1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for STM32 DMA controller 4 * 5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c 6 * 7 * Copyright (C) M'boumba Cedric Madianga 2015 8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com> 9 * Pierre-Yves Mordret <pierre-yves.mordret@st.com> 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/delay.h> 14 #include <linux/dmaengine.h> 15 #include <linux/dma-mapping.h> 16 #include <linux/err.h> 17 #include <linux/init.h> 18 #include <linux/jiffies.h> 19 #include <linux/list.h> 20 #include <linux/module.h> 21 #include <linux/of.h> 22 #include <linux/of_device.h> 23 #include <linux/of_dma.h> 24 #include <linux/platform_device.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/reset.h> 27 #include <linux/sched.h> 28 #include <linux/slab.h> 29 30 #include "virt-dma.h" 31 32 #define STM32_DMA_LISR 0x0000 /* DMA Low Int Status Reg */ 33 #define STM32_DMA_HISR 0x0004 /* DMA High Int Status Reg */ 34 #define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */ 35 #define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */ 36 #define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */ 37 #define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */ 38 #define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */ 39 #define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */ 40 #define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */ 41 #define STM32_DMA_MASKI (STM32_DMA_TCI \ 42 | STM32_DMA_TEI \ 43 | STM32_DMA_DMEI \ 44 | STM32_DMA_FEI) 45 46 /* DMA Stream x Configuration Register */ 47 #define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */ 48 #define STM32_DMA_SCR_REQ(n) ((n & 0x7) << 25) 49 #define STM32_DMA_SCR_MBURST_MASK GENMASK(24, 23) 50 #define STM32_DMA_SCR_MBURST(n) ((n & 0x3) << 23) 51 #define STM32_DMA_SCR_PBURST_MASK GENMASK(22, 21) 52 #define STM32_DMA_SCR_PBURST(n) ((n & 0x3) << 21) 53 #define STM32_DMA_SCR_PL_MASK GENMASK(17, 16) 54 #define STM32_DMA_SCR_PL(n) ((n & 0x3) << 16) 55 #define STM32_DMA_SCR_MSIZE_MASK GENMASK(14, 13) 56 #define STM32_DMA_SCR_MSIZE(n) ((n & 0x3) << 13) 57 #define STM32_DMA_SCR_PSIZE_MASK GENMASK(12, 11) 58 #define STM32_DMA_SCR_PSIZE(n) ((n & 0x3) << 11) 59 #define STM32_DMA_SCR_PSIZE_GET(n) ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11) 60 #define STM32_DMA_SCR_DIR_MASK GENMASK(7, 6) 61 #define STM32_DMA_SCR_DIR(n) ((n & 0x3) << 6) 62 #define STM32_DMA_SCR_CT BIT(19) /* Target in double buffer */ 63 #define STM32_DMA_SCR_DBM BIT(18) /* Double Buffer Mode */ 64 #define STM32_DMA_SCR_PINCOS BIT(15) /* Peripheral inc offset size */ 65 #define STM32_DMA_SCR_MINC BIT(10) /* Memory increment mode */ 66 #define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */ 67 #define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */ 68 #define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */ 69 #define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable 70 */ 71 #define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */ 72 #define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */ 73 #define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */ 74 #define STM32_DMA_SCR_CFG_MASK (STM32_DMA_SCR_PINC \ 75 | STM32_DMA_SCR_MINC \ 76 | STM32_DMA_SCR_PINCOS \ 77 | STM32_DMA_SCR_PL_MASK) 78 #define STM32_DMA_SCR_IRQ_MASK (STM32_DMA_SCR_TCIE \ 79 | STM32_DMA_SCR_TEIE \ 80 | STM32_DMA_SCR_DMEIE) 81 82 /* DMA Stream x number of data register */ 83 #define STM32_DMA_SNDTR(x) (0x0014 + 0x18 * (x)) 84 85 /* DMA stream peripheral address register */ 86 #define STM32_DMA_SPAR(x) (0x0018 + 0x18 * (x)) 87 88 /* DMA stream x memory 0 address register */ 89 #define STM32_DMA_SM0AR(x) (0x001c + 0x18 * (x)) 90 91 /* DMA stream x memory 1 address register */ 92 #define STM32_DMA_SM1AR(x) (0x0020 + 0x18 * (x)) 93 94 /* DMA stream x FIFO control register */ 95 #define STM32_DMA_SFCR(x) (0x0024 + 0x18 * (x)) 96 #define STM32_DMA_SFCR_FTH_MASK GENMASK(1, 0) 97 #define STM32_DMA_SFCR_FTH(n) (n & STM32_DMA_SFCR_FTH_MASK) 98 #define STM32_DMA_SFCR_FEIE BIT(7) /* FIFO error interrupt enable */ 99 #define STM32_DMA_SFCR_DMDIS BIT(2) /* Direct mode disable */ 100 #define STM32_DMA_SFCR_MASK (STM32_DMA_SFCR_FEIE \ 101 | STM32_DMA_SFCR_DMDIS) 102 103 /* DMA direction */ 104 #define STM32_DMA_DEV_TO_MEM 0x00 105 #define STM32_DMA_MEM_TO_DEV 0x01 106 #define STM32_DMA_MEM_TO_MEM 0x02 107 108 /* DMA priority level */ 109 #define STM32_DMA_PRIORITY_LOW 0x00 110 #define STM32_DMA_PRIORITY_MEDIUM 0x01 111 #define STM32_DMA_PRIORITY_HIGH 0x02 112 #define STM32_DMA_PRIORITY_VERY_HIGH 0x03 113 114 /* DMA FIFO threshold selection */ 115 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL 0x00 116 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL 0x01 117 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL 0x02 118 #define STM32_DMA_FIFO_THRESHOLD_FULL 0x03 119 120 #define STM32_DMA_MAX_DATA_ITEMS 0xffff 121 /* 122 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter 123 * gather at boundary. Thus it's safer to round down this value on FIFO 124 * size (16 Bytes) 125 */ 126 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \ 127 ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16) 128 #define STM32_DMA_MAX_CHANNELS 0x08 129 #define STM32_DMA_MAX_REQUEST_ID 0x08 130 #define STM32_DMA_MAX_DATA_PARAM 0x03 131 #define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */ 132 #define STM32_DMA_MIN_BURST 4 133 #define STM32_DMA_MAX_BURST 16 134 135 /* DMA Features */ 136 #define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0) 137 #define STM32_DMA_THRESHOLD_FTR_GET(n) ((n) & STM32_DMA_THRESHOLD_FTR_MASK) 138 139 enum stm32_dma_width { 140 STM32_DMA_BYTE, 141 STM32_DMA_HALF_WORD, 142 STM32_DMA_WORD, 143 }; 144 145 enum stm32_dma_burst_size { 146 STM32_DMA_BURST_SINGLE, 147 STM32_DMA_BURST_INCR4, 148 STM32_DMA_BURST_INCR8, 149 STM32_DMA_BURST_INCR16, 150 }; 151 152 /** 153 * struct stm32_dma_cfg - STM32 DMA custom configuration 154 * @channel_id: channel ID 155 * @request_line: DMA request 156 * @stream_config: 32bit mask specifying the DMA channel configuration 157 * @features: 32bit mask specifying the DMA Feature list 158 */ 159 struct stm32_dma_cfg { 160 u32 channel_id; 161 u32 request_line; 162 u32 stream_config; 163 u32 features; 164 }; 165 166 struct stm32_dma_chan_reg { 167 u32 dma_lisr; 168 u32 dma_hisr; 169 u32 dma_lifcr; 170 u32 dma_hifcr; 171 u32 dma_scr; 172 u32 dma_sndtr; 173 u32 dma_spar; 174 u32 dma_sm0ar; 175 u32 dma_sm1ar; 176 u32 dma_sfcr; 177 }; 178 179 struct stm32_dma_sg_req { 180 u32 len; 181 struct stm32_dma_chan_reg chan_reg; 182 }; 183 184 struct stm32_dma_desc { 185 struct virt_dma_desc vdesc; 186 bool cyclic; 187 u32 num_sgs; 188 struct stm32_dma_sg_req sg_req[]; 189 }; 190 191 struct stm32_dma_chan { 192 struct virt_dma_chan vchan; 193 bool config_init; 194 bool busy; 195 u32 id; 196 u32 irq; 197 struct stm32_dma_desc *desc; 198 u32 next_sg; 199 struct dma_slave_config dma_sconfig; 200 struct stm32_dma_chan_reg chan_reg; 201 u32 threshold; 202 u32 mem_burst; 203 u32 mem_width; 204 }; 205 206 struct stm32_dma_device { 207 struct dma_device ddev; 208 void __iomem *base; 209 struct clk *clk; 210 struct reset_control *rst; 211 bool mem2mem; 212 struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS]; 213 }; 214 215 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan) 216 { 217 return container_of(chan->vchan.chan.device, struct stm32_dma_device, 218 ddev); 219 } 220 221 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c) 222 { 223 return container_of(c, struct stm32_dma_chan, vchan.chan); 224 } 225 226 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc) 227 { 228 return container_of(vdesc, struct stm32_dma_desc, vdesc); 229 } 230 231 static struct device *chan2dev(struct stm32_dma_chan *chan) 232 { 233 return &chan->vchan.chan.dev->device; 234 } 235 236 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg) 237 { 238 return readl_relaxed(dmadev->base + reg); 239 } 240 241 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val) 242 { 243 writel_relaxed(val, dmadev->base + reg); 244 } 245 246 static struct stm32_dma_desc *stm32_dma_alloc_desc(u32 num_sgs) 247 { 248 return kzalloc(sizeof(struct stm32_dma_desc) + 249 sizeof(struct stm32_dma_sg_req) * num_sgs, GFP_NOWAIT); 250 } 251 252 static int stm32_dma_get_width(struct stm32_dma_chan *chan, 253 enum dma_slave_buswidth width) 254 { 255 switch (width) { 256 case DMA_SLAVE_BUSWIDTH_1_BYTE: 257 return STM32_DMA_BYTE; 258 case DMA_SLAVE_BUSWIDTH_2_BYTES: 259 return STM32_DMA_HALF_WORD; 260 case DMA_SLAVE_BUSWIDTH_4_BYTES: 261 return STM32_DMA_WORD; 262 default: 263 dev_err(chan2dev(chan), "Dma bus width not supported\n"); 264 return -EINVAL; 265 } 266 } 267 268 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len, 269 u32 threshold) 270 { 271 enum dma_slave_buswidth max_width; 272 273 if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL) 274 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 275 else 276 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 277 278 while ((buf_len < max_width || buf_len % max_width) && 279 max_width > DMA_SLAVE_BUSWIDTH_1_BYTE) 280 max_width = max_width >> 1; 281 282 return max_width; 283 } 284 285 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold, 286 enum dma_slave_buswidth width) 287 { 288 u32 remaining; 289 290 if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) { 291 if (burst != 0) { 292 /* 293 * If number of beats fit in several whole bursts 294 * this configuration is allowed. 295 */ 296 remaining = ((STM32_DMA_FIFO_SIZE / width) * 297 (threshold + 1) / 4) % burst; 298 299 if (remaining == 0) 300 return true; 301 } else { 302 return true; 303 } 304 } 305 306 return false; 307 } 308 309 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold) 310 { 311 /* 312 * Buffer or period length has to be aligned on FIFO depth. 313 * Otherwise bytes may be stuck within FIFO at buffer or period 314 * length. 315 */ 316 return ((buf_len % ((threshold + 1) * 4)) == 0); 317 } 318 319 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold, 320 enum dma_slave_buswidth width) 321 { 322 u32 best_burst = max_burst; 323 324 if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold)) 325 return 0; 326 327 while ((buf_len < best_burst * width && best_burst > 1) || 328 !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold, 329 width)) { 330 if (best_burst > STM32_DMA_MIN_BURST) 331 best_burst = best_burst >> 1; 332 else 333 best_burst = 0; 334 } 335 336 return best_burst; 337 } 338 339 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst) 340 { 341 switch (maxburst) { 342 case 0: 343 case 1: 344 return STM32_DMA_BURST_SINGLE; 345 case 4: 346 return STM32_DMA_BURST_INCR4; 347 case 8: 348 return STM32_DMA_BURST_INCR8; 349 case 16: 350 return STM32_DMA_BURST_INCR16; 351 default: 352 dev_err(chan2dev(chan), "Dma burst size not supported\n"); 353 return -EINVAL; 354 } 355 } 356 357 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan, 358 u32 src_burst, u32 dst_burst) 359 { 360 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK; 361 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE; 362 363 if (!src_burst && !dst_burst) { 364 /* Using direct mode */ 365 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE; 366 } else { 367 /* Using FIFO mode */ 368 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK; 369 } 370 } 371 372 static int stm32_dma_slave_config(struct dma_chan *c, 373 struct dma_slave_config *config) 374 { 375 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 376 377 memcpy(&chan->dma_sconfig, config, sizeof(*config)); 378 379 chan->config_init = true; 380 381 return 0; 382 } 383 384 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan) 385 { 386 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 387 u32 flags, dma_isr; 388 389 /* 390 * Read "flags" from DMA_xISR register corresponding to the selected 391 * DMA channel at the correct bit offset inside that register. 392 * 393 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits. 394 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits. 395 */ 396 397 if (chan->id & 4) 398 dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR); 399 else 400 dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR); 401 402 flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6)); 403 404 return flags & STM32_DMA_MASKI; 405 } 406 407 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags) 408 { 409 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 410 u32 dma_ifcr; 411 412 /* 413 * Write "flags" to the DMA_xIFCR register corresponding to the selected 414 * DMA channel at the correct bit offset inside that register. 415 * 416 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits. 417 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits. 418 */ 419 flags &= STM32_DMA_MASKI; 420 dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6)); 421 422 if (chan->id & 4) 423 stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr); 424 else 425 stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr); 426 } 427 428 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan) 429 { 430 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 431 unsigned long timeout = jiffies + msecs_to_jiffies(5000); 432 u32 dma_scr, id; 433 434 id = chan->id; 435 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 436 437 if (dma_scr & STM32_DMA_SCR_EN) { 438 dma_scr &= ~STM32_DMA_SCR_EN; 439 stm32_dma_write(dmadev, STM32_DMA_SCR(id), dma_scr); 440 441 do { 442 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 443 dma_scr &= STM32_DMA_SCR_EN; 444 if (!dma_scr) 445 break; 446 447 if (time_after_eq(jiffies, timeout)) { 448 dev_err(chan2dev(chan), "%s: timeout!\n", 449 __func__); 450 return -EBUSY; 451 } 452 cond_resched(); 453 } while (1); 454 } 455 456 return 0; 457 } 458 459 static void stm32_dma_stop(struct stm32_dma_chan *chan) 460 { 461 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 462 u32 dma_scr, dma_sfcr, status; 463 int ret; 464 465 /* Disable interrupts */ 466 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 467 dma_scr &= ~STM32_DMA_SCR_IRQ_MASK; 468 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr); 469 dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); 470 dma_sfcr &= ~STM32_DMA_SFCR_FEIE; 471 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr); 472 473 /* Disable DMA */ 474 ret = stm32_dma_disable_chan(chan); 475 if (ret < 0) 476 return; 477 478 /* Clear interrupt status if it is there */ 479 status = stm32_dma_irq_status(chan); 480 if (status) { 481 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n", 482 __func__, status); 483 stm32_dma_irq_clear(chan, status); 484 } 485 486 chan->busy = false; 487 } 488 489 static int stm32_dma_terminate_all(struct dma_chan *c) 490 { 491 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 492 unsigned long flags; 493 LIST_HEAD(head); 494 495 spin_lock_irqsave(&chan->vchan.lock, flags); 496 497 if (chan->busy) { 498 stm32_dma_stop(chan); 499 chan->desc = NULL; 500 } 501 502 vchan_get_all_descriptors(&chan->vchan, &head); 503 spin_unlock_irqrestore(&chan->vchan.lock, flags); 504 vchan_dma_desc_free_list(&chan->vchan, &head); 505 506 return 0; 507 } 508 509 static void stm32_dma_synchronize(struct dma_chan *c) 510 { 511 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 512 513 vchan_synchronize(&chan->vchan); 514 } 515 516 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan) 517 { 518 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 519 u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 520 u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id)); 521 u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id)); 522 u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id)); 523 u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id)); 524 u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); 525 526 dev_dbg(chan2dev(chan), "SCR: 0x%08x\n", scr); 527 dev_dbg(chan2dev(chan), "NDTR: 0x%08x\n", ndtr); 528 dev_dbg(chan2dev(chan), "SPAR: 0x%08x\n", spar); 529 dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar); 530 dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar); 531 dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n", sfcr); 532 } 533 534 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan); 535 536 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan) 537 { 538 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 539 struct virt_dma_desc *vdesc; 540 struct stm32_dma_sg_req *sg_req; 541 struct stm32_dma_chan_reg *reg; 542 u32 status; 543 int ret; 544 545 ret = stm32_dma_disable_chan(chan); 546 if (ret < 0) 547 return; 548 549 if (!chan->desc) { 550 vdesc = vchan_next_desc(&chan->vchan); 551 if (!vdesc) 552 return; 553 554 chan->desc = to_stm32_dma_desc(vdesc); 555 chan->next_sg = 0; 556 } 557 558 if (chan->next_sg == chan->desc->num_sgs) 559 chan->next_sg = 0; 560 561 sg_req = &chan->desc->sg_req[chan->next_sg]; 562 reg = &sg_req->chan_reg; 563 564 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr); 565 stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar); 566 stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar); 567 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr); 568 stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar); 569 stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr); 570 571 chan->next_sg++; 572 573 /* Clear interrupt status if it is there */ 574 status = stm32_dma_irq_status(chan); 575 if (status) 576 stm32_dma_irq_clear(chan, status); 577 578 if (chan->desc->cyclic) 579 stm32_dma_configure_next_sg(chan); 580 581 stm32_dma_dump_reg(chan); 582 583 /* Start DMA */ 584 reg->dma_scr |= STM32_DMA_SCR_EN; 585 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr); 586 587 chan->busy = true; 588 589 dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan); 590 } 591 592 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan) 593 { 594 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 595 struct stm32_dma_sg_req *sg_req; 596 u32 dma_scr, dma_sm0ar, dma_sm1ar, id; 597 598 id = chan->id; 599 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 600 601 if (dma_scr & STM32_DMA_SCR_DBM) { 602 if (chan->next_sg == chan->desc->num_sgs) 603 chan->next_sg = 0; 604 605 sg_req = &chan->desc->sg_req[chan->next_sg]; 606 607 if (dma_scr & STM32_DMA_SCR_CT) { 608 dma_sm0ar = sg_req->chan_reg.dma_sm0ar; 609 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar); 610 dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n", 611 stm32_dma_read(dmadev, STM32_DMA_SM0AR(id))); 612 } else { 613 dma_sm1ar = sg_req->chan_reg.dma_sm1ar; 614 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar); 615 dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n", 616 stm32_dma_read(dmadev, STM32_DMA_SM1AR(id))); 617 } 618 } 619 } 620 621 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan) 622 { 623 if (chan->desc) { 624 if (chan->desc->cyclic) { 625 vchan_cyclic_callback(&chan->desc->vdesc); 626 chan->next_sg++; 627 stm32_dma_configure_next_sg(chan); 628 } else { 629 chan->busy = false; 630 if (chan->next_sg == chan->desc->num_sgs) { 631 list_del(&chan->desc->vdesc.node); 632 vchan_cookie_complete(&chan->desc->vdesc); 633 chan->desc = NULL; 634 } 635 stm32_dma_start_transfer(chan); 636 } 637 } 638 } 639 640 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid) 641 { 642 struct stm32_dma_chan *chan = devid; 643 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 644 u32 status, scr, sfcr; 645 646 spin_lock(&chan->vchan.lock); 647 648 status = stm32_dma_irq_status(chan); 649 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 650 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); 651 652 if (status & STM32_DMA_TCI) { 653 stm32_dma_irq_clear(chan, STM32_DMA_TCI); 654 if (scr & STM32_DMA_SCR_TCIE) 655 stm32_dma_handle_chan_done(chan); 656 status &= ~STM32_DMA_TCI; 657 } 658 if (status & STM32_DMA_HTI) { 659 stm32_dma_irq_clear(chan, STM32_DMA_HTI); 660 status &= ~STM32_DMA_HTI; 661 } 662 if (status & STM32_DMA_FEI) { 663 stm32_dma_irq_clear(chan, STM32_DMA_FEI); 664 status &= ~STM32_DMA_FEI; 665 if (sfcr & STM32_DMA_SFCR_FEIE) { 666 if (!(scr & STM32_DMA_SCR_EN)) 667 dev_err(chan2dev(chan), "FIFO Error\n"); 668 else 669 dev_dbg(chan2dev(chan), "FIFO over/underrun\n"); 670 } 671 } 672 if (status) { 673 stm32_dma_irq_clear(chan, status); 674 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status); 675 if (!(scr & STM32_DMA_SCR_EN)) 676 dev_err(chan2dev(chan), "chan disabled by HW\n"); 677 } 678 679 spin_unlock(&chan->vchan.lock); 680 681 return IRQ_HANDLED; 682 } 683 684 static void stm32_dma_issue_pending(struct dma_chan *c) 685 { 686 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 687 unsigned long flags; 688 689 spin_lock_irqsave(&chan->vchan.lock, flags); 690 if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) { 691 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan); 692 stm32_dma_start_transfer(chan); 693 694 } 695 spin_unlock_irqrestore(&chan->vchan.lock, flags); 696 } 697 698 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan, 699 enum dma_transfer_direction direction, 700 enum dma_slave_buswidth *buswidth, 701 u32 buf_len) 702 { 703 enum dma_slave_buswidth src_addr_width, dst_addr_width; 704 int src_bus_width, dst_bus_width; 705 int src_burst_size, dst_burst_size; 706 u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst; 707 u32 dma_scr, threshold; 708 709 src_addr_width = chan->dma_sconfig.src_addr_width; 710 dst_addr_width = chan->dma_sconfig.dst_addr_width; 711 src_maxburst = chan->dma_sconfig.src_maxburst; 712 dst_maxburst = chan->dma_sconfig.dst_maxburst; 713 threshold = chan->threshold; 714 715 switch (direction) { 716 case DMA_MEM_TO_DEV: 717 /* Set device data size */ 718 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width); 719 if (dst_bus_width < 0) 720 return dst_bus_width; 721 722 /* Set device burst size */ 723 dst_best_burst = stm32_dma_get_best_burst(buf_len, 724 dst_maxburst, 725 threshold, 726 dst_addr_width); 727 728 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst); 729 if (dst_burst_size < 0) 730 return dst_burst_size; 731 732 /* Set memory data size */ 733 src_addr_width = stm32_dma_get_max_width(buf_len, threshold); 734 chan->mem_width = src_addr_width; 735 src_bus_width = stm32_dma_get_width(chan, src_addr_width); 736 if (src_bus_width < 0) 737 return src_bus_width; 738 739 /* Set memory burst size */ 740 src_maxburst = STM32_DMA_MAX_BURST; 741 src_best_burst = stm32_dma_get_best_burst(buf_len, 742 src_maxburst, 743 threshold, 744 src_addr_width); 745 src_burst_size = stm32_dma_get_burst(chan, src_best_burst); 746 if (src_burst_size < 0) 747 return src_burst_size; 748 749 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) | 750 STM32_DMA_SCR_PSIZE(dst_bus_width) | 751 STM32_DMA_SCR_MSIZE(src_bus_width) | 752 STM32_DMA_SCR_PBURST(dst_burst_size) | 753 STM32_DMA_SCR_MBURST(src_burst_size); 754 755 /* Set FIFO threshold */ 756 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK; 757 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold); 758 759 /* Set peripheral address */ 760 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr; 761 *buswidth = dst_addr_width; 762 break; 763 764 case DMA_DEV_TO_MEM: 765 /* Set device data size */ 766 src_bus_width = stm32_dma_get_width(chan, src_addr_width); 767 if (src_bus_width < 0) 768 return src_bus_width; 769 770 /* Set device burst size */ 771 src_best_burst = stm32_dma_get_best_burst(buf_len, 772 src_maxburst, 773 threshold, 774 src_addr_width); 775 chan->mem_burst = src_best_burst; 776 src_burst_size = stm32_dma_get_burst(chan, src_best_burst); 777 if (src_burst_size < 0) 778 return src_burst_size; 779 780 /* Set memory data size */ 781 dst_addr_width = stm32_dma_get_max_width(buf_len, threshold); 782 chan->mem_width = dst_addr_width; 783 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width); 784 if (dst_bus_width < 0) 785 return dst_bus_width; 786 787 /* Set memory burst size */ 788 dst_maxburst = STM32_DMA_MAX_BURST; 789 dst_best_burst = stm32_dma_get_best_burst(buf_len, 790 dst_maxburst, 791 threshold, 792 dst_addr_width); 793 chan->mem_burst = dst_best_burst; 794 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst); 795 if (dst_burst_size < 0) 796 return dst_burst_size; 797 798 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) | 799 STM32_DMA_SCR_PSIZE(src_bus_width) | 800 STM32_DMA_SCR_MSIZE(dst_bus_width) | 801 STM32_DMA_SCR_PBURST(src_burst_size) | 802 STM32_DMA_SCR_MBURST(dst_burst_size); 803 804 /* Set FIFO threshold */ 805 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK; 806 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold); 807 808 /* Set peripheral address */ 809 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr; 810 *buswidth = chan->dma_sconfig.src_addr_width; 811 break; 812 813 default: 814 dev_err(chan2dev(chan), "Dma direction is not supported\n"); 815 return -EINVAL; 816 } 817 818 stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst); 819 820 /* Set DMA control register */ 821 chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK | 822 STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK | 823 STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK); 824 chan->chan_reg.dma_scr |= dma_scr; 825 826 return 0; 827 } 828 829 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs) 830 { 831 memset(regs, 0, sizeof(struct stm32_dma_chan_reg)); 832 } 833 834 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg( 835 struct dma_chan *c, struct scatterlist *sgl, 836 u32 sg_len, enum dma_transfer_direction direction, 837 unsigned long flags, void *context) 838 { 839 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 840 struct stm32_dma_desc *desc; 841 struct scatterlist *sg; 842 enum dma_slave_buswidth buswidth; 843 u32 nb_data_items; 844 int i, ret; 845 846 if (!chan->config_init) { 847 dev_err(chan2dev(chan), "dma channel is not configured\n"); 848 return NULL; 849 } 850 851 if (sg_len < 1) { 852 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len); 853 return NULL; 854 } 855 856 desc = stm32_dma_alloc_desc(sg_len); 857 if (!desc) 858 return NULL; 859 860 /* Set peripheral flow controller */ 861 if (chan->dma_sconfig.device_fc) 862 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL; 863 else 864 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL; 865 866 for_each_sg(sgl, sg, sg_len, i) { 867 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, 868 sg_dma_len(sg)); 869 if (ret < 0) 870 goto err; 871 872 desc->sg_req[i].len = sg_dma_len(sg); 873 874 nb_data_items = desc->sg_req[i].len / buswidth; 875 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) { 876 dev_err(chan2dev(chan), "nb items not supported\n"); 877 goto err; 878 } 879 880 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); 881 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr; 882 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr; 883 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar; 884 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg); 885 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg); 886 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items; 887 } 888 889 desc->num_sgs = sg_len; 890 desc->cyclic = false; 891 892 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); 893 894 err: 895 kfree(desc); 896 return NULL; 897 } 898 899 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic( 900 struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len, 901 size_t period_len, enum dma_transfer_direction direction, 902 unsigned long flags) 903 { 904 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 905 struct stm32_dma_desc *desc; 906 enum dma_slave_buswidth buswidth; 907 u32 num_periods, nb_data_items; 908 int i, ret; 909 910 if (!buf_len || !period_len) { 911 dev_err(chan2dev(chan), "Invalid buffer/period len\n"); 912 return NULL; 913 } 914 915 if (!chan->config_init) { 916 dev_err(chan2dev(chan), "dma channel is not configured\n"); 917 return NULL; 918 } 919 920 if (buf_len % period_len) { 921 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n"); 922 return NULL; 923 } 924 925 /* 926 * We allow to take more number of requests till DMA is 927 * not started. The driver will loop over all requests. 928 * Once DMA is started then new requests can be queued only after 929 * terminating the DMA. 930 */ 931 if (chan->busy) { 932 dev_err(chan2dev(chan), "Request not allowed when dma busy\n"); 933 return NULL; 934 } 935 936 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len); 937 if (ret < 0) 938 return NULL; 939 940 nb_data_items = period_len / buswidth; 941 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) { 942 dev_err(chan2dev(chan), "number of items not supported\n"); 943 return NULL; 944 } 945 946 /* Enable Circular mode or double buffer mode */ 947 if (buf_len == period_len) 948 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC; 949 else 950 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM; 951 952 /* Clear periph ctrl if client set it */ 953 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL; 954 955 num_periods = buf_len / period_len; 956 957 desc = stm32_dma_alloc_desc(num_periods); 958 if (!desc) 959 return NULL; 960 961 for (i = 0; i < num_periods; i++) { 962 desc->sg_req[i].len = period_len; 963 964 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); 965 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr; 966 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr; 967 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar; 968 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr; 969 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr; 970 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items; 971 buf_addr += period_len; 972 } 973 974 desc->num_sgs = num_periods; 975 desc->cyclic = true; 976 977 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); 978 } 979 980 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy( 981 struct dma_chan *c, dma_addr_t dest, 982 dma_addr_t src, size_t len, unsigned long flags) 983 { 984 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 985 enum dma_slave_buswidth max_width; 986 struct stm32_dma_desc *desc; 987 size_t xfer_count, offset; 988 u32 num_sgs, best_burst, dma_burst, threshold; 989 int i; 990 991 num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS); 992 desc = stm32_dma_alloc_desc(num_sgs); 993 if (!desc) 994 return NULL; 995 996 threshold = chan->threshold; 997 998 for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) { 999 xfer_count = min_t(size_t, len - offset, 1000 STM32_DMA_ALIGNED_MAX_DATA_ITEMS); 1001 1002 /* Compute best burst size */ 1003 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1004 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST, 1005 threshold, max_width); 1006 dma_burst = stm32_dma_get_burst(chan, best_burst); 1007 1008 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); 1009 desc->sg_req[i].chan_reg.dma_scr = 1010 STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) | 1011 STM32_DMA_SCR_PBURST(dma_burst) | 1012 STM32_DMA_SCR_MBURST(dma_burst) | 1013 STM32_DMA_SCR_MINC | 1014 STM32_DMA_SCR_PINC | 1015 STM32_DMA_SCR_TCIE | 1016 STM32_DMA_SCR_TEIE; 1017 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK; 1018 desc->sg_req[i].chan_reg.dma_sfcr |= 1019 STM32_DMA_SFCR_FTH(threshold); 1020 desc->sg_req[i].chan_reg.dma_spar = src + offset; 1021 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset; 1022 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count; 1023 desc->sg_req[i].len = xfer_count; 1024 } 1025 1026 desc->num_sgs = num_sgs; 1027 desc->cyclic = false; 1028 1029 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); 1030 } 1031 1032 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan) 1033 { 1034 u32 dma_scr, width, ndtr; 1035 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 1036 1037 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 1038 width = STM32_DMA_SCR_PSIZE_GET(dma_scr); 1039 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id)); 1040 1041 return ndtr << width; 1042 } 1043 1044 /** 1045 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred 1046 * @chan: dma channel 1047 * 1048 * This function called when IRQ are disable, checks that the hardware has not 1049 * switched on the next transfer in double buffer mode. The test is done by 1050 * comparing the next_sg memory address with the hardware related register 1051 * (based on CT bit value). 1052 * 1053 * Returns true if expected current transfer is still running or double 1054 * buffer mode is not activated. 1055 */ 1056 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan) 1057 { 1058 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 1059 struct stm32_dma_sg_req *sg_req; 1060 u32 dma_scr, dma_smar, id; 1061 1062 id = chan->id; 1063 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 1064 1065 if (!(dma_scr & STM32_DMA_SCR_DBM)) 1066 return true; 1067 1068 sg_req = &chan->desc->sg_req[chan->next_sg]; 1069 1070 if (dma_scr & STM32_DMA_SCR_CT) { 1071 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)); 1072 return (dma_smar == sg_req->chan_reg.dma_sm0ar); 1073 } 1074 1075 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)); 1076 1077 return (dma_smar == sg_req->chan_reg.dma_sm1ar); 1078 } 1079 1080 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan, 1081 struct stm32_dma_desc *desc, 1082 u32 next_sg) 1083 { 1084 u32 modulo, burst_size; 1085 u32 residue; 1086 u32 n_sg = next_sg; 1087 struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg]; 1088 int i; 1089 1090 /* 1091 * Calculate the residue means compute the descriptors 1092 * information: 1093 * - the sg_req currently transferred 1094 * - the Hardware remaining position in this sg (NDTR bits field). 1095 * 1096 * A race condition may occur if DMA is running in cyclic or double 1097 * buffer mode, since the DMA register are automatically reloaded at end 1098 * of period transfer. The hardware may have switched to the next 1099 * transfer (CT bit updated) just before the position (SxNDTR reg) is 1100 * read. 1101 * In this case the SxNDTR reg could (or not) correspond to the new 1102 * transfer position, and not the expected one. 1103 * The strategy implemented in the stm32 driver is to: 1104 * - read the SxNDTR register 1105 * - crosscheck that hardware is still in current transfer. 1106 * In case of switch, we can assume that the DMA is at the beginning of 1107 * the next transfer. So we approximate the residue in consequence, by 1108 * pointing on the beginning of next transfer. 1109 * 1110 * This race condition doesn't apply for none cyclic mode, as double 1111 * buffer is not used. In such situation registers are updated by the 1112 * software. 1113 */ 1114 1115 residue = stm32_dma_get_remaining_bytes(chan); 1116 1117 if (!stm32_dma_is_current_sg(chan)) { 1118 n_sg++; 1119 if (n_sg == chan->desc->num_sgs) 1120 n_sg = 0; 1121 residue = sg_req->len; 1122 } 1123 1124 /* 1125 * In cyclic mode, for the last period, residue = remaining bytes 1126 * from NDTR, 1127 * else for all other periods in cyclic mode, and in sg mode, 1128 * residue = remaining bytes from NDTR + remaining 1129 * periods/sg to be transferred 1130 */ 1131 if (!chan->desc->cyclic || n_sg != 0) 1132 for (i = n_sg; i < desc->num_sgs; i++) 1133 residue += desc->sg_req[i].len; 1134 1135 if (!chan->mem_burst) 1136 return residue; 1137 1138 burst_size = chan->mem_burst * chan->mem_width; 1139 modulo = residue % burst_size; 1140 if (modulo) 1141 residue = residue - modulo + burst_size; 1142 1143 return residue; 1144 } 1145 1146 static enum dma_status stm32_dma_tx_status(struct dma_chan *c, 1147 dma_cookie_t cookie, 1148 struct dma_tx_state *state) 1149 { 1150 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1151 struct virt_dma_desc *vdesc; 1152 enum dma_status status; 1153 unsigned long flags; 1154 u32 residue = 0; 1155 1156 status = dma_cookie_status(c, cookie, state); 1157 if (status == DMA_COMPLETE || !state) 1158 return status; 1159 1160 spin_lock_irqsave(&chan->vchan.lock, flags); 1161 vdesc = vchan_find_desc(&chan->vchan, cookie); 1162 if (chan->desc && cookie == chan->desc->vdesc.tx.cookie) 1163 residue = stm32_dma_desc_residue(chan, chan->desc, 1164 chan->next_sg); 1165 else if (vdesc) 1166 residue = stm32_dma_desc_residue(chan, 1167 to_stm32_dma_desc(vdesc), 0); 1168 dma_set_residue(state, residue); 1169 1170 spin_unlock_irqrestore(&chan->vchan.lock, flags); 1171 1172 return status; 1173 } 1174 1175 static int stm32_dma_alloc_chan_resources(struct dma_chan *c) 1176 { 1177 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1178 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 1179 int ret; 1180 1181 chan->config_init = false; 1182 1183 ret = pm_runtime_get_sync(dmadev->ddev.dev); 1184 if (ret < 0) 1185 return ret; 1186 1187 ret = stm32_dma_disable_chan(chan); 1188 if (ret < 0) 1189 pm_runtime_put(dmadev->ddev.dev); 1190 1191 return ret; 1192 } 1193 1194 static void stm32_dma_free_chan_resources(struct dma_chan *c) 1195 { 1196 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1197 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 1198 unsigned long flags; 1199 1200 dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id); 1201 1202 if (chan->busy) { 1203 spin_lock_irqsave(&chan->vchan.lock, flags); 1204 stm32_dma_stop(chan); 1205 chan->desc = NULL; 1206 spin_unlock_irqrestore(&chan->vchan.lock, flags); 1207 } 1208 1209 pm_runtime_put(dmadev->ddev.dev); 1210 1211 vchan_free_chan_resources(to_virt_chan(c)); 1212 } 1213 1214 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc) 1215 { 1216 kfree(container_of(vdesc, struct stm32_dma_desc, vdesc)); 1217 } 1218 1219 static void stm32_dma_set_config(struct stm32_dma_chan *chan, 1220 struct stm32_dma_cfg *cfg) 1221 { 1222 stm32_dma_clear_reg(&chan->chan_reg); 1223 1224 chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK; 1225 chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line); 1226 1227 /* Enable Interrupts */ 1228 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE; 1229 1230 chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features); 1231 } 1232 1233 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec, 1234 struct of_dma *ofdma) 1235 { 1236 struct stm32_dma_device *dmadev = ofdma->of_dma_data; 1237 struct device *dev = dmadev->ddev.dev; 1238 struct stm32_dma_cfg cfg; 1239 struct stm32_dma_chan *chan; 1240 struct dma_chan *c; 1241 1242 if (dma_spec->args_count < 4) { 1243 dev_err(dev, "Bad number of cells\n"); 1244 return NULL; 1245 } 1246 1247 cfg.channel_id = dma_spec->args[0]; 1248 cfg.request_line = dma_spec->args[1]; 1249 cfg.stream_config = dma_spec->args[2]; 1250 cfg.features = dma_spec->args[3]; 1251 1252 if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS || 1253 cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) { 1254 dev_err(dev, "Bad channel and/or request id\n"); 1255 return NULL; 1256 } 1257 1258 chan = &dmadev->chan[cfg.channel_id]; 1259 1260 c = dma_get_slave_channel(&chan->vchan.chan); 1261 if (!c) { 1262 dev_err(dev, "No more channels available\n"); 1263 return NULL; 1264 } 1265 1266 stm32_dma_set_config(chan, &cfg); 1267 1268 return c; 1269 } 1270 1271 static const struct of_device_id stm32_dma_of_match[] = { 1272 { .compatible = "st,stm32-dma", }, 1273 { /* sentinel */ }, 1274 }; 1275 MODULE_DEVICE_TABLE(of, stm32_dma_of_match); 1276 1277 static int stm32_dma_probe(struct platform_device *pdev) 1278 { 1279 struct stm32_dma_chan *chan; 1280 struct stm32_dma_device *dmadev; 1281 struct dma_device *dd; 1282 const struct of_device_id *match; 1283 struct resource *res; 1284 int i, ret; 1285 1286 match = of_match_device(stm32_dma_of_match, &pdev->dev); 1287 if (!match) { 1288 dev_err(&pdev->dev, "Error: No device match found\n"); 1289 return -ENODEV; 1290 } 1291 1292 dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL); 1293 if (!dmadev) 1294 return -ENOMEM; 1295 1296 dd = &dmadev->ddev; 1297 1298 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1299 dmadev->base = devm_ioremap_resource(&pdev->dev, res); 1300 if (IS_ERR(dmadev->base)) 1301 return PTR_ERR(dmadev->base); 1302 1303 dmadev->clk = devm_clk_get(&pdev->dev, NULL); 1304 if (IS_ERR(dmadev->clk)) { 1305 dev_err(&pdev->dev, "Error: Missing controller clock\n"); 1306 return PTR_ERR(dmadev->clk); 1307 } 1308 1309 ret = clk_prepare_enable(dmadev->clk); 1310 if (ret < 0) { 1311 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret); 1312 return ret; 1313 } 1314 1315 dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node, 1316 "st,mem2mem"); 1317 1318 dmadev->rst = devm_reset_control_get(&pdev->dev, NULL); 1319 if (!IS_ERR(dmadev->rst)) { 1320 reset_control_assert(dmadev->rst); 1321 udelay(2); 1322 reset_control_deassert(dmadev->rst); 1323 } 1324 1325 dma_cap_set(DMA_SLAVE, dd->cap_mask); 1326 dma_cap_set(DMA_PRIVATE, dd->cap_mask); 1327 dma_cap_set(DMA_CYCLIC, dd->cap_mask); 1328 dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources; 1329 dd->device_free_chan_resources = stm32_dma_free_chan_resources; 1330 dd->device_tx_status = stm32_dma_tx_status; 1331 dd->device_issue_pending = stm32_dma_issue_pending; 1332 dd->device_prep_slave_sg = stm32_dma_prep_slave_sg; 1333 dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic; 1334 dd->device_config = stm32_dma_slave_config; 1335 dd->device_terminate_all = stm32_dma_terminate_all; 1336 dd->device_synchronize = stm32_dma_synchronize; 1337 dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | 1338 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | 1339 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); 1340 dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | 1341 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | 1342 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); 1343 dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1344 dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1345 dd->max_burst = STM32_DMA_MAX_BURST; 1346 dd->dev = &pdev->dev; 1347 INIT_LIST_HEAD(&dd->channels); 1348 1349 if (dmadev->mem2mem) { 1350 dma_cap_set(DMA_MEMCPY, dd->cap_mask); 1351 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy; 1352 dd->directions |= BIT(DMA_MEM_TO_MEM); 1353 } 1354 1355 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) { 1356 chan = &dmadev->chan[i]; 1357 chan->id = i; 1358 chan->vchan.desc_free = stm32_dma_desc_free; 1359 vchan_init(&chan->vchan, dd); 1360 } 1361 1362 ret = dma_async_device_register(dd); 1363 if (ret) 1364 goto clk_free; 1365 1366 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) { 1367 chan = &dmadev->chan[i]; 1368 chan->irq = platform_get_irq(pdev, i); 1369 ret = platform_get_irq(pdev, i); 1370 if (ret < 0) { 1371 if (ret != -EPROBE_DEFER) 1372 dev_err(&pdev->dev, 1373 "No irq resource for chan %d\n", i); 1374 goto err_unregister; 1375 } 1376 chan->irq = ret; 1377 1378 ret = devm_request_irq(&pdev->dev, chan->irq, 1379 stm32_dma_chan_irq, 0, 1380 dev_name(chan2dev(chan)), chan); 1381 if (ret) { 1382 dev_err(&pdev->dev, 1383 "request_irq failed with err %d channel %d\n", 1384 ret, i); 1385 goto err_unregister; 1386 } 1387 } 1388 1389 ret = of_dma_controller_register(pdev->dev.of_node, 1390 stm32_dma_of_xlate, dmadev); 1391 if (ret < 0) { 1392 dev_err(&pdev->dev, 1393 "STM32 DMA DMA OF registration failed %d\n", ret); 1394 goto err_unregister; 1395 } 1396 1397 platform_set_drvdata(pdev, dmadev); 1398 1399 pm_runtime_set_active(&pdev->dev); 1400 pm_runtime_enable(&pdev->dev); 1401 pm_runtime_get_noresume(&pdev->dev); 1402 pm_runtime_put(&pdev->dev); 1403 1404 dev_info(&pdev->dev, "STM32 DMA driver registered\n"); 1405 1406 return 0; 1407 1408 err_unregister: 1409 dma_async_device_unregister(dd); 1410 clk_free: 1411 clk_disable_unprepare(dmadev->clk); 1412 1413 return ret; 1414 } 1415 1416 #ifdef CONFIG_PM 1417 static int stm32_dma_runtime_suspend(struct device *dev) 1418 { 1419 struct stm32_dma_device *dmadev = dev_get_drvdata(dev); 1420 1421 clk_disable_unprepare(dmadev->clk); 1422 1423 return 0; 1424 } 1425 1426 static int stm32_dma_runtime_resume(struct device *dev) 1427 { 1428 struct stm32_dma_device *dmadev = dev_get_drvdata(dev); 1429 int ret; 1430 1431 ret = clk_prepare_enable(dmadev->clk); 1432 if (ret) { 1433 dev_err(dev, "failed to prepare_enable clock\n"); 1434 return ret; 1435 } 1436 1437 return 0; 1438 } 1439 #endif 1440 1441 static const struct dev_pm_ops stm32_dma_pm_ops = { 1442 SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend, 1443 stm32_dma_runtime_resume, NULL) 1444 }; 1445 1446 static struct platform_driver stm32_dma_driver = { 1447 .driver = { 1448 .name = "stm32-dma", 1449 .of_match_table = stm32_dma_of_match, 1450 .pm = &stm32_dma_pm_ops, 1451 }, 1452 }; 1453 1454 static int __init stm32_dma_init(void) 1455 { 1456 return platform_driver_probe(&stm32_dma_driver, stm32_dma_probe); 1457 } 1458 subsys_initcall(stm32_dma_init); 1459