1 /* 2 * Driver for STM32 DMA controller 3 * 4 * Inspired by dma-jz4740.c and tegra20-apb-dma.c 5 * 6 * Copyright (C) M'boumba Cedric Madianga 2015 7 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com> 8 * Pierre-Yves Mordret <pierre-yves.mordret@st.com> 9 * 10 * License terms: GNU General Public License (GPL), version 2 11 */ 12 13 #include <linux/clk.h> 14 #include <linux/delay.h> 15 #include <linux/dmaengine.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/err.h> 18 #include <linux/init.h> 19 #include <linux/jiffies.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/of_dma.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/reset.h> 28 #include <linux/sched.h> 29 #include <linux/slab.h> 30 31 #include "virt-dma.h" 32 33 #define STM32_DMA_LISR 0x0000 /* DMA Low Int Status Reg */ 34 #define STM32_DMA_HISR 0x0004 /* DMA High Int Status Reg */ 35 #define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */ 36 #define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */ 37 #define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */ 38 #define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */ 39 #define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */ 40 #define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */ 41 #define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */ 42 #define STM32_DMA_MASKI (STM32_DMA_TCI \ 43 | STM32_DMA_TEI \ 44 | STM32_DMA_DMEI \ 45 | STM32_DMA_FEI) 46 47 /* DMA Stream x Configuration Register */ 48 #define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */ 49 #define STM32_DMA_SCR_REQ(n) ((n & 0x7) << 25) 50 #define STM32_DMA_SCR_MBURST_MASK GENMASK(24, 23) 51 #define STM32_DMA_SCR_MBURST(n) ((n & 0x3) << 23) 52 #define STM32_DMA_SCR_PBURST_MASK GENMASK(22, 21) 53 #define STM32_DMA_SCR_PBURST(n) ((n & 0x3) << 21) 54 #define STM32_DMA_SCR_PL_MASK GENMASK(17, 16) 55 #define STM32_DMA_SCR_PL(n) ((n & 0x3) << 16) 56 #define STM32_DMA_SCR_MSIZE_MASK GENMASK(14, 13) 57 #define STM32_DMA_SCR_MSIZE(n) ((n & 0x3) << 13) 58 #define STM32_DMA_SCR_PSIZE_MASK GENMASK(12, 11) 59 #define STM32_DMA_SCR_PSIZE(n) ((n & 0x3) << 11) 60 #define STM32_DMA_SCR_PSIZE_GET(n) ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11) 61 #define STM32_DMA_SCR_DIR_MASK GENMASK(7, 6) 62 #define STM32_DMA_SCR_DIR(n) ((n & 0x3) << 6) 63 #define STM32_DMA_SCR_CT BIT(19) /* Target in double buffer */ 64 #define STM32_DMA_SCR_DBM BIT(18) /* Double Buffer Mode */ 65 #define STM32_DMA_SCR_PINCOS BIT(15) /* Peripheral inc offset size */ 66 #define STM32_DMA_SCR_MINC BIT(10) /* Memory increment mode */ 67 #define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */ 68 #define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */ 69 #define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */ 70 #define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable 71 */ 72 #define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */ 73 #define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */ 74 #define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */ 75 #define STM32_DMA_SCR_CFG_MASK (STM32_DMA_SCR_PINC \ 76 | STM32_DMA_SCR_MINC \ 77 | STM32_DMA_SCR_PINCOS \ 78 | STM32_DMA_SCR_PL_MASK) 79 #define STM32_DMA_SCR_IRQ_MASK (STM32_DMA_SCR_TCIE \ 80 | STM32_DMA_SCR_TEIE \ 81 | STM32_DMA_SCR_DMEIE) 82 83 /* DMA Stream x number of data register */ 84 #define STM32_DMA_SNDTR(x) (0x0014 + 0x18 * (x)) 85 86 /* DMA stream peripheral address register */ 87 #define STM32_DMA_SPAR(x) (0x0018 + 0x18 * (x)) 88 89 /* DMA stream x memory 0 address register */ 90 #define STM32_DMA_SM0AR(x) (0x001c + 0x18 * (x)) 91 92 /* DMA stream x memory 1 address register */ 93 #define STM32_DMA_SM1AR(x) (0x0020 + 0x18 * (x)) 94 95 /* DMA stream x FIFO control register */ 96 #define STM32_DMA_SFCR(x) (0x0024 + 0x18 * (x)) 97 #define STM32_DMA_SFCR_FTH_MASK GENMASK(1, 0) 98 #define STM32_DMA_SFCR_FTH(n) (n & STM32_DMA_SFCR_FTH_MASK) 99 #define STM32_DMA_SFCR_FEIE BIT(7) /* FIFO error interrupt enable */ 100 #define STM32_DMA_SFCR_DMDIS BIT(2) /* Direct mode disable */ 101 #define STM32_DMA_SFCR_MASK (STM32_DMA_SFCR_FEIE \ 102 | STM32_DMA_SFCR_DMDIS) 103 104 /* DMA direction */ 105 #define STM32_DMA_DEV_TO_MEM 0x00 106 #define STM32_DMA_MEM_TO_DEV 0x01 107 #define STM32_DMA_MEM_TO_MEM 0x02 108 109 /* DMA priority level */ 110 #define STM32_DMA_PRIORITY_LOW 0x00 111 #define STM32_DMA_PRIORITY_MEDIUM 0x01 112 #define STM32_DMA_PRIORITY_HIGH 0x02 113 #define STM32_DMA_PRIORITY_VERY_HIGH 0x03 114 115 /* DMA FIFO threshold selection */ 116 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL 0x00 117 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL 0x01 118 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL 0x02 119 #define STM32_DMA_FIFO_THRESHOLD_FULL 0x03 120 121 #define STM32_DMA_MAX_DATA_ITEMS 0xffff 122 /* 123 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter 124 * gather at boundary. Thus it's safer to round down this value on FIFO 125 * size (16 Bytes) 126 */ 127 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \ 128 ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16) 129 #define STM32_DMA_MAX_CHANNELS 0x08 130 #define STM32_DMA_MAX_REQUEST_ID 0x08 131 #define STM32_DMA_MAX_DATA_PARAM 0x03 132 #define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */ 133 #define STM32_DMA_MIN_BURST 4 134 #define STM32_DMA_MAX_BURST 16 135 136 /* DMA Features */ 137 #define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0) 138 #define STM32_DMA_THRESHOLD_FTR_GET(n) ((n) & STM32_DMA_THRESHOLD_FTR_MASK) 139 140 enum stm32_dma_width { 141 STM32_DMA_BYTE, 142 STM32_DMA_HALF_WORD, 143 STM32_DMA_WORD, 144 }; 145 146 enum stm32_dma_burst_size { 147 STM32_DMA_BURST_SINGLE, 148 STM32_DMA_BURST_INCR4, 149 STM32_DMA_BURST_INCR8, 150 STM32_DMA_BURST_INCR16, 151 }; 152 153 /** 154 * struct stm32_dma_cfg - STM32 DMA custom configuration 155 * @channel_id: channel ID 156 * @request_line: DMA request 157 * @stream_config: 32bit mask specifying the DMA channel configuration 158 * @features: 32bit mask specifying the DMA Feature list 159 */ 160 struct stm32_dma_cfg { 161 u32 channel_id; 162 u32 request_line; 163 u32 stream_config; 164 u32 features; 165 }; 166 167 struct stm32_dma_chan_reg { 168 u32 dma_lisr; 169 u32 dma_hisr; 170 u32 dma_lifcr; 171 u32 dma_hifcr; 172 u32 dma_scr; 173 u32 dma_sndtr; 174 u32 dma_spar; 175 u32 dma_sm0ar; 176 u32 dma_sm1ar; 177 u32 dma_sfcr; 178 }; 179 180 struct stm32_dma_sg_req { 181 u32 len; 182 struct stm32_dma_chan_reg chan_reg; 183 }; 184 185 struct stm32_dma_desc { 186 struct virt_dma_desc vdesc; 187 bool cyclic; 188 u32 num_sgs; 189 struct stm32_dma_sg_req sg_req[]; 190 }; 191 192 struct stm32_dma_chan { 193 struct virt_dma_chan vchan; 194 bool config_init; 195 bool busy; 196 u32 id; 197 u32 irq; 198 struct stm32_dma_desc *desc; 199 u32 next_sg; 200 struct dma_slave_config dma_sconfig; 201 struct stm32_dma_chan_reg chan_reg; 202 u32 threshold; 203 u32 mem_burst; 204 u32 mem_width; 205 }; 206 207 struct stm32_dma_device { 208 struct dma_device ddev; 209 void __iomem *base; 210 struct clk *clk; 211 struct reset_control *rst; 212 bool mem2mem; 213 struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS]; 214 }; 215 216 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan) 217 { 218 return container_of(chan->vchan.chan.device, struct stm32_dma_device, 219 ddev); 220 } 221 222 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c) 223 { 224 return container_of(c, struct stm32_dma_chan, vchan.chan); 225 } 226 227 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc) 228 { 229 return container_of(vdesc, struct stm32_dma_desc, vdesc); 230 } 231 232 static struct device *chan2dev(struct stm32_dma_chan *chan) 233 { 234 return &chan->vchan.chan.dev->device; 235 } 236 237 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg) 238 { 239 return readl_relaxed(dmadev->base + reg); 240 } 241 242 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val) 243 { 244 writel_relaxed(val, dmadev->base + reg); 245 } 246 247 static struct stm32_dma_desc *stm32_dma_alloc_desc(u32 num_sgs) 248 { 249 return kzalloc(sizeof(struct stm32_dma_desc) + 250 sizeof(struct stm32_dma_sg_req) * num_sgs, GFP_NOWAIT); 251 } 252 253 static int stm32_dma_get_width(struct stm32_dma_chan *chan, 254 enum dma_slave_buswidth width) 255 { 256 switch (width) { 257 case DMA_SLAVE_BUSWIDTH_1_BYTE: 258 return STM32_DMA_BYTE; 259 case DMA_SLAVE_BUSWIDTH_2_BYTES: 260 return STM32_DMA_HALF_WORD; 261 case DMA_SLAVE_BUSWIDTH_4_BYTES: 262 return STM32_DMA_WORD; 263 default: 264 dev_err(chan2dev(chan), "Dma bus width not supported\n"); 265 return -EINVAL; 266 } 267 } 268 269 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len, 270 u32 threshold) 271 { 272 enum dma_slave_buswidth max_width; 273 274 if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL) 275 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 276 else 277 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 278 279 while ((buf_len < max_width || buf_len % max_width) && 280 max_width > DMA_SLAVE_BUSWIDTH_1_BYTE) 281 max_width = max_width >> 1; 282 283 return max_width; 284 } 285 286 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold, 287 enum dma_slave_buswidth width) 288 { 289 u32 remaining; 290 291 if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) { 292 if (burst != 0) { 293 /* 294 * If number of beats fit in several whole bursts 295 * this configuration is allowed. 296 */ 297 remaining = ((STM32_DMA_FIFO_SIZE / width) * 298 (threshold + 1) / 4) % burst; 299 300 if (remaining == 0) 301 return true; 302 } else { 303 return true; 304 } 305 } 306 307 return false; 308 } 309 310 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold) 311 { 312 /* 313 * Buffer or period length has to be aligned on FIFO depth. 314 * Otherwise bytes may be stuck within FIFO at buffer or period 315 * length. 316 */ 317 return ((buf_len % ((threshold + 1) * 4)) == 0); 318 } 319 320 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold, 321 enum dma_slave_buswidth width) 322 { 323 u32 best_burst = max_burst; 324 325 if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold)) 326 return 0; 327 328 while ((buf_len < best_burst * width && best_burst > 1) || 329 !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold, 330 width)) { 331 if (best_burst > STM32_DMA_MIN_BURST) 332 best_burst = best_burst >> 1; 333 else 334 best_burst = 0; 335 } 336 337 return best_burst; 338 } 339 340 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst) 341 { 342 switch (maxburst) { 343 case 0: 344 case 1: 345 return STM32_DMA_BURST_SINGLE; 346 case 4: 347 return STM32_DMA_BURST_INCR4; 348 case 8: 349 return STM32_DMA_BURST_INCR8; 350 case 16: 351 return STM32_DMA_BURST_INCR16; 352 default: 353 dev_err(chan2dev(chan), "Dma burst size not supported\n"); 354 return -EINVAL; 355 } 356 } 357 358 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan, 359 u32 src_burst, u32 dst_burst) 360 { 361 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK; 362 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE; 363 364 if (!src_burst && !dst_burst) { 365 /* Using direct mode */ 366 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE; 367 } else { 368 /* Using FIFO mode */ 369 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK; 370 } 371 } 372 373 static int stm32_dma_slave_config(struct dma_chan *c, 374 struct dma_slave_config *config) 375 { 376 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 377 378 memcpy(&chan->dma_sconfig, config, sizeof(*config)); 379 380 chan->config_init = true; 381 382 return 0; 383 } 384 385 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan) 386 { 387 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 388 u32 flags, dma_isr; 389 390 /* 391 * Read "flags" from DMA_xISR register corresponding to the selected 392 * DMA channel at the correct bit offset inside that register. 393 * 394 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits. 395 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits. 396 */ 397 398 if (chan->id & 4) 399 dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR); 400 else 401 dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR); 402 403 flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6)); 404 405 return flags & STM32_DMA_MASKI; 406 } 407 408 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags) 409 { 410 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 411 u32 dma_ifcr; 412 413 /* 414 * Write "flags" to the DMA_xIFCR register corresponding to the selected 415 * DMA channel at the correct bit offset inside that register. 416 * 417 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits. 418 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits. 419 */ 420 flags &= STM32_DMA_MASKI; 421 dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6)); 422 423 if (chan->id & 4) 424 stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr); 425 else 426 stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr); 427 } 428 429 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan) 430 { 431 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 432 unsigned long timeout = jiffies + msecs_to_jiffies(5000); 433 u32 dma_scr, id; 434 435 id = chan->id; 436 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 437 438 if (dma_scr & STM32_DMA_SCR_EN) { 439 dma_scr &= ~STM32_DMA_SCR_EN; 440 stm32_dma_write(dmadev, STM32_DMA_SCR(id), dma_scr); 441 442 do { 443 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 444 dma_scr &= STM32_DMA_SCR_EN; 445 if (!dma_scr) 446 break; 447 448 if (time_after_eq(jiffies, timeout)) { 449 dev_err(chan2dev(chan), "%s: timeout!\n", 450 __func__); 451 return -EBUSY; 452 } 453 cond_resched(); 454 } while (1); 455 } 456 457 return 0; 458 } 459 460 static void stm32_dma_stop(struct stm32_dma_chan *chan) 461 { 462 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 463 u32 dma_scr, dma_sfcr, status; 464 int ret; 465 466 /* Disable interrupts */ 467 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 468 dma_scr &= ~STM32_DMA_SCR_IRQ_MASK; 469 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr); 470 dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); 471 dma_sfcr &= ~STM32_DMA_SFCR_FEIE; 472 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr); 473 474 /* Disable DMA */ 475 ret = stm32_dma_disable_chan(chan); 476 if (ret < 0) 477 return; 478 479 /* Clear interrupt status if it is there */ 480 status = stm32_dma_irq_status(chan); 481 if (status) { 482 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n", 483 __func__, status); 484 stm32_dma_irq_clear(chan, status); 485 } 486 487 chan->busy = false; 488 } 489 490 static int stm32_dma_terminate_all(struct dma_chan *c) 491 { 492 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 493 unsigned long flags; 494 LIST_HEAD(head); 495 496 spin_lock_irqsave(&chan->vchan.lock, flags); 497 498 if (chan->busy) { 499 stm32_dma_stop(chan); 500 chan->desc = NULL; 501 } 502 503 vchan_get_all_descriptors(&chan->vchan, &head); 504 spin_unlock_irqrestore(&chan->vchan.lock, flags); 505 vchan_dma_desc_free_list(&chan->vchan, &head); 506 507 return 0; 508 } 509 510 static void stm32_dma_synchronize(struct dma_chan *c) 511 { 512 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 513 514 vchan_synchronize(&chan->vchan); 515 } 516 517 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan) 518 { 519 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 520 u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 521 u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id)); 522 u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id)); 523 u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id)); 524 u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id)); 525 u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); 526 527 dev_dbg(chan2dev(chan), "SCR: 0x%08x\n", scr); 528 dev_dbg(chan2dev(chan), "NDTR: 0x%08x\n", ndtr); 529 dev_dbg(chan2dev(chan), "SPAR: 0x%08x\n", spar); 530 dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar); 531 dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar); 532 dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n", sfcr); 533 } 534 535 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan); 536 537 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan) 538 { 539 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 540 struct virt_dma_desc *vdesc; 541 struct stm32_dma_sg_req *sg_req; 542 struct stm32_dma_chan_reg *reg; 543 u32 status; 544 int ret; 545 546 ret = stm32_dma_disable_chan(chan); 547 if (ret < 0) 548 return; 549 550 if (!chan->desc) { 551 vdesc = vchan_next_desc(&chan->vchan); 552 if (!vdesc) 553 return; 554 555 chan->desc = to_stm32_dma_desc(vdesc); 556 chan->next_sg = 0; 557 } 558 559 if (chan->next_sg == chan->desc->num_sgs) 560 chan->next_sg = 0; 561 562 sg_req = &chan->desc->sg_req[chan->next_sg]; 563 reg = &sg_req->chan_reg; 564 565 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr); 566 stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar); 567 stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar); 568 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr); 569 stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar); 570 stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr); 571 572 chan->next_sg++; 573 574 /* Clear interrupt status if it is there */ 575 status = stm32_dma_irq_status(chan); 576 if (status) 577 stm32_dma_irq_clear(chan, status); 578 579 if (chan->desc->cyclic) 580 stm32_dma_configure_next_sg(chan); 581 582 stm32_dma_dump_reg(chan); 583 584 /* Start DMA */ 585 reg->dma_scr |= STM32_DMA_SCR_EN; 586 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr); 587 588 chan->busy = true; 589 590 dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan); 591 } 592 593 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan) 594 { 595 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 596 struct stm32_dma_sg_req *sg_req; 597 u32 dma_scr, dma_sm0ar, dma_sm1ar, id; 598 599 id = chan->id; 600 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 601 602 if (dma_scr & STM32_DMA_SCR_DBM) { 603 if (chan->next_sg == chan->desc->num_sgs) 604 chan->next_sg = 0; 605 606 sg_req = &chan->desc->sg_req[chan->next_sg]; 607 608 if (dma_scr & STM32_DMA_SCR_CT) { 609 dma_sm0ar = sg_req->chan_reg.dma_sm0ar; 610 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar); 611 dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n", 612 stm32_dma_read(dmadev, STM32_DMA_SM0AR(id))); 613 } else { 614 dma_sm1ar = sg_req->chan_reg.dma_sm1ar; 615 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar); 616 dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n", 617 stm32_dma_read(dmadev, STM32_DMA_SM1AR(id))); 618 } 619 } 620 } 621 622 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan) 623 { 624 if (chan->desc) { 625 if (chan->desc->cyclic) { 626 vchan_cyclic_callback(&chan->desc->vdesc); 627 chan->next_sg++; 628 stm32_dma_configure_next_sg(chan); 629 } else { 630 chan->busy = false; 631 if (chan->next_sg == chan->desc->num_sgs) { 632 list_del(&chan->desc->vdesc.node); 633 vchan_cookie_complete(&chan->desc->vdesc); 634 chan->desc = NULL; 635 } 636 stm32_dma_start_transfer(chan); 637 } 638 } 639 } 640 641 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid) 642 { 643 struct stm32_dma_chan *chan = devid; 644 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 645 u32 status, scr, sfcr; 646 647 spin_lock(&chan->vchan.lock); 648 649 status = stm32_dma_irq_status(chan); 650 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 651 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); 652 653 if (status & STM32_DMA_TCI) { 654 stm32_dma_irq_clear(chan, STM32_DMA_TCI); 655 if (scr & STM32_DMA_SCR_TCIE) 656 stm32_dma_handle_chan_done(chan); 657 status &= ~STM32_DMA_TCI; 658 } 659 if (status & STM32_DMA_HTI) { 660 stm32_dma_irq_clear(chan, STM32_DMA_HTI); 661 status &= ~STM32_DMA_HTI; 662 } 663 if (status & STM32_DMA_FEI) { 664 stm32_dma_irq_clear(chan, STM32_DMA_FEI); 665 status &= ~STM32_DMA_FEI; 666 if (sfcr & STM32_DMA_SFCR_FEIE) { 667 if (!(scr & STM32_DMA_SCR_EN)) 668 dev_err(chan2dev(chan), "FIFO Error\n"); 669 else 670 dev_dbg(chan2dev(chan), "FIFO over/underrun\n"); 671 } 672 } 673 if (status) { 674 stm32_dma_irq_clear(chan, status); 675 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status); 676 if (!(scr & STM32_DMA_SCR_EN)) 677 dev_err(chan2dev(chan), "chan disabled by HW\n"); 678 } 679 680 spin_unlock(&chan->vchan.lock); 681 682 return IRQ_HANDLED; 683 } 684 685 static void stm32_dma_issue_pending(struct dma_chan *c) 686 { 687 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 688 unsigned long flags; 689 690 spin_lock_irqsave(&chan->vchan.lock, flags); 691 if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) { 692 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan); 693 stm32_dma_start_transfer(chan); 694 695 } 696 spin_unlock_irqrestore(&chan->vchan.lock, flags); 697 } 698 699 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan, 700 enum dma_transfer_direction direction, 701 enum dma_slave_buswidth *buswidth, 702 u32 buf_len) 703 { 704 enum dma_slave_buswidth src_addr_width, dst_addr_width; 705 int src_bus_width, dst_bus_width; 706 int src_burst_size, dst_burst_size; 707 u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst; 708 u32 dma_scr, threshold; 709 710 src_addr_width = chan->dma_sconfig.src_addr_width; 711 dst_addr_width = chan->dma_sconfig.dst_addr_width; 712 src_maxburst = chan->dma_sconfig.src_maxburst; 713 dst_maxburst = chan->dma_sconfig.dst_maxburst; 714 threshold = chan->threshold; 715 716 switch (direction) { 717 case DMA_MEM_TO_DEV: 718 /* Set device data size */ 719 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width); 720 if (dst_bus_width < 0) 721 return dst_bus_width; 722 723 /* Set device burst size */ 724 dst_best_burst = stm32_dma_get_best_burst(buf_len, 725 dst_maxburst, 726 threshold, 727 dst_addr_width); 728 729 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst); 730 if (dst_burst_size < 0) 731 return dst_burst_size; 732 733 /* Set memory data size */ 734 src_addr_width = stm32_dma_get_max_width(buf_len, threshold); 735 chan->mem_width = src_addr_width; 736 src_bus_width = stm32_dma_get_width(chan, src_addr_width); 737 if (src_bus_width < 0) 738 return src_bus_width; 739 740 /* Set memory burst size */ 741 src_maxburst = STM32_DMA_MAX_BURST; 742 src_best_burst = stm32_dma_get_best_burst(buf_len, 743 src_maxburst, 744 threshold, 745 src_addr_width); 746 src_burst_size = stm32_dma_get_burst(chan, src_best_burst); 747 if (src_burst_size < 0) 748 return src_burst_size; 749 750 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) | 751 STM32_DMA_SCR_PSIZE(dst_bus_width) | 752 STM32_DMA_SCR_MSIZE(src_bus_width) | 753 STM32_DMA_SCR_PBURST(dst_burst_size) | 754 STM32_DMA_SCR_MBURST(src_burst_size); 755 756 /* Set FIFO threshold */ 757 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK; 758 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold); 759 760 /* Set peripheral address */ 761 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr; 762 *buswidth = dst_addr_width; 763 break; 764 765 case DMA_DEV_TO_MEM: 766 /* Set device data size */ 767 src_bus_width = stm32_dma_get_width(chan, src_addr_width); 768 if (src_bus_width < 0) 769 return src_bus_width; 770 771 /* Set device burst size */ 772 src_best_burst = stm32_dma_get_best_burst(buf_len, 773 src_maxburst, 774 threshold, 775 src_addr_width); 776 chan->mem_burst = src_best_burst; 777 src_burst_size = stm32_dma_get_burst(chan, src_best_burst); 778 if (src_burst_size < 0) 779 return src_burst_size; 780 781 /* Set memory data size */ 782 dst_addr_width = stm32_dma_get_max_width(buf_len, threshold); 783 chan->mem_width = dst_addr_width; 784 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width); 785 if (dst_bus_width < 0) 786 return dst_bus_width; 787 788 /* Set memory burst size */ 789 dst_maxburst = STM32_DMA_MAX_BURST; 790 dst_best_burst = stm32_dma_get_best_burst(buf_len, 791 dst_maxburst, 792 threshold, 793 dst_addr_width); 794 chan->mem_burst = dst_best_burst; 795 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst); 796 if (dst_burst_size < 0) 797 return dst_burst_size; 798 799 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) | 800 STM32_DMA_SCR_PSIZE(src_bus_width) | 801 STM32_DMA_SCR_MSIZE(dst_bus_width) | 802 STM32_DMA_SCR_PBURST(src_burst_size) | 803 STM32_DMA_SCR_MBURST(dst_burst_size); 804 805 /* Set FIFO threshold */ 806 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK; 807 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold); 808 809 /* Set peripheral address */ 810 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr; 811 *buswidth = chan->dma_sconfig.src_addr_width; 812 break; 813 814 default: 815 dev_err(chan2dev(chan), "Dma direction is not supported\n"); 816 return -EINVAL; 817 } 818 819 stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst); 820 821 /* Set DMA control register */ 822 chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK | 823 STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK | 824 STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK); 825 chan->chan_reg.dma_scr |= dma_scr; 826 827 return 0; 828 } 829 830 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs) 831 { 832 memset(regs, 0, sizeof(struct stm32_dma_chan_reg)); 833 } 834 835 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg( 836 struct dma_chan *c, struct scatterlist *sgl, 837 u32 sg_len, enum dma_transfer_direction direction, 838 unsigned long flags, void *context) 839 { 840 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 841 struct stm32_dma_desc *desc; 842 struct scatterlist *sg; 843 enum dma_slave_buswidth buswidth; 844 u32 nb_data_items; 845 int i, ret; 846 847 if (!chan->config_init) { 848 dev_err(chan2dev(chan), "dma channel is not configured\n"); 849 return NULL; 850 } 851 852 if (sg_len < 1) { 853 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len); 854 return NULL; 855 } 856 857 desc = stm32_dma_alloc_desc(sg_len); 858 if (!desc) 859 return NULL; 860 861 /* Set peripheral flow controller */ 862 if (chan->dma_sconfig.device_fc) 863 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL; 864 else 865 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL; 866 867 for_each_sg(sgl, sg, sg_len, i) { 868 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, 869 sg_dma_len(sg)); 870 if (ret < 0) 871 goto err; 872 873 desc->sg_req[i].len = sg_dma_len(sg); 874 875 nb_data_items = desc->sg_req[i].len / buswidth; 876 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) { 877 dev_err(chan2dev(chan), "nb items not supported\n"); 878 goto err; 879 } 880 881 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); 882 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr; 883 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr; 884 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar; 885 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg); 886 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg); 887 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items; 888 } 889 890 desc->num_sgs = sg_len; 891 desc->cyclic = false; 892 893 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); 894 895 err: 896 kfree(desc); 897 return NULL; 898 } 899 900 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic( 901 struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len, 902 size_t period_len, enum dma_transfer_direction direction, 903 unsigned long flags) 904 { 905 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 906 struct stm32_dma_desc *desc; 907 enum dma_slave_buswidth buswidth; 908 u32 num_periods, nb_data_items; 909 int i, ret; 910 911 if (!buf_len || !period_len) { 912 dev_err(chan2dev(chan), "Invalid buffer/period len\n"); 913 return NULL; 914 } 915 916 if (!chan->config_init) { 917 dev_err(chan2dev(chan), "dma channel is not configured\n"); 918 return NULL; 919 } 920 921 if (buf_len % period_len) { 922 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n"); 923 return NULL; 924 } 925 926 /* 927 * We allow to take more number of requests till DMA is 928 * not started. The driver will loop over all requests. 929 * Once DMA is started then new requests can be queued only after 930 * terminating the DMA. 931 */ 932 if (chan->busy) { 933 dev_err(chan2dev(chan), "Request not allowed when dma busy\n"); 934 return NULL; 935 } 936 937 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len); 938 if (ret < 0) 939 return NULL; 940 941 nb_data_items = period_len / buswidth; 942 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) { 943 dev_err(chan2dev(chan), "number of items not supported\n"); 944 return NULL; 945 } 946 947 /* Enable Circular mode or double buffer mode */ 948 if (buf_len == period_len) 949 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC; 950 else 951 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM; 952 953 /* Clear periph ctrl if client set it */ 954 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL; 955 956 num_periods = buf_len / period_len; 957 958 desc = stm32_dma_alloc_desc(num_periods); 959 if (!desc) 960 return NULL; 961 962 for (i = 0; i < num_periods; i++) { 963 desc->sg_req[i].len = period_len; 964 965 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); 966 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr; 967 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr; 968 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar; 969 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr; 970 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr; 971 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items; 972 buf_addr += period_len; 973 } 974 975 desc->num_sgs = num_periods; 976 desc->cyclic = true; 977 978 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); 979 } 980 981 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy( 982 struct dma_chan *c, dma_addr_t dest, 983 dma_addr_t src, size_t len, unsigned long flags) 984 { 985 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 986 enum dma_slave_buswidth max_width; 987 struct stm32_dma_desc *desc; 988 size_t xfer_count, offset; 989 u32 num_sgs, best_burst, dma_burst, threshold; 990 int i; 991 992 num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS); 993 desc = stm32_dma_alloc_desc(num_sgs); 994 if (!desc) 995 return NULL; 996 997 threshold = chan->threshold; 998 999 for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) { 1000 xfer_count = min_t(size_t, len - offset, 1001 STM32_DMA_ALIGNED_MAX_DATA_ITEMS); 1002 1003 /* Compute best burst size */ 1004 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1005 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST, 1006 threshold, max_width); 1007 dma_burst = stm32_dma_get_burst(chan, best_burst); 1008 1009 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); 1010 desc->sg_req[i].chan_reg.dma_scr = 1011 STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) | 1012 STM32_DMA_SCR_PBURST(dma_burst) | 1013 STM32_DMA_SCR_MBURST(dma_burst) | 1014 STM32_DMA_SCR_MINC | 1015 STM32_DMA_SCR_PINC | 1016 STM32_DMA_SCR_TCIE | 1017 STM32_DMA_SCR_TEIE; 1018 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK; 1019 desc->sg_req[i].chan_reg.dma_sfcr |= 1020 STM32_DMA_SFCR_FTH(threshold); 1021 desc->sg_req[i].chan_reg.dma_spar = src + offset; 1022 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset; 1023 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count; 1024 desc->sg_req[i].len = xfer_count; 1025 } 1026 1027 desc->num_sgs = num_sgs; 1028 desc->cyclic = false; 1029 1030 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); 1031 } 1032 1033 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan) 1034 { 1035 u32 dma_scr, width, ndtr; 1036 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 1037 1038 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 1039 width = STM32_DMA_SCR_PSIZE_GET(dma_scr); 1040 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id)); 1041 1042 return ndtr << width; 1043 } 1044 1045 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan, 1046 struct stm32_dma_desc *desc, 1047 u32 next_sg) 1048 { 1049 u32 modulo, burst_size; 1050 u32 residue = 0; 1051 int i; 1052 1053 /* 1054 * In cyclic mode, for the last period, residue = remaining bytes from 1055 * NDTR 1056 */ 1057 if (chan->desc->cyclic && next_sg == 0) { 1058 residue = stm32_dma_get_remaining_bytes(chan); 1059 goto end; 1060 } 1061 1062 /* 1063 * For all other periods in cyclic mode, and in sg mode, 1064 * residue = remaining bytes from NDTR + remaining periods/sg to be 1065 * transferred 1066 */ 1067 for (i = next_sg; i < desc->num_sgs; i++) 1068 residue += desc->sg_req[i].len; 1069 residue += stm32_dma_get_remaining_bytes(chan); 1070 1071 end: 1072 if (!chan->mem_burst) 1073 return residue; 1074 1075 burst_size = chan->mem_burst * chan->mem_width; 1076 modulo = residue % burst_size; 1077 if (modulo) 1078 residue = residue - modulo + burst_size; 1079 1080 return residue; 1081 } 1082 1083 static enum dma_status stm32_dma_tx_status(struct dma_chan *c, 1084 dma_cookie_t cookie, 1085 struct dma_tx_state *state) 1086 { 1087 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1088 struct virt_dma_desc *vdesc; 1089 enum dma_status status; 1090 unsigned long flags; 1091 u32 residue = 0; 1092 1093 status = dma_cookie_status(c, cookie, state); 1094 if (status == DMA_COMPLETE || !state) 1095 return status; 1096 1097 spin_lock_irqsave(&chan->vchan.lock, flags); 1098 vdesc = vchan_find_desc(&chan->vchan, cookie); 1099 if (chan->desc && cookie == chan->desc->vdesc.tx.cookie) 1100 residue = stm32_dma_desc_residue(chan, chan->desc, 1101 chan->next_sg); 1102 else if (vdesc) 1103 residue = stm32_dma_desc_residue(chan, 1104 to_stm32_dma_desc(vdesc), 0); 1105 dma_set_residue(state, residue); 1106 1107 spin_unlock_irqrestore(&chan->vchan.lock, flags); 1108 1109 return status; 1110 } 1111 1112 static int stm32_dma_alloc_chan_resources(struct dma_chan *c) 1113 { 1114 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1115 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 1116 int ret; 1117 1118 chan->config_init = false; 1119 1120 ret = pm_runtime_get_sync(dmadev->ddev.dev); 1121 if (ret < 0) 1122 return ret; 1123 1124 ret = stm32_dma_disable_chan(chan); 1125 if (ret < 0) 1126 pm_runtime_put(dmadev->ddev.dev); 1127 1128 return ret; 1129 } 1130 1131 static void stm32_dma_free_chan_resources(struct dma_chan *c) 1132 { 1133 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1134 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 1135 unsigned long flags; 1136 1137 dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id); 1138 1139 if (chan->busy) { 1140 spin_lock_irqsave(&chan->vchan.lock, flags); 1141 stm32_dma_stop(chan); 1142 chan->desc = NULL; 1143 spin_unlock_irqrestore(&chan->vchan.lock, flags); 1144 } 1145 1146 pm_runtime_put(dmadev->ddev.dev); 1147 1148 vchan_free_chan_resources(to_virt_chan(c)); 1149 } 1150 1151 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc) 1152 { 1153 kfree(container_of(vdesc, struct stm32_dma_desc, vdesc)); 1154 } 1155 1156 static void stm32_dma_set_config(struct stm32_dma_chan *chan, 1157 struct stm32_dma_cfg *cfg) 1158 { 1159 stm32_dma_clear_reg(&chan->chan_reg); 1160 1161 chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK; 1162 chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line); 1163 1164 /* Enable Interrupts */ 1165 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE; 1166 1167 chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features); 1168 } 1169 1170 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec, 1171 struct of_dma *ofdma) 1172 { 1173 struct stm32_dma_device *dmadev = ofdma->of_dma_data; 1174 struct device *dev = dmadev->ddev.dev; 1175 struct stm32_dma_cfg cfg; 1176 struct stm32_dma_chan *chan; 1177 struct dma_chan *c; 1178 1179 if (dma_spec->args_count < 4) { 1180 dev_err(dev, "Bad number of cells\n"); 1181 return NULL; 1182 } 1183 1184 cfg.channel_id = dma_spec->args[0]; 1185 cfg.request_line = dma_spec->args[1]; 1186 cfg.stream_config = dma_spec->args[2]; 1187 cfg.features = dma_spec->args[3]; 1188 1189 if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS || 1190 cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) { 1191 dev_err(dev, "Bad channel and/or request id\n"); 1192 return NULL; 1193 } 1194 1195 chan = &dmadev->chan[cfg.channel_id]; 1196 1197 c = dma_get_slave_channel(&chan->vchan.chan); 1198 if (!c) { 1199 dev_err(dev, "No more channels available\n"); 1200 return NULL; 1201 } 1202 1203 stm32_dma_set_config(chan, &cfg); 1204 1205 return c; 1206 } 1207 1208 static const struct of_device_id stm32_dma_of_match[] = { 1209 { .compatible = "st,stm32-dma", }, 1210 { /* sentinel */ }, 1211 }; 1212 MODULE_DEVICE_TABLE(of, stm32_dma_of_match); 1213 1214 static int stm32_dma_probe(struct platform_device *pdev) 1215 { 1216 struct stm32_dma_chan *chan; 1217 struct stm32_dma_device *dmadev; 1218 struct dma_device *dd; 1219 const struct of_device_id *match; 1220 struct resource *res; 1221 int i, ret; 1222 1223 match = of_match_device(stm32_dma_of_match, &pdev->dev); 1224 if (!match) { 1225 dev_err(&pdev->dev, "Error: No device match found\n"); 1226 return -ENODEV; 1227 } 1228 1229 dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL); 1230 if (!dmadev) 1231 return -ENOMEM; 1232 1233 dd = &dmadev->ddev; 1234 1235 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1236 dmadev->base = devm_ioremap_resource(&pdev->dev, res); 1237 if (IS_ERR(dmadev->base)) 1238 return PTR_ERR(dmadev->base); 1239 1240 dmadev->clk = devm_clk_get(&pdev->dev, NULL); 1241 if (IS_ERR(dmadev->clk)) { 1242 dev_err(&pdev->dev, "Error: Missing controller clock\n"); 1243 return PTR_ERR(dmadev->clk); 1244 } 1245 1246 ret = clk_prepare_enable(dmadev->clk); 1247 if (ret < 0) { 1248 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret); 1249 return ret; 1250 } 1251 1252 dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node, 1253 "st,mem2mem"); 1254 1255 dmadev->rst = devm_reset_control_get(&pdev->dev, NULL); 1256 if (!IS_ERR(dmadev->rst)) { 1257 reset_control_assert(dmadev->rst); 1258 udelay(2); 1259 reset_control_deassert(dmadev->rst); 1260 } 1261 1262 dma_cap_set(DMA_SLAVE, dd->cap_mask); 1263 dma_cap_set(DMA_PRIVATE, dd->cap_mask); 1264 dma_cap_set(DMA_CYCLIC, dd->cap_mask); 1265 dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources; 1266 dd->device_free_chan_resources = stm32_dma_free_chan_resources; 1267 dd->device_tx_status = stm32_dma_tx_status; 1268 dd->device_issue_pending = stm32_dma_issue_pending; 1269 dd->device_prep_slave_sg = stm32_dma_prep_slave_sg; 1270 dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic; 1271 dd->device_config = stm32_dma_slave_config; 1272 dd->device_terminate_all = stm32_dma_terminate_all; 1273 dd->device_synchronize = stm32_dma_synchronize; 1274 dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | 1275 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | 1276 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); 1277 dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | 1278 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | 1279 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); 1280 dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1281 dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1282 dd->max_burst = STM32_DMA_MAX_BURST; 1283 dd->dev = &pdev->dev; 1284 INIT_LIST_HEAD(&dd->channels); 1285 1286 if (dmadev->mem2mem) { 1287 dma_cap_set(DMA_MEMCPY, dd->cap_mask); 1288 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy; 1289 dd->directions |= BIT(DMA_MEM_TO_MEM); 1290 } 1291 1292 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) { 1293 chan = &dmadev->chan[i]; 1294 chan->id = i; 1295 chan->vchan.desc_free = stm32_dma_desc_free; 1296 vchan_init(&chan->vchan, dd); 1297 } 1298 1299 ret = dma_async_device_register(dd); 1300 if (ret) 1301 goto clk_free; 1302 1303 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) { 1304 chan = &dmadev->chan[i]; 1305 res = platform_get_resource(pdev, IORESOURCE_IRQ, i); 1306 if (!res) { 1307 ret = -EINVAL; 1308 dev_err(&pdev->dev, "No irq resource for chan %d\n", i); 1309 goto err_unregister; 1310 } 1311 chan->irq = res->start; 1312 ret = devm_request_irq(&pdev->dev, chan->irq, 1313 stm32_dma_chan_irq, 0, 1314 dev_name(chan2dev(chan)), chan); 1315 if (ret) { 1316 dev_err(&pdev->dev, 1317 "request_irq failed with err %d channel %d\n", 1318 ret, i); 1319 goto err_unregister; 1320 } 1321 } 1322 1323 ret = of_dma_controller_register(pdev->dev.of_node, 1324 stm32_dma_of_xlate, dmadev); 1325 if (ret < 0) { 1326 dev_err(&pdev->dev, 1327 "STM32 DMA DMA OF registration failed %d\n", ret); 1328 goto err_unregister; 1329 } 1330 1331 platform_set_drvdata(pdev, dmadev); 1332 1333 pm_runtime_set_active(&pdev->dev); 1334 pm_runtime_enable(&pdev->dev); 1335 pm_runtime_get_noresume(&pdev->dev); 1336 pm_runtime_put(&pdev->dev); 1337 1338 dev_info(&pdev->dev, "STM32 DMA driver registered\n"); 1339 1340 return 0; 1341 1342 err_unregister: 1343 dma_async_device_unregister(dd); 1344 clk_free: 1345 clk_disable_unprepare(dmadev->clk); 1346 1347 return ret; 1348 } 1349 1350 #ifdef CONFIG_PM 1351 static int stm32_dma_runtime_suspend(struct device *dev) 1352 { 1353 struct stm32_dma_device *dmadev = dev_get_drvdata(dev); 1354 1355 clk_disable_unprepare(dmadev->clk); 1356 1357 return 0; 1358 } 1359 1360 static int stm32_dma_runtime_resume(struct device *dev) 1361 { 1362 struct stm32_dma_device *dmadev = dev_get_drvdata(dev); 1363 int ret; 1364 1365 ret = clk_prepare_enable(dmadev->clk); 1366 if (ret) { 1367 dev_err(dev, "failed to prepare_enable clock\n"); 1368 return ret; 1369 } 1370 1371 return 0; 1372 } 1373 #endif 1374 1375 static const struct dev_pm_ops stm32_dma_pm_ops = { 1376 SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend, 1377 stm32_dma_runtime_resume, NULL) 1378 }; 1379 1380 static struct platform_driver stm32_dma_driver = { 1381 .driver = { 1382 .name = "stm32-dma", 1383 .of_match_table = stm32_dma_of_match, 1384 .pm = &stm32_dma_pm_ops, 1385 }, 1386 }; 1387 1388 static int __init stm32_dma_init(void) 1389 { 1390 return platform_driver_probe(&stm32_dma_driver, stm32_dma_probe); 1391 } 1392 subsys_initcall(stm32_dma_init); 1393