1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for STM32 DMA controller 4 * 5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c 6 * 7 * Copyright (C) M'boumba Cedric Madianga 2015 8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com> 9 * Pierre-Yves Mordret <pierre-yves.mordret@st.com> 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/delay.h> 14 #include <linux/dmaengine.h> 15 #include <linux/dma-mapping.h> 16 #include <linux/err.h> 17 #include <linux/init.h> 18 #include <linux/iopoll.h> 19 #include <linux/jiffies.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/of_dma.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/reset.h> 28 #include <linux/sched.h> 29 #include <linux/slab.h> 30 31 #include "virt-dma.h" 32 33 #define STM32_DMA_LISR 0x0000 /* DMA Low Int Status Reg */ 34 #define STM32_DMA_HISR 0x0004 /* DMA High Int Status Reg */ 35 #define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */ 36 #define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */ 37 #define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */ 38 #define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */ 39 #define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */ 40 #define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */ 41 #define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */ 42 #define STM32_DMA_MASKI (STM32_DMA_TCI \ 43 | STM32_DMA_TEI \ 44 | STM32_DMA_DMEI \ 45 | STM32_DMA_FEI) 46 47 /* DMA Stream x Configuration Register */ 48 #define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */ 49 #define STM32_DMA_SCR_REQ(n) ((n & 0x7) << 25) 50 #define STM32_DMA_SCR_MBURST_MASK GENMASK(24, 23) 51 #define STM32_DMA_SCR_MBURST(n) ((n & 0x3) << 23) 52 #define STM32_DMA_SCR_PBURST_MASK GENMASK(22, 21) 53 #define STM32_DMA_SCR_PBURST(n) ((n & 0x3) << 21) 54 #define STM32_DMA_SCR_PL_MASK GENMASK(17, 16) 55 #define STM32_DMA_SCR_PL(n) ((n & 0x3) << 16) 56 #define STM32_DMA_SCR_MSIZE_MASK GENMASK(14, 13) 57 #define STM32_DMA_SCR_MSIZE(n) ((n & 0x3) << 13) 58 #define STM32_DMA_SCR_PSIZE_MASK GENMASK(12, 11) 59 #define STM32_DMA_SCR_PSIZE(n) ((n & 0x3) << 11) 60 #define STM32_DMA_SCR_PSIZE_GET(n) ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11) 61 #define STM32_DMA_SCR_DIR_MASK GENMASK(7, 6) 62 #define STM32_DMA_SCR_DIR(n) ((n & 0x3) << 6) 63 #define STM32_DMA_SCR_TRBUFF BIT(20) /* Bufferable transfer for USART/UART */ 64 #define STM32_DMA_SCR_CT BIT(19) /* Target in double buffer */ 65 #define STM32_DMA_SCR_DBM BIT(18) /* Double Buffer Mode */ 66 #define STM32_DMA_SCR_PINCOS BIT(15) /* Peripheral inc offset size */ 67 #define STM32_DMA_SCR_MINC BIT(10) /* Memory increment mode */ 68 #define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */ 69 #define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */ 70 #define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */ 71 #define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable 72 */ 73 #define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */ 74 #define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */ 75 #define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */ 76 #define STM32_DMA_SCR_CFG_MASK (STM32_DMA_SCR_PINC \ 77 | STM32_DMA_SCR_MINC \ 78 | STM32_DMA_SCR_PINCOS \ 79 | STM32_DMA_SCR_PL_MASK) 80 #define STM32_DMA_SCR_IRQ_MASK (STM32_DMA_SCR_TCIE \ 81 | STM32_DMA_SCR_TEIE \ 82 | STM32_DMA_SCR_DMEIE) 83 84 /* DMA Stream x number of data register */ 85 #define STM32_DMA_SNDTR(x) (0x0014 + 0x18 * (x)) 86 87 /* DMA stream peripheral address register */ 88 #define STM32_DMA_SPAR(x) (0x0018 + 0x18 * (x)) 89 90 /* DMA stream x memory 0 address register */ 91 #define STM32_DMA_SM0AR(x) (0x001c + 0x18 * (x)) 92 93 /* DMA stream x memory 1 address register */ 94 #define STM32_DMA_SM1AR(x) (0x0020 + 0x18 * (x)) 95 96 /* DMA stream x FIFO control register */ 97 #define STM32_DMA_SFCR(x) (0x0024 + 0x18 * (x)) 98 #define STM32_DMA_SFCR_FTH_MASK GENMASK(1, 0) 99 #define STM32_DMA_SFCR_FTH(n) (n & STM32_DMA_SFCR_FTH_MASK) 100 #define STM32_DMA_SFCR_FEIE BIT(7) /* FIFO error interrupt enable */ 101 #define STM32_DMA_SFCR_DMDIS BIT(2) /* Direct mode disable */ 102 #define STM32_DMA_SFCR_MASK (STM32_DMA_SFCR_FEIE \ 103 | STM32_DMA_SFCR_DMDIS) 104 105 /* DMA direction */ 106 #define STM32_DMA_DEV_TO_MEM 0x00 107 #define STM32_DMA_MEM_TO_DEV 0x01 108 #define STM32_DMA_MEM_TO_MEM 0x02 109 110 /* DMA priority level */ 111 #define STM32_DMA_PRIORITY_LOW 0x00 112 #define STM32_DMA_PRIORITY_MEDIUM 0x01 113 #define STM32_DMA_PRIORITY_HIGH 0x02 114 #define STM32_DMA_PRIORITY_VERY_HIGH 0x03 115 116 /* DMA FIFO threshold selection */ 117 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL 0x00 118 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL 0x01 119 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL 0x02 120 #define STM32_DMA_FIFO_THRESHOLD_FULL 0x03 121 #define STM32_DMA_FIFO_THRESHOLD_NONE 0x04 122 123 #define STM32_DMA_MAX_DATA_ITEMS 0xffff 124 /* 125 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter 126 * gather at boundary. Thus it's safer to round down this value on FIFO 127 * size (16 Bytes) 128 */ 129 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \ 130 ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16) 131 #define STM32_DMA_MAX_CHANNELS 0x08 132 #define STM32_DMA_MAX_REQUEST_ID 0x08 133 #define STM32_DMA_MAX_DATA_PARAM 0x03 134 #define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */ 135 #define STM32_DMA_MIN_BURST 4 136 #define STM32_DMA_MAX_BURST 16 137 138 /* DMA Features */ 139 #define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0) 140 #define STM32_DMA_THRESHOLD_FTR_GET(n) ((n) & STM32_DMA_THRESHOLD_FTR_MASK) 141 #define STM32_DMA_DIRECT_MODE_MASK BIT(2) 142 #define STM32_DMA_DIRECT_MODE_GET(n) (((n) & STM32_DMA_DIRECT_MODE_MASK) >> 2) 143 #define STM32_DMA_ALT_ACK_MODE_MASK BIT(4) 144 #define STM32_DMA_ALT_ACK_MODE_GET(n) (((n) & STM32_DMA_ALT_ACK_MODE_MASK) >> 4) 145 146 enum stm32_dma_width { 147 STM32_DMA_BYTE, 148 STM32_DMA_HALF_WORD, 149 STM32_DMA_WORD, 150 }; 151 152 enum stm32_dma_burst_size { 153 STM32_DMA_BURST_SINGLE, 154 STM32_DMA_BURST_INCR4, 155 STM32_DMA_BURST_INCR8, 156 STM32_DMA_BURST_INCR16, 157 }; 158 159 /** 160 * struct stm32_dma_cfg - STM32 DMA custom configuration 161 * @channel_id: channel ID 162 * @request_line: DMA request 163 * @stream_config: 32bit mask specifying the DMA channel configuration 164 * @features: 32bit mask specifying the DMA Feature list 165 */ 166 struct stm32_dma_cfg { 167 u32 channel_id; 168 u32 request_line; 169 u32 stream_config; 170 u32 features; 171 }; 172 173 struct stm32_dma_chan_reg { 174 u32 dma_lisr; 175 u32 dma_hisr; 176 u32 dma_lifcr; 177 u32 dma_hifcr; 178 u32 dma_scr; 179 u32 dma_sndtr; 180 u32 dma_spar; 181 u32 dma_sm0ar; 182 u32 dma_sm1ar; 183 u32 dma_sfcr; 184 }; 185 186 struct stm32_dma_sg_req { 187 u32 len; 188 struct stm32_dma_chan_reg chan_reg; 189 }; 190 191 struct stm32_dma_desc { 192 struct virt_dma_desc vdesc; 193 bool cyclic; 194 u32 num_sgs; 195 struct stm32_dma_sg_req sg_req[]; 196 }; 197 198 struct stm32_dma_chan { 199 struct virt_dma_chan vchan; 200 bool config_init; 201 bool busy; 202 u32 id; 203 u32 irq; 204 struct stm32_dma_desc *desc; 205 u32 next_sg; 206 struct dma_slave_config dma_sconfig; 207 struct stm32_dma_chan_reg chan_reg; 208 u32 threshold; 209 u32 mem_burst; 210 u32 mem_width; 211 enum dma_status status; 212 }; 213 214 struct stm32_dma_device { 215 struct dma_device ddev; 216 void __iomem *base; 217 struct clk *clk; 218 bool mem2mem; 219 struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS]; 220 }; 221 222 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan) 223 { 224 return container_of(chan->vchan.chan.device, struct stm32_dma_device, 225 ddev); 226 } 227 228 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c) 229 { 230 return container_of(c, struct stm32_dma_chan, vchan.chan); 231 } 232 233 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc) 234 { 235 return container_of(vdesc, struct stm32_dma_desc, vdesc); 236 } 237 238 static struct device *chan2dev(struct stm32_dma_chan *chan) 239 { 240 return &chan->vchan.chan.dev->device; 241 } 242 243 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg) 244 { 245 return readl_relaxed(dmadev->base + reg); 246 } 247 248 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val) 249 { 250 writel_relaxed(val, dmadev->base + reg); 251 } 252 253 static int stm32_dma_get_width(struct stm32_dma_chan *chan, 254 enum dma_slave_buswidth width) 255 { 256 switch (width) { 257 case DMA_SLAVE_BUSWIDTH_1_BYTE: 258 return STM32_DMA_BYTE; 259 case DMA_SLAVE_BUSWIDTH_2_BYTES: 260 return STM32_DMA_HALF_WORD; 261 case DMA_SLAVE_BUSWIDTH_4_BYTES: 262 return STM32_DMA_WORD; 263 default: 264 dev_err(chan2dev(chan), "Dma bus width not supported\n"); 265 return -EINVAL; 266 } 267 } 268 269 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len, 270 dma_addr_t buf_addr, 271 u32 threshold) 272 { 273 enum dma_slave_buswidth max_width; 274 275 if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL) 276 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 277 else 278 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 279 280 while ((buf_len < max_width || buf_len % max_width) && 281 max_width > DMA_SLAVE_BUSWIDTH_1_BYTE) 282 max_width = max_width >> 1; 283 284 if (buf_addr & (max_width - 1)) 285 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 286 287 return max_width; 288 } 289 290 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold, 291 enum dma_slave_buswidth width) 292 { 293 u32 remaining; 294 295 if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE) 296 return false; 297 298 if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) { 299 if (burst != 0) { 300 /* 301 * If number of beats fit in several whole bursts 302 * this configuration is allowed. 303 */ 304 remaining = ((STM32_DMA_FIFO_SIZE / width) * 305 (threshold + 1) / 4) % burst; 306 307 if (remaining == 0) 308 return true; 309 } else { 310 return true; 311 } 312 } 313 314 return false; 315 } 316 317 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold) 318 { 319 /* If FIFO direct mode, burst is not possible */ 320 if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE) 321 return false; 322 323 /* 324 * Buffer or period length has to be aligned on FIFO depth. 325 * Otherwise bytes may be stuck within FIFO at buffer or period 326 * length. 327 */ 328 return ((buf_len % ((threshold + 1) * 4)) == 0); 329 } 330 331 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold, 332 enum dma_slave_buswidth width) 333 { 334 u32 best_burst = max_burst; 335 336 if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold)) 337 return 0; 338 339 while ((buf_len < best_burst * width && best_burst > 1) || 340 !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold, 341 width)) { 342 if (best_burst > STM32_DMA_MIN_BURST) 343 best_burst = best_burst >> 1; 344 else 345 best_burst = 0; 346 } 347 348 return best_burst; 349 } 350 351 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst) 352 { 353 switch (maxburst) { 354 case 0: 355 case 1: 356 return STM32_DMA_BURST_SINGLE; 357 case 4: 358 return STM32_DMA_BURST_INCR4; 359 case 8: 360 return STM32_DMA_BURST_INCR8; 361 case 16: 362 return STM32_DMA_BURST_INCR16; 363 default: 364 dev_err(chan2dev(chan), "Dma burst size not supported\n"); 365 return -EINVAL; 366 } 367 } 368 369 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan, 370 u32 src_burst, u32 dst_burst) 371 { 372 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK; 373 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE; 374 375 if (!src_burst && !dst_burst) { 376 /* Using direct mode */ 377 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE; 378 } else { 379 /* Using FIFO mode */ 380 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK; 381 } 382 } 383 384 static int stm32_dma_slave_config(struct dma_chan *c, 385 struct dma_slave_config *config) 386 { 387 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 388 389 memcpy(&chan->dma_sconfig, config, sizeof(*config)); 390 391 chan->config_init = true; 392 393 return 0; 394 } 395 396 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan) 397 { 398 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 399 u32 flags, dma_isr; 400 401 /* 402 * Read "flags" from DMA_xISR register corresponding to the selected 403 * DMA channel at the correct bit offset inside that register. 404 * 405 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits. 406 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits. 407 */ 408 409 if (chan->id & 4) 410 dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR); 411 else 412 dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR); 413 414 flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6)); 415 416 return flags & STM32_DMA_MASKI; 417 } 418 419 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags) 420 { 421 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 422 u32 dma_ifcr; 423 424 /* 425 * Write "flags" to the DMA_xIFCR register corresponding to the selected 426 * DMA channel at the correct bit offset inside that register. 427 * 428 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits. 429 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits. 430 */ 431 flags &= STM32_DMA_MASKI; 432 dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6)); 433 434 if (chan->id & 4) 435 stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr); 436 else 437 stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr); 438 } 439 440 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan) 441 { 442 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 443 u32 dma_scr, id, reg; 444 445 id = chan->id; 446 reg = STM32_DMA_SCR(id); 447 dma_scr = stm32_dma_read(dmadev, reg); 448 449 if (dma_scr & STM32_DMA_SCR_EN) { 450 dma_scr &= ~STM32_DMA_SCR_EN; 451 stm32_dma_write(dmadev, reg, dma_scr); 452 453 return readl_relaxed_poll_timeout_atomic(dmadev->base + reg, 454 dma_scr, !(dma_scr & STM32_DMA_SCR_EN), 455 10, 1000000); 456 } 457 458 return 0; 459 } 460 461 static void stm32_dma_stop(struct stm32_dma_chan *chan) 462 { 463 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 464 u32 dma_scr, dma_sfcr, status; 465 int ret; 466 467 /* Disable interrupts */ 468 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 469 dma_scr &= ~STM32_DMA_SCR_IRQ_MASK; 470 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr); 471 dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); 472 dma_sfcr &= ~STM32_DMA_SFCR_FEIE; 473 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr); 474 475 /* Disable DMA */ 476 ret = stm32_dma_disable_chan(chan); 477 if (ret < 0) 478 return; 479 480 /* Clear interrupt status if it is there */ 481 status = stm32_dma_irq_status(chan); 482 if (status) { 483 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n", 484 __func__, status); 485 stm32_dma_irq_clear(chan, status); 486 } 487 488 chan->busy = false; 489 chan->status = DMA_COMPLETE; 490 } 491 492 static int stm32_dma_terminate_all(struct dma_chan *c) 493 { 494 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 495 unsigned long flags; 496 LIST_HEAD(head); 497 498 spin_lock_irqsave(&chan->vchan.lock, flags); 499 500 if (chan->desc) { 501 dma_cookie_complete(&chan->desc->vdesc.tx); 502 vchan_terminate_vdesc(&chan->desc->vdesc); 503 if (chan->busy) 504 stm32_dma_stop(chan); 505 chan->desc = NULL; 506 } 507 508 vchan_get_all_descriptors(&chan->vchan, &head); 509 spin_unlock_irqrestore(&chan->vchan.lock, flags); 510 vchan_dma_desc_free_list(&chan->vchan, &head); 511 512 return 0; 513 } 514 515 static void stm32_dma_synchronize(struct dma_chan *c) 516 { 517 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 518 519 vchan_synchronize(&chan->vchan); 520 } 521 522 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan) 523 { 524 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 525 u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 526 u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id)); 527 u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id)); 528 u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id)); 529 u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id)); 530 u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); 531 532 dev_dbg(chan2dev(chan), "SCR: 0x%08x\n", scr); 533 dev_dbg(chan2dev(chan), "NDTR: 0x%08x\n", ndtr); 534 dev_dbg(chan2dev(chan), "SPAR: 0x%08x\n", spar); 535 dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar); 536 dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar); 537 dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n", sfcr); 538 } 539 540 static void stm32_dma_sg_inc(struct stm32_dma_chan *chan) 541 { 542 chan->next_sg++; 543 if (chan->desc->cyclic && (chan->next_sg == chan->desc->num_sgs)) 544 chan->next_sg = 0; 545 } 546 547 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan); 548 549 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan) 550 { 551 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 552 struct virt_dma_desc *vdesc; 553 struct stm32_dma_sg_req *sg_req; 554 struct stm32_dma_chan_reg *reg; 555 u32 status; 556 int ret; 557 558 ret = stm32_dma_disable_chan(chan); 559 if (ret < 0) 560 return; 561 562 if (!chan->desc) { 563 vdesc = vchan_next_desc(&chan->vchan); 564 if (!vdesc) 565 return; 566 567 list_del(&vdesc->node); 568 569 chan->desc = to_stm32_dma_desc(vdesc); 570 chan->next_sg = 0; 571 } 572 573 if (chan->next_sg == chan->desc->num_sgs) 574 chan->next_sg = 0; 575 576 sg_req = &chan->desc->sg_req[chan->next_sg]; 577 reg = &sg_req->chan_reg; 578 579 reg->dma_scr &= ~STM32_DMA_SCR_EN; 580 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr); 581 stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar); 582 stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar); 583 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr); 584 stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar); 585 stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr); 586 587 stm32_dma_sg_inc(chan); 588 589 /* Clear interrupt status if it is there */ 590 status = stm32_dma_irq_status(chan); 591 if (status) 592 stm32_dma_irq_clear(chan, status); 593 594 if (chan->desc->cyclic) 595 stm32_dma_configure_next_sg(chan); 596 597 stm32_dma_dump_reg(chan); 598 599 /* Start DMA */ 600 chan->busy = true; 601 chan->status = DMA_IN_PROGRESS; 602 reg->dma_scr |= STM32_DMA_SCR_EN; 603 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr); 604 605 dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan); 606 } 607 608 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan) 609 { 610 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 611 struct stm32_dma_sg_req *sg_req; 612 u32 dma_scr, dma_sm0ar, dma_sm1ar, id; 613 614 id = chan->id; 615 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 616 617 sg_req = &chan->desc->sg_req[chan->next_sg]; 618 619 if (dma_scr & STM32_DMA_SCR_CT) { 620 dma_sm0ar = sg_req->chan_reg.dma_sm0ar; 621 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar); 622 dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n", 623 stm32_dma_read(dmadev, STM32_DMA_SM0AR(id))); 624 } else { 625 dma_sm1ar = sg_req->chan_reg.dma_sm1ar; 626 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar); 627 dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n", 628 stm32_dma_read(dmadev, STM32_DMA_SM1AR(id))); 629 } 630 } 631 632 static void stm32_dma_handle_chan_paused(struct stm32_dma_chan *chan) 633 { 634 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 635 u32 dma_scr; 636 637 /* 638 * Read and store current remaining data items and peripheral/memory addresses to be 639 * updated on resume 640 */ 641 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 642 /* 643 * Transfer can be paused while between a previous resume and reconfiguration on transfer 644 * complete. If transfer is cyclic and CIRC and DBM have been deactivated for resume, need 645 * to set it here in SCR backup to ensure a good reconfiguration on transfer complete. 646 */ 647 if (chan->desc && chan->desc->cyclic) { 648 if (chan->desc->num_sgs == 1) 649 dma_scr |= STM32_DMA_SCR_CIRC; 650 else 651 dma_scr |= STM32_DMA_SCR_DBM; 652 } 653 chan->chan_reg.dma_scr = dma_scr; 654 655 /* 656 * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt, otherwise 657 * on resume NDTR autoreload value will be wrong (lower than the initial period length) 658 */ 659 if (chan->desc && chan->desc->cyclic) { 660 dma_scr &= ~(STM32_DMA_SCR_DBM | STM32_DMA_SCR_CIRC); 661 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr); 662 } 663 664 chan->chan_reg.dma_sndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id)); 665 666 dev_dbg(chan2dev(chan), "vchan %pK: paused\n", &chan->vchan); 667 } 668 669 static void stm32_dma_post_resume_reconfigure(struct stm32_dma_chan *chan) 670 { 671 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 672 struct stm32_dma_sg_req *sg_req; 673 u32 dma_scr, status, id; 674 675 id = chan->id; 676 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 677 678 /* Clear interrupt status if it is there */ 679 status = stm32_dma_irq_status(chan); 680 if (status) 681 stm32_dma_irq_clear(chan, status); 682 683 if (!chan->next_sg) 684 sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1]; 685 else 686 sg_req = &chan->desc->sg_req[chan->next_sg - 1]; 687 688 /* Reconfigure NDTR with the initial value */ 689 stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), sg_req->chan_reg.dma_sndtr); 690 691 /* Restore SPAR */ 692 stm32_dma_write(dmadev, STM32_DMA_SPAR(id), sg_req->chan_reg.dma_spar); 693 694 /* Restore SM0AR/SM1AR whatever DBM/CT as they may have been modified */ 695 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sg_req->chan_reg.dma_sm0ar); 696 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sg_req->chan_reg.dma_sm1ar); 697 698 /* Reactivate CIRC/DBM if needed */ 699 if (chan->chan_reg.dma_scr & STM32_DMA_SCR_DBM) { 700 dma_scr |= STM32_DMA_SCR_DBM; 701 /* Restore CT */ 702 if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CT) 703 dma_scr &= ~STM32_DMA_SCR_CT; 704 else 705 dma_scr |= STM32_DMA_SCR_CT; 706 } else if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CIRC) { 707 dma_scr |= STM32_DMA_SCR_CIRC; 708 } 709 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr); 710 711 stm32_dma_configure_next_sg(chan); 712 713 stm32_dma_dump_reg(chan); 714 715 dma_scr |= STM32_DMA_SCR_EN; 716 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr); 717 718 dev_dbg(chan2dev(chan), "vchan %pK: reconfigured after pause/resume\n", &chan->vchan); 719 } 720 721 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan, u32 scr) 722 { 723 if (!chan->desc) 724 return; 725 726 if (chan->desc->cyclic) { 727 vchan_cyclic_callback(&chan->desc->vdesc); 728 stm32_dma_sg_inc(chan); 729 /* cyclic while CIRC/DBM disable => post resume reconfiguration needed */ 730 if (!(scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM))) 731 stm32_dma_post_resume_reconfigure(chan); 732 else if (scr & STM32_DMA_SCR_DBM) 733 stm32_dma_configure_next_sg(chan); 734 } else { 735 chan->busy = false; 736 chan->status = DMA_COMPLETE; 737 if (chan->next_sg == chan->desc->num_sgs) { 738 vchan_cookie_complete(&chan->desc->vdesc); 739 chan->desc = NULL; 740 } 741 stm32_dma_start_transfer(chan); 742 } 743 } 744 745 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid) 746 { 747 struct stm32_dma_chan *chan = devid; 748 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 749 u32 status, scr, sfcr; 750 751 spin_lock(&chan->vchan.lock); 752 753 status = stm32_dma_irq_status(chan); 754 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 755 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); 756 757 if (status & STM32_DMA_FEI) { 758 stm32_dma_irq_clear(chan, STM32_DMA_FEI); 759 status &= ~STM32_DMA_FEI; 760 if (sfcr & STM32_DMA_SFCR_FEIE) { 761 if (!(scr & STM32_DMA_SCR_EN) && 762 !(status & STM32_DMA_TCI)) 763 dev_err(chan2dev(chan), "FIFO Error\n"); 764 else 765 dev_dbg(chan2dev(chan), "FIFO over/underrun\n"); 766 } 767 } 768 if (status & STM32_DMA_DMEI) { 769 stm32_dma_irq_clear(chan, STM32_DMA_DMEI); 770 status &= ~STM32_DMA_DMEI; 771 if (sfcr & STM32_DMA_SCR_DMEIE) 772 dev_dbg(chan2dev(chan), "Direct mode overrun\n"); 773 } 774 775 if (status & STM32_DMA_TCI) { 776 stm32_dma_irq_clear(chan, STM32_DMA_TCI); 777 if (scr & STM32_DMA_SCR_TCIE) { 778 if (chan->status == DMA_PAUSED && !(scr & STM32_DMA_SCR_EN)) 779 stm32_dma_handle_chan_paused(chan); 780 else 781 stm32_dma_handle_chan_done(chan, scr); 782 } 783 status &= ~STM32_DMA_TCI; 784 } 785 786 if (status & STM32_DMA_HTI) { 787 stm32_dma_irq_clear(chan, STM32_DMA_HTI); 788 status &= ~STM32_DMA_HTI; 789 } 790 791 if (status) { 792 stm32_dma_irq_clear(chan, status); 793 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status); 794 if (!(scr & STM32_DMA_SCR_EN)) 795 dev_err(chan2dev(chan), "chan disabled by HW\n"); 796 } 797 798 spin_unlock(&chan->vchan.lock); 799 800 return IRQ_HANDLED; 801 } 802 803 static void stm32_dma_issue_pending(struct dma_chan *c) 804 { 805 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 806 unsigned long flags; 807 808 spin_lock_irqsave(&chan->vchan.lock, flags); 809 if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) { 810 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan); 811 stm32_dma_start_transfer(chan); 812 813 } 814 spin_unlock_irqrestore(&chan->vchan.lock, flags); 815 } 816 817 static int stm32_dma_pause(struct dma_chan *c) 818 { 819 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 820 unsigned long flags; 821 int ret; 822 823 if (chan->status != DMA_IN_PROGRESS) 824 return -EPERM; 825 826 spin_lock_irqsave(&chan->vchan.lock, flags); 827 ret = stm32_dma_disable_chan(chan); 828 /* 829 * A transfer complete flag is set to indicate the end of transfer due to the stream 830 * interruption, so wait for interrupt 831 */ 832 if (!ret) 833 chan->status = DMA_PAUSED; 834 spin_unlock_irqrestore(&chan->vchan.lock, flags); 835 836 return ret; 837 } 838 839 static int stm32_dma_resume(struct dma_chan *c) 840 { 841 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 842 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 843 struct stm32_dma_chan_reg chan_reg = chan->chan_reg; 844 u32 id = chan->id, scr, ndtr, offset, spar, sm0ar, sm1ar; 845 struct stm32_dma_sg_req *sg_req; 846 unsigned long flags; 847 848 if (chan->status != DMA_PAUSED) 849 return -EPERM; 850 851 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 852 if (WARN_ON(scr & STM32_DMA_SCR_EN)) 853 return -EPERM; 854 855 spin_lock_irqsave(&chan->vchan.lock, flags); 856 857 /* sg_reg[prev_sg] contains original ndtr, sm0ar and sm1ar before pausing the transfer */ 858 if (!chan->next_sg) 859 sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1]; 860 else 861 sg_req = &chan->desc->sg_req[chan->next_sg - 1]; 862 863 ndtr = sg_req->chan_reg.dma_sndtr; 864 offset = (ndtr - chan_reg.dma_sndtr) << STM32_DMA_SCR_PSIZE_GET(chan_reg.dma_scr); 865 spar = sg_req->chan_reg.dma_spar; 866 sm0ar = sg_req->chan_reg.dma_sm0ar; 867 sm1ar = sg_req->chan_reg.dma_sm1ar; 868 869 /* 870 * The peripheral and/or memory addresses have to be updated in order to adjust the 871 * address pointers. Need to check increment. 872 */ 873 if (chan_reg.dma_scr & STM32_DMA_SCR_PINC) 874 stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar + offset); 875 else 876 stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar); 877 878 if (!(chan_reg.dma_scr & STM32_DMA_SCR_MINC)) 879 offset = 0; 880 881 /* 882 * In case of DBM, the current target could be SM1AR. 883 * Need to temporarily deactivate CIRC/DBM to finish the current transfer, so 884 * SM0AR becomes the current target and must be updated with SM1AR + offset if CT=1. 885 */ 886 if ((chan_reg.dma_scr & STM32_DMA_SCR_DBM) && (chan_reg.dma_scr & STM32_DMA_SCR_CT)) 887 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sm1ar + offset); 888 else 889 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sm0ar + offset); 890 891 /* NDTR must be restored otherwise internal HW counter won't be correctly reset */ 892 stm32_dma_write(dmadev, STM32_DMA_SNDTR(id), chan_reg.dma_sndtr); 893 894 /* 895 * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt, 896 * otherwise NDTR autoreload value will be wrong (lower than the initial period length) 897 */ 898 if (chan_reg.dma_scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM)) 899 chan_reg.dma_scr &= ~(STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM); 900 901 if (chan_reg.dma_scr & STM32_DMA_SCR_DBM) 902 stm32_dma_configure_next_sg(chan); 903 904 stm32_dma_dump_reg(chan); 905 906 /* The stream may then be re-enabled to restart transfer from the point it was stopped */ 907 chan->status = DMA_IN_PROGRESS; 908 chan_reg.dma_scr |= STM32_DMA_SCR_EN; 909 stm32_dma_write(dmadev, STM32_DMA_SCR(id), chan_reg.dma_scr); 910 911 spin_unlock_irqrestore(&chan->vchan.lock, flags); 912 913 dev_dbg(chan2dev(chan), "vchan %pK: resumed\n", &chan->vchan); 914 915 return 0; 916 } 917 918 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan, 919 enum dma_transfer_direction direction, 920 enum dma_slave_buswidth *buswidth, 921 u32 buf_len, dma_addr_t buf_addr) 922 { 923 enum dma_slave_buswidth src_addr_width, dst_addr_width; 924 int src_bus_width, dst_bus_width; 925 int src_burst_size, dst_burst_size; 926 u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst; 927 u32 dma_scr, fifoth; 928 929 src_addr_width = chan->dma_sconfig.src_addr_width; 930 dst_addr_width = chan->dma_sconfig.dst_addr_width; 931 src_maxburst = chan->dma_sconfig.src_maxburst; 932 dst_maxburst = chan->dma_sconfig.dst_maxburst; 933 fifoth = chan->threshold; 934 935 switch (direction) { 936 case DMA_MEM_TO_DEV: 937 /* Set device data size */ 938 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width); 939 if (dst_bus_width < 0) 940 return dst_bus_width; 941 942 /* Set device burst size */ 943 dst_best_burst = stm32_dma_get_best_burst(buf_len, 944 dst_maxburst, 945 fifoth, 946 dst_addr_width); 947 948 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst); 949 if (dst_burst_size < 0) 950 return dst_burst_size; 951 952 /* Set memory data size */ 953 src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr, 954 fifoth); 955 chan->mem_width = src_addr_width; 956 src_bus_width = stm32_dma_get_width(chan, src_addr_width); 957 if (src_bus_width < 0) 958 return src_bus_width; 959 960 /* 961 * Set memory burst size - burst not possible if address is not aligned on 962 * the address boundary equal to the size of the transfer 963 */ 964 if (buf_addr & (buf_len - 1)) 965 src_maxburst = 1; 966 else 967 src_maxburst = STM32_DMA_MAX_BURST; 968 src_best_burst = stm32_dma_get_best_burst(buf_len, 969 src_maxburst, 970 fifoth, 971 src_addr_width); 972 src_burst_size = stm32_dma_get_burst(chan, src_best_burst); 973 if (src_burst_size < 0) 974 return src_burst_size; 975 976 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) | 977 STM32_DMA_SCR_PSIZE(dst_bus_width) | 978 STM32_DMA_SCR_MSIZE(src_bus_width) | 979 STM32_DMA_SCR_PBURST(dst_burst_size) | 980 STM32_DMA_SCR_MBURST(src_burst_size); 981 982 /* Set FIFO threshold */ 983 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK; 984 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE) 985 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth); 986 987 /* Set peripheral address */ 988 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr; 989 *buswidth = dst_addr_width; 990 break; 991 992 case DMA_DEV_TO_MEM: 993 /* Set device data size */ 994 src_bus_width = stm32_dma_get_width(chan, src_addr_width); 995 if (src_bus_width < 0) 996 return src_bus_width; 997 998 /* Set device burst size */ 999 src_best_burst = stm32_dma_get_best_burst(buf_len, 1000 src_maxburst, 1001 fifoth, 1002 src_addr_width); 1003 chan->mem_burst = src_best_burst; 1004 src_burst_size = stm32_dma_get_burst(chan, src_best_burst); 1005 if (src_burst_size < 0) 1006 return src_burst_size; 1007 1008 /* Set memory data size */ 1009 dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr, 1010 fifoth); 1011 chan->mem_width = dst_addr_width; 1012 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width); 1013 if (dst_bus_width < 0) 1014 return dst_bus_width; 1015 1016 /* 1017 * Set memory burst size - burst not possible if address is not aligned on 1018 * the address boundary equal to the size of the transfer 1019 */ 1020 if (buf_addr & (buf_len - 1)) 1021 dst_maxburst = 1; 1022 else 1023 dst_maxburst = STM32_DMA_MAX_BURST; 1024 dst_best_burst = stm32_dma_get_best_burst(buf_len, 1025 dst_maxburst, 1026 fifoth, 1027 dst_addr_width); 1028 chan->mem_burst = dst_best_burst; 1029 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst); 1030 if (dst_burst_size < 0) 1031 return dst_burst_size; 1032 1033 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) | 1034 STM32_DMA_SCR_PSIZE(src_bus_width) | 1035 STM32_DMA_SCR_MSIZE(dst_bus_width) | 1036 STM32_DMA_SCR_PBURST(src_burst_size) | 1037 STM32_DMA_SCR_MBURST(dst_burst_size); 1038 1039 /* Set FIFO threshold */ 1040 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK; 1041 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE) 1042 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth); 1043 1044 /* Set peripheral address */ 1045 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr; 1046 *buswidth = chan->dma_sconfig.src_addr_width; 1047 break; 1048 1049 default: 1050 dev_err(chan2dev(chan), "Dma direction is not supported\n"); 1051 return -EINVAL; 1052 } 1053 1054 stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst); 1055 1056 /* Set DMA control register */ 1057 chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK | 1058 STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK | 1059 STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK); 1060 chan->chan_reg.dma_scr |= dma_scr; 1061 1062 return 0; 1063 } 1064 1065 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs) 1066 { 1067 memset(regs, 0, sizeof(struct stm32_dma_chan_reg)); 1068 } 1069 1070 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg( 1071 struct dma_chan *c, struct scatterlist *sgl, 1072 u32 sg_len, enum dma_transfer_direction direction, 1073 unsigned long flags, void *context) 1074 { 1075 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1076 struct stm32_dma_desc *desc; 1077 struct scatterlist *sg; 1078 enum dma_slave_buswidth buswidth; 1079 u32 nb_data_items; 1080 int i, ret; 1081 1082 if (!chan->config_init) { 1083 dev_err(chan2dev(chan), "dma channel is not configured\n"); 1084 return NULL; 1085 } 1086 1087 if (sg_len < 1) { 1088 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len); 1089 return NULL; 1090 } 1091 1092 desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT); 1093 if (!desc) 1094 return NULL; 1095 1096 /* Set peripheral flow controller */ 1097 if (chan->dma_sconfig.device_fc) 1098 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL; 1099 else 1100 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL; 1101 1102 for_each_sg(sgl, sg, sg_len, i) { 1103 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, 1104 sg_dma_len(sg), 1105 sg_dma_address(sg)); 1106 if (ret < 0) 1107 goto err; 1108 1109 desc->sg_req[i].len = sg_dma_len(sg); 1110 1111 nb_data_items = desc->sg_req[i].len / buswidth; 1112 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) { 1113 dev_err(chan2dev(chan), "nb items not supported\n"); 1114 goto err; 1115 } 1116 1117 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); 1118 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr; 1119 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr; 1120 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar; 1121 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg); 1122 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg); 1123 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items; 1124 } 1125 1126 desc->num_sgs = sg_len; 1127 desc->cyclic = false; 1128 1129 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); 1130 1131 err: 1132 kfree(desc); 1133 return NULL; 1134 } 1135 1136 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic( 1137 struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len, 1138 size_t period_len, enum dma_transfer_direction direction, 1139 unsigned long flags) 1140 { 1141 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1142 struct stm32_dma_desc *desc; 1143 enum dma_slave_buswidth buswidth; 1144 u32 num_periods, nb_data_items; 1145 int i, ret; 1146 1147 if (!buf_len || !period_len) { 1148 dev_err(chan2dev(chan), "Invalid buffer/period len\n"); 1149 return NULL; 1150 } 1151 1152 if (!chan->config_init) { 1153 dev_err(chan2dev(chan), "dma channel is not configured\n"); 1154 return NULL; 1155 } 1156 1157 if (buf_len % period_len) { 1158 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n"); 1159 return NULL; 1160 } 1161 1162 /* 1163 * We allow to take more number of requests till DMA is 1164 * not started. The driver will loop over all requests. 1165 * Once DMA is started then new requests can be queued only after 1166 * terminating the DMA. 1167 */ 1168 if (chan->busy) { 1169 dev_err(chan2dev(chan), "Request not allowed when dma busy\n"); 1170 return NULL; 1171 } 1172 1173 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len, 1174 buf_addr); 1175 if (ret < 0) 1176 return NULL; 1177 1178 nb_data_items = period_len / buswidth; 1179 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) { 1180 dev_err(chan2dev(chan), "number of items not supported\n"); 1181 return NULL; 1182 } 1183 1184 /* Enable Circular mode or double buffer mode */ 1185 if (buf_len == period_len) { 1186 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC; 1187 } else { 1188 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM; 1189 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_CT; 1190 } 1191 1192 /* Clear periph ctrl if client set it */ 1193 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL; 1194 1195 num_periods = buf_len / period_len; 1196 1197 desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT); 1198 if (!desc) 1199 return NULL; 1200 1201 for (i = 0; i < num_periods; i++) { 1202 desc->sg_req[i].len = period_len; 1203 1204 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); 1205 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr; 1206 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr; 1207 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar; 1208 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr; 1209 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr; 1210 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items; 1211 buf_addr += period_len; 1212 } 1213 1214 desc->num_sgs = num_periods; 1215 desc->cyclic = true; 1216 1217 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); 1218 } 1219 1220 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy( 1221 struct dma_chan *c, dma_addr_t dest, 1222 dma_addr_t src, size_t len, unsigned long flags) 1223 { 1224 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1225 enum dma_slave_buswidth max_width; 1226 struct stm32_dma_desc *desc; 1227 size_t xfer_count, offset; 1228 u32 num_sgs, best_burst, dma_burst, threshold; 1229 int i; 1230 1231 num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS); 1232 desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT); 1233 if (!desc) 1234 return NULL; 1235 1236 threshold = chan->threshold; 1237 1238 for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) { 1239 xfer_count = min_t(size_t, len - offset, 1240 STM32_DMA_ALIGNED_MAX_DATA_ITEMS); 1241 1242 /* Compute best burst size */ 1243 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1244 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST, 1245 threshold, max_width); 1246 dma_burst = stm32_dma_get_burst(chan, best_burst); 1247 1248 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); 1249 desc->sg_req[i].chan_reg.dma_scr = 1250 STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) | 1251 STM32_DMA_SCR_PBURST(dma_burst) | 1252 STM32_DMA_SCR_MBURST(dma_burst) | 1253 STM32_DMA_SCR_MINC | 1254 STM32_DMA_SCR_PINC | 1255 STM32_DMA_SCR_TCIE | 1256 STM32_DMA_SCR_TEIE; 1257 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK; 1258 desc->sg_req[i].chan_reg.dma_sfcr |= 1259 STM32_DMA_SFCR_FTH(threshold); 1260 desc->sg_req[i].chan_reg.dma_spar = src + offset; 1261 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset; 1262 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count; 1263 desc->sg_req[i].len = xfer_count; 1264 } 1265 1266 desc->num_sgs = num_sgs; 1267 desc->cyclic = false; 1268 1269 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); 1270 } 1271 1272 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan) 1273 { 1274 u32 dma_scr, width, ndtr; 1275 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 1276 1277 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 1278 width = STM32_DMA_SCR_PSIZE_GET(dma_scr); 1279 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id)); 1280 1281 return ndtr << width; 1282 } 1283 1284 /** 1285 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred 1286 * @chan: dma channel 1287 * 1288 * This function called when IRQ are disable, checks that the hardware has not 1289 * switched on the next transfer in double buffer mode. The test is done by 1290 * comparing the next_sg memory address with the hardware related register 1291 * (based on CT bit value). 1292 * 1293 * Returns true if expected current transfer is still running or double 1294 * buffer mode is not activated. 1295 */ 1296 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan) 1297 { 1298 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 1299 struct stm32_dma_sg_req *sg_req; 1300 u32 dma_scr, dma_smar, id, period_len; 1301 1302 id = chan->id; 1303 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 1304 1305 /* In cyclic CIRC but not DBM, CT is not used */ 1306 if (!(dma_scr & STM32_DMA_SCR_DBM)) 1307 return true; 1308 1309 sg_req = &chan->desc->sg_req[chan->next_sg]; 1310 period_len = sg_req->len; 1311 1312 /* DBM - take care of a previous pause/resume not yet post reconfigured */ 1313 if (dma_scr & STM32_DMA_SCR_CT) { 1314 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)); 1315 /* 1316 * If transfer has been pause/resumed, 1317 * SM0AR is in the range of [SM0AR:SM0AR+period_len] 1318 */ 1319 return (dma_smar >= sg_req->chan_reg.dma_sm0ar && 1320 dma_smar < sg_req->chan_reg.dma_sm0ar + period_len); 1321 } 1322 1323 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)); 1324 /* 1325 * If transfer has been pause/resumed, 1326 * SM1AR is in the range of [SM1AR:SM1AR+period_len] 1327 */ 1328 return (dma_smar >= sg_req->chan_reg.dma_sm1ar && 1329 dma_smar < sg_req->chan_reg.dma_sm1ar + period_len); 1330 } 1331 1332 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan, 1333 struct stm32_dma_desc *desc, 1334 u32 next_sg) 1335 { 1336 u32 modulo, burst_size; 1337 u32 residue; 1338 u32 n_sg = next_sg; 1339 struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg]; 1340 int i; 1341 1342 /* 1343 * Calculate the residue means compute the descriptors 1344 * information: 1345 * - the sg_req currently transferred 1346 * - the Hardware remaining position in this sg (NDTR bits field). 1347 * 1348 * A race condition may occur if DMA is running in cyclic or double 1349 * buffer mode, since the DMA register are automatically reloaded at end 1350 * of period transfer. The hardware may have switched to the next 1351 * transfer (CT bit updated) just before the position (SxNDTR reg) is 1352 * read. 1353 * In this case the SxNDTR reg could (or not) correspond to the new 1354 * transfer position, and not the expected one. 1355 * The strategy implemented in the stm32 driver is to: 1356 * - read the SxNDTR register 1357 * - crosscheck that hardware is still in current transfer. 1358 * In case of switch, we can assume that the DMA is at the beginning of 1359 * the next transfer. So we approximate the residue in consequence, by 1360 * pointing on the beginning of next transfer. 1361 * 1362 * This race condition doesn't apply for none cyclic mode, as double 1363 * buffer is not used. In such situation registers are updated by the 1364 * software. 1365 */ 1366 1367 residue = stm32_dma_get_remaining_bytes(chan); 1368 1369 if (chan->desc->cyclic && !stm32_dma_is_current_sg(chan)) { 1370 n_sg++; 1371 if (n_sg == chan->desc->num_sgs) 1372 n_sg = 0; 1373 residue = sg_req->len; 1374 } 1375 1376 /* 1377 * In cyclic mode, for the last period, residue = remaining bytes 1378 * from NDTR, 1379 * else for all other periods in cyclic mode, and in sg mode, 1380 * residue = remaining bytes from NDTR + remaining 1381 * periods/sg to be transferred 1382 */ 1383 if (!chan->desc->cyclic || n_sg != 0) 1384 for (i = n_sg; i < desc->num_sgs; i++) 1385 residue += desc->sg_req[i].len; 1386 1387 if (!chan->mem_burst) 1388 return residue; 1389 1390 burst_size = chan->mem_burst * chan->mem_width; 1391 modulo = residue % burst_size; 1392 if (modulo) 1393 residue = residue - modulo + burst_size; 1394 1395 return residue; 1396 } 1397 1398 static enum dma_status stm32_dma_tx_status(struct dma_chan *c, 1399 dma_cookie_t cookie, 1400 struct dma_tx_state *state) 1401 { 1402 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1403 struct virt_dma_desc *vdesc; 1404 enum dma_status status; 1405 unsigned long flags; 1406 u32 residue = 0; 1407 1408 status = dma_cookie_status(c, cookie, state); 1409 if (status == DMA_COMPLETE) 1410 return status; 1411 1412 status = chan->status; 1413 1414 if (!state) 1415 return status; 1416 1417 spin_lock_irqsave(&chan->vchan.lock, flags); 1418 vdesc = vchan_find_desc(&chan->vchan, cookie); 1419 if (chan->desc && cookie == chan->desc->vdesc.tx.cookie) 1420 residue = stm32_dma_desc_residue(chan, chan->desc, 1421 chan->next_sg); 1422 else if (vdesc) 1423 residue = stm32_dma_desc_residue(chan, 1424 to_stm32_dma_desc(vdesc), 0); 1425 dma_set_residue(state, residue); 1426 1427 spin_unlock_irqrestore(&chan->vchan.lock, flags); 1428 1429 return status; 1430 } 1431 1432 static int stm32_dma_alloc_chan_resources(struct dma_chan *c) 1433 { 1434 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1435 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 1436 int ret; 1437 1438 chan->config_init = false; 1439 1440 ret = pm_runtime_resume_and_get(dmadev->ddev.dev); 1441 if (ret < 0) 1442 return ret; 1443 1444 ret = stm32_dma_disable_chan(chan); 1445 if (ret < 0) 1446 pm_runtime_put(dmadev->ddev.dev); 1447 1448 return ret; 1449 } 1450 1451 static void stm32_dma_free_chan_resources(struct dma_chan *c) 1452 { 1453 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1454 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 1455 unsigned long flags; 1456 1457 dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id); 1458 1459 if (chan->busy) { 1460 spin_lock_irqsave(&chan->vchan.lock, flags); 1461 stm32_dma_stop(chan); 1462 chan->desc = NULL; 1463 spin_unlock_irqrestore(&chan->vchan.lock, flags); 1464 } 1465 1466 pm_runtime_put(dmadev->ddev.dev); 1467 1468 vchan_free_chan_resources(to_virt_chan(c)); 1469 stm32_dma_clear_reg(&chan->chan_reg); 1470 chan->threshold = 0; 1471 } 1472 1473 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc) 1474 { 1475 kfree(container_of(vdesc, struct stm32_dma_desc, vdesc)); 1476 } 1477 1478 static void stm32_dma_set_config(struct stm32_dma_chan *chan, 1479 struct stm32_dma_cfg *cfg) 1480 { 1481 stm32_dma_clear_reg(&chan->chan_reg); 1482 1483 chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK; 1484 chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line); 1485 1486 /* Enable Interrupts */ 1487 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE; 1488 1489 chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features); 1490 if (STM32_DMA_DIRECT_MODE_GET(cfg->features)) 1491 chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE; 1492 if (STM32_DMA_ALT_ACK_MODE_GET(cfg->features)) 1493 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF; 1494 } 1495 1496 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec, 1497 struct of_dma *ofdma) 1498 { 1499 struct stm32_dma_device *dmadev = ofdma->of_dma_data; 1500 struct device *dev = dmadev->ddev.dev; 1501 struct stm32_dma_cfg cfg; 1502 struct stm32_dma_chan *chan; 1503 struct dma_chan *c; 1504 1505 if (dma_spec->args_count < 4) { 1506 dev_err(dev, "Bad number of cells\n"); 1507 return NULL; 1508 } 1509 1510 cfg.channel_id = dma_spec->args[0]; 1511 cfg.request_line = dma_spec->args[1]; 1512 cfg.stream_config = dma_spec->args[2]; 1513 cfg.features = dma_spec->args[3]; 1514 1515 if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS || 1516 cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) { 1517 dev_err(dev, "Bad channel and/or request id\n"); 1518 return NULL; 1519 } 1520 1521 chan = &dmadev->chan[cfg.channel_id]; 1522 1523 c = dma_get_slave_channel(&chan->vchan.chan); 1524 if (!c) { 1525 dev_err(dev, "No more channels available\n"); 1526 return NULL; 1527 } 1528 1529 stm32_dma_set_config(chan, &cfg); 1530 1531 return c; 1532 } 1533 1534 static const struct of_device_id stm32_dma_of_match[] = { 1535 { .compatible = "st,stm32-dma", }, 1536 { /* sentinel */ }, 1537 }; 1538 MODULE_DEVICE_TABLE(of, stm32_dma_of_match); 1539 1540 static int stm32_dma_probe(struct platform_device *pdev) 1541 { 1542 struct stm32_dma_chan *chan; 1543 struct stm32_dma_device *dmadev; 1544 struct dma_device *dd; 1545 const struct of_device_id *match; 1546 struct resource *res; 1547 struct reset_control *rst; 1548 int i, ret; 1549 1550 match = of_match_device(stm32_dma_of_match, &pdev->dev); 1551 if (!match) { 1552 dev_err(&pdev->dev, "Error: No device match found\n"); 1553 return -ENODEV; 1554 } 1555 1556 dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL); 1557 if (!dmadev) 1558 return -ENOMEM; 1559 1560 dd = &dmadev->ddev; 1561 1562 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1563 dmadev->base = devm_ioremap_resource(&pdev->dev, res); 1564 if (IS_ERR(dmadev->base)) 1565 return PTR_ERR(dmadev->base); 1566 1567 dmadev->clk = devm_clk_get(&pdev->dev, NULL); 1568 if (IS_ERR(dmadev->clk)) 1569 return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n"); 1570 1571 ret = clk_prepare_enable(dmadev->clk); 1572 if (ret < 0) { 1573 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret); 1574 return ret; 1575 } 1576 1577 dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node, 1578 "st,mem2mem"); 1579 1580 rst = devm_reset_control_get(&pdev->dev, NULL); 1581 if (IS_ERR(rst)) { 1582 ret = PTR_ERR(rst); 1583 if (ret == -EPROBE_DEFER) 1584 goto clk_free; 1585 } else { 1586 reset_control_assert(rst); 1587 udelay(2); 1588 reset_control_deassert(rst); 1589 } 1590 1591 dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS); 1592 1593 dma_cap_set(DMA_SLAVE, dd->cap_mask); 1594 dma_cap_set(DMA_PRIVATE, dd->cap_mask); 1595 dma_cap_set(DMA_CYCLIC, dd->cap_mask); 1596 dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources; 1597 dd->device_free_chan_resources = stm32_dma_free_chan_resources; 1598 dd->device_tx_status = stm32_dma_tx_status; 1599 dd->device_issue_pending = stm32_dma_issue_pending; 1600 dd->device_prep_slave_sg = stm32_dma_prep_slave_sg; 1601 dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic; 1602 dd->device_config = stm32_dma_slave_config; 1603 dd->device_pause = stm32_dma_pause; 1604 dd->device_resume = stm32_dma_resume; 1605 dd->device_terminate_all = stm32_dma_terminate_all; 1606 dd->device_synchronize = stm32_dma_synchronize; 1607 dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | 1608 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | 1609 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); 1610 dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | 1611 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | 1612 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); 1613 dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1614 dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1615 dd->copy_align = DMAENGINE_ALIGN_32_BYTES; 1616 dd->max_burst = STM32_DMA_MAX_BURST; 1617 dd->max_sg_burst = STM32_DMA_ALIGNED_MAX_DATA_ITEMS; 1618 dd->descriptor_reuse = true; 1619 dd->dev = &pdev->dev; 1620 INIT_LIST_HEAD(&dd->channels); 1621 1622 if (dmadev->mem2mem) { 1623 dma_cap_set(DMA_MEMCPY, dd->cap_mask); 1624 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy; 1625 dd->directions |= BIT(DMA_MEM_TO_MEM); 1626 } 1627 1628 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) { 1629 chan = &dmadev->chan[i]; 1630 chan->id = i; 1631 chan->vchan.desc_free = stm32_dma_desc_free; 1632 vchan_init(&chan->vchan, dd); 1633 } 1634 1635 ret = dma_async_device_register(dd); 1636 if (ret) 1637 goto clk_free; 1638 1639 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) { 1640 chan = &dmadev->chan[i]; 1641 ret = platform_get_irq(pdev, i); 1642 if (ret < 0) 1643 goto err_unregister; 1644 chan->irq = ret; 1645 1646 ret = devm_request_irq(&pdev->dev, chan->irq, 1647 stm32_dma_chan_irq, 0, 1648 dev_name(chan2dev(chan)), chan); 1649 if (ret) { 1650 dev_err(&pdev->dev, 1651 "request_irq failed with err %d channel %d\n", 1652 ret, i); 1653 goto err_unregister; 1654 } 1655 } 1656 1657 ret = of_dma_controller_register(pdev->dev.of_node, 1658 stm32_dma_of_xlate, dmadev); 1659 if (ret < 0) { 1660 dev_err(&pdev->dev, 1661 "STM32 DMA DMA OF registration failed %d\n", ret); 1662 goto err_unregister; 1663 } 1664 1665 platform_set_drvdata(pdev, dmadev); 1666 1667 pm_runtime_set_active(&pdev->dev); 1668 pm_runtime_enable(&pdev->dev); 1669 pm_runtime_get_noresume(&pdev->dev); 1670 pm_runtime_put(&pdev->dev); 1671 1672 dev_info(&pdev->dev, "STM32 DMA driver registered\n"); 1673 1674 return 0; 1675 1676 err_unregister: 1677 dma_async_device_unregister(dd); 1678 clk_free: 1679 clk_disable_unprepare(dmadev->clk); 1680 1681 return ret; 1682 } 1683 1684 #ifdef CONFIG_PM 1685 static int stm32_dma_runtime_suspend(struct device *dev) 1686 { 1687 struct stm32_dma_device *dmadev = dev_get_drvdata(dev); 1688 1689 clk_disable_unprepare(dmadev->clk); 1690 1691 return 0; 1692 } 1693 1694 static int stm32_dma_runtime_resume(struct device *dev) 1695 { 1696 struct stm32_dma_device *dmadev = dev_get_drvdata(dev); 1697 int ret; 1698 1699 ret = clk_prepare_enable(dmadev->clk); 1700 if (ret) { 1701 dev_err(dev, "failed to prepare_enable clock\n"); 1702 return ret; 1703 } 1704 1705 return 0; 1706 } 1707 #endif 1708 1709 #ifdef CONFIG_PM_SLEEP 1710 static int stm32_dma_pm_suspend(struct device *dev) 1711 { 1712 struct stm32_dma_device *dmadev = dev_get_drvdata(dev); 1713 int id, ret, scr; 1714 1715 ret = pm_runtime_resume_and_get(dev); 1716 if (ret < 0) 1717 return ret; 1718 1719 for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) { 1720 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 1721 if (scr & STM32_DMA_SCR_EN) { 1722 dev_warn(dev, "Suspend is prevented by Chan %i\n", id); 1723 return -EBUSY; 1724 } 1725 } 1726 1727 pm_runtime_put_sync(dev); 1728 1729 pm_runtime_force_suspend(dev); 1730 1731 return 0; 1732 } 1733 1734 static int stm32_dma_pm_resume(struct device *dev) 1735 { 1736 return pm_runtime_force_resume(dev); 1737 } 1738 #endif 1739 1740 static const struct dev_pm_ops stm32_dma_pm_ops = { 1741 SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_pm_suspend, stm32_dma_pm_resume) 1742 SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend, 1743 stm32_dma_runtime_resume, NULL) 1744 }; 1745 1746 static struct platform_driver stm32_dma_driver = { 1747 .driver = { 1748 .name = "stm32-dma", 1749 .of_match_table = stm32_dma_of_match, 1750 .pm = &stm32_dma_pm_ops, 1751 }, 1752 .probe = stm32_dma_probe, 1753 }; 1754 1755 static int __init stm32_dma_init(void) 1756 { 1757 return platform_driver_register(&stm32_dma_driver); 1758 } 1759 subsys_initcall(stm32_dma_init); 1760