xref: /openbmc/linux/drivers/dma/stm32-dma.c (revision 12cecbf9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for STM32 DMA controller
4  *
5  * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6  *
7  * Copyright (C) M'boumba Cedric Madianga 2015
8  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9  *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 
31 #include "virt-dma.h"
32 
33 #define STM32_DMA_LISR			0x0000 /* DMA Low Int Status Reg */
34 #define STM32_DMA_HISR			0x0004 /* DMA High Int Status Reg */
35 #define STM32_DMA_LIFCR			0x0008 /* DMA Low Int Flag Clear Reg */
36 #define STM32_DMA_HIFCR			0x000c /* DMA High Int Flag Clear Reg */
37 #define STM32_DMA_TCI			BIT(5) /* Transfer Complete Interrupt */
38 #define STM32_DMA_HTI			BIT(4) /* Half Transfer Interrupt */
39 #define STM32_DMA_TEI			BIT(3) /* Transfer Error Interrupt */
40 #define STM32_DMA_DMEI			BIT(2) /* Direct Mode Error Interrupt */
41 #define STM32_DMA_FEI			BIT(0) /* FIFO Error Interrupt */
42 #define STM32_DMA_MASKI			(STM32_DMA_TCI \
43 					 | STM32_DMA_TEI \
44 					 | STM32_DMA_DMEI \
45 					 | STM32_DMA_FEI)
46 
47 /* DMA Stream x Configuration Register */
48 #define STM32_DMA_SCR(x)		(0x0010 + 0x18 * (x)) /* x = 0..7 */
49 #define STM32_DMA_SCR_REQ(n)		((n & 0x7) << 25)
50 #define STM32_DMA_SCR_MBURST_MASK	GENMASK(24, 23)
51 #define STM32_DMA_SCR_MBURST(n)	        ((n & 0x3) << 23)
52 #define STM32_DMA_SCR_PBURST_MASK	GENMASK(22, 21)
53 #define STM32_DMA_SCR_PBURST(n)	        ((n & 0x3) << 21)
54 #define STM32_DMA_SCR_PL_MASK		GENMASK(17, 16)
55 #define STM32_DMA_SCR_PL(n)		((n & 0x3) << 16)
56 #define STM32_DMA_SCR_MSIZE_MASK	GENMASK(14, 13)
57 #define STM32_DMA_SCR_MSIZE(n)		((n & 0x3) << 13)
58 #define STM32_DMA_SCR_PSIZE_MASK	GENMASK(12, 11)
59 #define STM32_DMA_SCR_PSIZE(n)		((n & 0x3) << 11)
60 #define STM32_DMA_SCR_PSIZE_GET(n)	((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
61 #define STM32_DMA_SCR_DIR_MASK		GENMASK(7, 6)
62 #define STM32_DMA_SCR_DIR(n)		((n & 0x3) << 6)
63 #define STM32_DMA_SCR_TRBUFF		BIT(20) /* Bufferable transfer for USART/UART */
64 #define STM32_DMA_SCR_CT		BIT(19) /* Target in double buffer */
65 #define STM32_DMA_SCR_DBM		BIT(18) /* Double Buffer Mode */
66 #define STM32_DMA_SCR_PINCOS		BIT(15) /* Peripheral inc offset size */
67 #define STM32_DMA_SCR_MINC		BIT(10) /* Memory increment mode */
68 #define STM32_DMA_SCR_PINC		BIT(9) /* Peripheral increment mode */
69 #define STM32_DMA_SCR_CIRC		BIT(8) /* Circular mode */
70 #define STM32_DMA_SCR_PFCTRL		BIT(5) /* Peripheral Flow Controller */
71 #define STM32_DMA_SCR_TCIE		BIT(4) /* Transfer Complete Int Enable
72 						*/
73 #define STM32_DMA_SCR_TEIE		BIT(2) /* Transfer Error Int Enable */
74 #define STM32_DMA_SCR_DMEIE		BIT(1) /* Direct Mode Err Int Enable */
75 #define STM32_DMA_SCR_EN		BIT(0) /* Stream Enable */
76 #define STM32_DMA_SCR_CFG_MASK		(STM32_DMA_SCR_PINC \
77 					| STM32_DMA_SCR_MINC \
78 					| STM32_DMA_SCR_PINCOS \
79 					| STM32_DMA_SCR_PL_MASK)
80 #define STM32_DMA_SCR_IRQ_MASK		(STM32_DMA_SCR_TCIE \
81 					| STM32_DMA_SCR_TEIE \
82 					| STM32_DMA_SCR_DMEIE)
83 
84 /* DMA Stream x number of data register */
85 #define STM32_DMA_SNDTR(x)		(0x0014 + 0x18 * (x))
86 
87 /* DMA stream peripheral address register */
88 #define STM32_DMA_SPAR(x)		(0x0018 + 0x18 * (x))
89 
90 /* DMA stream x memory 0 address register */
91 #define STM32_DMA_SM0AR(x)		(0x001c + 0x18 * (x))
92 
93 /* DMA stream x memory 1 address register */
94 #define STM32_DMA_SM1AR(x)		(0x0020 + 0x18 * (x))
95 
96 /* DMA stream x FIFO control register */
97 #define STM32_DMA_SFCR(x)		(0x0024 + 0x18 * (x))
98 #define STM32_DMA_SFCR_FTH_MASK		GENMASK(1, 0)
99 #define STM32_DMA_SFCR_FTH(n)		(n & STM32_DMA_SFCR_FTH_MASK)
100 #define STM32_DMA_SFCR_FEIE		BIT(7) /* FIFO error interrupt enable */
101 #define STM32_DMA_SFCR_DMDIS		BIT(2) /* Direct mode disable */
102 #define STM32_DMA_SFCR_MASK		(STM32_DMA_SFCR_FEIE \
103 					| STM32_DMA_SFCR_DMDIS)
104 
105 /* DMA direction */
106 #define STM32_DMA_DEV_TO_MEM		0x00
107 #define	STM32_DMA_MEM_TO_DEV		0x01
108 #define	STM32_DMA_MEM_TO_MEM		0x02
109 
110 /* DMA priority level */
111 #define STM32_DMA_PRIORITY_LOW		0x00
112 #define STM32_DMA_PRIORITY_MEDIUM	0x01
113 #define STM32_DMA_PRIORITY_HIGH		0x02
114 #define STM32_DMA_PRIORITY_VERY_HIGH	0x03
115 
116 /* DMA FIFO threshold selection */
117 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL		0x00
118 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL		0x01
119 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL		0x02
120 #define STM32_DMA_FIFO_THRESHOLD_FULL			0x03
121 #define STM32_DMA_FIFO_THRESHOLD_NONE			0x04
122 
123 #define STM32_DMA_MAX_DATA_ITEMS	0xffff
124 /*
125  * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
126  * gather at boundary. Thus it's safer to round down this value on FIFO
127  * size (16 Bytes)
128  */
129 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS	\
130 	ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
131 #define STM32_DMA_MAX_CHANNELS		0x08
132 #define STM32_DMA_MAX_REQUEST_ID	0x08
133 #define STM32_DMA_MAX_DATA_PARAM	0x03
134 #define STM32_DMA_FIFO_SIZE		16	/* FIFO is 16 bytes */
135 #define STM32_DMA_MIN_BURST		4
136 #define STM32_DMA_MAX_BURST		16
137 
138 /* DMA Features */
139 #define STM32_DMA_THRESHOLD_FTR_MASK	GENMASK(1, 0)
140 #define STM32_DMA_THRESHOLD_FTR_GET(n)	((n) & STM32_DMA_THRESHOLD_FTR_MASK)
141 #define STM32_DMA_DIRECT_MODE_MASK	BIT(2)
142 #define STM32_DMA_DIRECT_MODE_GET(n)	(((n) & STM32_DMA_DIRECT_MODE_MASK) >> 2)
143 #define STM32_DMA_ALT_ACK_MODE_MASK	BIT(4)
144 #define STM32_DMA_ALT_ACK_MODE_GET(n)	(((n) & STM32_DMA_ALT_ACK_MODE_MASK) >> 4)
145 
146 enum stm32_dma_width {
147 	STM32_DMA_BYTE,
148 	STM32_DMA_HALF_WORD,
149 	STM32_DMA_WORD,
150 };
151 
152 enum stm32_dma_burst_size {
153 	STM32_DMA_BURST_SINGLE,
154 	STM32_DMA_BURST_INCR4,
155 	STM32_DMA_BURST_INCR8,
156 	STM32_DMA_BURST_INCR16,
157 };
158 
159 /**
160  * struct stm32_dma_cfg - STM32 DMA custom configuration
161  * @channel_id: channel ID
162  * @request_line: DMA request
163  * @stream_config: 32bit mask specifying the DMA channel configuration
164  * @features: 32bit mask specifying the DMA Feature list
165  */
166 struct stm32_dma_cfg {
167 	u32 channel_id;
168 	u32 request_line;
169 	u32 stream_config;
170 	u32 features;
171 };
172 
173 struct stm32_dma_chan_reg {
174 	u32 dma_lisr;
175 	u32 dma_hisr;
176 	u32 dma_lifcr;
177 	u32 dma_hifcr;
178 	u32 dma_scr;
179 	u32 dma_sndtr;
180 	u32 dma_spar;
181 	u32 dma_sm0ar;
182 	u32 dma_sm1ar;
183 	u32 dma_sfcr;
184 };
185 
186 struct stm32_dma_sg_req {
187 	u32 len;
188 	struct stm32_dma_chan_reg chan_reg;
189 };
190 
191 struct stm32_dma_desc {
192 	struct virt_dma_desc vdesc;
193 	bool cyclic;
194 	u32 num_sgs;
195 	struct stm32_dma_sg_req sg_req[];
196 };
197 
198 struct stm32_dma_chan {
199 	struct virt_dma_chan vchan;
200 	bool config_init;
201 	bool busy;
202 	u32 id;
203 	u32 irq;
204 	struct stm32_dma_desc *desc;
205 	u32 next_sg;
206 	struct dma_slave_config	dma_sconfig;
207 	struct stm32_dma_chan_reg chan_reg;
208 	u32 threshold;
209 	u32 mem_burst;
210 	u32 mem_width;
211 	enum dma_status status;
212 };
213 
214 struct stm32_dma_device {
215 	struct dma_device ddev;
216 	void __iomem *base;
217 	struct clk *clk;
218 	bool mem2mem;
219 	struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
220 };
221 
222 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
223 {
224 	return container_of(chan->vchan.chan.device, struct stm32_dma_device,
225 			    ddev);
226 }
227 
228 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
229 {
230 	return container_of(c, struct stm32_dma_chan, vchan.chan);
231 }
232 
233 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
234 {
235 	return container_of(vdesc, struct stm32_dma_desc, vdesc);
236 }
237 
238 static struct device *chan2dev(struct stm32_dma_chan *chan)
239 {
240 	return &chan->vchan.chan.dev->device;
241 }
242 
243 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
244 {
245 	return readl_relaxed(dmadev->base + reg);
246 }
247 
248 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
249 {
250 	writel_relaxed(val, dmadev->base + reg);
251 }
252 
253 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
254 			       enum dma_slave_buswidth width)
255 {
256 	switch (width) {
257 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
258 		return STM32_DMA_BYTE;
259 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
260 		return STM32_DMA_HALF_WORD;
261 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
262 		return STM32_DMA_WORD;
263 	default:
264 		dev_err(chan2dev(chan), "Dma bus width not supported\n");
265 		return -EINVAL;
266 	}
267 }
268 
269 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
270 						       dma_addr_t buf_addr,
271 						       u32 threshold)
272 {
273 	enum dma_slave_buswidth max_width;
274 
275 	if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
276 		max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
277 	else
278 		max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
279 
280 	while ((buf_len < max_width  || buf_len % max_width) &&
281 	       max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
282 		max_width = max_width >> 1;
283 
284 	if (buf_addr & (max_width - 1))
285 		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
286 
287 	return max_width;
288 }
289 
290 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
291 						enum dma_slave_buswidth width)
292 {
293 	u32 remaining;
294 
295 	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
296 		return false;
297 
298 	if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
299 		if (burst != 0) {
300 			/*
301 			 * If number of beats fit in several whole bursts
302 			 * this configuration is allowed.
303 			 */
304 			remaining = ((STM32_DMA_FIFO_SIZE / width) *
305 				     (threshold + 1) / 4) % burst;
306 
307 			if (remaining == 0)
308 				return true;
309 		} else {
310 			return true;
311 		}
312 	}
313 
314 	return false;
315 }
316 
317 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
318 {
319 	/* If FIFO direct mode, burst is not possible */
320 	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
321 		return false;
322 
323 	/*
324 	 * Buffer or period length has to be aligned on FIFO depth.
325 	 * Otherwise bytes may be stuck within FIFO at buffer or period
326 	 * length.
327 	 */
328 	return ((buf_len % ((threshold + 1) * 4)) == 0);
329 }
330 
331 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
332 				    enum dma_slave_buswidth width)
333 {
334 	u32 best_burst = max_burst;
335 
336 	if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
337 		return 0;
338 
339 	while ((buf_len < best_burst * width && best_burst > 1) ||
340 	       !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
341 						    width)) {
342 		if (best_burst > STM32_DMA_MIN_BURST)
343 			best_burst = best_burst >> 1;
344 		else
345 			best_burst = 0;
346 	}
347 
348 	return best_burst;
349 }
350 
351 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
352 {
353 	switch (maxburst) {
354 	case 0:
355 	case 1:
356 		return STM32_DMA_BURST_SINGLE;
357 	case 4:
358 		return STM32_DMA_BURST_INCR4;
359 	case 8:
360 		return STM32_DMA_BURST_INCR8;
361 	case 16:
362 		return STM32_DMA_BURST_INCR16;
363 	default:
364 		dev_err(chan2dev(chan), "Dma burst size not supported\n");
365 		return -EINVAL;
366 	}
367 }
368 
369 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
370 				      u32 src_burst, u32 dst_burst)
371 {
372 	chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
373 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
374 
375 	if (!src_burst && !dst_burst) {
376 		/* Using direct mode */
377 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
378 	} else {
379 		/* Using FIFO mode */
380 		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
381 	}
382 }
383 
384 static int stm32_dma_slave_config(struct dma_chan *c,
385 				  struct dma_slave_config *config)
386 {
387 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
388 
389 	memcpy(&chan->dma_sconfig, config, sizeof(*config));
390 
391 	chan->config_init = true;
392 
393 	return 0;
394 }
395 
396 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
397 {
398 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
399 	u32 flags, dma_isr;
400 
401 	/*
402 	 * Read "flags" from DMA_xISR register corresponding to the selected
403 	 * DMA channel at the correct bit offset inside that register.
404 	 *
405 	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
406 	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
407 	 */
408 
409 	if (chan->id & 4)
410 		dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
411 	else
412 		dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
413 
414 	flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
415 
416 	return flags & STM32_DMA_MASKI;
417 }
418 
419 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
420 {
421 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
422 	u32 dma_ifcr;
423 
424 	/*
425 	 * Write "flags" to the DMA_xIFCR register corresponding to the selected
426 	 * DMA channel at the correct bit offset inside that register.
427 	 *
428 	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
429 	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
430 	 */
431 	flags &= STM32_DMA_MASKI;
432 	dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
433 
434 	if (chan->id & 4)
435 		stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
436 	else
437 		stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
438 }
439 
440 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
441 {
442 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
443 	u32 dma_scr, id, reg;
444 
445 	id = chan->id;
446 	reg = STM32_DMA_SCR(id);
447 	dma_scr = stm32_dma_read(dmadev, reg);
448 
449 	if (dma_scr & STM32_DMA_SCR_EN) {
450 		dma_scr &= ~STM32_DMA_SCR_EN;
451 		stm32_dma_write(dmadev, reg, dma_scr);
452 
453 		return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
454 					dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
455 					10, 1000000);
456 	}
457 
458 	return 0;
459 }
460 
461 static void stm32_dma_stop(struct stm32_dma_chan *chan)
462 {
463 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
464 	u32 dma_scr, dma_sfcr, status;
465 	int ret;
466 
467 	/* Disable interrupts */
468 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
469 	dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
470 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
471 	dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
472 	dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
473 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
474 
475 	/* Disable DMA */
476 	ret = stm32_dma_disable_chan(chan);
477 	if (ret < 0)
478 		return;
479 
480 	/* Clear interrupt status if it is there */
481 	status = stm32_dma_irq_status(chan);
482 	if (status) {
483 		dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
484 			__func__, status);
485 		stm32_dma_irq_clear(chan, status);
486 	}
487 
488 	chan->busy = false;
489 	chan->status = DMA_COMPLETE;
490 }
491 
492 static int stm32_dma_terminate_all(struct dma_chan *c)
493 {
494 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
495 	unsigned long flags;
496 	LIST_HEAD(head);
497 
498 	spin_lock_irqsave(&chan->vchan.lock, flags);
499 
500 	if (chan->desc) {
501 		dma_cookie_complete(&chan->desc->vdesc.tx);
502 		vchan_terminate_vdesc(&chan->desc->vdesc);
503 		if (chan->busy)
504 			stm32_dma_stop(chan);
505 		chan->desc = NULL;
506 	}
507 
508 	vchan_get_all_descriptors(&chan->vchan, &head);
509 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
510 	vchan_dma_desc_free_list(&chan->vchan, &head);
511 
512 	return 0;
513 }
514 
515 static void stm32_dma_synchronize(struct dma_chan *c)
516 {
517 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
518 
519 	vchan_synchronize(&chan->vchan);
520 }
521 
522 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
523 {
524 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
525 	u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
526 	u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
527 	u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
528 	u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
529 	u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
530 	u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
531 
532 	dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
533 	dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
534 	dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
535 	dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
536 	dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
537 	dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
538 }
539 
540 static void stm32_dma_sg_inc(struct stm32_dma_chan *chan)
541 {
542 	chan->next_sg++;
543 	if (chan->desc->cyclic && (chan->next_sg == chan->desc->num_sgs))
544 		chan->next_sg = 0;
545 }
546 
547 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
548 
549 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
550 {
551 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
552 	struct virt_dma_desc *vdesc;
553 	struct stm32_dma_sg_req *sg_req;
554 	struct stm32_dma_chan_reg *reg;
555 	u32 status;
556 	int ret;
557 
558 	ret = stm32_dma_disable_chan(chan);
559 	if (ret < 0)
560 		return;
561 
562 	if (!chan->desc) {
563 		vdesc = vchan_next_desc(&chan->vchan);
564 		if (!vdesc)
565 			return;
566 
567 		list_del(&vdesc->node);
568 
569 		chan->desc = to_stm32_dma_desc(vdesc);
570 		chan->next_sg = 0;
571 	}
572 
573 	if (chan->next_sg == chan->desc->num_sgs)
574 		chan->next_sg = 0;
575 
576 	sg_req = &chan->desc->sg_req[chan->next_sg];
577 	reg = &sg_req->chan_reg;
578 
579 	reg->dma_scr &= ~STM32_DMA_SCR_EN;
580 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
581 	stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
582 	stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
583 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
584 	stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
585 	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
586 
587 	stm32_dma_sg_inc(chan);
588 
589 	/* Clear interrupt status if it is there */
590 	status = stm32_dma_irq_status(chan);
591 	if (status)
592 		stm32_dma_irq_clear(chan, status);
593 
594 	if (chan->desc->cyclic)
595 		stm32_dma_configure_next_sg(chan);
596 
597 	stm32_dma_dump_reg(chan);
598 
599 	/* Start DMA */
600 	chan->busy = true;
601 	chan->status = DMA_IN_PROGRESS;
602 	reg->dma_scr |= STM32_DMA_SCR_EN;
603 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
604 
605 	dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
606 }
607 
608 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
609 {
610 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
611 	struct stm32_dma_sg_req *sg_req;
612 	u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
613 
614 	id = chan->id;
615 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
616 
617 	sg_req = &chan->desc->sg_req[chan->next_sg];
618 
619 	if (dma_scr & STM32_DMA_SCR_CT) {
620 		dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
621 		stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
622 		dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
623 			stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
624 	} else {
625 		dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
626 		stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
627 		dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
628 			stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
629 	}
630 }
631 
632 static void stm32_dma_handle_chan_paused(struct stm32_dma_chan *chan)
633 {
634 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
635 	u32 dma_scr;
636 
637 	/*
638 	 * Read and store current remaining data items and peripheral/memory addresses to be
639 	 * updated on resume
640 	 */
641 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
642 	/*
643 	 * Transfer can be paused while between a previous resume and reconfiguration on transfer
644 	 * complete. If transfer is cyclic and CIRC and DBM have been deactivated for resume, need
645 	 * to set it here in SCR backup to ensure a good reconfiguration on transfer complete.
646 	 */
647 	if (chan->desc && chan->desc->cyclic) {
648 		if (chan->desc->num_sgs == 1)
649 			dma_scr |= STM32_DMA_SCR_CIRC;
650 		else
651 			dma_scr |= STM32_DMA_SCR_DBM;
652 	}
653 	chan->chan_reg.dma_scr = dma_scr;
654 
655 	/*
656 	 * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt, otherwise
657 	 * on resume NDTR autoreload value will be wrong (lower than the initial period length)
658 	 */
659 	if (chan->desc && chan->desc->cyclic) {
660 		dma_scr &= ~(STM32_DMA_SCR_DBM | STM32_DMA_SCR_CIRC);
661 		stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
662 	}
663 
664 	chan->chan_reg.dma_sndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
665 
666 	dev_dbg(chan2dev(chan), "vchan %pK: paused\n", &chan->vchan);
667 }
668 
669 static void stm32_dma_post_resume_reconfigure(struct stm32_dma_chan *chan)
670 {
671 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
672 	struct stm32_dma_sg_req *sg_req;
673 	u32 dma_scr, status, id;
674 
675 	id = chan->id;
676 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
677 
678 	/* Clear interrupt status if it is there */
679 	status = stm32_dma_irq_status(chan);
680 	if (status)
681 		stm32_dma_irq_clear(chan, status);
682 
683 	if (!chan->next_sg)
684 		sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
685 	else
686 		sg_req = &chan->desc->sg_req[chan->next_sg - 1];
687 
688 	/* Reconfigure NDTR with the initial value */
689 	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), sg_req->chan_reg.dma_sndtr);
690 
691 	/* Restore SPAR */
692 	stm32_dma_write(dmadev, STM32_DMA_SPAR(id), sg_req->chan_reg.dma_spar);
693 
694 	/* Restore SM0AR/SM1AR whatever DBM/CT as they may have been modified */
695 	stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sg_req->chan_reg.dma_sm0ar);
696 	stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sg_req->chan_reg.dma_sm1ar);
697 
698 	/* Reactivate CIRC/DBM if needed */
699 	if (chan->chan_reg.dma_scr & STM32_DMA_SCR_DBM) {
700 		dma_scr |= STM32_DMA_SCR_DBM;
701 		/* Restore CT */
702 		if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CT)
703 			dma_scr &= ~STM32_DMA_SCR_CT;
704 		else
705 			dma_scr |= STM32_DMA_SCR_CT;
706 	} else if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CIRC) {
707 		dma_scr |= STM32_DMA_SCR_CIRC;
708 	}
709 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
710 
711 	stm32_dma_configure_next_sg(chan);
712 
713 	stm32_dma_dump_reg(chan);
714 
715 	dma_scr |= STM32_DMA_SCR_EN;
716 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
717 
718 	dev_dbg(chan2dev(chan), "vchan %pK: reconfigured after pause/resume\n", &chan->vchan);
719 }
720 
721 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan, u32 scr)
722 {
723 	if (!chan->desc)
724 		return;
725 
726 	if (chan->desc->cyclic) {
727 		vchan_cyclic_callback(&chan->desc->vdesc);
728 		stm32_dma_sg_inc(chan);
729 		/* cyclic while CIRC/DBM disable => post resume reconfiguration needed */
730 		if (!(scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM)))
731 			stm32_dma_post_resume_reconfigure(chan);
732 		else if (scr & STM32_DMA_SCR_DBM)
733 			stm32_dma_configure_next_sg(chan);
734 	} else {
735 		chan->busy = false;
736 		chan->status = DMA_COMPLETE;
737 		if (chan->next_sg == chan->desc->num_sgs) {
738 			vchan_cookie_complete(&chan->desc->vdesc);
739 			chan->desc = NULL;
740 		}
741 		stm32_dma_start_transfer(chan);
742 	}
743 }
744 
745 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
746 {
747 	struct stm32_dma_chan *chan = devid;
748 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
749 	u32 status, scr, sfcr;
750 
751 	spin_lock(&chan->vchan.lock);
752 
753 	status = stm32_dma_irq_status(chan);
754 	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
755 	sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
756 
757 	if (status & STM32_DMA_FEI) {
758 		stm32_dma_irq_clear(chan, STM32_DMA_FEI);
759 		status &= ~STM32_DMA_FEI;
760 		if (sfcr & STM32_DMA_SFCR_FEIE) {
761 			if (!(scr & STM32_DMA_SCR_EN) &&
762 			    !(status & STM32_DMA_TCI))
763 				dev_err(chan2dev(chan), "FIFO Error\n");
764 			else
765 				dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
766 		}
767 	}
768 	if (status & STM32_DMA_DMEI) {
769 		stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
770 		status &= ~STM32_DMA_DMEI;
771 		if (sfcr & STM32_DMA_SCR_DMEIE)
772 			dev_dbg(chan2dev(chan), "Direct mode overrun\n");
773 	}
774 
775 	if (status & STM32_DMA_TCI) {
776 		stm32_dma_irq_clear(chan, STM32_DMA_TCI);
777 		if (scr & STM32_DMA_SCR_TCIE) {
778 			if (chan->status == DMA_PAUSED && !(scr & STM32_DMA_SCR_EN))
779 				stm32_dma_handle_chan_paused(chan);
780 			else
781 				stm32_dma_handle_chan_done(chan, scr);
782 		}
783 		status &= ~STM32_DMA_TCI;
784 	}
785 
786 	if (status & STM32_DMA_HTI) {
787 		stm32_dma_irq_clear(chan, STM32_DMA_HTI);
788 		status &= ~STM32_DMA_HTI;
789 	}
790 
791 	if (status) {
792 		stm32_dma_irq_clear(chan, status);
793 		dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
794 		if (!(scr & STM32_DMA_SCR_EN))
795 			dev_err(chan2dev(chan), "chan disabled by HW\n");
796 	}
797 
798 	spin_unlock(&chan->vchan.lock);
799 
800 	return IRQ_HANDLED;
801 }
802 
803 static void stm32_dma_issue_pending(struct dma_chan *c)
804 {
805 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
806 	unsigned long flags;
807 
808 	spin_lock_irqsave(&chan->vchan.lock, flags);
809 	if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
810 		dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
811 		stm32_dma_start_transfer(chan);
812 
813 	}
814 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
815 }
816 
817 static int stm32_dma_pause(struct dma_chan *c)
818 {
819 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
820 	unsigned long flags;
821 	int ret;
822 
823 	if (chan->status != DMA_IN_PROGRESS)
824 		return -EPERM;
825 
826 	spin_lock_irqsave(&chan->vchan.lock, flags);
827 	ret = stm32_dma_disable_chan(chan);
828 	/*
829 	 * A transfer complete flag is set to indicate the end of transfer due to the stream
830 	 * interruption, so wait for interrupt
831 	 */
832 	if (!ret)
833 		chan->status = DMA_PAUSED;
834 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
835 
836 	return ret;
837 }
838 
839 static int stm32_dma_resume(struct dma_chan *c)
840 {
841 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
842 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
843 	struct stm32_dma_chan_reg chan_reg = chan->chan_reg;
844 	u32 id = chan->id, scr, ndtr, offset, spar, sm0ar, sm1ar;
845 	struct stm32_dma_sg_req *sg_req;
846 	unsigned long flags;
847 
848 	if (chan->status != DMA_PAUSED)
849 		return -EPERM;
850 
851 	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
852 	if (WARN_ON(scr & STM32_DMA_SCR_EN))
853 		return -EPERM;
854 
855 	spin_lock_irqsave(&chan->vchan.lock, flags);
856 
857 	/* sg_reg[prev_sg] contains original ndtr, sm0ar and sm1ar before pausing the transfer */
858 	if (!chan->next_sg)
859 		sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
860 	else
861 		sg_req = &chan->desc->sg_req[chan->next_sg - 1];
862 
863 	ndtr = sg_req->chan_reg.dma_sndtr;
864 	offset = (ndtr - chan_reg.dma_sndtr) << STM32_DMA_SCR_PSIZE_GET(chan_reg.dma_scr);
865 	spar = sg_req->chan_reg.dma_spar;
866 	sm0ar = sg_req->chan_reg.dma_sm0ar;
867 	sm1ar = sg_req->chan_reg.dma_sm1ar;
868 
869 	/*
870 	 * The peripheral and/or memory addresses have to be updated in order to adjust the
871 	 * address pointers. Need to check increment.
872 	 */
873 	if (chan_reg.dma_scr & STM32_DMA_SCR_PINC)
874 		stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar + offset);
875 	else
876 		stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar);
877 
878 	if (!(chan_reg.dma_scr & STM32_DMA_SCR_MINC))
879 		offset = 0;
880 
881 	/*
882 	 * In case of DBM, the current target could be SM1AR.
883 	 * Need to temporarily deactivate CIRC/DBM to finish the current transfer, so
884 	 * SM0AR becomes the current target and must be updated with SM1AR + offset if CT=1.
885 	 */
886 	if ((chan_reg.dma_scr & STM32_DMA_SCR_DBM) && (chan_reg.dma_scr & STM32_DMA_SCR_CT))
887 		stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sm1ar + offset);
888 	else
889 		stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sm0ar + offset);
890 
891 	/* NDTR must be restored otherwise internal HW counter won't be correctly reset */
892 	stm32_dma_write(dmadev, STM32_DMA_SNDTR(id), chan_reg.dma_sndtr);
893 
894 	/*
895 	 * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt,
896 	 * otherwise NDTR autoreload value will be wrong (lower than the initial period length)
897 	 */
898 	if (chan_reg.dma_scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM))
899 		chan_reg.dma_scr &= ~(STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM);
900 
901 	if (chan_reg.dma_scr & STM32_DMA_SCR_DBM)
902 		stm32_dma_configure_next_sg(chan);
903 
904 	stm32_dma_dump_reg(chan);
905 
906 	/* The stream may then be re-enabled to restart transfer from the point it was stopped */
907 	chan->status = DMA_IN_PROGRESS;
908 	chan_reg.dma_scr |= STM32_DMA_SCR_EN;
909 	stm32_dma_write(dmadev, STM32_DMA_SCR(id), chan_reg.dma_scr);
910 
911 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
912 
913 	dev_dbg(chan2dev(chan), "vchan %pK: resumed\n", &chan->vchan);
914 
915 	return 0;
916 }
917 
918 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
919 				    enum dma_transfer_direction direction,
920 				    enum dma_slave_buswidth *buswidth,
921 				    u32 buf_len, dma_addr_t buf_addr)
922 {
923 	enum dma_slave_buswidth src_addr_width, dst_addr_width;
924 	int src_bus_width, dst_bus_width;
925 	int src_burst_size, dst_burst_size;
926 	u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
927 	u32 dma_scr, fifoth;
928 
929 	src_addr_width = chan->dma_sconfig.src_addr_width;
930 	dst_addr_width = chan->dma_sconfig.dst_addr_width;
931 	src_maxburst = chan->dma_sconfig.src_maxburst;
932 	dst_maxburst = chan->dma_sconfig.dst_maxburst;
933 	fifoth = chan->threshold;
934 
935 	switch (direction) {
936 	case DMA_MEM_TO_DEV:
937 		/* Set device data size */
938 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
939 		if (dst_bus_width < 0)
940 			return dst_bus_width;
941 
942 		/* Set device burst size */
943 		dst_best_burst = stm32_dma_get_best_burst(buf_len,
944 							  dst_maxburst,
945 							  fifoth,
946 							  dst_addr_width);
947 
948 		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
949 		if (dst_burst_size < 0)
950 			return dst_burst_size;
951 
952 		/* Set memory data size */
953 		src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
954 							 fifoth);
955 		chan->mem_width = src_addr_width;
956 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
957 		if (src_bus_width < 0)
958 			return src_bus_width;
959 
960 		/*
961 		 * Set memory burst size - burst not possible if address is not aligned on
962 		 * the address boundary equal to the size of the transfer
963 		 */
964 		if (buf_addr & (buf_len - 1))
965 			src_maxburst = 1;
966 		else
967 			src_maxburst = STM32_DMA_MAX_BURST;
968 		src_best_burst = stm32_dma_get_best_burst(buf_len,
969 							  src_maxburst,
970 							  fifoth,
971 							  src_addr_width);
972 		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
973 		if (src_burst_size < 0)
974 			return src_burst_size;
975 
976 		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
977 			STM32_DMA_SCR_PSIZE(dst_bus_width) |
978 			STM32_DMA_SCR_MSIZE(src_bus_width) |
979 			STM32_DMA_SCR_PBURST(dst_burst_size) |
980 			STM32_DMA_SCR_MBURST(src_burst_size);
981 
982 		/* Set FIFO threshold */
983 		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
984 		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
985 			chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
986 
987 		/* Set peripheral address */
988 		chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
989 		*buswidth = dst_addr_width;
990 		break;
991 
992 	case DMA_DEV_TO_MEM:
993 		/* Set device data size */
994 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
995 		if (src_bus_width < 0)
996 			return src_bus_width;
997 
998 		/* Set device burst size */
999 		src_best_burst = stm32_dma_get_best_burst(buf_len,
1000 							  src_maxburst,
1001 							  fifoth,
1002 							  src_addr_width);
1003 		chan->mem_burst = src_best_burst;
1004 		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
1005 		if (src_burst_size < 0)
1006 			return src_burst_size;
1007 
1008 		/* Set memory data size */
1009 		dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
1010 							 fifoth);
1011 		chan->mem_width = dst_addr_width;
1012 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
1013 		if (dst_bus_width < 0)
1014 			return dst_bus_width;
1015 
1016 		/*
1017 		 * Set memory burst size - burst not possible if address is not aligned on
1018 		 * the address boundary equal to the size of the transfer
1019 		 */
1020 		if (buf_addr & (buf_len - 1))
1021 			dst_maxburst = 1;
1022 		else
1023 			dst_maxburst = STM32_DMA_MAX_BURST;
1024 		dst_best_burst = stm32_dma_get_best_burst(buf_len,
1025 							  dst_maxburst,
1026 							  fifoth,
1027 							  dst_addr_width);
1028 		chan->mem_burst = dst_best_burst;
1029 		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
1030 		if (dst_burst_size < 0)
1031 			return dst_burst_size;
1032 
1033 		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
1034 			STM32_DMA_SCR_PSIZE(src_bus_width) |
1035 			STM32_DMA_SCR_MSIZE(dst_bus_width) |
1036 			STM32_DMA_SCR_PBURST(src_burst_size) |
1037 			STM32_DMA_SCR_MBURST(dst_burst_size);
1038 
1039 		/* Set FIFO threshold */
1040 		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
1041 		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
1042 			chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
1043 
1044 		/* Set peripheral address */
1045 		chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
1046 		*buswidth = chan->dma_sconfig.src_addr_width;
1047 		break;
1048 
1049 	default:
1050 		dev_err(chan2dev(chan), "Dma direction is not supported\n");
1051 		return -EINVAL;
1052 	}
1053 
1054 	stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
1055 
1056 	/* Set DMA control register */
1057 	chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
1058 			STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
1059 			STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
1060 	chan->chan_reg.dma_scr |= dma_scr;
1061 
1062 	return 0;
1063 }
1064 
1065 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
1066 {
1067 	memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
1068 }
1069 
1070 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
1071 	struct dma_chan *c, struct scatterlist *sgl,
1072 	u32 sg_len, enum dma_transfer_direction direction,
1073 	unsigned long flags, void *context)
1074 {
1075 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1076 	struct stm32_dma_desc *desc;
1077 	struct scatterlist *sg;
1078 	enum dma_slave_buswidth buswidth;
1079 	u32 nb_data_items;
1080 	int i, ret;
1081 
1082 	if (!chan->config_init) {
1083 		dev_err(chan2dev(chan), "dma channel is not configured\n");
1084 		return NULL;
1085 	}
1086 
1087 	if (sg_len < 1) {
1088 		dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
1089 		return NULL;
1090 	}
1091 
1092 	desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
1093 	if (!desc)
1094 		return NULL;
1095 
1096 	/* Set peripheral flow controller */
1097 	if (chan->dma_sconfig.device_fc)
1098 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
1099 	else
1100 		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
1101 
1102 	for_each_sg(sgl, sg, sg_len, i) {
1103 		ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
1104 					       sg_dma_len(sg),
1105 					       sg_dma_address(sg));
1106 		if (ret < 0)
1107 			goto err;
1108 
1109 		desc->sg_req[i].len = sg_dma_len(sg);
1110 
1111 		nb_data_items = desc->sg_req[i].len / buswidth;
1112 		if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
1113 			dev_err(chan2dev(chan), "nb items not supported\n");
1114 			goto err;
1115 		}
1116 
1117 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1118 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
1119 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1120 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1121 		desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
1122 		desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
1123 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1124 	}
1125 
1126 	desc->num_sgs = sg_len;
1127 	desc->cyclic = false;
1128 
1129 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1130 
1131 err:
1132 	kfree(desc);
1133 	return NULL;
1134 }
1135 
1136 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
1137 	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
1138 	size_t period_len, enum dma_transfer_direction direction,
1139 	unsigned long flags)
1140 {
1141 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1142 	struct stm32_dma_desc *desc;
1143 	enum dma_slave_buswidth buswidth;
1144 	u32 num_periods, nb_data_items;
1145 	int i, ret;
1146 
1147 	if (!buf_len || !period_len) {
1148 		dev_err(chan2dev(chan), "Invalid buffer/period len\n");
1149 		return NULL;
1150 	}
1151 
1152 	if (!chan->config_init) {
1153 		dev_err(chan2dev(chan), "dma channel is not configured\n");
1154 		return NULL;
1155 	}
1156 
1157 	if (buf_len % period_len) {
1158 		dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
1159 		return NULL;
1160 	}
1161 
1162 	/*
1163 	 * We allow to take more number of requests till DMA is
1164 	 * not started. The driver will loop over all requests.
1165 	 * Once DMA is started then new requests can be queued only after
1166 	 * terminating the DMA.
1167 	 */
1168 	if (chan->busy) {
1169 		dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
1170 		return NULL;
1171 	}
1172 
1173 	ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
1174 				       buf_addr);
1175 	if (ret < 0)
1176 		return NULL;
1177 
1178 	nb_data_items = period_len / buswidth;
1179 	if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
1180 		dev_err(chan2dev(chan), "number of items not supported\n");
1181 		return NULL;
1182 	}
1183 
1184 	/*  Enable Circular mode or double buffer mode */
1185 	if (buf_len == period_len) {
1186 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
1187 	} else {
1188 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
1189 		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_CT;
1190 	}
1191 
1192 	/* Clear periph ctrl if client set it */
1193 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
1194 
1195 	num_periods = buf_len / period_len;
1196 
1197 	desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
1198 	if (!desc)
1199 		return NULL;
1200 
1201 	for (i = 0; i < num_periods; i++) {
1202 		desc->sg_req[i].len = period_len;
1203 
1204 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1205 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
1206 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1207 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1208 		desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
1209 		desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
1210 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1211 		buf_addr += period_len;
1212 	}
1213 
1214 	desc->num_sgs = num_periods;
1215 	desc->cyclic = true;
1216 
1217 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1218 }
1219 
1220 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1221 	struct dma_chan *c, dma_addr_t dest,
1222 	dma_addr_t src, size_t len, unsigned long flags)
1223 {
1224 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1225 	enum dma_slave_buswidth max_width;
1226 	struct stm32_dma_desc *desc;
1227 	size_t xfer_count, offset;
1228 	u32 num_sgs, best_burst, dma_burst, threshold;
1229 	int i;
1230 
1231 	num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1232 	desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1233 	if (!desc)
1234 		return NULL;
1235 
1236 	threshold = chan->threshold;
1237 
1238 	for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1239 		xfer_count = min_t(size_t, len - offset,
1240 				   STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1241 
1242 		/* Compute best burst size */
1243 		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1244 		best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1245 						      threshold, max_width);
1246 		dma_burst = stm32_dma_get_burst(chan, best_burst);
1247 
1248 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1249 		desc->sg_req[i].chan_reg.dma_scr =
1250 			STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1251 			STM32_DMA_SCR_PBURST(dma_burst) |
1252 			STM32_DMA_SCR_MBURST(dma_burst) |
1253 			STM32_DMA_SCR_MINC |
1254 			STM32_DMA_SCR_PINC |
1255 			STM32_DMA_SCR_TCIE |
1256 			STM32_DMA_SCR_TEIE;
1257 		desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1258 		desc->sg_req[i].chan_reg.dma_sfcr |=
1259 			STM32_DMA_SFCR_FTH(threshold);
1260 		desc->sg_req[i].chan_reg.dma_spar = src + offset;
1261 		desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1262 		desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1263 		desc->sg_req[i].len = xfer_count;
1264 	}
1265 
1266 	desc->num_sgs = num_sgs;
1267 	desc->cyclic = false;
1268 
1269 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1270 }
1271 
1272 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1273 {
1274 	u32 dma_scr, width, ndtr;
1275 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1276 
1277 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1278 	width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1279 	ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1280 
1281 	return ndtr << width;
1282 }
1283 
1284 /**
1285  * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1286  * @chan: dma channel
1287  *
1288  * This function called when IRQ are disable, checks that the hardware has not
1289  * switched on the next transfer in double buffer mode. The test is done by
1290  * comparing the next_sg memory address with the hardware related register
1291  * (based on CT bit value).
1292  *
1293  * Returns true if expected current transfer is still running or double
1294  * buffer mode is not activated.
1295  */
1296 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1297 {
1298 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1299 	struct stm32_dma_sg_req *sg_req;
1300 	u32 dma_scr, dma_smar, id, period_len;
1301 
1302 	id = chan->id;
1303 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1304 
1305 	/* In cyclic CIRC but not DBM, CT is not used */
1306 	if (!(dma_scr & STM32_DMA_SCR_DBM))
1307 		return true;
1308 
1309 	sg_req = &chan->desc->sg_req[chan->next_sg];
1310 	period_len = sg_req->len;
1311 
1312 	/* DBM - take care of a previous pause/resume not yet post reconfigured */
1313 	if (dma_scr & STM32_DMA_SCR_CT) {
1314 		dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1315 		/*
1316 		 * If transfer has been pause/resumed,
1317 		 * SM0AR is in the range of [SM0AR:SM0AR+period_len]
1318 		 */
1319 		return (dma_smar >= sg_req->chan_reg.dma_sm0ar &&
1320 			dma_smar < sg_req->chan_reg.dma_sm0ar + period_len);
1321 	}
1322 
1323 	dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1324 	/*
1325 	 * If transfer has been pause/resumed,
1326 	 * SM1AR is in the range of [SM1AR:SM1AR+period_len]
1327 	 */
1328 	return (dma_smar >= sg_req->chan_reg.dma_sm1ar &&
1329 		dma_smar < sg_req->chan_reg.dma_sm1ar + period_len);
1330 }
1331 
1332 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1333 				     struct stm32_dma_desc *desc,
1334 				     u32 next_sg)
1335 {
1336 	u32 modulo, burst_size;
1337 	u32 residue;
1338 	u32 n_sg = next_sg;
1339 	struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1340 	int i;
1341 
1342 	/*
1343 	 * Calculate the residue means compute the descriptors
1344 	 * information:
1345 	 * - the sg_req currently transferred
1346 	 * - the Hardware remaining position in this sg (NDTR bits field).
1347 	 *
1348 	 * A race condition may occur if DMA is running in cyclic or double
1349 	 * buffer mode, since the DMA register are automatically reloaded at end
1350 	 * of period transfer. The hardware may have switched to the next
1351 	 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1352 	 * read.
1353 	 * In this case the SxNDTR reg could (or not) correspond to the new
1354 	 * transfer position, and not the expected one.
1355 	 * The strategy implemented in the stm32 driver is to:
1356 	 *  - read the SxNDTR register
1357 	 *  - crosscheck that hardware is still in current transfer.
1358 	 * In case of switch, we can assume that the DMA is at the beginning of
1359 	 * the next transfer. So we approximate the residue in consequence, by
1360 	 * pointing on the beginning of next transfer.
1361 	 *
1362 	 * This race condition doesn't apply for none cyclic mode, as double
1363 	 * buffer is not used. In such situation registers are updated by the
1364 	 * software.
1365 	 */
1366 
1367 	residue = stm32_dma_get_remaining_bytes(chan);
1368 
1369 	if (chan->desc->cyclic && !stm32_dma_is_current_sg(chan)) {
1370 		n_sg++;
1371 		if (n_sg == chan->desc->num_sgs)
1372 			n_sg = 0;
1373 		residue = sg_req->len;
1374 	}
1375 
1376 	/*
1377 	 * In cyclic mode, for the last period, residue = remaining bytes
1378 	 * from NDTR,
1379 	 * else for all other periods in cyclic mode, and in sg mode,
1380 	 * residue = remaining bytes from NDTR + remaining
1381 	 * periods/sg to be transferred
1382 	 */
1383 	if (!chan->desc->cyclic || n_sg != 0)
1384 		for (i = n_sg; i < desc->num_sgs; i++)
1385 			residue += desc->sg_req[i].len;
1386 
1387 	if (!chan->mem_burst)
1388 		return residue;
1389 
1390 	burst_size = chan->mem_burst * chan->mem_width;
1391 	modulo = residue % burst_size;
1392 	if (modulo)
1393 		residue = residue - modulo + burst_size;
1394 
1395 	return residue;
1396 }
1397 
1398 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1399 					   dma_cookie_t cookie,
1400 					   struct dma_tx_state *state)
1401 {
1402 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1403 	struct virt_dma_desc *vdesc;
1404 	enum dma_status status;
1405 	unsigned long flags;
1406 	u32 residue = 0;
1407 
1408 	status = dma_cookie_status(c, cookie, state);
1409 	if (status == DMA_COMPLETE)
1410 		return status;
1411 
1412 	status = chan->status;
1413 
1414 	if (!state)
1415 		return status;
1416 
1417 	spin_lock_irqsave(&chan->vchan.lock, flags);
1418 	vdesc = vchan_find_desc(&chan->vchan, cookie);
1419 	if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1420 		residue = stm32_dma_desc_residue(chan, chan->desc,
1421 						 chan->next_sg);
1422 	else if (vdesc)
1423 		residue = stm32_dma_desc_residue(chan,
1424 						 to_stm32_dma_desc(vdesc), 0);
1425 	dma_set_residue(state, residue);
1426 
1427 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
1428 
1429 	return status;
1430 }
1431 
1432 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1433 {
1434 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1435 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1436 	int ret;
1437 
1438 	chan->config_init = false;
1439 
1440 	ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1441 	if (ret < 0)
1442 		return ret;
1443 
1444 	ret = stm32_dma_disable_chan(chan);
1445 	if (ret < 0)
1446 		pm_runtime_put(dmadev->ddev.dev);
1447 
1448 	return ret;
1449 }
1450 
1451 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1452 {
1453 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1454 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1455 	unsigned long flags;
1456 
1457 	dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1458 
1459 	if (chan->busy) {
1460 		spin_lock_irqsave(&chan->vchan.lock, flags);
1461 		stm32_dma_stop(chan);
1462 		chan->desc = NULL;
1463 		spin_unlock_irqrestore(&chan->vchan.lock, flags);
1464 	}
1465 
1466 	pm_runtime_put(dmadev->ddev.dev);
1467 
1468 	vchan_free_chan_resources(to_virt_chan(c));
1469 	stm32_dma_clear_reg(&chan->chan_reg);
1470 	chan->threshold = 0;
1471 }
1472 
1473 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1474 {
1475 	kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1476 }
1477 
1478 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1479 				 struct stm32_dma_cfg *cfg)
1480 {
1481 	stm32_dma_clear_reg(&chan->chan_reg);
1482 
1483 	chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1484 	chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1485 
1486 	/* Enable Interrupts  */
1487 	chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1488 
1489 	chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1490 	if (STM32_DMA_DIRECT_MODE_GET(cfg->features))
1491 		chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1492 	if (STM32_DMA_ALT_ACK_MODE_GET(cfg->features))
1493 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF;
1494 }
1495 
1496 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1497 					   struct of_dma *ofdma)
1498 {
1499 	struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1500 	struct device *dev = dmadev->ddev.dev;
1501 	struct stm32_dma_cfg cfg;
1502 	struct stm32_dma_chan *chan;
1503 	struct dma_chan *c;
1504 
1505 	if (dma_spec->args_count < 4) {
1506 		dev_err(dev, "Bad number of cells\n");
1507 		return NULL;
1508 	}
1509 
1510 	cfg.channel_id = dma_spec->args[0];
1511 	cfg.request_line = dma_spec->args[1];
1512 	cfg.stream_config = dma_spec->args[2];
1513 	cfg.features = dma_spec->args[3];
1514 
1515 	if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1516 	    cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1517 		dev_err(dev, "Bad channel and/or request id\n");
1518 		return NULL;
1519 	}
1520 
1521 	chan = &dmadev->chan[cfg.channel_id];
1522 
1523 	c = dma_get_slave_channel(&chan->vchan.chan);
1524 	if (!c) {
1525 		dev_err(dev, "No more channels available\n");
1526 		return NULL;
1527 	}
1528 
1529 	stm32_dma_set_config(chan, &cfg);
1530 
1531 	return c;
1532 }
1533 
1534 static const struct of_device_id stm32_dma_of_match[] = {
1535 	{ .compatible = "st,stm32-dma", },
1536 	{ /* sentinel */ },
1537 };
1538 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1539 
1540 static int stm32_dma_probe(struct platform_device *pdev)
1541 {
1542 	struct stm32_dma_chan *chan;
1543 	struct stm32_dma_device *dmadev;
1544 	struct dma_device *dd;
1545 	const struct of_device_id *match;
1546 	struct resource *res;
1547 	struct reset_control *rst;
1548 	int i, ret;
1549 
1550 	match = of_match_device(stm32_dma_of_match, &pdev->dev);
1551 	if (!match) {
1552 		dev_err(&pdev->dev, "Error: No device match found\n");
1553 		return -ENODEV;
1554 	}
1555 
1556 	dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1557 	if (!dmadev)
1558 		return -ENOMEM;
1559 
1560 	dd = &dmadev->ddev;
1561 
1562 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1563 	dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1564 	if (IS_ERR(dmadev->base))
1565 		return PTR_ERR(dmadev->base);
1566 
1567 	dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1568 	if (IS_ERR(dmadev->clk))
1569 		return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1570 
1571 	ret = clk_prepare_enable(dmadev->clk);
1572 	if (ret < 0) {
1573 		dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1574 		return ret;
1575 	}
1576 
1577 	dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1578 						"st,mem2mem");
1579 
1580 	rst = devm_reset_control_get(&pdev->dev, NULL);
1581 	if (IS_ERR(rst)) {
1582 		ret = PTR_ERR(rst);
1583 		if (ret == -EPROBE_DEFER)
1584 			goto clk_free;
1585 	} else {
1586 		reset_control_assert(rst);
1587 		udelay(2);
1588 		reset_control_deassert(rst);
1589 	}
1590 
1591 	dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1592 
1593 	dma_cap_set(DMA_SLAVE, dd->cap_mask);
1594 	dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1595 	dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1596 	dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1597 	dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1598 	dd->device_tx_status = stm32_dma_tx_status;
1599 	dd->device_issue_pending = stm32_dma_issue_pending;
1600 	dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1601 	dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1602 	dd->device_config = stm32_dma_slave_config;
1603 	dd->device_pause = stm32_dma_pause;
1604 	dd->device_resume = stm32_dma_resume;
1605 	dd->device_terminate_all = stm32_dma_terminate_all;
1606 	dd->device_synchronize = stm32_dma_synchronize;
1607 	dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1608 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1609 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1610 	dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1611 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1612 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1613 	dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1614 	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1615 	dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1616 	dd->max_burst = STM32_DMA_MAX_BURST;
1617 	dd->max_sg_burst = STM32_DMA_ALIGNED_MAX_DATA_ITEMS;
1618 	dd->descriptor_reuse = true;
1619 	dd->dev = &pdev->dev;
1620 	INIT_LIST_HEAD(&dd->channels);
1621 
1622 	if (dmadev->mem2mem) {
1623 		dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1624 		dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1625 		dd->directions |= BIT(DMA_MEM_TO_MEM);
1626 	}
1627 
1628 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1629 		chan = &dmadev->chan[i];
1630 		chan->id = i;
1631 		chan->vchan.desc_free = stm32_dma_desc_free;
1632 		vchan_init(&chan->vchan, dd);
1633 	}
1634 
1635 	ret = dma_async_device_register(dd);
1636 	if (ret)
1637 		goto clk_free;
1638 
1639 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1640 		chan = &dmadev->chan[i];
1641 		ret = platform_get_irq(pdev, i);
1642 		if (ret < 0)
1643 			goto err_unregister;
1644 		chan->irq = ret;
1645 
1646 		ret = devm_request_irq(&pdev->dev, chan->irq,
1647 				       stm32_dma_chan_irq, 0,
1648 				       dev_name(chan2dev(chan)), chan);
1649 		if (ret) {
1650 			dev_err(&pdev->dev,
1651 				"request_irq failed with err %d channel %d\n",
1652 				ret, i);
1653 			goto err_unregister;
1654 		}
1655 	}
1656 
1657 	ret = of_dma_controller_register(pdev->dev.of_node,
1658 					 stm32_dma_of_xlate, dmadev);
1659 	if (ret < 0) {
1660 		dev_err(&pdev->dev,
1661 			"STM32 DMA DMA OF registration failed %d\n", ret);
1662 		goto err_unregister;
1663 	}
1664 
1665 	platform_set_drvdata(pdev, dmadev);
1666 
1667 	pm_runtime_set_active(&pdev->dev);
1668 	pm_runtime_enable(&pdev->dev);
1669 	pm_runtime_get_noresume(&pdev->dev);
1670 	pm_runtime_put(&pdev->dev);
1671 
1672 	dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1673 
1674 	return 0;
1675 
1676 err_unregister:
1677 	dma_async_device_unregister(dd);
1678 clk_free:
1679 	clk_disable_unprepare(dmadev->clk);
1680 
1681 	return ret;
1682 }
1683 
1684 #ifdef CONFIG_PM
1685 static int stm32_dma_runtime_suspend(struct device *dev)
1686 {
1687 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1688 
1689 	clk_disable_unprepare(dmadev->clk);
1690 
1691 	return 0;
1692 }
1693 
1694 static int stm32_dma_runtime_resume(struct device *dev)
1695 {
1696 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1697 	int ret;
1698 
1699 	ret = clk_prepare_enable(dmadev->clk);
1700 	if (ret) {
1701 		dev_err(dev, "failed to prepare_enable clock\n");
1702 		return ret;
1703 	}
1704 
1705 	return 0;
1706 }
1707 #endif
1708 
1709 #ifdef CONFIG_PM_SLEEP
1710 static int stm32_dma_pm_suspend(struct device *dev)
1711 {
1712 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1713 	int id, ret, scr;
1714 
1715 	ret = pm_runtime_resume_and_get(dev);
1716 	if (ret < 0)
1717 		return ret;
1718 
1719 	for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1720 		scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1721 		if (scr & STM32_DMA_SCR_EN) {
1722 			dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1723 			return -EBUSY;
1724 		}
1725 	}
1726 
1727 	pm_runtime_put_sync(dev);
1728 
1729 	pm_runtime_force_suspend(dev);
1730 
1731 	return 0;
1732 }
1733 
1734 static int stm32_dma_pm_resume(struct device *dev)
1735 {
1736 	return pm_runtime_force_resume(dev);
1737 }
1738 #endif
1739 
1740 static const struct dev_pm_ops stm32_dma_pm_ops = {
1741 	SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_pm_suspend, stm32_dma_pm_resume)
1742 	SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1743 			   stm32_dma_runtime_resume, NULL)
1744 };
1745 
1746 static struct platform_driver stm32_dma_driver = {
1747 	.driver = {
1748 		.name = "stm32-dma",
1749 		.of_match_table = stm32_dma_of_match,
1750 		.pm = &stm32_dma_pm_ops,
1751 	},
1752 	.probe = stm32_dma_probe,
1753 };
1754 
1755 static int __init stm32_dma_init(void)
1756 {
1757 	return platform_driver_register(&stm32_dma_driver);
1758 }
1759 subsys_initcall(stm32_dma_init);
1760