1 /* 2 * Driver for STM32 DMA controller 3 * 4 * Inspired by dma-jz4740.c and tegra20-apb-dma.c 5 * 6 * Copyright (C) M'boumba Cedric Madianga 2015 7 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com> 8 * Pierre-Yves Mordret <pierre-yves.mordret@st.com> 9 * 10 * License terms: GNU General Public License (GPL), version 2 11 */ 12 13 #include <linux/clk.h> 14 #include <linux/delay.h> 15 #include <linux/dmaengine.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/err.h> 18 #include <linux/init.h> 19 #include <linux/jiffies.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/of_dma.h> 25 #include <linux/platform_device.h> 26 #include <linux/reset.h> 27 #include <linux/sched.h> 28 #include <linux/slab.h> 29 30 #include "virt-dma.h" 31 32 #define STM32_DMA_LISR 0x0000 /* DMA Low Int Status Reg */ 33 #define STM32_DMA_HISR 0x0004 /* DMA High Int Status Reg */ 34 #define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */ 35 #define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */ 36 #define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */ 37 #define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */ 38 #define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */ 39 #define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */ 40 #define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */ 41 #define STM32_DMA_MASKI (STM32_DMA_TCI \ 42 | STM32_DMA_TEI \ 43 | STM32_DMA_DMEI \ 44 | STM32_DMA_FEI) 45 46 /* DMA Stream x Configuration Register */ 47 #define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */ 48 #define STM32_DMA_SCR_REQ(n) ((n & 0x7) << 25) 49 #define STM32_DMA_SCR_MBURST_MASK GENMASK(24, 23) 50 #define STM32_DMA_SCR_MBURST(n) ((n & 0x3) << 23) 51 #define STM32_DMA_SCR_PBURST_MASK GENMASK(22, 21) 52 #define STM32_DMA_SCR_PBURST(n) ((n & 0x3) << 21) 53 #define STM32_DMA_SCR_PL_MASK GENMASK(17, 16) 54 #define STM32_DMA_SCR_PL(n) ((n & 0x3) << 16) 55 #define STM32_DMA_SCR_MSIZE_MASK GENMASK(14, 13) 56 #define STM32_DMA_SCR_MSIZE(n) ((n & 0x3) << 13) 57 #define STM32_DMA_SCR_PSIZE_MASK GENMASK(12, 11) 58 #define STM32_DMA_SCR_PSIZE(n) ((n & 0x3) << 11) 59 #define STM32_DMA_SCR_PSIZE_GET(n) ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11) 60 #define STM32_DMA_SCR_DIR_MASK GENMASK(7, 6) 61 #define STM32_DMA_SCR_DIR(n) ((n & 0x3) << 6) 62 #define STM32_DMA_SCR_CT BIT(19) /* Target in double buffer */ 63 #define STM32_DMA_SCR_DBM BIT(18) /* Double Buffer Mode */ 64 #define STM32_DMA_SCR_PINCOS BIT(15) /* Peripheral inc offset size */ 65 #define STM32_DMA_SCR_MINC BIT(10) /* Memory increment mode */ 66 #define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */ 67 #define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */ 68 #define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */ 69 #define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable 70 */ 71 #define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */ 72 #define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */ 73 #define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */ 74 #define STM32_DMA_SCR_CFG_MASK (STM32_DMA_SCR_PINC \ 75 | STM32_DMA_SCR_MINC \ 76 | STM32_DMA_SCR_PINCOS \ 77 | STM32_DMA_SCR_PL_MASK) 78 #define STM32_DMA_SCR_IRQ_MASK (STM32_DMA_SCR_TCIE \ 79 | STM32_DMA_SCR_TEIE \ 80 | STM32_DMA_SCR_DMEIE) 81 82 /* DMA Stream x number of data register */ 83 #define STM32_DMA_SNDTR(x) (0x0014 + 0x18 * (x)) 84 85 /* DMA stream peripheral address register */ 86 #define STM32_DMA_SPAR(x) (0x0018 + 0x18 * (x)) 87 88 /* DMA stream x memory 0 address register */ 89 #define STM32_DMA_SM0AR(x) (0x001c + 0x18 * (x)) 90 91 /* DMA stream x memory 1 address register */ 92 #define STM32_DMA_SM1AR(x) (0x0020 + 0x18 * (x)) 93 94 /* DMA stream x FIFO control register */ 95 #define STM32_DMA_SFCR(x) (0x0024 + 0x18 * (x)) 96 #define STM32_DMA_SFCR_FTH_MASK GENMASK(1, 0) 97 #define STM32_DMA_SFCR_FTH(n) (n & STM32_DMA_SFCR_FTH_MASK) 98 #define STM32_DMA_SFCR_FEIE BIT(7) /* FIFO error interrupt enable */ 99 #define STM32_DMA_SFCR_DMDIS BIT(2) /* Direct mode disable */ 100 #define STM32_DMA_SFCR_MASK (STM32_DMA_SFCR_FEIE \ 101 | STM32_DMA_SFCR_DMDIS) 102 103 /* DMA direction */ 104 #define STM32_DMA_DEV_TO_MEM 0x00 105 #define STM32_DMA_MEM_TO_DEV 0x01 106 #define STM32_DMA_MEM_TO_MEM 0x02 107 108 /* DMA priority level */ 109 #define STM32_DMA_PRIORITY_LOW 0x00 110 #define STM32_DMA_PRIORITY_MEDIUM 0x01 111 #define STM32_DMA_PRIORITY_HIGH 0x02 112 #define STM32_DMA_PRIORITY_VERY_HIGH 0x03 113 114 /* DMA FIFO threshold selection */ 115 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL 0x00 116 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL 0x01 117 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL 0x02 118 #define STM32_DMA_FIFO_THRESHOLD_FULL 0x03 119 120 #define STM32_DMA_MAX_DATA_ITEMS 0xffff 121 /* 122 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter 123 * gather at boundary. Thus it's safer to round down this value on FIFO 124 * size (16 Bytes) 125 */ 126 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \ 127 ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16) 128 #define STM32_DMA_MAX_CHANNELS 0x08 129 #define STM32_DMA_MAX_REQUEST_ID 0x08 130 #define STM32_DMA_MAX_DATA_PARAM 0x03 131 #define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */ 132 #define STM32_DMA_MIN_BURST 4 133 #define STM32_DMA_MAX_BURST 16 134 135 /* DMA Features */ 136 #define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0) 137 #define STM32_DMA_THRESHOLD_FTR_GET(n) ((n) & STM32_DMA_THRESHOLD_FTR_MASK) 138 139 enum stm32_dma_width { 140 STM32_DMA_BYTE, 141 STM32_DMA_HALF_WORD, 142 STM32_DMA_WORD, 143 }; 144 145 enum stm32_dma_burst_size { 146 STM32_DMA_BURST_SINGLE, 147 STM32_DMA_BURST_INCR4, 148 STM32_DMA_BURST_INCR8, 149 STM32_DMA_BURST_INCR16, 150 }; 151 152 /** 153 * struct stm32_dma_cfg - STM32 DMA custom configuration 154 * @channel_id: channel ID 155 * @request_line: DMA request 156 * @stream_config: 32bit mask specifying the DMA channel configuration 157 * @features: 32bit mask specifying the DMA Feature list 158 */ 159 struct stm32_dma_cfg { 160 u32 channel_id; 161 u32 request_line; 162 u32 stream_config; 163 u32 features; 164 }; 165 166 struct stm32_dma_chan_reg { 167 u32 dma_lisr; 168 u32 dma_hisr; 169 u32 dma_lifcr; 170 u32 dma_hifcr; 171 u32 dma_scr; 172 u32 dma_sndtr; 173 u32 dma_spar; 174 u32 dma_sm0ar; 175 u32 dma_sm1ar; 176 u32 dma_sfcr; 177 }; 178 179 struct stm32_dma_sg_req { 180 u32 len; 181 struct stm32_dma_chan_reg chan_reg; 182 }; 183 184 struct stm32_dma_desc { 185 struct virt_dma_desc vdesc; 186 bool cyclic; 187 u32 num_sgs; 188 struct stm32_dma_sg_req sg_req[]; 189 }; 190 191 struct stm32_dma_chan { 192 struct virt_dma_chan vchan; 193 bool config_init; 194 bool busy; 195 u32 id; 196 u32 irq; 197 struct stm32_dma_desc *desc; 198 u32 next_sg; 199 struct dma_slave_config dma_sconfig; 200 struct stm32_dma_chan_reg chan_reg; 201 u32 threshold; 202 u32 mem_burst; 203 u32 mem_width; 204 }; 205 206 struct stm32_dma_device { 207 struct dma_device ddev; 208 void __iomem *base; 209 struct clk *clk; 210 struct reset_control *rst; 211 bool mem2mem; 212 struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS]; 213 }; 214 215 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan) 216 { 217 return container_of(chan->vchan.chan.device, struct stm32_dma_device, 218 ddev); 219 } 220 221 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c) 222 { 223 return container_of(c, struct stm32_dma_chan, vchan.chan); 224 } 225 226 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc) 227 { 228 return container_of(vdesc, struct stm32_dma_desc, vdesc); 229 } 230 231 static struct device *chan2dev(struct stm32_dma_chan *chan) 232 { 233 return &chan->vchan.chan.dev->device; 234 } 235 236 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg) 237 { 238 return readl_relaxed(dmadev->base + reg); 239 } 240 241 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val) 242 { 243 writel_relaxed(val, dmadev->base + reg); 244 } 245 246 static struct stm32_dma_desc *stm32_dma_alloc_desc(u32 num_sgs) 247 { 248 return kzalloc(sizeof(struct stm32_dma_desc) + 249 sizeof(struct stm32_dma_sg_req) * num_sgs, GFP_NOWAIT); 250 } 251 252 static int stm32_dma_get_width(struct stm32_dma_chan *chan, 253 enum dma_slave_buswidth width) 254 { 255 switch (width) { 256 case DMA_SLAVE_BUSWIDTH_1_BYTE: 257 return STM32_DMA_BYTE; 258 case DMA_SLAVE_BUSWIDTH_2_BYTES: 259 return STM32_DMA_HALF_WORD; 260 case DMA_SLAVE_BUSWIDTH_4_BYTES: 261 return STM32_DMA_WORD; 262 default: 263 dev_err(chan2dev(chan), "Dma bus width not supported\n"); 264 return -EINVAL; 265 } 266 } 267 268 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len, 269 u32 threshold) 270 { 271 enum dma_slave_buswidth max_width; 272 273 if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL) 274 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 275 else 276 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 277 278 while ((buf_len < max_width || buf_len % max_width) && 279 max_width > DMA_SLAVE_BUSWIDTH_1_BYTE) 280 max_width = max_width >> 1; 281 282 return max_width; 283 } 284 285 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold, 286 enum dma_slave_buswidth width) 287 { 288 u32 remaining; 289 290 if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) { 291 if (burst != 0) { 292 /* 293 * If number of beats fit in several whole bursts 294 * this configuration is allowed. 295 */ 296 remaining = ((STM32_DMA_FIFO_SIZE / width) * 297 (threshold + 1) / 4) % burst; 298 299 if (remaining == 0) 300 return true; 301 } else { 302 return true; 303 } 304 } 305 306 return false; 307 } 308 309 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold) 310 { 311 /* 312 * Buffer or period length has to be aligned on FIFO depth. 313 * Otherwise bytes may be stuck within FIFO at buffer or period 314 * length. 315 */ 316 return ((buf_len % ((threshold + 1) * 4)) == 0); 317 } 318 319 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold, 320 enum dma_slave_buswidth width) 321 { 322 u32 best_burst = max_burst; 323 324 if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold)) 325 return 0; 326 327 while ((buf_len < best_burst * width && best_burst > 1) || 328 !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold, 329 width)) { 330 if (best_burst > STM32_DMA_MIN_BURST) 331 best_burst = best_burst >> 1; 332 else 333 best_burst = 0; 334 } 335 336 return best_burst; 337 } 338 339 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst) 340 { 341 switch (maxburst) { 342 case 0: 343 case 1: 344 return STM32_DMA_BURST_SINGLE; 345 case 4: 346 return STM32_DMA_BURST_INCR4; 347 case 8: 348 return STM32_DMA_BURST_INCR8; 349 case 16: 350 return STM32_DMA_BURST_INCR16; 351 default: 352 dev_err(chan2dev(chan), "Dma burst size not supported\n"); 353 return -EINVAL; 354 } 355 } 356 357 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan, 358 u32 src_burst, u32 dst_burst) 359 { 360 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK; 361 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE; 362 363 if (!src_burst && !dst_burst) { 364 /* Using direct mode */ 365 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE; 366 } else { 367 /* Using FIFO mode */ 368 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK; 369 } 370 } 371 372 static int stm32_dma_slave_config(struct dma_chan *c, 373 struct dma_slave_config *config) 374 { 375 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 376 377 memcpy(&chan->dma_sconfig, config, sizeof(*config)); 378 379 chan->config_init = true; 380 381 return 0; 382 } 383 384 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan) 385 { 386 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 387 u32 flags, dma_isr; 388 389 /* 390 * Read "flags" from DMA_xISR register corresponding to the selected 391 * DMA channel at the correct bit offset inside that register. 392 * 393 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits. 394 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits. 395 */ 396 397 if (chan->id & 4) 398 dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR); 399 else 400 dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR); 401 402 flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6)); 403 404 return flags & STM32_DMA_MASKI; 405 } 406 407 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags) 408 { 409 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 410 u32 dma_ifcr; 411 412 /* 413 * Write "flags" to the DMA_xIFCR register corresponding to the selected 414 * DMA channel at the correct bit offset inside that register. 415 * 416 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits. 417 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits. 418 */ 419 flags &= STM32_DMA_MASKI; 420 dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6)); 421 422 if (chan->id & 4) 423 stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr); 424 else 425 stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr); 426 } 427 428 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan) 429 { 430 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 431 unsigned long timeout = jiffies + msecs_to_jiffies(5000); 432 u32 dma_scr, id; 433 434 id = chan->id; 435 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 436 437 if (dma_scr & STM32_DMA_SCR_EN) { 438 dma_scr &= ~STM32_DMA_SCR_EN; 439 stm32_dma_write(dmadev, STM32_DMA_SCR(id), dma_scr); 440 441 do { 442 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 443 dma_scr &= STM32_DMA_SCR_EN; 444 if (!dma_scr) 445 break; 446 447 if (time_after_eq(jiffies, timeout)) { 448 dev_err(chan2dev(chan), "%s: timeout!\n", 449 __func__); 450 return -EBUSY; 451 } 452 cond_resched(); 453 } while (1); 454 } 455 456 return 0; 457 } 458 459 static void stm32_dma_stop(struct stm32_dma_chan *chan) 460 { 461 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 462 u32 dma_scr, dma_sfcr, status; 463 int ret; 464 465 /* Disable interrupts */ 466 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 467 dma_scr &= ~STM32_DMA_SCR_IRQ_MASK; 468 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr); 469 dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); 470 dma_sfcr &= ~STM32_DMA_SFCR_FEIE; 471 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr); 472 473 /* Disable DMA */ 474 ret = stm32_dma_disable_chan(chan); 475 if (ret < 0) 476 return; 477 478 /* Clear interrupt status if it is there */ 479 status = stm32_dma_irq_status(chan); 480 if (status) { 481 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n", 482 __func__, status); 483 stm32_dma_irq_clear(chan, status); 484 } 485 486 chan->busy = false; 487 } 488 489 static int stm32_dma_terminate_all(struct dma_chan *c) 490 { 491 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 492 unsigned long flags; 493 LIST_HEAD(head); 494 495 spin_lock_irqsave(&chan->vchan.lock, flags); 496 497 if (chan->busy) { 498 stm32_dma_stop(chan); 499 chan->desc = NULL; 500 } 501 502 vchan_get_all_descriptors(&chan->vchan, &head); 503 spin_unlock_irqrestore(&chan->vchan.lock, flags); 504 vchan_dma_desc_free_list(&chan->vchan, &head); 505 506 return 0; 507 } 508 509 static void stm32_dma_synchronize(struct dma_chan *c) 510 { 511 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 512 513 vchan_synchronize(&chan->vchan); 514 } 515 516 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan) 517 { 518 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 519 u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 520 u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id)); 521 u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id)); 522 u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id)); 523 u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id)); 524 u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); 525 526 dev_dbg(chan2dev(chan), "SCR: 0x%08x\n", scr); 527 dev_dbg(chan2dev(chan), "NDTR: 0x%08x\n", ndtr); 528 dev_dbg(chan2dev(chan), "SPAR: 0x%08x\n", spar); 529 dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar); 530 dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar); 531 dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n", sfcr); 532 } 533 534 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan); 535 536 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan) 537 { 538 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 539 struct virt_dma_desc *vdesc; 540 struct stm32_dma_sg_req *sg_req; 541 struct stm32_dma_chan_reg *reg; 542 u32 status; 543 int ret; 544 545 ret = stm32_dma_disable_chan(chan); 546 if (ret < 0) 547 return; 548 549 if (!chan->desc) { 550 vdesc = vchan_next_desc(&chan->vchan); 551 if (!vdesc) 552 return; 553 554 chan->desc = to_stm32_dma_desc(vdesc); 555 chan->next_sg = 0; 556 } 557 558 if (chan->next_sg == chan->desc->num_sgs) 559 chan->next_sg = 0; 560 561 sg_req = &chan->desc->sg_req[chan->next_sg]; 562 reg = &sg_req->chan_reg; 563 564 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr); 565 stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar); 566 stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar); 567 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr); 568 stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar); 569 stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr); 570 571 chan->next_sg++; 572 573 /* Clear interrupt status if it is there */ 574 status = stm32_dma_irq_status(chan); 575 if (status) 576 stm32_dma_irq_clear(chan, status); 577 578 if (chan->desc->cyclic) 579 stm32_dma_configure_next_sg(chan); 580 581 stm32_dma_dump_reg(chan); 582 583 /* Start DMA */ 584 reg->dma_scr |= STM32_DMA_SCR_EN; 585 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr); 586 587 chan->busy = true; 588 589 dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan); 590 } 591 592 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan) 593 { 594 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 595 struct stm32_dma_sg_req *sg_req; 596 u32 dma_scr, dma_sm0ar, dma_sm1ar, id; 597 598 id = chan->id; 599 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 600 601 if (dma_scr & STM32_DMA_SCR_DBM) { 602 if (chan->next_sg == chan->desc->num_sgs) 603 chan->next_sg = 0; 604 605 sg_req = &chan->desc->sg_req[chan->next_sg]; 606 607 if (dma_scr & STM32_DMA_SCR_CT) { 608 dma_sm0ar = sg_req->chan_reg.dma_sm0ar; 609 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar); 610 dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n", 611 stm32_dma_read(dmadev, STM32_DMA_SM0AR(id))); 612 } else { 613 dma_sm1ar = sg_req->chan_reg.dma_sm1ar; 614 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar); 615 dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n", 616 stm32_dma_read(dmadev, STM32_DMA_SM1AR(id))); 617 } 618 } 619 } 620 621 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan) 622 { 623 if (chan->desc) { 624 if (chan->desc->cyclic) { 625 vchan_cyclic_callback(&chan->desc->vdesc); 626 chan->next_sg++; 627 stm32_dma_configure_next_sg(chan); 628 } else { 629 chan->busy = false; 630 if (chan->next_sg == chan->desc->num_sgs) { 631 list_del(&chan->desc->vdesc.node); 632 vchan_cookie_complete(&chan->desc->vdesc); 633 chan->desc = NULL; 634 } 635 stm32_dma_start_transfer(chan); 636 } 637 } 638 } 639 640 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid) 641 { 642 struct stm32_dma_chan *chan = devid; 643 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 644 u32 status, scr; 645 646 spin_lock(&chan->vchan.lock); 647 648 status = stm32_dma_irq_status(chan); 649 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 650 651 if (status & STM32_DMA_TCI) { 652 stm32_dma_irq_clear(chan, STM32_DMA_TCI); 653 if (scr & STM32_DMA_SCR_TCIE) 654 stm32_dma_handle_chan_done(chan); 655 status &= ~STM32_DMA_TCI; 656 } 657 if (status & STM32_DMA_HTI) { 658 stm32_dma_irq_clear(chan, STM32_DMA_HTI); 659 status &= ~STM32_DMA_HTI; 660 } 661 if (status & STM32_DMA_FEI) { 662 stm32_dma_irq_clear(chan, STM32_DMA_FEI); 663 status &= ~STM32_DMA_FEI; 664 if (!(scr & STM32_DMA_SCR_EN)) 665 dev_err(chan2dev(chan), "FIFO Error\n"); 666 else 667 dev_dbg(chan2dev(chan), "FIFO over/underrun\n"); 668 } 669 if (status) { 670 stm32_dma_irq_clear(chan, status); 671 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status); 672 if (!(scr & STM32_DMA_SCR_EN)) 673 dev_err(chan2dev(chan), "chan disabled by HW\n"); 674 } 675 676 spin_unlock(&chan->vchan.lock); 677 678 return IRQ_HANDLED; 679 } 680 681 static void stm32_dma_issue_pending(struct dma_chan *c) 682 { 683 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 684 unsigned long flags; 685 686 spin_lock_irqsave(&chan->vchan.lock, flags); 687 if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) { 688 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan); 689 stm32_dma_start_transfer(chan); 690 691 } 692 spin_unlock_irqrestore(&chan->vchan.lock, flags); 693 } 694 695 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan, 696 enum dma_transfer_direction direction, 697 enum dma_slave_buswidth *buswidth, 698 u32 buf_len) 699 { 700 enum dma_slave_buswidth src_addr_width, dst_addr_width; 701 int src_bus_width, dst_bus_width; 702 int src_burst_size, dst_burst_size; 703 u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst; 704 u32 dma_scr, threshold; 705 706 src_addr_width = chan->dma_sconfig.src_addr_width; 707 dst_addr_width = chan->dma_sconfig.dst_addr_width; 708 src_maxburst = chan->dma_sconfig.src_maxburst; 709 dst_maxburst = chan->dma_sconfig.dst_maxburst; 710 threshold = chan->threshold; 711 712 switch (direction) { 713 case DMA_MEM_TO_DEV: 714 /* Set device data size */ 715 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width); 716 if (dst_bus_width < 0) 717 return dst_bus_width; 718 719 /* Set device burst size */ 720 dst_best_burst = stm32_dma_get_best_burst(buf_len, 721 dst_maxburst, 722 threshold, 723 dst_addr_width); 724 725 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst); 726 if (dst_burst_size < 0) 727 return dst_burst_size; 728 729 /* Set memory data size */ 730 src_addr_width = stm32_dma_get_max_width(buf_len, threshold); 731 chan->mem_width = src_addr_width; 732 src_bus_width = stm32_dma_get_width(chan, src_addr_width); 733 if (src_bus_width < 0) 734 return src_bus_width; 735 736 /* Set memory burst size */ 737 src_maxburst = STM32_DMA_MAX_BURST; 738 src_best_burst = stm32_dma_get_best_burst(buf_len, 739 src_maxburst, 740 threshold, 741 src_addr_width); 742 src_burst_size = stm32_dma_get_burst(chan, src_best_burst); 743 if (src_burst_size < 0) 744 return src_burst_size; 745 746 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) | 747 STM32_DMA_SCR_PSIZE(dst_bus_width) | 748 STM32_DMA_SCR_MSIZE(src_bus_width) | 749 STM32_DMA_SCR_PBURST(dst_burst_size) | 750 STM32_DMA_SCR_MBURST(src_burst_size); 751 752 /* Set FIFO threshold */ 753 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK; 754 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold); 755 756 /* Set peripheral address */ 757 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr; 758 *buswidth = dst_addr_width; 759 break; 760 761 case DMA_DEV_TO_MEM: 762 /* Set device data size */ 763 src_bus_width = stm32_dma_get_width(chan, src_addr_width); 764 if (src_bus_width < 0) 765 return src_bus_width; 766 767 /* Set device burst size */ 768 src_best_burst = stm32_dma_get_best_burst(buf_len, 769 src_maxburst, 770 threshold, 771 src_addr_width); 772 chan->mem_burst = src_best_burst; 773 src_burst_size = stm32_dma_get_burst(chan, src_best_burst); 774 if (src_burst_size < 0) 775 return src_burst_size; 776 777 /* Set memory data size */ 778 dst_addr_width = stm32_dma_get_max_width(buf_len, threshold); 779 chan->mem_width = dst_addr_width; 780 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width); 781 if (dst_bus_width < 0) 782 return dst_bus_width; 783 784 /* Set memory burst size */ 785 dst_maxburst = STM32_DMA_MAX_BURST; 786 dst_best_burst = stm32_dma_get_best_burst(buf_len, 787 dst_maxburst, 788 threshold, 789 dst_addr_width); 790 chan->mem_burst = dst_best_burst; 791 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst); 792 if (dst_burst_size < 0) 793 return dst_burst_size; 794 795 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) | 796 STM32_DMA_SCR_PSIZE(src_bus_width) | 797 STM32_DMA_SCR_MSIZE(dst_bus_width) | 798 STM32_DMA_SCR_PBURST(src_burst_size) | 799 STM32_DMA_SCR_MBURST(dst_burst_size); 800 801 /* Set FIFO threshold */ 802 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK; 803 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold); 804 805 /* Set peripheral address */ 806 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr; 807 *buswidth = chan->dma_sconfig.src_addr_width; 808 break; 809 810 default: 811 dev_err(chan2dev(chan), "Dma direction is not supported\n"); 812 return -EINVAL; 813 } 814 815 stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst); 816 817 /* Set DMA control register */ 818 chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK | 819 STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK | 820 STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK); 821 chan->chan_reg.dma_scr |= dma_scr; 822 823 return 0; 824 } 825 826 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs) 827 { 828 memset(regs, 0, sizeof(struct stm32_dma_chan_reg)); 829 } 830 831 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg( 832 struct dma_chan *c, struct scatterlist *sgl, 833 u32 sg_len, enum dma_transfer_direction direction, 834 unsigned long flags, void *context) 835 { 836 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 837 struct stm32_dma_desc *desc; 838 struct scatterlist *sg; 839 enum dma_slave_buswidth buswidth; 840 u32 nb_data_items; 841 int i, ret; 842 843 if (!chan->config_init) { 844 dev_err(chan2dev(chan), "dma channel is not configured\n"); 845 return NULL; 846 } 847 848 if (sg_len < 1) { 849 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len); 850 return NULL; 851 } 852 853 desc = stm32_dma_alloc_desc(sg_len); 854 if (!desc) 855 return NULL; 856 857 /* Set peripheral flow controller */ 858 if (chan->dma_sconfig.device_fc) 859 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL; 860 else 861 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL; 862 863 for_each_sg(sgl, sg, sg_len, i) { 864 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, 865 sg_dma_len(sg)); 866 if (ret < 0) 867 goto err; 868 869 desc->sg_req[i].len = sg_dma_len(sg); 870 871 nb_data_items = desc->sg_req[i].len / buswidth; 872 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) { 873 dev_err(chan2dev(chan), "nb items not supported\n"); 874 goto err; 875 } 876 877 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); 878 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr; 879 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr; 880 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar; 881 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg); 882 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg); 883 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items; 884 } 885 886 desc->num_sgs = sg_len; 887 desc->cyclic = false; 888 889 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); 890 891 err: 892 kfree(desc); 893 return NULL; 894 } 895 896 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic( 897 struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len, 898 size_t period_len, enum dma_transfer_direction direction, 899 unsigned long flags) 900 { 901 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 902 struct stm32_dma_desc *desc; 903 enum dma_slave_buswidth buswidth; 904 u32 num_periods, nb_data_items; 905 int i, ret; 906 907 if (!buf_len || !period_len) { 908 dev_err(chan2dev(chan), "Invalid buffer/period len\n"); 909 return NULL; 910 } 911 912 if (!chan->config_init) { 913 dev_err(chan2dev(chan), "dma channel is not configured\n"); 914 return NULL; 915 } 916 917 if (buf_len % period_len) { 918 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n"); 919 return NULL; 920 } 921 922 /* 923 * We allow to take more number of requests till DMA is 924 * not started. The driver will loop over all requests. 925 * Once DMA is started then new requests can be queued only after 926 * terminating the DMA. 927 */ 928 if (chan->busy) { 929 dev_err(chan2dev(chan), "Request not allowed when dma busy\n"); 930 return NULL; 931 } 932 933 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len); 934 if (ret < 0) 935 return NULL; 936 937 nb_data_items = period_len / buswidth; 938 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) { 939 dev_err(chan2dev(chan), "number of items not supported\n"); 940 return NULL; 941 } 942 943 /* Enable Circular mode or double buffer mode */ 944 if (buf_len == period_len) 945 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC; 946 else 947 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM; 948 949 /* Clear periph ctrl if client set it */ 950 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL; 951 952 num_periods = buf_len / period_len; 953 954 desc = stm32_dma_alloc_desc(num_periods); 955 if (!desc) 956 return NULL; 957 958 for (i = 0; i < num_periods; i++) { 959 desc->sg_req[i].len = period_len; 960 961 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); 962 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr; 963 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr; 964 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar; 965 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr; 966 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr; 967 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items; 968 buf_addr += period_len; 969 } 970 971 desc->num_sgs = num_periods; 972 desc->cyclic = true; 973 974 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); 975 } 976 977 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy( 978 struct dma_chan *c, dma_addr_t dest, 979 dma_addr_t src, size_t len, unsigned long flags) 980 { 981 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 982 enum dma_slave_buswidth max_width; 983 struct stm32_dma_desc *desc; 984 size_t xfer_count, offset; 985 u32 num_sgs, best_burst, dma_burst, threshold; 986 int i; 987 988 num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS); 989 desc = stm32_dma_alloc_desc(num_sgs); 990 if (!desc) 991 return NULL; 992 993 threshold = chan->threshold; 994 995 for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) { 996 xfer_count = min_t(size_t, len - offset, 997 STM32_DMA_ALIGNED_MAX_DATA_ITEMS); 998 999 /* Compute best burst size */ 1000 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1001 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST, 1002 threshold, max_width); 1003 dma_burst = stm32_dma_get_burst(chan, best_burst); 1004 1005 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); 1006 desc->sg_req[i].chan_reg.dma_scr = 1007 STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) | 1008 STM32_DMA_SCR_PBURST(dma_burst) | 1009 STM32_DMA_SCR_MBURST(dma_burst) | 1010 STM32_DMA_SCR_MINC | 1011 STM32_DMA_SCR_PINC | 1012 STM32_DMA_SCR_TCIE | 1013 STM32_DMA_SCR_TEIE; 1014 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK; 1015 desc->sg_req[i].chan_reg.dma_sfcr |= 1016 STM32_DMA_SFCR_FTH(threshold); 1017 desc->sg_req[i].chan_reg.dma_spar = src + offset; 1018 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset; 1019 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count; 1020 desc->sg_req[i].len = xfer_count; 1021 } 1022 1023 desc->num_sgs = num_sgs; 1024 desc->cyclic = false; 1025 1026 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); 1027 } 1028 1029 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan) 1030 { 1031 u32 dma_scr, width, ndtr; 1032 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 1033 1034 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 1035 width = STM32_DMA_SCR_PSIZE_GET(dma_scr); 1036 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id)); 1037 1038 return ndtr << width; 1039 } 1040 1041 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan, 1042 struct stm32_dma_desc *desc, 1043 u32 next_sg) 1044 { 1045 u32 modulo, burst_size; 1046 u32 residue = 0; 1047 int i; 1048 1049 /* 1050 * In cyclic mode, for the last period, residue = remaining bytes from 1051 * NDTR 1052 */ 1053 if (chan->desc->cyclic && next_sg == 0) { 1054 residue = stm32_dma_get_remaining_bytes(chan); 1055 goto end; 1056 } 1057 1058 /* 1059 * For all other periods in cyclic mode, and in sg mode, 1060 * residue = remaining bytes from NDTR + remaining periods/sg to be 1061 * transferred 1062 */ 1063 for (i = next_sg; i < desc->num_sgs; i++) 1064 residue += desc->sg_req[i].len; 1065 residue += stm32_dma_get_remaining_bytes(chan); 1066 1067 end: 1068 if (!chan->mem_burst) 1069 return residue; 1070 1071 burst_size = chan->mem_burst * chan->mem_width; 1072 modulo = residue % burst_size; 1073 if (modulo) 1074 residue = residue - modulo + burst_size; 1075 1076 return residue; 1077 } 1078 1079 static enum dma_status stm32_dma_tx_status(struct dma_chan *c, 1080 dma_cookie_t cookie, 1081 struct dma_tx_state *state) 1082 { 1083 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1084 struct virt_dma_desc *vdesc; 1085 enum dma_status status; 1086 unsigned long flags; 1087 u32 residue = 0; 1088 1089 status = dma_cookie_status(c, cookie, state); 1090 if (status == DMA_COMPLETE || !state) 1091 return status; 1092 1093 spin_lock_irqsave(&chan->vchan.lock, flags); 1094 vdesc = vchan_find_desc(&chan->vchan, cookie); 1095 if (chan->desc && cookie == chan->desc->vdesc.tx.cookie) 1096 residue = stm32_dma_desc_residue(chan, chan->desc, 1097 chan->next_sg); 1098 else if (vdesc) 1099 residue = stm32_dma_desc_residue(chan, 1100 to_stm32_dma_desc(vdesc), 0); 1101 dma_set_residue(state, residue); 1102 1103 spin_unlock_irqrestore(&chan->vchan.lock, flags); 1104 1105 return status; 1106 } 1107 1108 static int stm32_dma_alloc_chan_resources(struct dma_chan *c) 1109 { 1110 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1111 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 1112 int ret; 1113 1114 chan->config_init = false; 1115 ret = clk_prepare_enable(dmadev->clk); 1116 if (ret < 0) { 1117 dev_err(chan2dev(chan), "clk_prepare_enable failed: %d\n", ret); 1118 return ret; 1119 } 1120 1121 ret = stm32_dma_disable_chan(chan); 1122 if (ret < 0) 1123 clk_disable_unprepare(dmadev->clk); 1124 1125 return ret; 1126 } 1127 1128 static void stm32_dma_free_chan_resources(struct dma_chan *c) 1129 { 1130 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1131 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 1132 unsigned long flags; 1133 1134 dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id); 1135 1136 if (chan->busy) { 1137 spin_lock_irqsave(&chan->vchan.lock, flags); 1138 stm32_dma_stop(chan); 1139 chan->desc = NULL; 1140 spin_unlock_irqrestore(&chan->vchan.lock, flags); 1141 } 1142 1143 clk_disable_unprepare(dmadev->clk); 1144 1145 vchan_free_chan_resources(to_virt_chan(c)); 1146 } 1147 1148 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc) 1149 { 1150 kfree(container_of(vdesc, struct stm32_dma_desc, vdesc)); 1151 } 1152 1153 static void stm32_dma_set_config(struct stm32_dma_chan *chan, 1154 struct stm32_dma_cfg *cfg) 1155 { 1156 stm32_dma_clear_reg(&chan->chan_reg); 1157 1158 chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK; 1159 chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line); 1160 1161 /* Enable Interrupts */ 1162 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE; 1163 1164 chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features); 1165 } 1166 1167 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec, 1168 struct of_dma *ofdma) 1169 { 1170 struct stm32_dma_device *dmadev = ofdma->of_dma_data; 1171 struct device *dev = dmadev->ddev.dev; 1172 struct stm32_dma_cfg cfg; 1173 struct stm32_dma_chan *chan; 1174 struct dma_chan *c; 1175 1176 if (dma_spec->args_count < 4) { 1177 dev_err(dev, "Bad number of cells\n"); 1178 return NULL; 1179 } 1180 1181 cfg.channel_id = dma_spec->args[0]; 1182 cfg.request_line = dma_spec->args[1]; 1183 cfg.stream_config = dma_spec->args[2]; 1184 cfg.features = dma_spec->args[3]; 1185 1186 if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS || 1187 cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) { 1188 dev_err(dev, "Bad channel and/or request id\n"); 1189 return NULL; 1190 } 1191 1192 chan = &dmadev->chan[cfg.channel_id]; 1193 1194 c = dma_get_slave_channel(&chan->vchan.chan); 1195 if (!c) { 1196 dev_err(dev, "No more channels available\n"); 1197 return NULL; 1198 } 1199 1200 stm32_dma_set_config(chan, &cfg); 1201 1202 return c; 1203 } 1204 1205 static const struct of_device_id stm32_dma_of_match[] = { 1206 { .compatible = "st,stm32-dma", }, 1207 { /* sentinel */ }, 1208 }; 1209 MODULE_DEVICE_TABLE(of, stm32_dma_of_match); 1210 1211 static int stm32_dma_probe(struct platform_device *pdev) 1212 { 1213 struct stm32_dma_chan *chan; 1214 struct stm32_dma_device *dmadev; 1215 struct dma_device *dd; 1216 const struct of_device_id *match; 1217 struct resource *res; 1218 int i, ret; 1219 1220 match = of_match_device(stm32_dma_of_match, &pdev->dev); 1221 if (!match) { 1222 dev_err(&pdev->dev, "Error: No device match found\n"); 1223 return -ENODEV; 1224 } 1225 1226 dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL); 1227 if (!dmadev) 1228 return -ENOMEM; 1229 1230 dd = &dmadev->ddev; 1231 1232 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1233 dmadev->base = devm_ioremap_resource(&pdev->dev, res); 1234 if (IS_ERR(dmadev->base)) 1235 return PTR_ERR(dmadev->base); 1236 1237 dmadev->clk = devm_clk_get(&pdev->dev, NULL); 1238 if (IS_ERR(dmadev->clk)) { 1239 dev_err(&pdev->dev, "Error: Missing controller clock\n"); 1240 return PTR_ERR(dmadev->clk); 1241 } 1242 1243 dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node, 1244 "st,mem2mem"); 1245 1246 dmadev->rst = devm_reset_control_get(&pdev->dev, NULL); 1247 if (!IS_ERR(dmadev->rst)) { 1248 reset_control_assert(dmadev->rst); 1249 udelay(2); 1250 reset_control_deassert(dmadev->rst); 1251 } 1252 1253 dma_cap_set(DMA_SLAVE, dd->cap_mask); 1254 dma_cap_set(DMA_PRIVATE, dd->cap_mask); 1255 dma_cap_set(DMA_CYCLIC, dd->cap_mask); 1256 dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources; 1257 dd->device_free_chan_resources = stm32_dma_free_chan_resources; 1258 dd->device_tx_status = stm32_dma_tx_status; 1259 dd->device_issue_pending = stm32_dma_issue_pending; 1260 dd->device_prep_slave_sg = stm32_dma_prep_slave_sg; 1261 dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic; 1262 dd->device_config = stm32_dma_slave_config; 1263 dd->device_terminate_all = stm32_dma_terminate_all; 1264 dd->device_synchronize = stm32_dma_synchronize; 1265 dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | 1266 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | 1267 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); 1268 dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | 1269 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | 1270 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); 1271 dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1272 dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1273 dd->max_burst = STM32_DMA_MAX_BURST; 1274 dd->dev = &pdev->dev; 1275 INIT_LIST_HEAD(&dd->channels); 1276 1277 if (dmadev->mem2mem) { 1278 dma_cap_set(DMA_MEMCPY, dd->cap_mask); 1279 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy; 1280 dd->directions |= BIT(DMA_MEM_TO_MEM); 1281 } 1282 1283 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) { 1284 chan = &dmadev->chan[i]; 1285 chan->id = i; 1286 chan->vchan.desc_free = stm32_dma_desc_free; 1287 vchan_init(&chan->vchan, dd); 1288 } 1289 1290 ret = dma_async_device_register(dd); 1291 if (ret) 1292 return ret; 1293 1294 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) { 1295 chan = &dmadev->chan[i]; 1296 res = platform_get_resource(pdev, IORESOURCE_IRQ, i); 1297 if (!res) { 1298 ret = -EINVAL; 1299 dev_err(&pdev->dev, "No irq resource for chan %d\n", i); 1300 goto err_unregister; 1301 } 1302 chan->irq = res->start; 1303 ret = devm_request_irq(&pdev->dev, chan->irq, 1304 stm32_dma_chan_irq, 0, 1305 dev_name(chan2dev(chan)), chan); 1306 if (ret) { 1307 dev_err(&pdev->dev, 1308 "request_irq failed with err %d channel %d\n", 1309 ret, i); 1310 goto err_unregister; 1311 } 1312 } 1313 1314 ret = of_dma_controller_register(pdev->dev.of_node, 1315 stm32_dma_of_xlate, dmadev); 1316 if (ret < 0) { 1317 dev_err(&pdev->dev, 1318 "STM32 DMA DMA OF registration failed %d\n", ret); 1319 goto err_unregister; 1320 } 1321 1322 platform_set_drvdata(pdev, dmadev); 1323 1324 dev_info(&pdev->dev, "STM32 DMA driver registered\n"); 1325 1326 return 0; 1327 1328 err_unregister: 1329 dma_async_device_unregister(dd); 1330 1331 return ret; 1332 } 1333 1334 static struct platform_driver stm32_dma_driver = { 1335 .driver = { 1336 .name = "stm32-dma", 1337 .of_match_table = stm32_dma_of_match, 1338 }, 1339 }; 1340 1341 static int __init stm32_dma_init(void) 1342 { 1343 return platform_driver_probe(&stm32_dma_driver, stm32_dma_probe); 1344 } 1345 subsys_initcall(stm32_dma_init); 1346