan.lock, flags); 518 vchan_dma_desc_free_list(&chan->vchan, &head); 519 520 return 0; 521 } 522 523 static void stm32_dma_synchronize(struct dma_chan *c) 524 { 525 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 526 527 vchan_synchronize(&chan->vchan); 528 } 529 530 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan) 531 { 532 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 533 u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 534 u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id)); 535 u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id)); 536 u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id)); 537 u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id)); 538 u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); 539 540 dev_dbg(chan2dev(chan), "SCR: 0x%08x\n", scr); 541 dev_dbg(chan2dev(chan), "NDTR: 0x%08x\n", ndtr); 542 dev_dbg(chan2dev(chan), "SPAR: 0x%08x\n", spar); 543 dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar); 544 dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar); 545 dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n", sfcr); 546 } 547 548 static void stm32_dma_sg_inc(struct stm32_dma_chan *chan) 549 { 550 chan->next_sg++; 551 if (chan->desc->cyclic && (chan->next_sg == chan->desc->num_sgs)) 552 chan->next_sg = 0; 553 } 554 555 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan); 556 557 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan) 558 { 559 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 560 struct virt_dma_desc *vdesc; 561 struct stm32_dma_sg_req *sg_req; 562 struct stm32_dma_chan_reg *reg; 563 u32 status; 564 int ret; 565 566 ret = stm32_dma_disable_chan(chan); 567 if (ret < 0) 568 return; 569 570 if (!chan->desc) { 571 vdesc = vchan_next_desc(&chan->vchan); 572 if (!vdesc) 573 return; 574 575 list_del(&vdesc->node); 576 577 chan->desc = to_stm32_dma_desc(vdesc); 578 chan->next_sg = 0; 579 } 580 581 if (chan->next_sg == chan->desc->num_sgs) 582 chan->next_sg = 0; 583 584 sg_req = &chan->desc->sg_req[chan->next_sg]; 585 reg = &sg_req->chan_reg; 586 587 /* When DMA triggers STM32 MDMA, DMA Transfer Complete is managed by STM32 MDMA */ 588 if (chan->trig_mdma && chan->dma_sconfig.direction != DMA_MEM_TO_DEV) 589 reg->dma_scr &= ~STM32_DMA_SCR_TCIE; 590 591 reg->dma_scr &= ~STM32_DMA_SCR_EN; 592 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr); 593 stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar); 594 stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar); 595 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr); 596 stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar); 597 stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr); 598 599 stm32_dma_sg_inc(chan); 600 601 /* Clear interrupt status if it is there */ 602 status = stm32_dma_irq_status(chan); 603 if (status) 604 stm32_dma_irq_clear(chan, status); 605 606 if (chan->desc->cyclic) 607 stm32_dma_configure_next_sg(chan); 608 609 stm32_dma_dump_reg(chan); 610 611 /* Start DMA */ 612 chan->busy = true; 613 chan->status = DMA_IN_PROGRESS; 614 reg->dma_scr |= STM32_DMA_SCR_EN; 615 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr); 616 617 dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan); 618 } 619 620 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan) 621 { 622 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 623 struct stm32_dma_sg_req *sg_req; 624 u32 dma_scr, dma_sm0ar, dma_sm1ar, id; 625 626 id = chan->id; 627 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 628 629 sg_req = &chan->desc->sg_req[chan->next_sg]; 630 631 if (dma_scr & STM32_DMA_SCR_CT) { 632 dma_sm0ar = sg_req->chan_reg.dma_sm0ar; 633 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar); 634 dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n", 635 stm32_dma_read(dmadev, STM32_DMA_SM0AR(id))); 636 } else { 637 dma_sm1ar = sg_req->chan_reg.dma_sm1ar; 638 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar); 639 dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n", 640 stm32_dma_read(dmadev, STM32_DMA_SM1AR(id))); 641 } 642 } 643 644 static void stm32_dma_handle_chan_paused(struct stm32_dma_chan *chan) 645 { 646 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 647 u32 dma_scr; 648 649 /* 650 * Read and store current remaining data items and peripheral/memory addresses to be 651 * updated on resume 652 */ 653 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 654 /* 655 * Transfer can be paused while between a previous resume and reconfiguration on transfer 656 * complete. If transfer is cyclic and CIRC and DBM have been deactivated for resume, need 657 * to set it here in SCR backup to ensure a good reconfiguration on transfer complete. 658 */ 659 if (chan->desc && chan->desc->cyclic) { 660 if (chan->desc->num_sgs == 1) 661 dma_scr |= STM32_DMA_SCR_CIRC; 662 else 663 dma_scr |= STM32_DMA_SCR_DBM; 664 } 665 chan->chan_reg.dma_scr = dma_scr; 666 667 /* 668 * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt, otherwise 669 * on resume NDTR autoreload value will be wrong (lower than the initial period length) 670 */ 671 if (chan->desc && chan->desc->cyclic) { 672 dma_scr &= ~(STM32_DMA_SCR_DBM | STM32_DMA_SCR_CIRC); 673 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr); 674 } 675 676 chan->chan_reg.dma_sndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id)); 677 678 dev_dbg(chan2dev(chan), "vchan %pK: paused\n", &chan->vchan); 679 } 680 681 static void stm32_dma_post_resume_reconfigure(struct stm32_dma_chan *chan) 682 { 683 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 684 struct stm32_dma_sg_req *sg_req; 685 u32 dma_scr, status, id; 686 687 id = chan->id; 688 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 689 690 /* Clear interrupt status if it is there */ 691 status = stm32_dma_irq_status(chan); 692 if (status) 693 stm32_dma_irq_clear(chan, status); 694 695 if (!chan->next_sg) 696 sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1]; 697 else 698 sg_req = &chan->desc->sg_req[chan->next_sg - 1]; 699 700 /* Reconfigure NDTR with the initial value */ 701 stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), sg_req->chan_reg.dma_sndtr); 702 703 /* Restore SPAR */ 704 stm32_dma_write(dmadev, STM32_DMA_SPAR(id), sg_req->chan_reg.dma_spar); 705 706 /* Restore SM0AR/SM1AR whatever DBM/CT as they may have been modified */ 707 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sg_req->chan_reg.dma_sm0ar); 708 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sg_req->chan_reg.dma_sm1ar); 709 710 /* Reactivate CIRC/DBM if needed */ 711 if (chan->chan_reg.dma_scr & STM32_DMA_SCR_DBM) { 712 dma_scr |= STM32_DMA_SCR_DBM; 713 /* Restore CT */ 714 if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CT) 715 dma_scr &= ~STM32_DMA_SCR_CT; 716 else 717 dma_scr |= STM32_DMA_SCR_CT; 718 } else if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CIRC) { 719 dma_scr |= STM32_DMA_SCR_CIRC; 720 } 721 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr); 722 723 stm32_dma_configure_next_sg(chan); 724 725 stm32_dma_dump_reg(chan); 726 727 dma_scr |= STM32_DMA_SCR_EN; 728 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr); 729 730 dev_dbg(chan2dev(chan), "vchan %pK: reconfigured after pause/resume\n", &chan->vchan); 731 } 732 733 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan, u32 scr) 734 { 735 if (!chan->desc) 736 return; 737 738 if (chan->desc->cyclic) { 739 vchan_cyclic_callback(&chan->desc->vdesc); 740 if (chan->trig_mdma) 741 return; 742 stm32_dma_sg_inc(chan); 743 /* cyclic while CIRC/DBM disable => post resume reconfiguration needed */ 744 if (!(scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM))) 745 stm32_dma_post_resume_reconfigure(chan); 746 else if (scr & STM32_DMA_SCR_DBM) 747 stm32_dma_configure_next_sg(chan); 748 } else { 749 chan->busy = false; 750 chan->status = DMA_COMPLETE; 751 if (chan->next_sg == chan->desc->num_sgs) { 752 vchan_cookie_complete(&chan->desc->vdesc); 753 chan->desc = NULL; 754 } 755 stm32_dma_start_transfer(chan); 756 } 757 } 758 759 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid) 760 { 761 struct stm32_dma_chan *chan = devid; 762 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 763 u32 status, scr, sfcr; 764 765 spin_lock(&chan->vchan.lock); 766 767 status = stm32_dma_irq_status(chan); 768 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 769 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); 770 771 if (status & STM32_DMA_FEI) { 772 stm32_dma_irq_clear(chan, STM32_DMA_FEI); 773 status &= ~STM32_DMA_FEI; 774 if (sfcr & STM32_DMA_SFCR_FEIE) { 775 if (!(scr & STM32_DMA_SCR_EN) && 776 !(status & STM32_DMA_TCI)) 777 dev_err(chan2dev(chan), "FIFO Error\n"); 778 else 779 dev_dbg(chan2dev(chan), "FIFO over/underrun\n"); 780 } 781 } 782 if (status & STM32_DMA_DMEI) { 783 stm32_dma_irq_clear(chan, STM32_DMA_DMEI); 784 status &= ~STM32_DMA_DMEI; 785 if (sfcr & STM32_DMA_SCR_DMEIE) 786 dev_dbg(chan2dev(chan), "Direct mode overrun\n"); 787 } 788 789 if (status & STM32_DMA_TCI) { 790 stm32_dma_irq_clear(chan, STM32_DMA_TCI); 791 if (scr & STM32_DMA_SCR_TCIE) { 792 if (chan->status == DMA_PAUSED && !(scr & STM32_DMA_SCR_EN)) 793 stm32_dma_handle_chan_paused(chan); 794 else 795 stm32_dma_handle_chan_done(chan, scr); 796 } 797 status &= ~STM32_DMA_TCI; 798 } 799 800 if (status & STM32_DMA_HTI) { 801 stm32_dma_irq_clear(chan, STM32_DMA_HTI); 802 status &= ~STM32_DMA_HTI; 803 } 804 805 if (status) { 806 stm32_dma_irq_clear(chan, status); 807 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status); 808 if (!(scr & STM32_DMA_SCR_EN)) 809 dev_err(chan2dev(chan), "chan disabled by HW\n"); 810 } 811 812 spin_unlock(&chan->vchan.lock); 813 814 return IRQ_HANDLED; 815 } 816 817 static void stm32_dma_issue_pending(struct dma_chan *c) 818 { 819 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 820 unsigned long flags; 821 822 spin_lock_irqsave(&chan->vchan.lock, flags); 823 if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) { 824 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan); 825 stm32_dma_start_transfer(chan); 826 827 } 828 spin_unlock_irqrestore(&chan->vchan.lock, flags); 829 } 830 831 static int stm32_dma_pause(struct dma_chan *c) 832 { 833 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 834 unsigned long flags; 835 int ret; 836 837 if (chan->status != DMA_IN_PROGRESS) 838 return -EPERM; 839 840 spin_lock_irqsave(&chan->vchan.lock, flags); 841 ret = stm32_dma_disable_chan(chan); 842 /* 843 * A transfer complete flag is set to indicate the end of transfer due to the stream 844 * interruption, so wait for interrupt 845 */ 846 if (!ret) 847 chan->status = DMA_PAUSED; 848 spin_unlock_irqrestore(&chan->vchan.lock, flags); 849 850 return ret; 851 } 852 853 static int stm32_dma_resume(struct dma_chan *c) 854 { 855 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 856 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 857 struct stm32_dma_chan_reg chan_reg = chan->chan_reg; 858 u32 id = chan->id, scr, ndtr, offset, spar, sm0ar, sm1ar; 859 struct stm32_dma_sg_req *sg_req; 860 unsigned long flags; 861 862 if (chan->status != DMA_PAUSED) 863 return -EPERM; 864 865 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 866 if (WARN_ON(scr & STM32_DMA_SCR_EN)) 867 return -EPERM; 868 869 spin_lock_irqsave(&chan->vchan.lock, flags); 870 871 /* sg_reg[prev_sg] contains original ndtr, sm0ar and sm1ar before pausing the transfer */ 872 if (!chan->next_sg) 873 sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1]; 874 else 875 sg_req = &chan->desc->sg_req[chan->next_sg - 1]; 876 877 ndtr = sg_req->chan_reg.dma_sndtr; 878 offset = (ndtr - chan_reg.dma_sndtr); 879 offset <<= FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, chan_reg.dma_scr); 880 spar = sg_req->chan_reg.dma_spar; 881 sm0ar = sg_req->chan_reg.dma_sm0ar; 882 sm1ar = sg_req->chan_reg.dma_sm1ar; 883 884 /* 885 * The peripheral and/or memory addresses have to be updated in order to adjust the 886 * address pointers. Need to check increment. 887 */ 888 if (chan_reg.dma_scr & STM32_DMA_SCR_PINC) 889 stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar + offset); 890 else 891 stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar); 892 893 if (!(chan_reg.dma_scr & STM32_DMA_SCR_MINC)) 894 offset = 0; 895 896 /* 897 * In case of DBM, the current target could be SM1AR. 898 * Need to temporarily deactivate CIRC/DBM to finish the current transfer, so 899 * SM0AR becomes the current target and must be updated with SM1AR + offset if CT=1. 900 */ 901 if ((chan_reg.dma_scr & STM32_DMA_SCR_DBM) && (chan_reg.dma_scr & STM32_DMA_SCR_CT)) 902 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sm1ar + offset); 903 else 904 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sm0ar + offset); 905 906 /* NDTR must be restored otherwise internal HW counter won't be correctly reset */ 907 stm32_dma_write(dmadev, STM32_DMA_SNDTR(id), chan_reg.dma_sndtr); 908 909 /* 910 * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt, 911 * otherwise NDTR autoreload value will be wrong (lower than the initial period length) 912 */ 913 if (chan_reg.dma_scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM)) 914 chan_reg.dma_scr &= ~(STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM); 915 916 if (chan_reg.dma_scr & STM32_DMA_SCR_DBM) 917 stm32_dma_configure_next_sg(chan); 918 919 stm32_dma_dump_reg(chan); 920 921 /* The stream may then be re-enabled to restart transfer from the point it was stopped */ 922 chan->status = DMA_IN_PROGRESS; 923 chan_reg.dma_scr |= STM32_DMA_SCR_EN; 924 stm32_dma_write(dmadev, STM32_DMA_SCR(id), chan_reg.dma_scr); 925 926 spin_unlock_irqrestore(&chan->vchan.lock, flags); 927 928 dev_dbg(chan2dev(chan), "vchan %pK: resumed\n", &chan->vchan); 929 930 return 0; 931 } 932 933 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan, 934 enum dma_transfer_direction direction, 935 enum dma_slave_buswidth *buswidth, 936 u32 buf_len, dma_addr_t buf_addr) 937 { 938 enum dma_slave_buswidth src_addr_width, dst_addr_width; 939 int src_bus_width, dst_bus_width; 940 int src_burst_size, dst_burst_size; 941 u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst; 942 u32 dma_scr, fifoth; 943 944 src_addr_width = chan->dma_sconfig.src_addr_width; 945 dst_addr_width = chan->dma_sconfig.dst_addr_width; 946 src_maxburst = chan->dma_sconfig.src_maxburst; 947 dst_maxburst = chan->dma_sconfig.dst_maxburst; 948 fifoth = chan->threshold; 949 950 switch (direction) { 951 case DMA_MEM_TO_DEV: 952 /* Set device data size */ 953 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width); 954 if (dst_bus_width < 0) 955 return dst_bus_width; 956 957 /* Set device burst size */ 958 dst_best_burst = stm32_dma_get_best_burst(buf_len, 959 dst_maxburst, 960 fifoth, 961 dst_addr_width); 962 963 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst); 964 if (dst_burst_size < 0) 965 return dst_burst_size; 966 967 /* Set memory data size */ 968 src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr, 969 fifoth); 970 chan->mem_width = src_addr_width; 971 src_bus_width = stm32_dma_get_width(chan, src_addr_width); 972 if (src_bus_width < 0) 973 return src_bus_width; 974 975 /* 976 * Set memory burst size - burst not possible if address is not aligned on 977 * the address boundary equal to the size of the transfer 978 */ 979 if (buf_addr & (buf_len - 1)) 980 src_maxburst = 1; 981 else 982 src_maxburst = STM32_DMA_MAX_BURST; 983 src_best_burst = stm32_dma_get_best_burst(buf_len, 984 src_maxburst, 985 fifoth, 986 src_addr_width); 987 src_burst_size = stm32_dma_get_burst(chan, src_best_burst); 988 if (src_burst_size < 0) 989 return src_burst_size; 990 991 dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_DEV) | 992 FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, dst_bus_width) | 993 FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, src_bus_width) | 994 FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dst_burst_size) | 995 FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, src_burst_size); 996 997 /* Set FIFO threshold */ 998 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK; 999 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE) 1000 chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth); 1001 1002 /* Set peripheral address */ 1003 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr; 1004 *buswidth = dst_addr_width; 1005 break; 1006 1007 case DMA_DEV_TO_MEM: 1008 /* Set device data size */ 1009 src_bus_width = stm32_dma_get_width(chan, src_addr_width); 1010 if (src_bus_width < 0) 1011 return src_bus_width; 1012 1013 /* Set device burst size */ 1014 src_best_burst = stm32_dma_get_best_burst(buf_len, 1015 src_maxburst, 1016 fifoth, 1017 src_addr_width); 1018 chan->mem_burst = src_best_burst; 1019 src_burst_size = stm32_dma_get_burst(chan, src_best_burst); 1020 if (src_burst_size < 0) 1021 return src_burst_size; 1022 1023 /* Set memory data size */ 1024 dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr, 1025 fifoth); 1026 chan->mem_width = dst_addr_width; 1027 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width); 1028 if (dst_bus_width < 0) 1029 return dst_bus_width; 1030 1031 /* 1032 * Set memory burst size - burst not possible if address is not aligned on 1033 * the address boundary equal to the size of the transfer 1034 */ 1035 if (buf_addr & (buf_len - 1)) 1036 dst_maxburst = 1; 1037 else 1038 dst_maxburst = STM32_DMA_MAX_BURST; 1039 dst_best_burst = stm32_dma_get_best_burst(buf_len, 1040 dst_maxburst, 1041 fifoth, 1042 dst_addr_width); 1043 chan->mem_burst = dst_best_burst; 1044 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst); 1045 if (dst_burst_size < 0) 1046 return dst_burst_size; 1047 1048 dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_DEV_TO_MEM) | 1049 FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, src_bus_width) | 1050 FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, dst_bus_width) | 1051 FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, src_burst_size) | 1052 FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dst_burst_size); 1053 1054 /* Set FIFO threshold */ 1055 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK; 1056 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE) 1057 chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth); 1058 1059 /* Set peripheral address */ 1060 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr; 1061 *buswidth = chan->dma_sconfig.src_addr_width; 1062 break; 1063 1064 default: 1065 dev_err(chan2dev(chan), "Dma direction is not supported\n"); 1066 return -EINVAL; 1067 } 1068 1069 stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst); 1070 1071 /* Set DMA control register */ 1072 chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK | 1073 STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK | 1074 STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK); 1075 chan->chan_reg.dma_scr |= dma_scr; 1076 1077 return 0; 1078 } 1079 1080 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs) 1081 { 1082 memset(regs, 0, sizeof(struct stm32_dma_chan_reg)); 1083 } 1084 1085 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg( 1086 struct dma_chan *c, struct scatterlist *sgl, 1087 u32 sg_len, enum dma_transfer_direction direction, 1088 unsigned long flags, void *context) 1089 { 1090 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1091 struct stm32_dma_desc *desc; 1092 struct scatterlist *sg; 1093 enum dma_slave_buswidth buswidth; 1094 u32 nb_data_items; 1095 int i, ret; 1096 1097 if (!chan->config_init) { 1098 dev_err(chan2dev(chan), "dma channel is not configured\n"); 1099 return NULL; 1100 } 1101 1102 if (sg_len < 1) { 1103 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len); 1104 return NULL; 1105 } 1106 1107 desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT); 1108 if (!desc) 1109 return NULL; 1110 1111 /* Set peripheral flow controller */ 1112 if (chan->dma_sconfig.device_fc) 1113 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL; 1114 else 1115 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL; 1116 1117 /* Activate Double Buffer Mode if DMA triggers STM32 MDMA and more than 1 sg */ 1118 if (chan->trig_mdma && sg_len > 1) 1119 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM; 1120 1121 for_each_sg(sgl, sg, sg_len, i) { 1122 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, 1123 sg_dma_len(sg), 1124 sg_dma_address(sg)); 1125 if (ret < 0) 1126 goto err; 1127 1128 desc->sg_req[i].len = sg_dma_len(sg); 1129 1130 nb_data_items = desc->sg_req[i].len / buswidth; 1131 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) { 1132 dev_err(chan2dev(chan), "nb items not supported\n"); 1133 goto err; 1134 } 1135 1136 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); 1137 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr; 1138 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr; 1139 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar; 1140 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg); 1141 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg); 1142 if (chan->trig_mdma) 1143 desc->sg_req[i].chan_reg.dma_sm1ar += sg_dma_len(sg); 1144 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items; 1145 } 1146 1147 desc->num_sgs = sg_len; 1148 desc->cyclic = false; 1149 1150 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); 1151 1152 err: 1153 kfree(desc); 1154 return NULL; 1155 } 1156 1157 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic( 1158 struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len, 1159 size_t period_len, enum dma_transfer_direction direction, 1160 unsigned long flags) 1161 { 1162 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1163 struct stm32_dma_desc *desc; 1164 enum dma_slave_buswidth buswidth; 1165 u32 num_periods, nb_data_items; 1166 int i, ret; 1167 1168 if (!buf_len || !period_len) { 1169 dev_err(chan2dev(chan), "Invalid buffer/period len\n"); 1170 return NULL; 1171 } 1172 1173 if (!chan->config_init) { 1174 dev_err(chan2dev(chan), "dma channel is not configured\n"); 1175 return NULL; 1176 } 1177 1178 if (buf_len % period_len) { 1179 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n"); 1180 return NULL; 1181 } 1182 1183 /* 1184 * We allow to take more number of requests till DMA is 1185 * not started. The driver will loop over all requests. 1186 * Once DMA is started then new requests can be queued only after 1187 * terminating the DMA. 1188 */ 1189 if (chan->busy) { 1190 dev_err(chan2dev(chan), "Request not allowed when dma busy\n"); 1191 return NULL; 1192 } 1193 1194 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len, 1195 buf_addr); 1196 if (ret < 0) 1197 return NULL; 1198 1199 nb_data_items = period_len / buswidth; 1200 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) { 1201 dev_err(chan2dev(chan), "number of items not supported\n"); 1202 return NULL; 1203 } 1204 1205 /* Enable Circular mode or double buffer mode */ 1206 if (buf_len == period_len) { 1207 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC; 1208 } else { 1209 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM; 1210 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_CT; 1211 } 1212 1213 /* Clear periph ctrl if client set it */ 1214 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL; 1215 1216 num_periods = buf_len / period_len; 1217 1218 desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT); 1219 if (!desc) 1220 return NULL; 1221 1222 for (i = 0; i < num_periods; i++) { 1223 desc->sg_req[i].len = period_len; 1224 1225 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); 1226 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr; 1227 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr; 1228 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar; 1229 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr; 1230 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr; 1231 if (chan->trig_mdma) 1232 desc->sg_req[i].chan_reg.dma_sm1ar += period_len; 1233 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items; 1234 if (!chan->trig_mdma) 1235 buf_addr += period_len; 1236 } 1237 1238 desc->num_sgs = num_periods; 1239 desc->cyclic = true; 1240 1241 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); 1242 } 1243 1244 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy( 1245 struct dma_chan *c, dma_addr_t dest, 1246 dma_addr_t src, size_t len, unsigned long flags) 1247 { 1248 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1249 enum dma_slave_buswidth max_width; 1250 struct stm32_dma_desc *desc; 1251 size_t xfer_count, offset; 1252 u32 num_sgs, best_burst, dma_burst, threshold; 1253 int i; 1254 1255 num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS); 1256 desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT); 1257 if (!desc) 1258 return NULL; 1259 1260 threshold = chan->threshold; 1261 1262 for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) { 1263 xfer_count = min_t(size_t, len - offset, 1264 STM32_DMA_ALIGNED_MAX_DATA_ITEMS); 1265 1266 /* Compute best burst size */ 1267 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1268 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST, 1269 threshold, max_width); 1270 dma_burst = stm32_dma_get_burst(chan, best_burst); 1271 1272 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); 1273 desc->sg_req[i].chan_reg.dma_scr = 1274 FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_MEM) | 1275 FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dma_burst) | 1276 FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dma_burst) | 1277 STM32_DMA_SCR_MINC | 1278 STM32_DMA_SCR_PINC | 1279 STM32_DMA_SCR_TCIE | 1280 STM32_DMA_SCR_TEIE; 1281 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK; 1282 desc->sg_req[i].chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, threshold); 1283 desc->sg_req[i].chan_reg.dma_spar = src + offset; 1284 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset; 1285 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count; 1286 desc->sg_req[i].len = xfer_count; 1287 } 1288 1289 desc->num_sgs = num_sgs; 1290 desc->cyclic = false; 1291 1292 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); 1293 } 1294 1295 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan) 1296 { 1297 u32 dma_scr, width, ndtr; 1298 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 1299 1300 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 1301 width = FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, dma_scr); 1302 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id)); 1303 1304 return ndtr << width; 1305 } 1306 1307 /** 1308 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred 1309 * @chan: dma channel 1310 * 1311 * This function called when IRQ are disable, checks that the hardware has not 1312 * switched on the next transfer in double buffer mode. The test is done by 1313 * comparing the next_sg memory address with the hardware related register 1314 * (based on CT bit value). 1315 * 1316 * Returns true if expected current transfer is still running or double 1317 * buffer mode is not activated. 1318 */ 1319 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan) 1320 { 1321 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 1322 struct stm32_dma_sg_req *sg_req; 1323 u32 dma_scr, dma_smar, id, period_len; 1324 1325 id = chan->id; 1326 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 1327 1328 /* In cyclic CIRC but not DBM, CT is not used */ 1329 if (!(dma_scr & STM32_DMA_SCR_DBM)) 1330 return true; 1331 1332 sg_req = &chan->desc->sg_req[chan->next_sg]; 1333 period_len = sg_req->len; 1334 1335 /* DBM - take care of a previous pause/resume not yet post reconfigured */ 1336 if (dma_scr & STM32_DMA_SCR_CT) { 1337 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)); 1338 /* 1339 * If transfer has been pause/resumed, 1340 * SM0AR is in the range of [SM0AR:SM0AR+period_len] 1341 */ 1342 return (dma_smar >= sg_req->chan_reg.dma_sm0ar && 1343 dma_smar < sg_req->chan_reg.dma_sm0ar + period_len); 1344 } 1345 1346 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)); 1347 /* 1348 * If transfer has been pause/resumed, 1349 * SM1AR is in the range of [SM1AR:SM1AR+period_len] 1350 */ 1351 return (dma_smar >= sg_req->chan_reg.dma_sm1ar && 1352 dma_smar < sg_req->chan_reg.dma_sm1ar + period_len); 1353 } 1354 1355 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan, 1356 struct stm32_dma_desc *desc, 1357 u32 next_sg) 1358 { 1359 u32 modulo, burst_size; 1360 u32 residue; 1361 u32 n_sg = next_sg; 1362 struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg]; 1363 int i; 1364 1365 /* 1366 * Calculate the residue means compute the descriptors 1367 * information: 1368 * - the sg_req currently transferred 1369 * - the Hardware remaining position in this sg (NDTR bits field). 1370 * 1371 * A race condition may occur if DMA is running in cyclic or double 1372 * buffer mode, since the DMA register are automatically reloaded at end 1373 * of period transfer. The hardware may have switched to the next 1374 * transfer (CT bit updated) just before the position (SxNDTR reg) is 1375 * read. 1376 * In this case the SxNDTR reg could (or not) correspond to the new 1377 * transfer position, and not the expected one. 1378 * The strategy implemented in the stm32 driver is to: 1379 * - read the SxNDTR register 1380 * - crosscheck that hardware is still in current transfer. 1381 * In case of switch, we can assume that the DMA is at the beginning of 1382 * the next transfer. So we approximate the residue in consequence, by 1383 * pointing on the beginning of next transfer. 1384 * 1385 * This race condition doesn't apply for none cyclic mode, as double 1386 * buffer is not used. In such situation registers are updated by the 1387 * software. 1388 */ 1389 1390 residue = stm32_dma_get_remaining_bytes(chan); 1391 1392 if (chan->desc->cyclic && !stm32_dma_is_current_sg(chan)) { 1393 n_sg++; 1394 if (n_sg == chan->desc->num_sgs) 1395 n_sg = 0; 1396 residue = sg_req->len; 1397 } 1398 1399 /* 1400 * In cyclic mode, for the last period, residue = remaining bytes 1401 * from NDTR, 1402 * else for all other periods in cyclic mode, and in sg mode, 1403 * residue = remaining bytes from NDTR + remaining 1404 * periods/sg to be transferred 1405 */ 1406 if (!chan->desc->cyclic || n_sg != 0) 1407 for (i = n_sg; i < desc->num_sgs; i++) 1408 residue += desc->sg_req[i].len; 1409 1410 if (!chan->mem_burst) 1411 return residue; 1412 1413 burst_size = chan->mem_burst * chan->mem_width; 1414 modulo = residue % burst_size; 1415 if (modulo) 1416 residue = residue - modulo + burst_size; 1417 1418 return residue; 1419 } 1420 1421 static enum dma_status stm32_dma_tx_status(struct dma_chan *c, 1422 dma_cookie_t cookie, 1423 struct dma_tx_state *state) 1424 { 1425 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1426 struct virt_dma_desc *vdesc; 1427 enum dma_status status; 1428 unsigned long flags; 1429 u32 residue = 0; 1430 1431 status = dma_cookie_status(c, cookie, state); 1432 if (status == DMA_COMPLETE) 1433 return status; 1434 1435 status = chan->status; 1436 1437 if (!state) 1438 return status; 1439 1440 spin_lock_irqsave(&chan->vchan.lock, flags); 1441 vdesc = vchan_find_desc(&chan->vchan, cookie); 1442 if (chan->desc && cookie == chan->desc->vdesc.tx.cookie) 1443 residue = stm32_dma_desc_residue(chan, chan->desc, 1444 chan->next_sg); 1445 else if (vdesc) 1446 residue = stm32_dma_desc_residue(chan, 1447 to_stm32_dma_desc(vdesc), 0); 1448 dma_set_residue(state, residue); 1449 1450 spin_unlock_irqrestore(&chan->vchan.lock, flags); 1451 1452 return status; 1453 } 1454 1455 static int stm32_dma_alloc_chan_resources(struct dma_chan *c) 1456 { 1457 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1458 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 1459 int ret; 1460 1461 chan->config_init = false; 1462 1463 ret = pm_runtime_resume_and_get(dmadev->ddev.dev); 1464 if (ret < 0) 1465 return ret; 1466 1467 ret = stm32_dma_disable_chan(chan); 1468 if (ret < 0) 1469 pm_runtime_put(dmadev->ddev.dev); 1470 1471 return ret; 1472 } 1473 1474 static void stm32_dma_free_chan_resources(struct dma_chan *c) 1475 { 1476 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1477 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 1478 unsigned long flags; 1479 1480 dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id); 1481 1482 if (chan->busy) { 1483 spin_lock_irqsave(&chan->vchan.lock, flags); 1484 stm32_dma_stop(chan); 1485 chan->desc = NULL; 1486 spin_unlock_irqrestore(&chan->vchan.lock, flags); 1487 } 1488 1489 pm_runtime_put(dmadev->ddev.dev); 1490 1491 vchan_free_chan_resources(to_virt_chan(c)); 1492 stm32_dma_clear_reg(&chan->chan_reg); 1493 chan->threshold = 0; 1494 } 1495 1496 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc) 1497 { 1498 kfree(container_of(vdesc, struct stm32_dma_desc, vdesc)); 1499 } 1500 1501 static void stm32_dma_set_config(struct stm32_dma_chan *chan, 1502 struct stm32_dma_cfg *cfg) 1503 { 1504 stm32_dma_clear_reg(&chan->chan_reg); 1505 1506 chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK; 1507 chan->chan_reg.dma_scr |= FIELD_PREP(STM32_DMA_SCR_REQ_MASK, cfg->request_line); 1508 1509 /* Enable Interrupts */ 1510 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE; 1511 1512 chan->threshold = FIELD_GET(STM32_DMA_THRESHOLD_FTR_MASK, cfg->features); 1513 if (FIELD_GET(STM32_DMA_DIRECT_MODE_MASK, cfg->features)) 1514 chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE; 1515 if (FIELD_GET(STM32_DMA_ALT_ACK_MODE_MASK, cfg->features)) 1516 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF; 1517 chan->mdma_config.stream_id = FIELD_GET(STM32_DMA_MDMA_STREAM_ID_MASK, cfg->features); 1518 } 1519 1520 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec, 1521 struct of_dma *ofdma) 1522 { 1523 struct stm32_dma_device *dmadev = ofdma->of_dma_data; 1524 struct device *dev = dmadev->ddev.dev; 1525 struct stm32_dma_cfg cfg; 1526 struct stm32_dma_chan *chan; 1527 struct dma_chan *c; 1528 1529 if (dma_spec->args_count < 4) { 1530 dev_err(dev, "Bad number of cells\n"); 1531 return NULL; 1532 } 1533 1534 cfg.channel_id = dma_spec->args[0]; 1535 cfg.request_line = dma_spec->args[1]; 1536 cfg.stream_config = dma_spec->args[2]; 1537 cfg.features = dma_spec->args[3]; 1538 1539 if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS || 1540 cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) { 1541 dev_err(dev, "Bad channel and/or request id\n"); 1542 return NULL; 1543 } 1544 1545 chan = &dmadev->chan[cfg.channel_id]; 1546 1547 c = dma_get_slave_channel(&chan->vchan.chan); 1548 if (!c) { 1549 dev_err(dev, "No more channels available\n"); 1550 return NULL; 1551 } 1552 1553 stm32_dma_set_config(chan, &cfg); 1554 1555 return c; 1556 } 1557 1558 static const struct of_device_id stm32_dma_of_match[] = { 1559 { .compatible = "st,stm32-dma", }, 1560 { /* sentinel */ }, 1561 }; 1562 MODULE_DEVICE_TABLE(of, stm32_dma_of_match); 1563 1564 static int stm32_dma_probe(struct platform_device *pdev) 1565 { 1566 struct stm32_dma_chan *chan; 1567 struct stm32_dma_device *dmadev; 1568 struct dma_device *dd; 1569 const struct of_device_id *match; 1570 struct resource *res; 1571 struct reset_control *rst; 1572 int i, ret; 1573 1574 match = of_match_device(stm32_dma_of_match, &pdev->dev); 1575 if (!match) { 1576 dev_err(&pdev->dev, "Error: No device match found\n"); 1577 return -ENODEV; 1578 } 1579 1580 dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL); 1581 if (!dmadev) 1582 return -ENOMEM; 1583 1584 dd = &dmadev->ddev; 1585 1586 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1587 dmadev->base = devm_ioremap_resource(&pdev->dev, res); 1588 if (IS_ERR(dmadev->base)) 1589 return PTR_ERR(dmadev->base); 1590 1591 dmadev->clk = devm_clk_get(&pdev->dev, NULL); 1592 if (IS_ERR(dmadev->clk)) 1593 return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n"); 1594 1595 ret = clk_prepare_enable(dmadev->clk); 1596 if (ret < 0) { 1597 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret); 1598 return ret; 1599 } 1600 1601 dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node, 1602 "st,mem2mem"); 1603 1604 rst = devm_reset_control_get(&pdev->dev, NULL); 1605 if (IS_ERR(rst)) { 1606 ret = PTR_ERR(rst); 1607 if (ret == -EPROBE_DEFER) 1608 goto clk_free; 1609 } else { 1610 reset_control_assert(rst); 1611 udelay(2); 1612 reset_control_deassert(rst); 1613 } 1614 1615 dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS); 1616 1617 dma_cap_set(DMA_SLAVE, dd->cap_mask); 1618 dma_cap_set(DMA_PRIVATE, dd->cap_mask); 1619 dma_cap_set(DMA_CYCLIC, dd->cap_mask); 1620 dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources; 1621 dd->device_free_chan_resources = stm32_dma_free_chan_resources; 1622 dd->device_tx_status = stm32_dma_tx_status; 1623 dd->device_issue_pending = stm32_dma_issue_pending; 1624 dd->device_prep_slave_sg = stm32_dma_prep_slave_sg; 1625 dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic; 1626 dd->device_config = stm32_dma_slave_config; 1627 dd->device_pause = stm32_dma_pause; 1628 dd->device_resume = stm32_dma_resume; 1629 dd->device_terminate_all = stm32_dma_terminate_all; 1630 dd->device_synchronize = stm32_dma_synchronize; 1631 dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | 1632 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | 1633 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); 1634 dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | 1635 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | 1636 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); 1637 dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1638 dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1639 dd->copy_align = DMAENGINE_ALIGN_32_BYTES; 1640 dd->max_burst = STM32_DMA_MAX_BURST; 1641 dd->max_sg_burst = STM32_DMA_ALIGNED_MAX_DATA_ITEMS; 1642 dd->descriptor_reuse = true; 1643 dd->dev = &pdev->dev; 1644 INIT_LIST_HEAD(&dd->channels); 1645 1646 if (dmadev->mem2mem) { 1647 dma_cap_set(DMA_MEMCPY, dd->cap_mask); 1648 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy; 1649 dd->directions |= BIT(DMA_MEM_TO_MEM); 1650 } 1651 1652 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) { 1653 chan = &dmadev->chan[i]; 1654 chan->id = i; 1655 chan->vchan.desc_free = stm32_dma_desc_free; 1656 vchan_init(&chan->vchan, dd); 1657 1658 chan->mdma_config.ifcr = res->start; 1659 chan->mdma_config.ifcr += STM32_DMA_IFCR(chan->id); 1660 1661 chan->mdma_config.tcf = STM32_DMA_TCI; 1662 chan->mdma_config.tcf <<= STM32_DMA_FLAGS_SHIFT(chan->id); 1663 } 1664 1665 ret = dma_async_device_register(dd); 1666 if (ret) 1667 goto clk_free; 1668 1669 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) { 1670 chan = &dmadev->chan[i]; 1671 ret = platform_get_irq(pdev, i); 1672 if (ret < 0) 1673 goto err_unregister; 1674 chan->irq = ret; 1675 1676 ret = devm_request_irq(&pdev->dev, chan->irq, 1677 stm32_dma_chan_irq, 0, 1678 dev_name(chan2dev(chan)), chan); 1679 if (ret) { 1680 dev_err(&pdev->dev, 1681 "request_irq failed with err %d channel %d\n", 1682 ret, i); 1683 goto err_unregister; 1684 } 1685 } 1686 1687 ret = of_dma_controller_register(pdev->dev.of_node, 1688 stm32_dma_of_xlate, dmadev); 1689 if (ret < 0) { 1690 dev_err(&pdev->dev, 1691 "STM32 DMA DMA OF registration failed %d\n", ret); 1692 goto err_unregister; 1693 } 1694 1695 platform_set_drvdata(pdev, dmadev); 1696 1697 pm_runtime_set_active(&pdev->dev); 1698 pm_runtime_enable(&pdev->dev); 1699 pm_runtime_get_noresume(&pdev->dev); 1700 pm_runtime_put(&pdev->dev); 1701 1702 dev_info(&pdev->dev, "STM32 DMA driver registered\n"); 1703 1704 return 0; 1705 1706 err_unregister: 1707 dma_async_device_unregister(dd); 1708 clk_free: 1709 clk_disable_unprepare(dmadev->clk); 1710 1711 return ret; 1712 } 1713 1714 #ifdef CONFIG_PM 1715 static int stm32_dma_runtime_suspend(struct device *dev) 1716 { 1717 struct stm32_dma_device *dmadev = dev_get_drvdata(dev); 1718 1719 clk_disable_unprepare(dmadev->clk); 1720 1721 return 0; 1722 } 1723 1724 static int stm32_dma_runtime_resume(struct device *dev) 1725 { 1726 struct stm32_dma_device *dmadev = dev_get_drvdata(dev); 1727 int ret; 1728 1729 ret = clk_prepare_enable(dmadev->clk); 1730 if (ret) { 1731 dev_err(dev, "failed to prepare_enable clock\n"); 1732 return ret; 1733 } 1734 1735 return 0; 1736 } 1737 #endif 1738 1739 #ifdef CONFIG_PM_SLEEP 1740 static int stm32_dma_pm_suspend(struct device *dev) 1741 { 1742 struct stm32_dma_device *dmadev = dev_get_drvdata(dev); 1743 int id, ret, scr; 1744 1745 ret = pm_runtime_resume_and_get(dev); 1746 if (ret < 0) 1747 return ret; 1748 1749 for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) { 1750 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 1751 if (scr & STM32_DMA_SCR_EN) { 1752 dev_warn(dev, "Suspend is prevented by Chan %i\n", id); 1753 return -EBUSY; 1754 } 1755 } 1756 1757 pm_runtime_put_sync(dev); 1758 1759 pm_runtime_force_suspend(dev); 1760 1761 return 0; 1762 } 1763 1764 static int stm32_dma_pm_resume(struct device *dev) 1765 { 1766 return pm_runtime_force_resume(dev); 1767 } 1768 #endif 1769 1770 static const struct dev_pm_ops stm32_dma_pm_ops = { 1771 SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_pm_suspend, stm32_dma_pm_resume) 1772 SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend, 1773 stm32_dma_runtime_resume, NULL) 1774 }; 1775 1776 static struct platform_driver stm32_dma_driver = { 1777 .driver = { 1778 .name = "stm32-dma", 1779 .of_match_table = stm32_dma_of_match, 1780 .pm = &stm32_dma_pm_ops, 1781 }, 1782 .probe = stm32_dma_probe, 1783 }; 1784 1785 static int __init stm32_dma_init(void) 1786 { 1787 return platform_driver_register(&stm32_dma_driver); 1788 } 1789 subsys_initcall(stm32_dma_init); 1790