xref: /openbmc/linux/drivers/dma/stm32-dma.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for STM32 DMA controller
4  *
5  * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6  *
7  * Copyright (C) M'boumba Cedric Madianga 2015
8  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9  *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 
31 #include "virt-dma.h"
32 
33 #define STM32_DMA_LISR			0x0000 /* DMA Low Int Status Reg */
34 #define STM32_DMA_HISR			0x0004 /* DMA High Int Status Reg */
35 #define STM32_DMA_LIFCR			0x0008 /* DMA Low Int Flag Clear Reg */
36 #define STM32_DMA_HIFCR			0x000c /* DMA High Int Flag Clear Reg */
37 #define STM32_DMA_TCI			BIT(5) /* Transfer Complete Interrupt */
38 #define STM32_DMA_HTI			BIT(4) /* Half Transfer Interrupt */
39 #define STM32_DMA_TEI			BIT(3) /* Transfer Error Interrupt */
40 #define STM32_DMA_DMEI			BIT(2) /* Direct Mode Error Interrupt */
41 #define STM32_DMA_FEI			BIT(0) /* FIFO Error Interrupt */
42 #define STM32_DMA_MASKI			(STM32_DMA_TCI \
43 					 | STM32_DMA_TEI \
44 					 | STM32_DMA_DMEI \
45 					 | STM32_DMA_FEI)
46 
47 /* DMA Stream x Configuration Register */
48 #define STM32_DMA_SCR(x)		(0x0010 + 0x18 * (x)) /* x = 0..7 */
49 #define STM32_DMA_SCR_REQ(n)		((n & 0x7) << 25)
50 #define STM32_DMA_SCR_MBURST_MASK	GENMASK(24, 23)
51 #define STM32_DMA_SCR_MBURST(n)	        ((n & 0x3) << 23)
52 #define STM32_DMA_SCR_PBURST_MASK	GENMASK(22, 21)
53 #define STM32_DMA_SCR_PBURST(n)	        ((n & 0x3) << 21)
54 #define STM32_DMA_SCR_PL_MASK		GENMASK(17, 16)
55 #define STM32_DMA_SCR_PL(n)		((n & 0x3) << 16)
56 #define STM32_DMA_SCR_MSIZE_MASK	GENMASK(14, 13)
57 #define STM32_DMA_SCR_MSIZE(n)		((n & 0x3) << 13)
58 #define STM32_DMA_SCR_PSIZE_MASK	GENMASK(12, 11)
59 #define STM32_DMA_SCR_PSIZE(n)		((n & 0x3) << 11)
60 #define STM32_DMA_SCR_PSIZE_GET(n)	((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
61 #define STM32_DMA_SCR_DIR_MASK		GENMASK(7, 6)
62 #define STM32_DMA_SCR_DIR(n)		((n & 0x3) << 6)
63 #define STM32_DMA_SCR_CT		BIT(19) /* Target in double buffer */
64 #define STM32_DMA_SCR_DBM		BIT(18) /* Double Buffer Mode */
65 #define STM32_DMA_SCR_PINCOS		BIT(15) /* Peripheral inc offset size */
66 #define STM32_DMA_SCR_MINC		BIT(10) /* Memory increment mode */
67 #define STM32_DMA_SCR_PINC		BIT(9) /* Peripheral increment mode */
68 #define STM32_DMA_SCR_CIRC		BIT(8) /* Circular mode */
69 #define STM32_DMA_SCR_PFCTRL		BIT(5) /* Peripheral Flow Controller */
70 #define STM32_DMA_SCR_TCIE		BIT(4) /* Transfer Complete Int Enable
71 						*/
72 #define STM32_DMA_SCR_TEIE		BIT(2) /* Transfer Error Int Enable */
73 #define STM32_DMA_SCR_DMEIE		BIT(1) /* Direct Mode Err Int Enable */
74 #define STM32_DMA_SCR_EN		BIT(0) /* Stream Enable */
75 #define STM32_DMA_SCR_CFG_MASK		(STM32_DMA_SCR_PINC \
76 					| STM32_DMA_SCR_MINC \
77 					| STM32_DMA_SCR_PINCOS \
78 					| STM32_DMA_SCR_PL_MASK)
79 #define STM32_DMA_SCR_IRQ_MASK		(STM32_DMA_SCR_TCIE \
80 					| STM32_DMA_SCR_TEIE \
81 					| STM32_DMA_SCR_DMEIE)
82 
83 /* DMA Stream x number of data register */
84 #define STM32_DMA_SNDTR(x)		(0x0014 + 0x18 * (x))
85 
86 /* DMA stream peripheral address register */
87 #define STM32_DMA_SPAR(x)		(0x0018 + 0x18 * (x))
88 
89 /* DMA stream x memory 0 address register */
90 #define STM32_DMA_SM0AR(x)		(0x001c + 0x18 * (x))
91 
92 /* DMA stream x memory 1 address register */
93 #define STM32_DMA_SM1AR(x)		(0x0020 + 0x18 * (x))
94 
95 /* DMA stream x FIFO control register */
96 #define STM32_DMA_SFCR(x)		(0x0024 + 0x18 * (x))
97 #define STM32_DMA_SFCR_FTH_MASK		GENMASK(1, 0)
98 #define STM32_DMA_SFCR_FTH(n)		(n & STM32_DMA_SFCR_FTH_MASK)
99 #define STM32_DMA_SFCR_FEIE		BIT(7) /* FIFO error interrupt enable */
100 #define STM32_DMA_SFCR_DMDIS		BIT(2) /* Direct mode disable */
101 #define STM32_DMA_SFCR_MASK		(STM32_DMA_SFCR_FEIE \
102 					| STM32_DMA_SFCR_DMDIS)
103 
104 /* DMA direction */
105 #define STM32_DMA_DEV_TO_MEM		0x00
106 #define	STM32_DMA_MEM_TO_DEV		0x01
107 #define	STM32_DMA_MEM_TO_MEM		0x02
108 
109 /* DMA priority level */
110 #define STM32_DMA_PRIORITY_LOW		0x00
111 #define STM32_DMA_PRIORITY_MEDIUM	0x01
112 #define STM32_DMA_PRIORITY_HIGH		0x02
113 #define STM32_DMA_PRIORITY_VERY_HIGH	0x03
114 
115 /* DMA FIFO threshold selection */
116 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL		0x00
117 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL		0x01
118 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL		0x02
119 #define STM32_DMA_FIFO_THRESHOLD_FULL			0x03
120 #define STM32_DMA_FIFO_THRESHOLD_NONE			0x04
121 
122 #define STM32_DMA_MAX_DATA_ITEMS	0xffff
123 /*
124  * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
125  * gather at boundary. Thus it's safer to round down this value on FIFO
126  * size (16 Bytes)
127  */
128 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS	\
129 	ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
130 #define STM32_DMA_MAX_CHANNELS		0x08
131 #define STM32_DMA_MAX_REQUEST_ID	0x08
132 #define STM32_DMA_MAX_DATA_PARAM	0x03
133 #define STM32_DMA_FIFO_SIZE		16	/* FIFO is 16 bytes */
134 #define STM32_DMA_MIN_BURST		4
135 #define STM32_DMA_MAX_BURST		16
136 
137 /* DMA Features */
138 #define STM32_DMA_THRESHOLD_FTR_MASK	GENMASK(1, 0)
139 #define STM32_DMA_THRESHOLD_FTR_GET(n)	((n) & STM32_DMA_THRESHOLD_FTR_MASK)
140 #define STM32_DMA_DIRECT_MODE_MASK	BIT(2)
141 #define STM32_DMA_DIRECT_MODE_GET(n)	(((n) & STM32_DMA_DIRECT_MODE_MASK) \
142 					 >> 2)
143 
144 enum stm32_dma_width {
145 	STM32_DMA_BYTE,
146 	STM32_DMA_HALF_WORD,
147 	STM32_DMA_WORD,
148 };
149 
150 enum stm32_dma_burst_size {
151 	STM32_DMA_BURST_SINGLE,
152 	STM32_DMA_BURST_INCR4,
153 	STM32_DMA_BURST_INCR8,
154 	STM32_DMA_BURST_INCR16,
155 };
156 
157 /**
158  * struct stm32_dma_cfg - STM32 DMA custom configuration
159  * @channel_id: channel ID
160  * @request_line: DMA request
161  * @stream_config: 32bit mask specifying the DMA channel configuration
162  * @features: 32bit mask specifying the DMA Feature list
163  */
164 struct stm32_dma_cfg {
165 	u32 channel_id;
166 	u32 request_line;
167 	u32 stream_config;
168 	u32 features;
169 };
170 
171 struct stm32_dma_chan_reg {
172 	u32 dma_lisr;
173 	u32 dma_hisr;
174 	u32 dma_lifcr;
175 	u32 dma_hifcr;
176 	u32 dma_scr;
177 	u32 dma_sndtr;
178 	u32 dma_spar;
179 	u32 dma_sm0ar;
180 	u32 dma_sm1ar;
181 	u32 dma_sfcr;
182 };
183 
184 struct stm32_dma_sg_req {
185 	u32 len;
186 	struct stm32_dma_chan_reg chan_reg;
187 };
188 
189 struct stm32_dma_desc {
190 	struct virt_dma_desc vdesc;
191 	bool cyclic;
192 	u32 num_sgs;
193 	struct stm32_dma_sg_req sg_req[];
194 };
195 
196 struct stm32_dma_chan {
197 	struct virt_dma_chan vchan;
198 	bool config_init;
199 	bool busy;
200 	u32 id;
201 	u32 irq;
202 	struct stm32_dma_desc *desc;
203 	u32 next_sg;
204 	struct dma_slave_config	dma_sconfig;
205 	struct stm32_dma_chan_reg chan_reg;
206 	u32 threshold;
207 	u32 mem_burst;
208 	u32 mem_width;
209 };
210 
211 struct stm32_dma_device {
212 	struct dma_device ddev;
213 	void __iomem *base;
214 	struct clk *clk;
215 	bool mem2mem;
216 	struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
217 };
218 
219 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
220 {
221 	return container_of(chan->vchan.chan.device, struct stm32_dma_device,
222 			    ddev);
223 }
224 
225 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
226 {
227 	return container_of(c, struct stm32_dma_chan, vchan.chan);
228 }
229 
230 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
231 {
232 	return container_of(vdesc, struct stm32_dma_desc, vdesc);
233 }
234 
235 static struct device *chan2dev(struct stm32_dma_chan *chan)
236 {
237 	return &chan->vchan.chan.dev->device;
238 }
239 
240 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
241 {
242 	return readl_relaxed(dmadev->base + reg);
243 }
244 
245 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
246 {
247 	writel_relaxed(val, dmadev->base + reg);
248 }
249 
250 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
251 			       enum dma_slave_buswidth width)
252 {
253 	switch (width) {
254 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
255 		return STM32_DMA_BYTE;
256 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
257 		return STM32_DMA_HALF_WORD;
258 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
259 		return STM32_DMA_WORD;
260 	default:
261 		dev_err(chan2dev(chan), "Dma bus width not supported\n");
262 		return -EINVAL;
263 	}
264 }
265 
266 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
267 						       dma_addr_t buf_addr,
268 						       u32 threshold)
269 {
270 	enum dma_slave_buswidth max_width;
271 	u64 addr = buf_addr;
272 
273 	if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
274 		max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
275 	else
276 		max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
277 
278 	while ((buf_len < max_width  || buf_len % max_width) &&
279 	       max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
280 		max_width = max_width >> 1;
281 
282 	if (do_div(addr, max_width))
283 		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
284 
285 	return max_width;
286 }
287 
288 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
289 						enum dma_slave_buswidth width)
290 {
291 	u32 remaining;
292 
293 	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
294 		return false;
295 
296 	if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
297 		if (burst != 0) {
298 			/*
299 			 * If number of beats fit in several whole bursts
300 			 * this configuration is allowed.
301 			 */
302 			remaining = ((STM32_DMA_FIFO_SIZE / width) *
303 				     (threshold + 1) / 4) % burst;
304 
305 			if (remaining == 0)
306 				return true;
307 		} else {
308 			return true;
309 		}
310 	}
311 
312 	return false;
313 }
314 
315 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
316 {
317 	/* If FIFO direct mode, burst is not possible */
318 	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
319 		return false;
320 
321 	/*
322 	 * Buffer or period length has to be aligned on FIFO depth.
323 	 * Otherwise bytes may be stuck within FIFO at buffer or period
324 	 * length.
325 	 */
326 	return ((buf_len % ((threshold + 1) * 4)) == 0);
327 }
328 
329 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
330 				    enum dma_slave_buswidth width)
331 {
332 	u32 best_burst = max_burst;
333 
334 	if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
335 		return 0;
336 
337 	while ((buf_len < best_burst * width && best_burst > 1) ||
338 	       !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
339 						    width)) {
340 		if (best_burst > STM32_DMA_MIN_BURST)
341 			best_burst = best_burst >> 1;
342 		else
343 			best_burst = 0;
344 	}
345 
346 	return best_burst;
347 }
348 
349 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
350 {
351 	switch (maxburst) {
352 	case 0:
353 	case 1:
354 		return STM32_DMA_BURST_SINGLE;
355 	case 4:
356 		return STM32_DMA_BURST_INCR4;
357 	case 8:
358 		return STM32_DMA_BURST_INCR8;
359 	case 16:
360 		return STM32_DMA_BURST_INCR16;
361 	default:
362 		dev_err(chan2dev(chan), "Dma burst size not supported\n");
363 		return -EINVAL;
364 	}
365 }
366 
367 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
368 				      u32 src_burst, u32 dst_burst)
369 {
370 	chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
371 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
372 
373 	if (!src_burst && !dst_burst) {
374 		/* Using direct mode */
375 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
376 	} else {
377 		/* Using FIFO mode */
378 		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
379 	}
380 }
381 
382 static int stm32_dma_slave_config(struct dma_chan *c,
383 				  struct dma_slave_config *config)
384 {
385 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
386 
387 	memcpy(&chan->dma_sconfig, config, sizeof(*config));
388 
389 	chan->config_init = true;
390 
391 	return 0;
392 }
393 
394 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
395 {
396 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
397 	u32 flags, dma_isr;
398 
399 	/*
400 	 * Read "flags" from DMA_xISR register corresponding to the selected
401 	 * DMA channel at the correct bit offset inside that register.
402 	 *
403 	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
404 	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
405 	 */
406 
407 	if (chan->id & 4)
408 		dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
409 	else
410 		dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
411 
412 	flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
413 
414 	return flags & STM32_DMA_MASKI;
415 }
416 
417 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
418 {
419 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
420 	u32 dma_ifcr;
421 
422 	/*
423 	 * Write "flags" to the DMA_xIFCR register corresponding to the selected
424 	 * DMA channel at the correct bit offset inside that register.
425 	 *
426 	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
427 	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
428 	 */
429 	flags &= STM32_DMA_MASKI;
430 	dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
431 
432 	if (chan->id & 4)
433 		stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
434 	else
435 		stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
436 }
437 
438 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
439 {
440 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
441 	u32 dma_scr, id, reg;
442 
443 	id = chan->id;
444 	reg = STM32_DMA_SCR(id);
445 	dma_scr = stm32_dma_read(dmadev, reg);
446 
447 	if (dma_scr & STM32_DMA_SCR_EN) {
448 		dma_scr &= ~STM32_DMA_SCR_EN;
449 		stm32_dma_write(dmadev, reg, dma_scr);
450 
451 		return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
452 					dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
453 					10, 1000000);
454 	}
455 
456 	return 0;
457 }
458 
459 static void stm32_dma_stop(struct stm32_dma_chan *chan)
460 {
461 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
462 	u32 dma_scr, dma_sfcr, status;
463 	int ret;
464 
465 	/* Disable interrupts */
466 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
467 	dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
468 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
469 	dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
470 	dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
471 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
472 
473 	/* Disable DMA */
474 	ret = stm32_dma_disable_chan(chan);
475 	if (ret < 0)
476 		return;
477 
478 	/* Clear interrupt status if it is there */
479 	status = stm32_dma_irq_status(chan);
480 	if (status) {
481 		dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
482 			__func__, status);
483 		stm32_dma_irq_clear(chan, status);
484 	}
485 
486 	chan->busy = false;
487 }
488 
489 static int stm32_dma_terminate_all(struct dma_chan *c)
490 {
491 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
492 	unsigned long flags;
493 	LIST_HEAD(head);
494 
495 	spin_lock_irqsave(&chan->vchan.lock, flags);
496 
497 	if (chan->desc) {
498 		vchan_terminate_vdesc(&chan->desc->vdesc);
499 		if (chan->busy)
500 			stm32_dma_stop(chan);
501 		chan->desc = NULL;
502 	}
503 
504 	vchan_get_all_descriptors(&chan->vchan, &head);
505 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
506 	vchan_dma_desc_free_list(&chan->vchan, &head);
507 
508 	return 0;
509 }
510 
511 static void stm32_dma_synchronize(struct dma_chan *c)
512 {
513 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
514 
515 	vchan_synchronize(&chan->vchan);
516 }
517 
518 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
519 {
520 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
521 	u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
522 	u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
523 	u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
524 	u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
525 	u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
526 	u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
527 
528 	dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
529 	dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
530 	dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
531 	dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
532 	dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
533 	dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
534 }
535 
536 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
537 
538 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
539 {
540 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
541 	struct virt_dma_desc *vdesc;
542 	struct stm32_dma_sg_req *sg_req;
543 	struct stm32_dma_chan_reg *reg;
544 	u32 status;
545 	int ret;
546 
547 	ret = stm32_dma_disable_chan(chan);
548 	if (ret < 0)
549 		return;
550 
551 	if (!chan->desc) {
552 		vdesc = vchan_next_desc(&chan->vchan);
553 		if (!vdesc)
554 			return;
555 
556 		list_del(&vdesc->node);
557 
558 		chan->desc = to_stm32_dma_desc(vdesc);
559 		chan->next_sg = 0;
560 	}
561 
562 	if (chan->next_sg == chan->desc->num_sgs)
563 		chan->next_sg = 0;
564 
565 	sg_req = &chan->desc->sg_req[chan->next_sg];
566 	reg = &sg_req->chan_reg;
567 
568 	reg->dma_scr &= ~STM32_DMA_SCR_EN;
569 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
570 	stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
571 	stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
572 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
573 	stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
574 	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
575 
576 	chan->next_sg++;
577 
578 	/* Clear interrupt status if it is there */
579 	status = stm32_dma_irq_status(chan);
580 	if (status)
581 		stm32_dma_irq_clear(chan, status);
582 
583 	if (chan->desc->cyclic)
584 		stm32_dma_configure_next_sg(chan);
585 
586 	stm32_dma_dump_reg(chan);
587 
588 	/* Start DMA */
589 	reg->dma_scr |= STM32_DMA_SCR_EN;
590 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
591 
592 	chan->busy = true;
593 
594 	dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
595 }
596 
597 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
598 {
599 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
600 	struct stm32_dma_sg_req *sg_req;
601 	u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
602 
603 	id = chan->id;
604 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
605 
606 	if (dma_scr & STM32_DMA_SCR_DBM) {
607 		if (chan->next_sg == chan->desc->num_sgs)
608 			chan->next_sg = 0;
609 
610 		sg_req = &chan->desc->sg_req[chan->next_sg];
611 
612 		if (dma_scr & STM32_DMA_SCR_CT) {
613 			dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
614 			stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
615 			dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
616 				stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
617 		} else {
618 			dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
619 			stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
620 			dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
621 				stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
622 		}
623 	}
624 }
625 
626 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
627 {
628 	if (chan->desc) {
629 		if (chan->desc->cyclic) {
630 			vchan_cyclic_callback(&chan->desc->vdesc);
631 			chan->next_sg++;
632 			stm32_dma_configure_next_sg(chan);
633 		} else {
634 			chan->busy = false;
635 			if (chan->next_sg == chan->desc->num_sgs) {
636 				vchan_cookie_complete(&chan->desc->vdesc);
637 				chan->desc = NULL;
638 			}
639 			stm32_dma_start_transfer(chan);
640 		}
641 	}
642 }
643 
644 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
645 {
646 	struct stm32_dma_chan *chan = devid;
647 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
648 	u32 status, scr, sfcr;
649 
650 	spin_lock(&chan->vchan.lock);
651 
652 	status = stm32_dma_irq_status(chan);
653 	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
654 	sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
655 
656 	if (status & STM32_DMA_FEI) {
657 		stm32_dma_irq_clear(chan, STM32_DMA_FEI);
658 		status &= ~STM32_DMA_FEI;
659 		if (sfcr & STM32_DMA_SFCR_FEIE) {
660 			if (!(scr & STM32_DMA_SCR_EN) &&
661 			    !(status & STM32_DMA_TCI))
662 				dev_err(chan2dev(chan), "FIFO Error\n");
663 			else
664 				dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
665 		}
666 	}
667 	if (status & STM32_DMA_DMEI) {
668 		stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
669 		status &= ~STM32_DMA_DMEI;
670 		if (sfcr & STM32_DMA_SCR_DMEIE)
671 			dev_dbg(chan2dev(chan), "Direct mode overrun\n");
672 	}
673 
674 	if (status & STM32_DMA_TCI) {
675 		stm32_dma_irq_clear(chan, STM32_DMA_TCI);
676 		if (scr & STM32_DMA_SCR_TCIE)
677 			stm32_dma_handle_chan_done(chan);
678 		status &= ~STM32_DMA_TCI;
679 	}
680 
681 	if (status & STM32_DMA_HTI) {
682 		stm32_dma_irq_clear(chan, STM32_DMA_HTI);
683 		status &= ~STM32_DMA_HTI;
684 	}
685 
686 	if (status) {
687 		stm32_dma_irq_clear(chan, status);
688 		dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
689 		if (!(scr & STM32_DMA_SCR_EN))
690 			dev_err(chan2dev(chan), "chan disabled by HW\n");
691 	}
692 
693 	spin_unlock(&chan->vchan.lock);
694 
695 	return IRQ_HANDLED;
696 }
697 
698 static void stm32_dma_issue_pending(struct dma_chan *c)
699 {
700 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
701 	unsigned long flags;
702 
703 	spin_lock_irqsave(&chan->vchan.lock, flags);
704 	if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
705 		dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
706 		stm32_dma_start_transfer(chan);
707 
708 	}
709 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
710 }
711 
712 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
713 				    enum dma_transfer_direction direction,
714 				    enum dma_slave_buswidth *buswidth,
715 				    u32 buf_len, dma_addr_t buf_addr)
716 {
717 	enum dma_slave_buswidth src_addr_width, dst_addr_width;
718 	int src_bus_width, dst_bus_width;
719 	int src_burst_size, dst_burst_size;
720 	u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
721 	u32 dma_scr, fifoth;
722 
723 	src_addr_width = chan->dma_sconfig.src_addr_width;
724 	dst_addr_width = chan->dma_sconfig.dst_addr_width;
725 	src_maxburst = chan->dma_sconfig.src_maxburst;
726 	dst_maxburst = chan->dma_sconfig.dst_maxburst;
727 	fifoth = chan->threshold;
728 
729 	switch (direction) {
730 	case DMA_MEM_TO_DEV:
731 		/* Set device data size */
732 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
733 		if (dst_bus_width < 0)
734 			return dst_bus_width;
735 
736 		/* Set device burst size */
737 		dst_best_burst = stm32_dma_get_best_burst(buf_len,
738 							  dst_maxburst,
739 							  fifoth,
740 							  dst_addr_width);
741 
742 		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
743 		if (dst_burst_size < 0)
744 			return dst_burst_size;
745 
746 		/* Set memory data size */
747 		src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
748 							 fifoth);
749 		chan->mem_width = src_addr_width;
750 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
751 		if (src_bus_width < 0)
752 			return src_bus_width;
753 
754 		/* Set memory burst size */
755 		src_maxburst = STM32_DMA_MAX_BURST;
756 		src_best_burst = stm32_dma_get_best_burst(buf_len,
757 							  src_maxburst,
758 							  fifoth,
759 							  src_addr_width);
760 		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
761 		if (src_burst_size < 0)
762 			return src_burst_size;
763 
764 		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
765 			STM32_DMA_SCR_PSIZE(dst_bus_width) |
766 			STM32_DMA_SCR_MSIZE(src_bus_width) |
767 			STM32_DMA_SCR_PBURST(dst_burst_size) |
768 			STM32_DMA_SCR_MBURST(src_burst_size);
769 
770 		/* Set FIFO threshold */
771 		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
772 		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
773 			chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
774 
775 		/* Set peripheral address */
776 		chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
777 		*buswidth = dst_addr_width;
778 		break;
779 
780 	case DMA_DEV_TO_MEM:
781 		/* Set device data size */
782 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
783 		if (src_bus_width < 0)
784 			return src_bus_width;
785 
786 		/* Set device burst size */
787 		src_best_burst = stm32_dma_get_best_burst(buf_len,
788 							  src_maxburst,
789 							  fifoth,
790 							  src_addr_width);
791 		chan->mem_burst = src_best_burst;
792 		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
793 		if (src_burst_size < 0)
794 			return src_burst_size;
795 
796 		/* Set memory data size */
797 		dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
798 							 fifoth);
799 		chan->mem_width = dst_addr_width;
800 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
801 		if (dst_bus_width < 0)
802 			return dst_bus_width;
803 
804 		/* Set memory burst size */
805 		dst_maxburst = STM32_DMA_MAX_BURST;
806 		dst_best_burst = stm32_dma_get_best_burst(buf_len,
807 							  dst_maxburst,
808 							  fifoth,
809 							  dst_addr_width);
810 		chan->mem_burst = dst_best_burst;
811 		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
812 		if (dst_burst_size < 0)
813 			return dst_burst_size;
814 
815 		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
816 			STM32_DMA_SCR_PSIZE(src_bus_width) |
817 			STM32_DMA_SCR_MSIZE(dst_bus_width) |
818 			STM32_DMA_SCR_PBURST(src_burst_size) |
819 			STM32_DMA_SCR_MBURST(dst_burst_size);
820 
821 		/* Set FIFO threshold */
822 		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
823 		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
824 			chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
825 
826 		/* Set peripheral address */
827 		chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
828 		*buswidth = chan->dma_sconfig.src_addr_width;
829 		break;
830 
831 	default:
832 		dev_err(chan2dev(chan), "Dma direction is not supported\n");
833 		return -EINVAL;
834 	}
835 
836 	stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
837 
838 	/* Set DMA control register */
839 	chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
840 			STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
841 			STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
842 	chan->chan_reg.dma_scr |= dma_scr;
843 
844 	return 0;
845 }
846 
847 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
848 {
849 	memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
850 }
851 
852 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
853 	struct dma_chan *c, struct scatterlist *sgl,
854 	u32 sg_len, enum dma_transfer_direction direction,
855 	unsigned long flags, void *context)
856 {
857 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
858 	struct stm32_dma_desc *desc;
859 	struct scatterlist *sg;
860 	enum dma_slave_buswidth buswidth;
861 	u32 nb_data_items;
862 	int i, ret;
863 
864 	if (!chan->config_init) {
865 		dev_err(chan2dev(chan), "dma channel is not configured\n");
866 		return NULL;
867 	}
868 
869 	if (sg_len < 1) {
870 		dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
871 		return NULL;
872 	}
873 
874 	desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
875 	if (!desc)
876 		return NULL;
877 
878 	/* Set peripheral flow controller */
879 	if (chan->dma_sconfig.device_fc)
880 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
881 	else
882 		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
883 
884 	for_each_sg(sgl, sg, sg_len, i) {
885 		ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
886 					       sg_dma_len(sg),
887 					       sg_dma_address(sg));
888 		if (ret < 0)
889 			goto err;
890 
891 		desc->sg_req[i].len = sg_dma_len(sg);
892 
893 		nb_data_items = desc->sg_req[i].len / buswidth;
894 		if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
895 			dev_err(chan2dev(chan), "nb items not supported\n");
896 			goto err;
897 		}
898 
899 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
900 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
901 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
902 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
903 		desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
904 		desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
905 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
906 	}
907 
908 	desc->num_sgs = sg_len;
909 	desc->cyclic = false;
910 
911 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
912 
913 err:
914 	kfree(desc);
915 	return NULL;
916 }
917 
918 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
919 	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
920 	size_t period_len, enum dma_transfer_direction direction,
921 	unsigned long flags)
922 {
923 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
924 	struct stm32_dma_desc *desc;
925 	enum dma_slave_buswidth buswidth;
926 	u32 num_periods, nb_data_items;
927 	int i, ret;
928 
929 	if (!buf_len || !period_len) {
930 		dev_err(chan2dev(chan), "Invalid buffer/period len\n");
931 		return NULL;
932 	}
933 
934 	if (!chan->config_init) {
935 		dev_err(chan2dev(chan), "dma channel is not configured\n");
936 		return NULL;
937 	}
938 
939 	if (buf_len % period_len) {
940 		dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
941 		return NULL;
942 	}
943 
944 	/*
945 	 * We allow to take more number of requests till DMA is
946 	 * not started. The driver will loop over all requests.
947 	 * Once DMA is started then new requests can be queued only after
948 	 * terminating the DMA.
949 	 */
950 	if (chan->busy) {
951 		dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
952 		return NULL;
953 	}
954 
955 	ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
956 				       buf_addr);
957 	if (ret < 0)
958 		return NULL;
959 
960 	nb_data_items = period_len / buswidth;
961 	if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
962 		dev_err(chan2dev(chan), "number of items not supported\n");
963 		return NULL;
964 	}
965 
966 	/*  Enable Circular mode or double buffer mode */
967 	if (buf_len == period_len)
968 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
969 	else
970 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
971 
972 	/* Clear periph ctrl if client set it */
973 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
974 
975 	num_periods = buf_len / period_len;
976 
977 	desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
978 	if (!desc)
979 		return NULL;
980 
981 	for (i = 0; i < num_periods; i++) {
982 		desc->sg_req[i].len = period_len;
983 
984 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
985 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
986 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
987 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
988 		desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
989 		desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
990 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
991 		buf_addr += period_len;
992 	}
993 
994 	desc->num_sgs = num_periods;
995 	desc->cyclic = true;
996 
997 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
998 }
999 
1000 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1001 	struct dma_chan *c, dma_addr_t dest,
1002 	dma_addr_t src, size_t len, unsigned long flags)
1003 {
1004 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1005 	enum dma_slave_buswidth max_width;
1006 	struct stm32_dma_desc *desc;
1007 	size_t xfer_count, offset;
1008 	u32 num_sgs, best_burst, dma_burst, threshold;
1009 	int i;
1010 
1011 	num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1012 	desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1013 	if (!desc)
1014 		return NULL;
1015 
1016 	threshold = chan->threshold;
1017 
1018 	for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1019 		xfer_count = min_t(size_t, len - offset,
1020 				   STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1021 
1022 		/* Compute best burst size */
1023 		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1024 		best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1025 						      threshold, max_width);
1026 		dma_burst = stm32_dma_get_burst(chan, best_burst);
1027 
1028 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1029 		desc->sg_req[i].chan_reg.dma_scr =
1030 			STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1031 			STM32_DMA_SCR_PBURST(dma_burst) |
1032 			STM32_DMA_SCR_MBURST(dma_burst) |
1033 			STM32_DMA_SCR_MINC |
1034 			STM32_DMA_SCR_PINC |
1035 			STM32_DMA_SCR_TCIE |
1036 			STM32_DMA_SCR_TEIE;
1037 		desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1038 		desc->sg_req[i].chan_reg.dma_sfcr |=
1039 			STM32_DMA_SFCR_FTH(threshold);
1040 		desc->sg_req[i].chan_reg.dma_spar = src + offset;
1041 		desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1042 		desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1043 		desc->sg_req[i].len = xfer_count;
1044 	}
1045 
1046 	desc->num_sgs = num_sgs;
1047 	desc->cyclic = false;
1048 
1049 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1050 }
1051 
1052 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1053 {
1054 	u32 dma_scr, width, ndtr;
1055 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1056 
1057 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1058 	width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1059 	ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1060 
1061 	return ndtr << width;
1062 }
1063 
1064 /**
1065  * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1066  * @chan: dma channel
1067  *
1068  * This function called when IRQ are disable, checks that the hardware has not
1069  * switched on the next transfer in double buffer mode. The test is done by
1070  * comparing the next_sg memory address with the hardware related register
1071  * (based on CT bit value).
1072  *
1073  * Returns true if expected current transfer is still running or double
1074  * buffer mode is not activated.
1075  */
1076 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1077 {
1078 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1079 	struct stm32_dma_sg_req *sg_req;
1080 	u32 dma_scr, dma_smar, id;
1081 
1082 	id = chan->id;
1083 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1084 
1085 	if (!(dma_scr & STM32_DMA_SCR_DBM))
1086 		return true;
1087 
1088 	sg_req = &chan->desc->sg_req[chan->next_sg];
1089 
1090 	if (dma_scr & STM32_DMA_SCR_CT) {
1091 		dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1092 		return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1093 	}
1094 
1095 	dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1096 
1097 	return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1098 }
1099 
1100 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1101 				     struct stm32_dma_desc *desc,
1102 				     u32 next_sg)
1103 {
1104 	u32 modulo, burst_size;
1105 	u32 residue;
1106 	u32 n_sg = next_sg;
1107 	struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1108 	int i;
1109 
1110 	/*
1111 	 * Calculate the residue means compute the descriptors
1112 	 * information:
1113 	 * - the sg_req currently transferred
1114 	 * - the Hardware remaining position in this sg (NDTR bits field).
1115 	 *
1116 	 * A race condition may occur if DMA is running in cyclic or double
1117 	 * buffer mode, since the DMA register are automatically reloaded at end
1118 	 * of period transfer. The hardware may have switched to the next
1119 	 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1120 	 * read.
1121 	 * In this case the SxNDTR reg could (or not) correspond to the new
1122 	 * transfer position, and not the expected one.
1123 	 * The strategy implemented in the stm32 driver is to:
1124 	 *  - read the SxNDTR register
1125 	 *  - crosscheck that hardware is still in current transfer.
1126 	 * In case of switch, we can assume that the DMA is at the beginning of
1127 	 * the next transfer. So we approximate the residue in consequence, by
1128 	 * pointing on the beginning of next transfer.
1129 	 *
1130 	 * This race condition doesn't apply for none cyclic mode, as double
1131 	 * buffer is not used. In such situation registers are updated by the
1132 	 * software.
1133 	 */
1134 
1135 	residue = stm32_dma_get_remaining_bytes(chan);
1136 
1137 	if (!stm32_dma_is_current_sg(chan)) {
1138 		n_sg++;
1139 		if (n_sg == chan->desc->num_sgs)
1140 			n_sg = 0;
1141 		residue = sg_req->len;
1142 	}
1143 
1144 	/*
1145 	 * In cyclic mode, for the last period, residue = remaining bytes
1146 	 * from NDTR,
1147 	 * else for all other periods in cyclic mode, and in sg mode,
1148 	 * residue = remaining bytes from NDTR + remaining
1149 	 * periods/sg to be transferred
1150 	 */
1151 	if (!chan->desc->cyclic || n_sg != 0)
1152 		for (i = n_sg; i < desc->num_sgs; i++)
1153 			residue += desc->sg_req[i].len;
1154 
1155 	if (!chan->mem_burst)
1156 		return residue;
1157 
1158 	burst_size = chan->mem_burst * chan->mem_width;
1159 	modulo = residue % burst_size;
1160 	if (modulo)
1161 		residue = residue - modulo + burst_size;
1162 
1163 	return residue;
1164 }
1165 
1166 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1167 					   dma_cookie_t cookie,
1168 					   struct dma_tx_state *state)
1169 {
1170 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1171 	struct virt_dma_desc *vdesc;
1172 	enum dma_status status;
1173 	unsigned long flags;
1174 	u32 residue = 0;
1175 
1176 	status = dma_cookie_status(c, cookie, state);
1177 	if (status == DMA_COMPLETE || !state)
1178 		return status;
1179 
1180 	spin_lock_irqsave(&chan->vchan.lock, flags);
1181 	vdesc = vchan_find_desc(&chan->vchan, cookie);
1182 	if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1183 		residue = stm32_dma_desc_residue(chan, chan->desc,
1184 						 chan->next_sg);
1185 	else if (vdesc)
1186 		residue = stm32_dma_desc_residue(chan,
1187 						 to_stm32_dma_desc(vdesc), 0);
1188 	dma_set_residue(state, residue);
1189 
1190 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
1191 
1192 	return status;
1193 }
1194 
1195 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1196 {
1197 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1198 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1199 	int ret;
1200 
1201 	chan->config_init = false;
1202 
1203 	ret = pm_runtime_get_sync(dmadev->ddev.dev);
1204 	if (ret < 0)
1205 		return ret;
1206 
1207 	ret = stm32_dma_disable_chan(chan);
1208 	if (ret < 0)
1209 		pm_runtime_put(dmadev->ddev.dev);
1210 
1211 	return ret;
1212 }
1213 
1214 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1215 {
1216 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1217 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1218 	unsigned long flags;
1219 
1220 	dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1221 
1222 	if (chan->busy) {
1223 		spin_lock_irqsave(&chan->vchan.lock, flags);
1224 		stm32_dma_stop(chan);
1225 		chan->desc = NULL;
1226 		spin_unlock_irqrestore(&chan->vchan.lock, flags);
1227 	}
1228 
1229 	pm_runtime_put(dmadev->ddev.dev);
1230 
1231 	vchan_free_chan_resources(to_virt_chan(c));
1232 	stm32_dma_clear_reg(&chan->chan_reg);
1233 	chan->threshold = 0;
1234 }
1235 
1236 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1237 {
1238 	kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1239 }
1240 
1241 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1242 				 struct stm32_dma_cfg *cfg)
1243 {
1244 	stm32_dma_clear_reg(&chan->chan_reg);
1245 
1246 	chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1247 	chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1248 
1249 	/* Enable Interrupts  */
1250 	chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1251 
1252 	chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1253 	if (STM32_DMA_DIRECT_MODE_GET(cfg->features))
1254 		chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1255 }
1256 
1257 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1258 					   struct of_dma *ofdma)
1259 {
1260 	struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1261 	struct device *dev = dmadev->ddev.dev;
1262 	struct stm32_dma_cfg cfg;
1263 	struct stm32_dma_chan *chan;
1264 	struct dma_chan *c;
1265 
1266 	if (dma_spec->args_count < 4) {
1267 		dev_err(dev, "Bad number of cells\n");
1268 		return NULL;
1269 	}
1270 
1271 	cfg.channel_id = dma_spec->args[0];
1272 	cfg.request_line = dma_spec->args[1];
1273 	cfg.stream_config = dma_spec->args[2];
1274 	cfg.features = dma_spec->args[3];
1275 
1276 	if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1277 	    cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1278 		dev_err(dev, "Bad channel and/or request id\n");
1279 		return NULL;
1280 	}
1281 
1282 	chan = &dmadev->chan[cfg.channel_id];
1283 
1284 	c = dma_get_slave_channel(&chan->vchan.chan);
1285 	if (!c) {
1286 		dev_err(dev, "No more channels available\n");
1287 		return NULL;
1288 	}
1289 
1290 	stm32_dma_set_config(chan, &cfg);
1291 
1292 	return c;
1293 }
1294 
1295 static const struct of_device_id stm32_dma_of_match[] = {
1296 	{ .compatible = "st,stm32-dma", },
1297 	{ /* sentinel */ },
1298 };
1299 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1300 
1301 static int stm32_dma_probe(struct platform_device *pdev)
1302 {
1303 	struct stm32_dma_chan *chan;
1304 	struct stm32_dma_device *dmadev;
1305 	struct dma_device *dd;
1306 	const struct of_device_id *match;
1307 	struct resource *res;
1308 	struct reset_control *rst;
1309 	int i, ret;
1310 
1311 	match = of_match_device(stm32_dma_of_match, &pdev->dev);
1312 	if (!match) {
1313 		dev_err(&pdev->dev, "Error: No device match found\n");
1314 		return -ENODEV;
1315 	}
1316 
1317 	dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1318 	if (!dmadev)
1319 		return -ENOMEM;
1320 
1321 	dd = &dmadev->ddev;
1322 
1323 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1324 	dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1325 	if (IS_ERR(dmadev->base))
1326 		return PTR_ERR(dmadev->base);
1327 
1328 	dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1329 	if (IS_ERR(dmadev->clk))
1330 		return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1331 
1332 	ret = clk_prepare_enable(dmadev->clk);
1333 	if (ret < 0) {
1334 		dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1335 		return ret;
1336 	}
1337 
1338 	dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1339 						"st,mem2mem");
1340 
1341 	rst = devm_reset_control_get(&pdev->dev, NULL);
1342 	if (IS_ERR(rst)) {
1343 		ret = PTR_ERR(rst);
1344 		if (ret == -EPROBE_DEFER)
1345 			goto clk_free;
1346 	} else {
1347 		reset_control_assert(rst);
1348 		udelay(2);
1349 		reset_control_deassert(rst);
1350 	}
1351 
1352 	dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1353 
1354 	dma_cap_set(DMA_SLAVE, dd->cap_mask);
1355 	dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1356 	dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1357 	dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1358 	dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1359 	dd->device_tx_status = stm32_dma_tx_status;
1360 	dd->device_issue_pending = stm32_dma_issue_pending;
1361 	dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1362 	dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1363 	dd->device_config = stm32_dma_slave_config;
1364 	dd->device_terminate_all = stm32_dma_terminate_all;
1365 	dd->device_synchronize = stm32_dma_synchronize;
1366 	dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1367 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1368 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1369 	dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1370 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1371 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1372 	dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1373 	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1374 	dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1375 	dd->max_burst = STM32_DMA_MAX_BURST;
1376 	dd->descriptor_reuse = true;
1377 	dd->dev = &pdev->dev;
1378 	INIT_LIST_HEAD(&dd->channels);
1379 
1380 	if (dmadev->mem2mem) {
1381 		dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1382 		dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1383 		dd->directions |= BIT(DMA_MEM_TO_MEM);
1384 	}
1385 
1386 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1387 		chan = &dmadev->chan[i];
1388 		chan->id = i;
1389 		chan->vchan.desc_free = stm32_dma_desc_free;
1390 		vchan_init(&chan->vchan, dd);
1391 	}
1392 
1393 	ret = dma_async_device_register(dd);
1394 	if (ret)
1395 		goto clk_free;
1396 
1397 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1398 		chan = &dmadev->chan[i];
1399 		ret = platform_get_irq(pdev, i);
1400 		if (ret < 0)
1401 			goto err_unregister;
1402 		chan->irq = ret;
1403 
1404 		ret = devm_request_irq(&pdev->dev, chan->irq,
1405 				       stm32_dma_chan_irq, 0,
1406 				       dev_name(chan2dev(chan)), chan);
1407 		if (ret) {
1408 			dev_err(&pdev->dev,
1409 				"request_irq failed with err %d channel %d\n",
1410 				ret, i);
1411 			goto err_unregister;
1412 		}
1413 	}
1414 
1415 	ret = of_dma_controller_register(pdev->dev.of_node,
1416 					 stm32_dma_of_xlate, dmadev);
1417 	if (ret < 0) {
1418 		dev_err(&pdev->dev,
1419 			"STM32 DMA DMA OF registration failed %d\n", ret);
1420 		goto err_unregister;
1421 	}
1422 
1423 	platform_set_drvdata(pdev, dmadev);
1424 
1425 	pm_runtime_set_active(&pdev->dev);
1426 	pm_runtime_enable(&pdev->dev);
1427 	pm_runtime_get_noresume(&pdev->dev);
1428 	pm_runtime_put(&pdev->dev);
1429 
1430 	dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1431 
1432 	return 0;
1433 
1434 err_unregister:
1435 	dma_async_device_unregister(dd);
1436 clk_free:
1437 	clk_disable_unprepare(dmadev->clk);
1438 
1439 	return ret;
1440 }
1441 
1442 #ifdef CONFIG_PM
1443 static int stm32_dma_runtime_suspend(struct device *dev)
1444 {
1445 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1446 
1447 	clk_disable_unprepare(dmadev->clk);
1448 
1449 	return 0;
1450 }
1451 
1452 static int stm32_dma_runtime_resume(struct device *dev)
1453 {
1454 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1455 	int ret;
1456 
1457 	ret = clk_prepare_enable(dmadev->clk);
1458 	if (ret) {
1459 		dev_err(dev, "failed to prepare_enable clock\n");
1460 		return ret;
1461 	}
1462 
1463 	return 0;
1464 }
1465 #endif
1466 
1467 #ifdef CONFIG_PM_SLEEP
1468 static int stm32_dma_suspend(struct device *dev)
1469 {
1470 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1471 	int id, ret, scr;
1472 
1473 	ret = pm_runtime_get_sync(dev);
1474 	if (ret < 0)
1475 		return ret;
1476 
1477 	for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1478 		scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1479 		if (scr & STM32_DMA_SCR_EN) {
1480 			dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1481 			return -EBUSY;
1482 		}
1483 	}
1484 
1485 	pm_runtime_put_sync(dev);
1486 
1487 	pm_runtime_force_suspend(dev);
1488 
1489 	return 0;
1490 }
1491 
1492 static int stm32_dma_resume(struct device *dev)
1493 {
1494 	return pm_runtime_force_resume(dev);
1495 }
1496 #endif
1497 
1498 static const struct dev_pm_ops stm32_dma_pm_ops = {
1499 	SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_suspend, stm32_dma_resume)
1500 	SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1501 			   stm32_dma_runtime_resume, NULL)
1502 };
1503 
1504 static struct platform_driver stm32_dma_driver = {
1505 	.driver = {
1506 		.name = "stm32-dma",
1507 		.of_match_table = stm32_dma_of_match,
1508 		.pm = &stm32_dma_pm_ops,
1509 	},
1510 	.probe = stm32_dma_probe,
1511 };
1512 
1513 static int __init stm32_dma_init(void)
1514 {
1515 	return platform_driver_register(&stm32_dma_driver);
1516 }
1517 subsys_initcall(stm32_dma_init);
1518